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On Closure Phase and Systematic Bias in
Multi-looked SAR Interferometry
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Abstract—In this article, we investigate the link between
closure phase and the observed systematic bias in deformation
modeling with multi-looked SAR interferometry. Multi-looking
or spatial averaging is commonly used to reduce stochastic
noise over a neighborhood of distributed scatterers in InSAR
measurements. However, multi-looking may break consistency
among a triplet of interferometric phases formed from three
acquisitions leading to a residual phase error called closure
phase. Understanding the cause of closure phase in multi-looked
InSAR measurements and the impact of closure phase errors on
the performance of InSAR time-series algorithms is crucial for
quantifying the uncertainty of ground displacement time-series
derived from InSAR measurements. We develop a model that
consistently explains both closure phase and systematic bias in
multi-looked interferometric measurements. We show that non-
zero closure phase can be an indicator of temporally inconsistent
physical processes that alter both phase and amplitude of
interferometric measurements. We propose a method to estimate
the systematic bias in the InSAR time-series with generalized
closure phase measurements. We validate our model with a case
study in Barstow-Bristol trough, California. We find systematic
differences on the order of cm/year between InSAR time-series
results using subsets of varying maximum temporal baseline. We
show that these biases can be identified and accounted for.

Index Terms—InSAR, InSAR time-series, Phase Consistency,
Closure Phase, Systematic Bias

I. INTRODUCTION

INTERFEROMETRIC Synthetic Aperture Radar (InSAR)
time-series analysis is an established Earth remote sensing

technique for monitoring temporal changes of the Earth
surface displacements. InSAR has been used to study a
variety of phenomena including volcanic inflation and
deflation, landslides, tectonic deformation across faults,
seismic and aseismic fault slip and groundwater-induced
deformation [1]–[8]. InSAR time-series algorithms exploit
interferogram stacks to reduce the impact of uncorrelated or
partially correlated noise in individual InSAR measurements,
such as signal decorrelation [9], [10] and atmospheric delay
[11], [12].

InSAR measurements produced in native full-resolution are
often referred to as “single-look” measurements. In contrast,
“multi-looked” measurements are acquired by averaging
the complex returns of adjacent pixels. InSAR time-series
methods can be categorized into two groups: Persistent
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scatterers interferometry (PSI) and distributed scatterers
interferometry (DSI). PSI makes use of high signal-to-noise
ratio single-look measurements and only requires N − 1
common-scene interferograms formed from N SAR images
[13], [14]. In contrast, DSI identifies partially correlated areas
and may use multi-looking to reduce stochastic noise and to
improve phase estimation [15]. DSI can be further divided into
two categories. One estimates phase time-series by solving a
linear system of unwrapped interferometric phases, e.g., the
conventional Small BAseline Subset (SBAS) technique [16].
The other category exploits the SAR correlation matrix and
retrieves a phase history before phase unwrapping [17]–[19],
e.g., SqueeSAR [19].

Comparisons between the two families of time-series
methods reveal systematic differences in estimated line-of-
sight (LOS) deformation maps [20], [21], which were initially
considered to be within expected noise levels [20]. However,
[22] finds that the discrepancies increase with decreasing
temporal baseline imposed on the DSI method. This observed
correlation with the temporal baseline cannot be explained
by known noise terms and therefore indicates the presence
of a previously overlooked phase component introduced by
multi-look processing. The observations of non-zero closure
phase [23], which result from an inconsistency among a triplet
of multi-looked interferometric phases formed from three
acquisitions, also corroborate the existence of a such phase
component. However, the cause of closure phase remains
unclear with previous studies differing on whether to relate
closure phase to a physical process such as soil moisture
change [23], pure statistical properties of SAR measurements
[24] or a combination of these factors. Understanding the
cause of closure phase and its impact on the performance of
DSI time-series algorithms is therefore crucial for determining
the error budget and optimal processing approach as well as
accurate interpretations of ground displacement time-series
derived from InSAR measurements.

The purpose of this work is to investigate the cause of
both non-zero closure phase and the observed discrepancies
between DSI and PSI time-series. Specifically, we highlight
the roles of multi-look processing and inhomogeneity within
a multi-look window. In the context of deformation studies,
these discrepancies can bias interpretations of InSAR-derived
displacement time-series. In this paper, we refer to these
discrepancies as bias although they are results of physical
processes such as moisture change. In Section II of this paper,
we review concepts of closure phase, multi-look processing
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and InSAR time-series analysis. In Section III, we demonstrate
our model for multi-looked interferometric phase that can
explain both non-zero closure phase and observed discrepan-
cies in DSI and PSI time-series. In Section IV, we introduce
the method for estimating bias time-series using generalized
closure phase measurements. We show simulation results in
Section V and the workflow of our approach in Section VI. We
then validate our model with a case study in Barstow-Bristol
Trough, California in Section VII. We discuss closure phase
and systematic biases in multi-looked SAR interferometry in
Section VIII. We conclude in Section IX.

II. TECHNICAL BACKGROUND

A. Closure Phase Definition
With three SAR Single Look Complex (SLC) images

si, sj , sk, where i, j, k are acquisition indices, three interfero-
grams can be generated zij , zjk, zki. Closure phase is defined
as the angle of the triple product of the aforementioned three
interferometric measurements:

∆φijk = 6 zijzjkzki (1)

which is also the sum of the three respective interferometric
phases (modulo 2π)

∆φijk = ∆φij + ∆φjk + ∆φki. (2)

Single-look interferometric phase can be decomposed as the
difference between SAR phases at two acquisition times
∆φij = φi−φj , where φi represents the SAR phase at time ti.
Therefore for single-look interferograms, it is straightforward
to derive ∆φijk ≡ 0. Closure phase has also been referred to in
literature as “phase consistency” [23] or “phase triangularity”
[19]. In contrast to the single-look case, closure phases are
generally nonzero for multi-looked observations [23], [25],
[26]. We consider pixels with zero closure phase as pixels with
“consistent” phase measurements and pixels with nonzero clo-
sure phase as pixels with “inconsistent” phase measurements.

B. Multi-look Processing
Multi-look processing is an effective way to reduce phase

noise over DS pixels in InSAR observations [27].

An L-look interferometric measurement is generated by
averaging L single-look measurements. Assuming that these
L measurements are independent and statistically homoge-
neous, i.e., they are drawn from the same Probability Density
Function (PDF), the L-look measurement z is the Maximum
Likelihood (ML) estimate and is unbiased [15]:

E(z) = ρσei∆φ (3)

where ρ is the coherence magnitude between the two SAR
observations, σ is a measure of the average power of
the two SAR images, and ∆φ is the true interferometric
phase. E(·) represents the expectation of a random variable.
The ML estimate of the interferometric phase is biased
[15] unless the interferogram is properly unwrapped [28].
In this work, we assume that the deviation is negligible:
E(6 z) ≈ 6 E(z) = ∆φ.

C. Phase closure is an intrinsic assumption in InSAR time-
series

DSI methods operate on multi-looked InSAR measurements
and assume phase consistency for multi-looked phase, i.e.,

∆φij = φi − φj + ∆φn (4)

where φi represents the SAR phase at time ti and ∆φn is a
zero-mean noise component. With this assumption , one can
derive that closure phase is expected to be zero.

E(∆φijk) = 0 (5)

However, non-zero closure phase has been widely observed
[23], [25], indicating the presence of a previously overlooked
phase component introduced by multi-look processing that
breaks the assumption of phase consistency and introduces
bias in InSAR time-series.

III. MULTI-LOOK PROCESSING INHOMOGENEOUS
INTERFEROMETRIC MEASUREMENTS

We represent inhomogeneity with two groups of measure-
ments with distinct Probability Density Functions (PDFs).
Though it is possible to describe inhomogeneity with a con-
tinuous distribution such as the work presented in [29], we
find a simple dyad model sufficient to provide useful insights.
Consider two groups of pixels inside one multi-look window.
The true phase of each group is represented by ∆φI and
∆φII. Multi-look processing leads to the following expected
measurement:

E(z) = (1− q)ρIσIej∆φ
I
+ qρIIσIIej∆φ

II
(6)

where q is the percentage of pixels in group II with respect
to the total number of pixels in the multi-look window. Let w
be the weight of the amplitude of group II comparing to the
sum of amplitudes of both groups.

w =
qρIIσII

qρIIσII + (1− q)ρIσI (7)

The expected multi-looked phase is a function of ∆φI, ∆φII,
and w.

E(∆φ) = 6 {(1− w)ej∆φ
I
+ wej∆φ

II
} (8)

When w → 0, E(∆φ) = ∆φI. When w → 1, E(∆φ) =
∆φII. Both w → 0 and w → 1 represent cases where one
group of measurements is dominant so that inhomogeneity
is negligible. When |∆φI −∆φII| < 1 radian, E(∆φ) can be
approximated as a linear function of ∆φI and ∆φII (Appendix
A):

E(∆φ) ≈ (1− w)∆φI + w∆φII (9)

Therefore, the multi-looked phase carries information from
both ∆φI and ∆φII. Eq. (9) can be extended to multiple
groups with the contribution from each group weighted by
their respective amplitude ratio.

Generally the interferometric phase of repeat pass interfer-
ograms consists of different components such as propagation
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delay, geometrical phase induced by baseline separation be-
tween orbits, motion of the ground surface, and decorrelation
noise. For the sake of simplicity, we assume that a multi-look
window consists of two groups of pixels such that both groups
are subjected to ground deformation (∆φdef) while one group
also undergoes an additional process (∆φx),

∆φI = ∆φdef

∆φII = ∆φdef + ∆φx (10)

This simplification does not affect our formulation in the
following as one could substitute deformation with a sum of all
interferometric phase components which results in consistent
phase (i.e., zero closure phase). Hereinafter, we refer to pro-
cesses that result in zero closure phase temporally consistent
processes and processes that result in nonzero closure phase
temporally inconsistent processes. With this assumption,

E(∆φ) = ∆φdef + w∆φx (11)

and the expected closure phase is therefore:

E(∆φijk) = wij(φ
x
i − φx

j) + wjk(φx
j − φx

k)

− wik(φx
i − φx

k) (12)

E(∆φijk) 6= 0 except in the following cases:

1) φx
i = φx

j = φx
k. This is a trivial situation where

E(∆φx) = 0 in all three interferograms. For example,
decorrelation caused by random movements of scatterers
does not induce systematic phase change and hence
does not result in non-closure.

2) wij = wjk = wik. In other words, the weight w for
the time-inconsistent process remains a constant in
all three interferograms. For example, processes such
as deformation or atmospheric delays do not induce
amplitude or correlation change and hence do not result
in non-closure.

Therefore non-zero closure phase signals the presence
of phase-changing physical processes with varying weights
of amplitudes in different interferograms. The weight wij
(Eq.(7)) is a function of both time ti and tj . We can simplify
wij as a function of the temporal baseline ∆t = |ti− tj | if (1)
q is a function of ∆t, i.e., the number of pixels that undergo
the temporally inconsistent process changes with the temporal
span and/or (2) ρII/ρI is a function of ∆t. Both of these
conditions effectively vary the amplitude representation of the
temporally inconsistent process within the multi-look window
as a function of the temporal span ∆t. These conditions can
be satisfied by a single process or a combination of processes
that induce both amplitude and phase change for a subset of
pixels within the multi-look window.

It is worth noting that although we started this derivation
with multi-looking inhomogeneous interferometric measure-
ments, spatial inhomogeneity is not a required condition for
causing non-closure. For example, if wij = 0, wjk = wik = 1,
hence inhomogeneity is negligible in all three interferograms,
E(∆φijk) = φx

j − φx
i . As long as φx

i 6= φx
j , E(∆φijk) 6= 0.

IV. MODELING SYSTEMATIC BIAS IN INSAR TIME-SERIES

If the weight w of the temporally inconsistent process
varies with the temporal baseline, the derived time-series
vary with the temporal baseline as well. For example, if
w(∆t < 30 days) = 0.5 and w(∆t > 30 days) = 0 , using a
subset of interferograms with a temporal baseline smaller than
30 days will result in the following phase time-series:

φi = φdef
i + 0.5φx

i . (13)

In contrast, if only using interferograms with temporal baseline
longer than 30 days, then

φi = φdef
i . (14)

Time-series analysis with 30 days temporal baseline therefore
contains a bias which reflects contributions from the
temporally inconsistent process. In this section, we present
a model that predicts the contribution from temporally
inconsistent processes in the derived time-series.

Assume that we have N consecutive radar measurements
acquired every δt days. We define a connection-n (con-
n) interferometric pair as SAR acquisitions separated by n
acquisition intervals. We refer to analysis of interferograms
comprised of con-1 through con-n pairs as a bandwidth-n (bw-
n) analysis. The system of equation for a bw-n analysis is:

∆φ = Aφdef +WAφx (15)

where ∆φ is a M×1 (M = n(2N−n−1)/2) interferometric
phase vector, A is a M×N design matrix specifying SAR ac-
quisitions used, φdef and φx represent phase histories of defor-
mation and the temporally inconsistent process, respectively,
and W is a M × M diagonal matrix indicating the weight
of the temporally inconsistent process in each interferometric
pair.

Wii = w(kiδt) (16)

where i = 1, 2, ...M and ki is the connection level of the
interferometric pair specified in the ith row of A. InSAR time-
series algorithms do not distinguish between φdef and φx and
solve the following system of equation

∆φ = Aφ. (17)

Combining Eqs.(15) and (17),

Aφ = Aφdef +WAφx (18)

The reconstructed phase history φ from a bw-n analysis is
therefore a combination of both deformation and the tempo-
rally inconsistent process.

φ = φdef +A†WAφx (19)

The bias time-series is thus

φbias = A†WAφx = A†W rAw(δt)φ
x (20)

where W r is a M × M diagonal matrix with diagonal
component W r

ii = Wii/w(δt), i = 1, 2, ...,M .
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We exploit sequential closure phases to estimate W r and
w(δt)φ

x. We define a con-n sequential closure phase starting
at acquisition i as

Φni = (
i+n−1∑
k=i

φk,k+1)− φi,i+n (21)

=
(
w(δt)− w(nδt)

)
(φx
i+n − φx

i ) (22)

We use sequential closure phases because (1) sequential
closure phases describe the phase difference of the temporally
inconsistent process between n acquisitions, and (2) sequential
closure phases are sensitive to the weights of the temporally
inconsistent process.

Sequential closure phases can be used to infer weighted
phase history of the temporally inconsistent process. For
example, with φx

1 = 0

Φn1 =
(
w(δt)− w(nδt)

)
φx

1+n

Φn1 + Φn1+n =
(
w(δt)− w(nδt)

)
φx

1+2n

Φn1 + Φn1+n + Φn1+2n =
(
w(δt)− w(nδt)

)
φx

1+3n

... ... (23)

Thus, we can construct a weighted phase history fnk , k =
1, ..., N , of the temporally inconsistent process by summing
consecutive sequential closure phases. The superscript n in-
dicates the connection level of sequential closure phases and
determines the weights imposed on the phase history

fnk = n
(
w(δt)− w(nδt)

)
φx
k n ≥ 2 (24)

where

fnk =


0 k = 1∑k−1
i=1 Φni 1 < k ≤ N − n

(k −N + n)ΦnN−n +
∑N−n−1
i=1 Φni k > N − n

(25)

Note that since each con-n sequential closure phase describes
the phase difference between n time steps, the estimated bias
time-series has a temporal resolution of nδt.

A. Estimate w(δt)φ
x

Since the observed discrepancies between DSI and PSI
time-series decrease with the temporal baseline, we make the
assumption that the weight of the temporally inconsistent pro-
cess decreases monotonically with increasing time span, and
the weight becomes negligible when the time span becomes
equal or larger than nlδt, i.e.,

w(nδt)

w(δt)
= 0, n ≥ nl. (26)

Let n = nl in Eq. (24),

fnl

k = nlw(δt)φ
x
k (27)

Therefore by summing con-nl sequential closure phases at
different starting acquisition i, we can obtain an estimate for
w(δt)φ

x

w(δt)φ
x
k =

fnl

k

nl
, k = 1, 2, ..., N (28)

B. Estimate Wr

Combining Eqs. (24) and (28) and let k = N

w(nδt)

w(δt)
= 1− fnN/n

fnl

N /nl
n ≥ 2 (29)

This equation allows us to populate the matrix Wr in Eq. (20).

With the estimate of both w(δt)φ
x and Wr, along with the

design matrix A, we can reconstruct the bias time-series φbias

using Eq. (20). The temporal resolution of the reconstructed
bias time-series is nlδt. To achieve finer temporal resolutions,
we can substitute con-nl sequential closure phases with con-m
(2 ≤ m < nl) sequential closure phases by combining Eqs.
(24) and (29):

fnl

k

nl
=
fnl

N /nl
fmN /m

fmk
m

(30)

V. SIMULATION

We simulate a multi-look window that deforms periodically
while half of the pixels also go through a temporally incon-
sistent process. We assume that the temporally inconsistent
process can be described by an inherent physical parameter
that linearly increases with time xi = 0.025 tiδt where δt is the
acquisition interval. The parameters of the multi-look window
are described in Table. I

TABLE I
PARAMETERS OF THE MULTI-LOOK WINDOW

Group I Group II
(deformation) (deformation + temporally inconsistent process)

∆φij ∆φdef
ij ∆φdef

ij + 2
3
π(xj − xi)

ρij 1 e−4|xi−xj |

σ 1 1

The multi-looked interferometric phase between the ith and
jth acquisitions is therefore (Eq. (6)),

∆φij = 6 {1

2
ej∆φ

def
ij +

1

2
e−4|xi−xj |ej(∆φ

def
ij + 2

3π(xj−xi))} (31)

The simulated phase histories of the temporally inconsistent
process and deformation are shown as the dashed line and the
solid line in Fig. 1, respectively. We perform bw-1, bw-5, bw-
10 and full bandwidth analysis. The reconstructed time-series
are weighted averages of both deformation and the temporally
inconsistent process (Fig. 1(a)). With the primary goal of
recovering deformation, the temporally inconsistent process
constitutes as bias in the reconstructed time-series.

Fig.1 (b) and (c) show the corrected time-series with nl =
15 and nl = 30, respectively. In both cases, the amount of
biases are significantly reduced. Note that the corrected time-
series with nl = 30 contain less bias than the time-series
obtained from a full-network analysis. Since the choice of
nl in either case is imperfect (Fig. 2), the estimation of the
weight matrix Wr is not perfect and hence the biases are not
completely eliminated.
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Fig. 1. Time-series of bw-1 (orange circle), bw-5 (green square), bw-10 (cyan
plus), and full bandwidth (blue diamond) analysis (a) before correction, (b)
after correction with nl = 15 and (c) after correction with nl = 30. The
solid line shows the simulated phase history of deformation. The dashed line
shows the simulated phase history of the temporally inconsistent process.

Fig. 2. The true values of w(nδt)/w(δt) (blue circles) and the estimated
values of w(nδt)/w(δt) with the assumptions of nl = 15 (green triangle)
and nl = 30 (orange squares).

VI. BIAS ESTIMATION ALGORITHM

To estimate the bias in a bw-n time-series, we first need
to determine nl so that w(nlδt)/w(δt) → 0 (Eq.(26)).
In practice, without prior knowledge of the temporally
inconsistent process, the choice of nl is empirical and
constrained by the total number of acquisitions (nl < N ).

It is often useful to have a proxy map that identifies
bias-susceptible regions. We can do so by evaluating
τ = 1

K

∑K
k=1 e

jΦ
nl
k . The amplitude of τ ranges between 0

and 1 and is dominated by decorrelation effects [30], [31].
The phase of τ describes the average phase change of the
temporally inconsistent process per acquisition. Consider two
end-member cases: (1) If a multi-looked measurement is fully
decorrelated, then |τ | → 0, 6 τ varies between −π to π with
an approximate Gaussian distribution (central limit theorem);
(2) If a multi-looked measurement has minimal temporal
decorrelation, then |τ | → 1, 6 τ is the average phase change
of the temporally inconsistent process per acquisition. Thus,
by setting a threshold on both the amplitude and the phase of
τ , i.e., |τ | > ε and | 6 τ | > θ, we can obtain a proxy map that
identifies regions susceptible to bias.

The next step is to form con-nl sequential closure phases
Φnl

1 , ...,Φ
nl

N−nl
defined in Eq. (21). We first form wrapped

sequential closure phase from either a coregistered stack
of single-look complex (SLC) SAR images or a redundant
network of existing interferograms. We use wrapped closure
phases to reduce the impact of potential phase unwrapping
errors in interferograms. We next unwrap sequential closure
phases and reconstruct the weighted phase history fnl

1 , ..., fnl

N

of the temporally inconsistent process by summing the
sequential closure phases (Eq. (25)). The bias time-series
of the bw-1 analysis w(δt)φ

z is therefore [fnl
1 /nl, ..., f

nl

N /nl].

We then form sequential closure phases from con-2 to
con-n and their respective weighted temporally inconsistent
phase histories (f2

k , ..., f
n
k , k = 1, ..., N ) in order to populate

the matrix of W r. The accuracy of the matrix W r is
determined by the estimation accuracy of w(nδt)/w(δt).

Finally we solve the linear equation defined in Eq.(20).

The summary of the above algorithm is illustrated in Fig.3.

VII. VALIDATION WITH DATA

We processed 153 Sentinel 1 A/B SAR images (descending
path 173) using ISCE2 (https://github.com/isce-framework/
isce2) from February 2017 to January 2021 of the Barstow-
Bristol trough area, California, USA (Fig. 4). The test site
is characterized by desert landscapes and have several dry
lakes as a result of arid climate [32]–[34]. We form 1475
interferograms (con-1 through con-10) and multi-look each
interferogram by 10 looks in the azimuth direction and 40
looks in the range direction. We unwrap the interferograms
using the SNAPHU algorithm [35].

Following the workflow presented in Fig. 3, we first create
a proxy map that highlights regions susceptible to bias by
evaluating the parameter τ = 1

K

∑K
k=1 e

jΦ
nl
k (Fig. 5). We

assume nl = 20. We choose an amplitude threshold |τ | of 0.3
to remove rapidly decorrelating areas and a phase threshold
of 0.3 radian to select areas with systematic non-zero closure
phase. The phase threshold is determined as the 2σ value
of a Gaussian distribution with σ = π√

3K
. The proxy map

provides a quick view of possible bias regions. We then
perform time-series analysis of bw-1, bw-5 and bw-10
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Fig. 3. Workflow of reconstructing the bias time-series in a bw-n time-series
analysis.

Fig. 4. Google Earth map of the test site (black lines) in Barstow-Bristol
trough, California, USA. Locations of the dry lakes are marked with blue
patches. From left to right, Alkali dry lake, Bristol dry lake, Cadiz dry lake
and Danby dry lake. Red stars indicate the locations of the weather stations
used in this study.

using MintPy [36]. Fig. 6 (top row) presents the estimated
displacement velocity maps. The average velocity map
derived from bw-1 analysis (top row, left) shows that the dry
lakes and their surrounding areas are characterized by signals
that appear to move towards the satellite. The uplift of the dry
lake beds has been observed in other regions [37] and may be
related to formation of evaporite mineral crystals [38]. While
the apparent uplift of the dry lakes remains consistent in all
three velocity maps, the signals of their surrounding areas
fade rapidly in the longer-connection velocity maps. Note

Fig. 5. Maps identifying bias regions by evaluating τ = 1
K

∑K
k=1 e

jΦ
nl
k

(a) |τ | and (b) 6 τ (c) Bias map by using the thresholds of |τ | > 0.3 and
| 6 τ | > 0.3 radian. Black pixels are identified as regions susceptible to bias.

that these areas with velocity discrepancies are also identified
in the bias map (Fig.5(c)).

We then estimate the bias velocity in a bw-1 analysis.
We find strong bias presences surrounding the dry lakes –
reaching 1 cm/year in areas near the Bristol dry lake (the
color scale in Fig.7 is saturated for better visual effects). Other
notable areas with bias include the back side of mountains
with respect to the radar view and areas surrounding the
agricultural region along the Colorado river. While the
bias surrounding the dry lakes are positive (range decrease
relative to the reference pixel), the bias in the other areas are
negative (range increase with respect to the reference pixel).
We proceed to estimate the elements of Wr and compute
maps of w(2δt)/w(δt), w(3δt)/w(δt) and w(5δt)/w(δt).
By multiplying these weight ratio maps with the bw-1 bias
velocity, we acquire bias velocities in con-2, con-3, and con-5
interferograms (Fig. 7 (b)-(d)). We find that the bias velocity
drops rapidly with increasing temporal baseline. In con-5
interferograms which have an average temporal baseline of
45 days, the bias velocity drops to below 2 mm/year in nearly
all areas.

Finally we estimate bias time-series associated with
temporally inconsistent processes in each velocity map
(Fig. 6, middle row). The corrected velocity maps (Fig. 6,
bottom row) show consistent patterns. In comparison, the
full-bandwidth result obtained with the Fringe package [39]
shows no apparent uplift signal surrounding the dry lake,
consistent with the corrected velocity maps (Fig. 8).

It is worth noting that since phase unwrapping is performed
in both regular time-series analysis and in the bias estimation,
phase unwrapping errors may impact both the estimated orig-
inal and bias time-series. We use the connected component
information produced by phase unwrapping algorithms such
as SNAPHU [35] to mask out areas that may have phase
unwrapping errors. We retain areas that are within the same
connected component in all unwrapped sequential closure
phases and velocity solutions and mask out all other areas.
In this case, most regions of the test site are deemed reliably
unwrapped except for agricultural fields and some areas within
the dry lakes (Fig. 6).

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on April 26,2022 at 21:42:16 UTC from IEEE Xplore.  Restrictions apply. 



0196-2892 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3167648, IEEE
Transactions on Geoscience and Remote Sensing

IEEE TRANSACTION OF GEOSCIENCE AND REMOTE SENSING 7

Fig. 6. Displacement velocity maps in the radar coordinate derived from
time-series of (left column) bw-1 analysis, (middle column) bw-5 analysis,
and (right column) bw-10 analysis. After removing the estimated signals
associated with temporally inconsistent processes (middle row) from original
velocities maps (top row), the residual velocity maps (bottom row) are
consistent. Areas with phase unwrapping errors are masked out. The reference
point is marked by a black square.

VIII. DISCUSSION

A. Choice of nl

The first step of our workflow is to determine nl. In theory,
we should choose a value of nl so that con-nl interferograms
are free of bias. In practice, we have to choose nl empirically
unless we have some prior knowledge of the temporally
inconsistent processes. The number of total acquisitions also
limits the choice of nl. We cannot simply choose the largest
possible value for nl (e.g., nl = N ) because long connection
sequential closure phases are more likely to suffer from
temporal decorrelation and therefore are difficult to unwrap.
In our case, we choose nl = 20 while we have N = 153
acquisitions. We have shown in Section V that imperfect
choice of nl results in partial bias correction. More accurate
choices of nl yield more accurate bias correction.

We can validate the choice of nl by examining decay rates
of bias velocities. The chosen value for nl is reasonable if
the derived bias velocities become negligible at a temporal
baseline much smaller than nlδt. In our case, since con-5
interferograms contain less than 2 mm/year bias velocity, our
choice of nl = 20 at least reduces bias to below 2 mm/year.

B. Phase Unwrapping Errors

Since our algorithm requires unwrapping sequential closure
phases, it is subjected to phase unwrapping errors. Phase un-
wrapping errors are strongly associated with regions with high
decorrelation noise. To reduce the impact of phase unwrapping
errors, one can mask out areas that may suffer from phase
unwrapping errors. In our test case, we mask out areas with
phase unwrapping errors using connected component informa-
tion from SNAPHU. Other ways to mask out or correct for
phase unwrapping errors include utilizing unwrapped closure
phases and accounting for the multiples of 2π residue [36],
[40]. In rapidly decorrelating regions, such a mask may not
be practical even with a choice of small nl. In this case, bias
correction may not be possible and we recommend producing
an indication map identifying regions of potential bias such as
Fig.5(c). If the primary goal is to recover deformation, such a
map can mask out areas that are impacted by biases.

C. The assumptions for the weight wij
In our algorithm, we make two assumptions about the

weight wij .

First, we simplify the weight wij to be a function of
a single parameter wij = w(|ti − tj |) rather than two
parameters wij = w(ti, tj) . We make this simplification
based on the observed correlation between temporal baseline
and the discrepancy between PSI and DSI time-series. This
simplification also allows us to perform bias estimation with
a small sets of parameters. In reality, this assumption may not
capture the complexity of real processes. We find that as long
as wij can be approximated as a function of the temporal
baseline, the proposed algorithm works well (Appendix B).

The second assumption is that wij fades over time. We make
this assumption based on observations that DSI time-series
with short temporal baseline show larger discrepancies with
PSI time-series. To account for scenarios that this assumption
is not met, we need to develop more advanced algorithms
building on our model for multi-looked phase (Eq.(9)).

D. Does small-baseline analysis always contains bias?

Though [22] recommends the use of a full-network to
eliminate bias, we find that full-network approach is not
always necessary. For example, in our case study, the bw-10
analysis contains negligible bias (Fig. 6) because the decay
rate of the bias-inducing process is rapid (Fig. 7). On the
other hand, if the decay rate for the bias-inducing process is
slow relative to the length of observation, even a full-network
approach does not completely eliminate the bias (Fig. 1).

E. Alternative Time-series methods

Depending on the decay rate of the bias-inducing process,
alternative time-series methods [30], [41], [42] may also
produce results that show no discrepancies among DSI time-
series with different temporal baselines. This is because the
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Fig. 7. Maps of bias velocities in (a) con-1, (b) con-2, (c) con-3, and (d) con-5 interferograms. The average temporal baselines are (a) 9 days, (b) 19 days,
(c) 28 days, and (d) 45 days overlain on shaded relief topography maps. The color bar is saturated in (a) for better visual effects. Areas with absolute bias
velocity smaller than 1 mm/year in (a) are masked. All velocities are relative to a reference pixel represented by a black square on the plots.

Fig. 8. (top) Original and (middle) corrected displacement velocity maps in
the radar coordinate over the Bristol Dry lake region (marked in Fig.4) derived
from (left) bw-1, (middle) bw-5 and (right) bw-10 analysis. The corrected
velocity maps do not show the apparent uplift signal in the region around the
dry lake, consistent with the (bottom) displacement velocity map derived from
full-bandwidth analysis. Areas with phase unwrapping errors are masked out.

triangulation step or an equivalent preprocessing noise filtering
step implemented in these work eliminates inconsistent phase
component in interferograms before time-series inversion.
However, removal of inconsistent phase component is not
equivalent to removal of bias. Consider a simple case where
the weight for the bias-inducing process remains a constant.
Since no inconsistent phase arises from the bias-inducing
process, no bias is removed from triangulation. Rather than
filtering out inconsistent phase before inversion, our method
predicts the contribution from the bias-inducing process in
the time-series. The main difference between the proposed
algorithm with these algorithms is that our method models

the temporal characteristics of the bias-inducing process while
the noise-filtering triangulation considers the bias-inducing
process as white noise.

F. Nature of temporally inconsistent processes

While we identify temporally inconsistent processes that
have varying representation inside a multi-look window the
root cause for non-zero closure phase and bias in DSI time-
series, the nature of these temporally inconsistent processes
remains undetermined. Soil moisture and vegetation has been
suggested as two possible causes for the observed bias in the
time-series [22], [23]. We examine one pixel that exhibits
significant bias on the edge of the Bristol dry lake (marked
in Fig. 4 as a black star). We acquire precipitation data from
three near by stations (marked as red stars in Fig.4) from
the National Centers for Environmental Information (NCEI)
and compare cumulative precipitation with the estimated
bias time-series. The correlation between the bias time-series
and cumulative precipitation (Fig. 9, top) suggests that
the temporally inconsistent process may reflect the drying
process in the soil after precipitation. Perhaps unintuitively,
precipitation does not result in a phase jump, but rather
the onset of gradual phase decrease (motion towards the
satellite) over a period of a few weeks or months. The lack
of instant phase jumps may be due to the inherent relative
nature of InSAR phase measurements with respect to a
reference point. We form two coherence time-series, one with
a dry reference date (Nov 10th, 2014) and the other with
a wet reference date (Feb 3rd, 2017). This particular pixel
suffers from little temporal decorrelation and its correlation
time-series show clear impacts from precipitation events. In
particular, we observe instant correlation loss and gradual
recovery in response to precipitation in the dry correlation
time-series (gray triangles, red line). The recovery time of
the correlation matches the duration of phase changes after
a precipitation event. The wet correlation time-series (black
pluses, blue line) mirrors the dry correlation time-series, with
opposite response to precipitation. Similar InSAR correlation
response to precipitation events has been reported by [43].
The derived bias time-series likely reflect the InSAR phase
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Fig. 9. (Top) The bw-1 bias (black) time-series of a point at the rim of the
Bristol dry lake (marked as a black star in Fig.4) plotted against cumulative
precipitation data (gray) averaged over three nearby stations (marked as red
stars in Fig.4) . Each precipitation event coincides with apparent uplift motion
in the bias time-series. (Bottom) Coherence time-series with regard to a dry
reference date Nov 10, 2014 (gray triangles) and a wet reference date Feb 3,
2017 (black pluses). The red and the blue lines are the dry and wet coherence
time-series respectively after medium filtering.

response (relative to the reference pixel) to the same drying
process after precipitation.

IX. CONCLUSIONS

We present a model for multi-looked interferometric
phase that can consistently explain both closure phase errors
and discrepancies between DSI and PSI time-series. In a
multi-look window where there are more than one group
of measurements, all groups contribute to the multi-looked
phase. The weight of each group is decided by the weight of
their respective amplitude among all groups. If a temporally
inconsistent process has decaying amplitudes either due
to relative loss of correlation (comparing to other groups)
or shrinking of effective areas, signal associated with the
temporally inconsistent process appears as a fading signal
in time-series. If the primary interest is surface ground
displacement measurement, the impact of these temporally
inconsistent processes can lead to biased interpretations. We
show that sequential closure phases can be used to identify,
reconstruct and ultimately correct the bias time-series from
DSI time-series. Specifically, we conclude that:

1) Phase changing physical processes with varying
amplitude representation in time are temporally
inconsistent and cause the presence of non-zero closure

Fig. 10. (a) Illustration of sum of two complex values (b) Illustration of linear
approximation when ∆φII − φI < 1 radian

phase and bias in InSAR time-series.

2) We have developed algorithms for easy identification
of areas susceptible to bias, as well as for predicting
and correcting bias from InSAR time-series.

3) Depending on the decay rate of the bias, a small-
baseline analysis may not have significant bias in
some cases (e.g., the bw-10 analysis in Section VII
shows negligible bias presence) while in other cases a
full-bandwidth analysis may still contain bias (e.g., Fig.
1(a)).

4) The bias time-series of a pixel on the edge of the Bristol
dry lake show clear correlation with precipitation and
“may” indicate the InSAR phase response to the drying
process of soil after precipitation.

APPENDIX A
PROOF OF EQUATION (9)

E(∆φ) describes the angle of the sum of two complex
measurements (Fig. 10(a)) and can be computed using the
principles of trigonometry,

E(∆φ)) = 6 E(ẑ) = 6 {(1− w)ej∆φ
I
+ wej∆φ

II
}

= ∆φI + sin−1(
w

|ẑ|
sin(∆φII −∆φI))

≈ (1− w)∆φI + w∆φII

The last equation is derived using small angle approximation.
Fig.10 (b) shows that when |∆φII − ∆φI| < 1 radian , the
above approximation holds.

APPENDIX B
SIMULATION WHEN wij = w(ti, tj)

In our simulation in Section V, we assume that the physical
parameter that describes the temporally inconsistent process
increases linearly with time. Here we keep the same parame-
ters in Table. 1 and modify the parameter x so that it contains
a non-linear component. We test two scenarios: (1)x =
0.025 tiδt + 0.1sin(π5

ti
δt

), and (2) x = 0.025 tiδt + 0.5sin(π5
ti
δt

).
Fig. 11 illustrates the performances of our algorithms on these
two scenarios. When the nonlinear component is relatively
small, the proposed algorithm works as expected. When the
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Fig. 11. Same with Fig.1 but with two different configurations of the
parameter x. (a)-(c) x = 0.025 ti

δt
+ 0.1sin(π

5
ti
δt

). (d)-(f))x = 0.025 ti
δt

+

0.5sin(π
5
ti
δt

)

nonlinear component becomes dominant, the proposed algo-
rithm fails to accurately estimate the bias time-series and the
resulting corrected time-series are still diverged.
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