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Abstract— Motivated by the state-of-the-art optical sensing and
image processing technologies, remote urban sensing (RUS) has
emerged as a powerful sensing paradigm to capture abundant
visual information about the urban environment for intelligent
city monitoring, planning, and management. In this article,
we focus on a classification and super-resolution coupling (CSC)
problem in RUS applications, where the goal is to explore the
interdependence between two critical tasks (i.e., classification
and super-resolution) to concurrently boost the performance of
both the tasks. Two fundamental challenges exist in solving our
problem: 1) it is challenging to obtain accurate classification
results and generate high-quality reconstructed images without
knowing either of them a priori and 2) the noise embedded
in the image data could be amplified infinitely by the complex
interdependence and coupling between the two tasks. To address
these challenges, we develop SCLearn, a novel deep convolutional
neural network architecture, to couple the classification task with
the super-resolution task in an integrated learning framework
to concurrently boost the performance of both the tasks. The
evaluation results on a real-world RUS application over two
different cities in Europe (Barcelona and Berlin) show that
SCLearn consistently outperforms the state-of-the-art baselines
by simultaneously achieving better land usage classification
accuracy and higher reconstructed image quality under various
application scenarios.

Index Terms— Classification, integrated deep learning, smart
urban sensing, super-resolution.

I. INTRODUCTION

REMOTE urban sensing (RUS) has emerged as a pow-
erful and scalable sensing paradigm to capture abun-

dant visual information about the urban environment by
leveraging high-quality images from satellites and unmanned
aerial vehicles (UAVs) [1]. Examples of RUS applications
include urban infrastructure health monitoring for smart urban
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management [2], anomaly event detection and investigation
for emergency response [3], remote crop growth sensing for
precise agriculture [4], and city-wide land usage classification
for intelligent urban planning [5]. In this article, we focus
on two critical tasks—classification and super-resolution—in
RUS applications. In particular, the classification task in RUS
refers to the process of learning the class label (e.g., infrastruc-
ture health, damage severity, crop condition, and land usage)
of a given sensing image. In contrast, the super-resolution
task targets at improving the spatial resolution of an input
sensing image. On one hand, while classification is effective
in categorizing the sensing images that share similar visual
characteristics, its performance often depends on the resolution
of the input images [6]. On the other hand, super-resolution
is dedicated to improving the image quality by refining its
visual details, but it often requires a good amount of training
data with similar visual features (e.g., images from the same
class) to learn a specific super-resolution model [7]. In this
article, we study a new classification and super-resolution cou-
pling (CSC) problem, where the goal is to explore the interde-
pendence between the classification and super-resolution tasks
to concurrently improve the performance of both the tasks.

An example RUS application of our CSC problem is the
classification of diversified land usages using aerial images in
urban areas as shown in Fig. 1. The land usage classification
results are essential to address various important social and
urban challenges in a city (e.g., urban planning and man-
agement, natural resource, and environment protection) [8].
In Fig. 1, we observe that the waterbody and recreation area
are misclassified as green lands in the image in Fig. 1(a) due to
insufficient image resolution. This problem can be addressed
by exploring the interdependence between the classification
and super-resolution tasks. On one hand, the land usage
classification scheme could leverage the high-resolution (HR)
images reconstructed by the super-resolution scheme [e.g.,
Fig. 1(b)] for a more accurate land usage classification result.
On the other hand, the super-resolution scheme is also able
to leverage the accurate land usage labels learned by the
classification scheme to build a more specific and refined
super-resolution model for high-quality image reconstruction
(e.g., improving the image quality of the red box areas
in Fig. 1(a) using the visual details of the waterbody and
recreation areas instead of green lands).
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Fig. 1. Example of land usage classification. (a) Low resolution. (b) High
resolution.

A good amount of efforts in RUS focus on solving the
classification and super-resolution problems separately. In par-
ticular, examples of classification solutions include land usage
classification using Siamese-prototype network [9], satellite
image texture recognition using convolutional neural networks
(CNNs) [10], and remote sensing image scene classification
using the best representation branch model [11]. Examples
of super-resolution solutions include remote sensing image
enhancement using reference-based generative adversarial net-
work (GAN) [12], image upscaling using CNNs [13], and
satellite video super-resolution using multiscale deformable
convolution networks [14]. There also exist efforts that
use super-resolution models to improve the performance of
the downstream tasks such as classification and segmen-
tation [15]–[17]. However, those efforts largely ignore the
opportunity to leverage the estimated classification labels or
segmentation results to also improve the image resolution,
which can be used to further increase the classification
accuracy. To the best of our knowledge, no existing work
explicitly explores the interdependence between classification
and super-resolution to simultaneously boost the performance
of both the tasks. In contrast, this article focuses on a CSC
problem, where the goal is to integrate the classification and
super-resolution tasks into a holistic framework to system-
atically explore the interdependence between the two tasks
and improve both of their performance. However, solving
such a CSC problem is a nontrivial task due to two intrinsic
challenges, which are elaborated as follows.

A. Complex Interdependence

The first challenge of integrating the classification and
super-resolution tasks lies in the complex interdependence
between the two tasks. In particular, there exists a “chicken-
and-egg” issue in our CSC problem where the two tasks
depend on the results generated by each other. Specifically,
it is challenging to concurrently obtain accurate classification
results and generate high-quality reconstructed images without
knowing either of them a priori. A straightforward solution to
address this problem is to perform one task first and then
the other. However, a major problem of this approach is
its ignorance of the interdependence between the two tasks
and the corresponding suboptimal results. Consider the case
where we first apply a super-resolution scheme to reconstruct
a high-resolution image and then perform the classification
task based on the reconstructed image. In this case, the
classification result could be completely wrong if we use a

low-quality reconstructed image generated by a one-size-fits-
all super-resolution model trained by data samples from all
possible classes [18]. Therefore, it is difficult to design an
effective integration solution that addresses the complex inter-
dependence between the classification and super-resolution
tasks in RUS applications.

B. Noise Amplification
The second challenge of integrating the classification and

super-resolution tasks lies in how to avoid the potential noise
amplification between the two coupled tasks. In particular,
an effective way to address the complex interdependence
between the classification and super-resolution tasks is to
develop a solution that iteratively leverages the output from
one task to improve the result of the other. However, there
exists a potential “vicious circle” problem for such an iterative
solution where the noise embedded in the data (e.g., fuzziness
of the images, incorrect class labels) could be amplified
infinitely in the iterations between the two tasks. For example,
a poorly reconstructed sensing image from the super-resolution
task (e.g., due to low-quality training data or inappropriate
models) could easily lead to inaccurate classification labels,
which could further reduce the quality of the reconstructed
image. Therefore, the integration model has to effectively
reduce the noise in the iterations between the two tasks to
offer the desirable classification accuracy and reconstructed
image quality for the CSC problem.

To address the above challenges, we develop SCLearn,
an integrated deep learning framework to solve the CSC
problem in RUS applications. In particular, we develop an
integrated deep CNN architecture that integrates both the
classification and super-resolution tasks into a holistic learning
framework to concurrently boost the performance of both the
tasks. Furthermore, we develop a noise-sensitive deep refine-
ment framework to effectively improve the inaccurate class
labels and poorly reconstructed images by reducing the noise
propagation between the two tasks. To the best of our knowl-
edge, SCLearn is the first solution that effectively integrates
the interdependent classification and super-resolution tasks
into a holistic solution to boost the performance of both the
tasks in RUS applications. We evaluate the SCLearn through a
real-world urban land usage classification application over two
different cities in Europe (Barcelona and Berlin). The results
show that SCLearn consistently outperforms the state-of-the-
art baselines by simultaneously achieving better land usage
classification accuracy and higher reconstructed image quality
under various application scenarios.

A preliminary version of this work was accepted in [19].
We refer to the scheme developed in the conference paper
as the SuperClass scheme. The journal article is a sig-
nificant extension of the previous work in the following
aspects. First, we identify two new intrinsic challenges (i.e.,
complex interdependence and noise amplification) in solving
the CSC problem and explicitly discuss how our scheme
addresses those two challenges in the introduction (Section I).
Second, we extend the class-aware perception-quality refine-
ment (CPR) module in SuperClass by adding a new ensem-
ble learning mechanism to optimize the reconstructed image
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quality for the super-resolution task (Section IV). Third,
we study the performance of all the compared schemes over
two different cities in Europe (i.e., Barcelona and Berlin),
while we only studied the performance of SuperClass over
Barcelona in the conference paper. We also consider two
different low-resolution satellite image evaluation settings (i.e.,
56 × 56 and 112 × 112), while we only studied a single
setting (i.e., 56 × 56) in the conference paper (Section V).
Fourth, we compare SCLearn with four additional recent
classification and super-resolution schemes including Super-
Class and demonstrate the performance gains achieved by
SCLearn compared with all the baselines (Section V). Fifth,
we add a new ablation study to evaluate the effect of each
component of SCLearn in terms of their contributions to both
the classification and super-resolution tasks in addressing the
CSC problem (Section V). Finally, we extend the related work
by adding discussions on the recent progress in RUS and
integrated machine learning, respectively (Section II).

II. RELATED WORK

A. Remote Urban Sensing

Motivated by the state-of-the-art optical sensing and image
processing technologies, RUS has emerged as a powerful
sensing paradigm to capture a rich set of visual information
of the urban environments at an unprecedented scale [1], [20].
Examples of RUS applications include obtaining the structural
health conditions of the city bridges using traffic camera
for smart urban management [2], detecting severely damaged
areas using satellite and UAV images for efficient disaster
response [21], monitoring photovoltaic array efficiency in
solar power plant using surveillance camera for intelligent
manufacturing [22], and sensing city-wide air quality using
aerial panoramic images for pollution detection and preven-
tion [23]. Several key challenges exist in the current RUS
applications. Examples include data sparsity, image obscurity,
noise propagation, and privacy protection [24], [25]. However,
the CSC problem remains to be a challenging and unresolved
problem in RUS applications. In this article, we develop the
SCLearn scheme to address this problem by designing a novel
integrated deep learning framework to concurrently improve
the performance of both the tasks.

B. Classification and Super-Resolution

Previous efforts in RUS often focus on solving the classi-
fication and super-resolution problems separately. For exam-
ple, Albert et al. [5] proposed a deep learning land usage
classification framework that uses high-resolution satellite
images to learn land usage classes by fine-tuning the CNNs.
Vetrivel et al. [26] leveraged the damage-specific visual
features extracted by the deep neural network to segment
and classify the disaster damage severity using incremental
learning. Behrendt et al. [27] proposed an end-to-end deep
learning framework to detect and classify the traffic light
for autonomous driving in urban environments using CNNs.
Similar examples also exist in super-resolution literature.
For example, Tuna et al. [13] proposed a deep learning
approach that leverages a set of convolutional operations to

refine the reconstructed aerial images generated by bicubic
interpolation for single image super-resolution. Kawulok et al.
[28] presented a deep super-resolution framework that implies
multiple residual blocks with skip connection to boost the
quality of reconstructed high-resolution hyperspectral images.
Wang et al. [29] designed a novel deep neural network frame-
work that applies the cycle-consistent convolutional network
design to capture the complex mapping between low- and
high-resolution satellite images in the image reconstruction
process. There also exist a couple of initial explorations that
use the super-resolution models to help with the classifi-
cation task [15]–[17]. However, those efforts mainly focus
on improving the classification accuracy using reconstructed
images from the super-resolution task but ignore the inter-
dependence between the classification and super-resolution
tasks. We also note that there exist current works that leverage
the synthetic bands to improve the land usage classification
performance [30]. Those approaches acquire additional spec-
tral information from channels other than RGB [e.g., near-
infrared response (NIR), light detection and ranging (LiDAR)]
to facilitate identification of land usage classes through 3-D
CNNs. In particular, those approaches leverage the Extended
Multiattribute Profiles to generate augmented image bands
from the limited number of input channels, which can be
used by different classifiers [e.g., CNN, joint sparse repre-
sentation (JSR), support vector machine (SVM)] to effectively
identify class-specific visual features for desirable land usage
classification performance. However, those efforts primarily
focus on improving the classification accuracy using multi-
band remote sensing data but do not leverage the estimated
classification labels to further improve the image resolution
by exploring the interdependence between the classification
and super-resolution tasks. In contrast, this article develops a
novel SCLearn framework to integrate the classification and
super-resolution tasks into a holistic framework to improve the
performance of both the tasks simultaneously.

C. Integrated Machine Learning
Our work is also related to the integrated machine learn-

ing technique that is designed to concurrently improve the
performance of interdependent tasks. In particular, integrated
machine learning has been applied in domains such as data
mining, medical image processing, information retrieval, and
computer vision [31]–[34]. For example, Sun et al. [31]
designed a hybrid information network to jointly improve the
performance of ranking and clustering in heterogeneous infor-
mation network analysis. Girard et al. [32] developed a CNN
to incorporate blood vessel segmentation with the arteries and
veins’ classification using fundus images. Müller et al. [33]
proposed an ontology-driven text-mining framework to inte-
grate information retrieval and extraction in a unified frame-
work to formulate semantic queries for scientific literature
search. Yang et al. [34] proposed a deep metric learning
framework to improve both image retrieval and classification
performance in effective image understanding. To our knowl-
edge, SCLearn is the first integrated deep learning approach
to solve the CSC problem in RUS applications. In particular,
our scheme explicitly addresses the complex interdependence
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between the classification and super-resolution tasks by effec-
tively reducing the amplified noise between the two tasks and
offers the desirable classification accuracy and reconstructed
image quality for RUS applications. Meanwhile, we observe
that our work is also related to the techniques from multitask
learning, which aims at jointly solving multiple homogeneous
learning tasks and exploring the correlations across different
tasks to improve the overall task performance [35]. How-
ever, multitask learning primarily focuses on jointly solv-
ing multiple homogeneous learning tasks [35]. For example,
multitask learning schemes often focus on jointly solving
multiple related classification tasks on the same dataset [36].
In particular, the multitask learning schemes leverage the
visual features extracted from each task to supervise the model
convergence process of other classification tasks to reduce
the classification bias in each task. Therefore, the multitask
learning techniques cannot be applied to the heterogeneous
learning tasks (i.e., super-resolution and classification) that we
study in this article. In contrast, we develop an integrated deep
learning framework to explicitly explore the interdependence
between the two heterogeneous learning tasks to improve the
performance of both the tasks.

III. PROBLEM DESCRIPTION

In this section, we formally define the CSC problem in
RUS applications. In our CSC problem, we focus on inte-
grating super-resolution with scene classification to improve
the performance of both the tasks. In particular, the studied
land usage classification application focuses on examining
surface object variations and fine-grained details of an image
to infer its land usage class as perceived by humans instead
of identifying low-level pixels or physical objects (e.g., trees
and buildings). The scene classification focuses on the visual
details of a studied image to infer the class label of the
scene captured in the image, which matches well with our
application objective [37], [38]. Note that our CSC problem
does not study pixel or object classification problems that
focus on identifying lower level physical objects (e.g., trees
and buildings). This is because the identified physical objects
often provide insufficient evidence in classifying the land
usage class of a sensing cell. For example, an identified object
of a tree cannot help us differentiate the land usage classes
between the urban fabric and forest and green land as they
both often contain trees. We first define a few key terms used
in problem statement.

Definition 1 (Sensing Cell): Given a studied area (e.g.,
a city) where we collect the imagery data for the classifica-
tion and super-resolution integration task, we first divide the
studied area into disjoint sensing cells. In particular, a sensing
cell represents a subarea of interest. In addition, we define N
to be the number of sensing cells from the studied area and n
to be the nth sensing cell.

Definition 2 [Low-Resolution Image (L)]: We define L to
be the low-resolution image from each sensing cell collected
in a specific RUS application. The low-resolution image is
usually in a relatively low spatial resolution, which often does
not provide sufficient fine-grained details for the classification
tasks (e.g., land usage classification). For example, the satellite

Fig. 2. Low- and high-resolution images in RUS. (a) Low resolution. (b) High
resolution.

image in a sensing cell with a spatial resolution of 56 × 56 is
shown in (a) of Fig. 2. In particular, we define Ln to represent
the low-resolution image collected from cell n.

Definition 3 [High-Resolution Image (H )]: We define H
to be the high-resolution image for each sensing cell with a
relatively high resolution. For example, the satellite image in a
sensing cell with a spatial resolution of 224 × 224 is shown in
(b) of Fig. 2. The high-resolution image often presents more
fine-grained details of the surface objects (e.g., clear building
shapes and road layouts), which provides more clear visual
evidence for the classification tasks. In particular, we define
Hn to be the actual high-resolution image of cell n.

Definition 4 [Reconstructed High-Resolution Image (Ĥ )]:
We define Ĥ to be the reconstructed high-resolution image
for each sensing cell. The reconstructed high-resolution image
is expected to have the same resolution as the actual
high-resolution image H . In particular, we define Ĥn to be the
reconstructed high-resolution image for the sensing cell n.

Definition 5 [Class Label (C)]: We define C =
{C1, C2, . . . , CN } to represent the set of class labels for
all the sensing cells in a specific classification task in an
RUS application. In particular, we define Cn to be the class
label in sensing cell n. For example, in an urban land usage
classification application, we define Cn to be the land usage
class (e.g., agriculture) of a sensing cell.

Definition 6 (Class Set): We define {1, 2, . . . , K } to repre-
sent the set of all possible classes in a CSC application, where
k represents the kth class. In particular, we have the class
label Cn of sensing cell n belonging to one of the classes in
{1, 2, . . . , K }.

Definition 7 [Estimated Class Label (Ĉ)]: We define Ĉ =
{Ĉ1, Ĉ2, . . . , ĈN } to be the set of estimated class labels for
all the sensing cells learned by the CSC scheme. In particular,
we define Ĉn to indicate the estimated class label in cell n.

Definition 8 (Perception Error): To evaluate the quality
of the reconstructed image Ĥn, we adopt the state-of-the-
art perception error metric [39] to measure the perception
difference between the actual and reconstructed images as

P
(

Hn, Ĥn

)
= F

(
E(Hn) − E

(
Ĥn

))
(1)

where P(·) represents the perception error metric. E(Hn) and
E(Ĥn) are the deep features extracted from the actual and
reconstructed images, respectively, using ImageNet-trained
deep convolutional networks (e.g., Visual Geometry Group
(VGG) [40]). F(·) represents the error measurement function
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Fig. 3. Overview of the SCLearn framework.

[e.g., mean absolute error (MAE)] to measure the difference
between the extracted deep features. This metric has been
proven to be robust to capture the perception quality of
images [41].

Given the above definitions, the goal of our CSC problem
is to integrate both the classification and super-resolution
tasks into an integrated learning framework to concurrently
boost the performance of both the tasks. In particular, our
goal is to correctly learn the class labels while accurately
generating high-resolution images of all the sensing cells
from the corresponding low-resolution ones. Our problem is
formally defined as

arg max
̂Cn

Pr
(

Ĉn = Cn | Ln

)
∀1 ≤ n ≤ N

while

arg min
̂Hn

(
P

(
Hn, Ĥn

)∣∣∣Ln

)
∀1 ≤ n ≤ N. (2)

IV. SOLUTION

SCLearn is a deep CNN framework that couples the classi-
fication task with the super-resolution task into an integrated
learning framework to concurrently boost the performance of
both the tasks. An overview of SCLearn is shown in Fig. 3.
It consists of two major modules: 1) Super-Resolution-Assisted
Classification Network (SCN) and 2) CPR. We elaborate on
how SCN and CPR work collaboratively to ensure that the
classification and super-resolution tasks can achieve mutual
promotion as follows.

1) SCN: it designs a holistic CNN architecture that focuses
on using the super-resolution task to improve the per-
formance of the classification task. In particular, the
SCN module designs an SCN that explicitly augments
enhanced visual details to optimize intraclass similarity
and interclass dissimilarity to boost the classification
accuracy. In particular, the SCN contains an upscaling
subnetwork and a classification subnetwork that are
sequentially concatenated and simultaneously optimized
by the joint super-resolution and classification loss func-
tion design. As a result, the upscaling subnetwork in

SCN primarily focuses on augmenting the visual fea-
tures that are essential to the classification task instead of
improving the resolution for all the objects in the input
images, which could bring unexpected noise during the
image reconstruction process.

2) CPR: it develops a noise-sensitive deep refinement
model that focuses on leveraging the classification task
to boost the performance of the super-resolution task.
In particular, the CPR module introduces a set of
paralleled Class-Aware Refinement Networks (CRNs)
that work collaboratively to refine the object details in
the reconstructed high-resolution images by augmenting
the class-specific visual features using their specific
class labels generated by the SCN module. In addition,
our SCLearn includes a novel aggregated loss function
design that jointly optimizes all the CPR networks to
collaboratively refine the reconstructed high-resolution
images under a probabilistic learning framework to
ensure the desirable perceptual quality of the recon-
structed images.

A. Super-Resolution-Assisted Classification Network

In this section, we present the super-resolution-assisted
classification network (CN) architecture in SCLearn to explic-
itly reconstruct high-resolution images with enhanced visual
details to boost the classification accuracy. In particular, the
SCN architecture incorporates two components: an upscaling
network (UN) and a CN. In particular, UN first generates
the reconstructed high-resolution images with enhanced visual
details to maximize intraclass similarity and interclass dis-
similarity. Then, CN is used to learn the class label of each
sensing cell using enhanced visual details generated by UN.
In particular, we formally define UN and CN as follows:

Definition 9 [Upscaling Network]: We define UN as a gen-
erative network that reconstructs a high-resolution image Ĥ
from a corresponding low-resolution image L with enhanced
visual details as follows:

Ĥ = UN(L). (3)

We show an example of UN in (a) of Fig. 4. In particular,
it consists of a set of residual blocks to carefully segment each
individual object (e.g., tree, road, and building) in an image
and apply enhanced visual details that maximize intraclass
similarity and interclass dissimilarity to each identified object
(e.g., a layout of a road often indicates a land usage of
transportation).

Definition 10 [Classification Network]: We define CN as a
CN that estimates the class label of each sensing cell using
enhanced visual details generated by UN as

Ĉ = CN(UN(L)) (4)

where Ĉ is the estimated class label. We show an example of
CN in (b) of Fig. 4. It consists of an ImageNet pretrained deep
CNN (i.e., VGG) with multiple trainable convolutional layers
for visual feature extraction. This is done to ensure that the
CN can accurately identify the key visual features enhanced
by UN for accurate classification task. Then, the CN consists
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Fig. 4. Illustrations of network architectures in SCN.

of a flatten layer and multiple dense layers, which are used to
learn the accurate class labels using the extracted key visual
features.

Given the two network architectures above, our next ques-
tion is how to learn the optimal instances of all the networks
that reconstruct high-resolution images with enhanced visual
details to maximize the classification accuracy. To address this
question, we define two sets of loss functions in our SCN
module. In particular, we first define the classification loss for
the UN and CN as follows:

LCL
UN,CN: Lcross-entropy(C, CN(UN(L))) (5)

where C indicates the ground-truth class label for each sens-
ing cell. Lcross-entropy indicates the cross entropy loss [42]
that measures the difference between the ground-truth and
estimated class labels for each sensing cell. Intuitively, the
design of LCL

UN,CN is to ensure that the UN can explicitly
enhance visual details so that the CN can effectively learn
the class label using enhanced image details. In addition
to LCL

UN,CN, we also consider an upscaling loss LUP
UN for

the UN to further validate the quality of the reconstructed
images as

LUP
UN: Lpixel-loss(H, UN(L)) (6)

where H and L indicate the actual high-resolution and
collected low-resolution images, respectively. Lpixel-loss rep-
resents the pixel-wise RGB value difference between the
actual and reconstructed high-resolution images (e.g., mean
square error (MSE) loss [43]). Intuitively, LUP

UN is designed
to ensure the stable performance of UN of generating the
reconstructed high-resolution images that are close to the
actual ones.

Finally, we combine the above two sets of loss functions to
derive the final loss LFinal

SCN for the SCN module as follows:
LFinal

SCN : LCL
UN,CN + LUP

UN. (7)

Using the above loss function, we can learn the optimal
instances (i.e., UN∗, CN∗) of all the networks using the
adaptive moment estimation (ADAM) optimizer [44]. Finally,
we use UN∗ and CN∗ to estimate the class label for each
sensing cell using the collected low-resolution image L as
follows:

Ĉ = CN∗(UN∗(L)
)
. (8)

Fig. 5. Illustrations of network architectures in CPR.

B. Class-Aware Perception-Quality Refinement

In Section IV-A, we present the SCN module that recon-
structs high-resolution images with enhanced visual details to
improve the classification performance. However, the recon-
structed images from the SCN module are often noisy since
they are generated by a one-size-fits-all super-resolution model
that is trained with images from all possible classes [18].
Therefore, our next question here is that can we further
improve the quality of the reconstructed high-resolution
images by leveraging the class labels output by the SCN
module? To address this question, we design a set of CRNs
that judiciously refine the reconstructed high-resolution images
by leveraging their specific class labels. In particular, we first
formally define a CRN as follows.

Definition 11 [Class-Aware Refinement Network]: We
define CRNk as a refinement network to refine the
reconstructed high-resolution images for a specific class
k to improve the reconstructed image quality as follows:

Ĥ k
refine = CRNk

(
Ĥ k

)
(9)

where Ĥ k is the reconstructed high-resolution image generated
by the UN in SCN (defined in Definition 9) of a specific class
k. Ĥ k

refine is the refined image generated by CRNk with an

improved image quality compared with Ĥ k. We show an
example of CRN in Fig. 5. In particular, it uses multiple
residual blocks to ensure the desired depth of the CRN, making
it sensitive to the noise in the reconstructed images and capable
of refining the visual details in the reconstructed images.

Given the CRN architecture above, our next question is how
to learn the optimal instance of the CRNk for each class k
to maximize the reconstructed image quality. To address this
question, we define the refinement loss function for the CRNk

of class k as follows:
LRF

CRNk :
Lpixel-loss

(
H k, CRNk

(
Ĥ k

))
+ Lperc-loss

(
H k, CRNk

(
Ĥ k

))
(10)

where LRF
CRNk indicates the refinement loss function for CRNk .

H k indicates the actual high-resolution image of a specific
class k. Ĥ k is the reconstructed high-resolution image gen-
erated by UN for class k. Lpixel-loss(·) is the pixel-wise MSE
loss as defined in (6). Lperc-loss(·) is the perception loss [39]
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to quantify the perceptual difference between the actual and
refined images. Intuitively, LRF

CRNk is designed for each class
k to ensure CRNk can effectively refine the reconstructed
high-resolution images for better quality.

Our next question is how can we best leverage the
class-aware refinement network above to refine reconstructed
image using the class labels output by the SCN module? We
first define a few key terms below.

Definition 12 [Refinement Network Set (RS)]: We define
RS = {CRN1, CRN2, . . . , CRNK } to represent a set of CRNs
for all available classes in a CSC application.

Definition 13 [Refinement Image Candidates (RCs)]: Given
a reconstructed image Ĥ generated by the SCN module, we
define RC(Ĥ) = {CRN1(Ĥ), CRN2(Ĥ), . . . , CRNK (Ĥ)} to
represent a set of refined images generated by all the refine-
ment networks in RS with the input reconstructed image Ĥ .

Given the RCs, a straightforward way is to directly select
the CRNk(Ĥ ) from the RC as the refined image for Ĥ if
the class label of Ĥ is estimated to be k (i.e., Ĉ = k)
in the SCN module. However, a critical problem of such a
deterministic solution is that it is not robust to the noisy
estimated class labels generated by the SCN module. In par-
ticular, any inaccurate class labels from the SCN module will
directly lead the CPR module to select the RC generated by
a refinement network of a different class. As a result, the
refinement network could impair the refined image quality by
adding noise from a different class with very different visual
details. To address this problem, we propose a probabilistic
solution to handle noisy class labels. We first define a key
term in our solution.

Definition 14 [Ensembled High-Resolution Image
(Ĥensemble)]: We define H ensemble to be a high-resolution
image, where the RGB value at each pixel is a combination
of the RGB values from RCs in RC as follows:

Ĥensemble =
K∑

k=1

CRNk
(

Ĥ
)

· Wk
(

Ĥ
)

(11)

where Wk(Ĥ) indicates the weight of the RGB values of each
RC CRNk(Ĥ) in the ensembled high-resolution image. The
key question now is how to derive the value of each Wk(Ĥ ) to
optimize the quality of the ensembled image Ĥensemble. To that
end, we set the weight as follows:

Wk
(

Ĥ
)

= Pr
(

CN
(

Ĥ
)

= k
)

(12)

where Pr(CN(Ĥ) = k) is the probability of the CN (defined
in Definition 10) estimates Ĥ to be a specific class k. Such
a probability of Pr(CN(Ĥ) = k) can be obtained using the
deep features generated by the CN after the final softmax
activation function [45]. Intuitively, such a probabilistic design
ensures Ĥensemble can still use the RGB values from the correct
RCs even when the estimated class label from the CN is
noisy.

Next, we define a loss function Lensemble to validate the
perceptual quality of the ensembled image as follows:

Lensemble: Lperc-loss

(
H, Ĥensemble

)
(13)

where Lperc-loss(H, Ĥensemble) is the loss function to measure
the perceptual difference between the actual and ensembled
images.

Finally, we briefly discuss the optimization process of the
CPR module to learn the optimal parameters of all the CRNs
(i.e., CRN1∗, CRN2∗, . . . , CRNK∗) based on the loss functions
defined above. We first define an aggregated loss function for
our CPR module as

LFinal
CPR =

K∑
k=1

LRF
CRNk + Lensemble. (14)

The aggregated loss function combines all the loss functions
defined in the CPR module, i.e., LRF

CRNk [defined in (10)] and
Lensemble [defined in (13)]. The minimization of the aggregated
loss ensures all the CRNs generate high-quality ensembled
images. The loss function LFinal

CPR can be optimized using the
ADAM optimizer, which obtains the optimal parameters of all
the class-aware-refinement networks.

While our current CPR module requires a CRN for each
class in the studied application, the overall time and space
overhead of our CPR module is still manageable for two
reasons. First, each CRN in our CPR module has a reasonable
time and space overhead. In particular, each CRN consists
of a constant number of convolutional and deconvolutional
layers. Each layer in CRN has a time and space overhead of
O(n) for CNNs where n indicates the resolution × channels
of input features at each layer [46]. Second, we observe
that the total number of classes in many RUS applications
is limited (e.g., a land usage classification application often
contains less than ten land usage classes and a disaster damage
assessment application often contains three to five different
damage severity levels). As a result, our SCLearn often only
needs a small number of CPR networks to refine and improve
the reconstructed image quality. We studied the time and space
overhead of our CRN in the evaluation section below.

C. Summary of SCLearn Framework
The SCLearn is summarized in Algorithm 1. The input to

SCLearn is the low-resolution image L for each sensing cell.
The output is the estimated class label Ĉ and the ensembled
high-resolution image Ĥensemble for each cell.

V. EVALUATION

In this section, we conduct extensive experiments on a
real-world RUS application: urban land usage classifica-
tion using satellite images to answer the following research
questions.

1) Q1: Can SCLearn achieve a better classification accu-
racy than the state-of-the-art classification baselines in
RUS applications?

2) Q2: Can SCLearn concurrently achieve a better recon-
structed image quality compared with the state-of-the-art
super-resolution baselines?

3) Q3: How does each component of SCLearn design
contribute to its overall performance?

4) Q4: How does SCLearn perform in terms of both clas-
sification and super-resolution on different land usage
classes?
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Algorithm 1 SCLearn Framework Summary
1: input: L
2: output:Ĉ , Ĥensemble

� SCN phase
3: initialize U N
4: initialize C N
5: for each epoch do
6: for each batch do
7: optimize U N and C N
8: end for
9: end for

10: obtain U N∗, C N∗
11: generate Ĥ using U N∗
12: generate Ĉ using C N∗

� CPR phase
13: initialize C RN1, C RN2, . . . , C RN K

14: obtain {W1(Ĥ),W2(Ĥ ), . . . ,WK (Ĥ)} from C N∗
15: for each epoch do
16: for each batch do
17: optimize C RN1, C RN2, . . . , C RN K

18: end for
19: end for
20: obtain C RN1∗, C RN2∗, . . . , C RN K∗
21: generate Ĥensemble using C RN1∗, C RN2∗, . . . , C RN K∗

22: output Ĉ , Ĥensemble

5) Q5: What are the impacts of image noise on the overall
performance of SCLearn?

A. Dataset
We evaluate SCLearn on a real-world land usage classifica-

tion application. In particular, we use the land usage datasets
collected from two different cities in Europe (Barcelona,
Spain, and Berlin, Germany). The datasets consist of four
different land usage classes (urban fabric, transportation,
forest and green land, and agriculture as shown in Fig. 6).
We summarize the datasets as follows1.

1) Google Maps Satellite Image: We collect the satellite
imagery datasets from Barcelona and Berlin using pub-
licly available Google Maps application programming
interface (API).2 In particular, we first divide a city
into disjoint sensing cells (Definition 1). Each collected
satellite image is in a 224 × 224 resolution with a
250 m × 250-m ground coverage for each sensing cell,
which is considered as the high-resolution image in our
evaluation. We then follow the standard process that
is widely used in the state-of-the-art super-resolution
literature to generate the low-resolution satellite images
in our experiments [47], [48]. In particular, we adopt
the widely used bicubic interpretation tool from the
scikit-image package3 to reduce the resolution of a
high-resolution satellite image as the low-resolution

1We will make our datasets and codes publicly available on Github upon
the acceptance of the article.

2https://developers.google.com/maps/documentation/
3https://scikit-image.org/docs/dev/api/skimage.transform.html#skimage.

transform.resize

Fig. 6. Examples of land usage from Barcelona and Berlin.

satellite image. In particular, we consider two types of
low-resolution satellite image settings in our evaluation:
1) scale factor = 2 × 2: we reduce the resolution of
a collected satellite image by 2 × 2 times to generate
a low-resolution image with a 112 × 112 resolution;
2) scale factor = 4 × 4: we reduce the resolution of a
collected satellite image by 4 × 4 times to generate a
low-resolution image with a 56 × 56 resolution. Finally,
we randomly select 2400 images (i.e., 800 from high
resolution, 800 from low resolution of each scale factor)
from the studied area for our experiments. We then
follow the standard deep learning training procedure by
randomly sampling 70% of images as the training data
and 30% of images as the testing data.

2) Urban Atlas Land Usage Data: Following the
procedures in [5], we obtain the ground-truth labels
of land usage for each sensing cell in our studied
cities from the publicly available land usage dataset
(i.e., Urban Atlas dataset) published by the European
Environment Agency.4 In addition, we adopt the
commonly used mapping method in [5] to establish a
one-to-one match between the satellite imagery data
and land usage label of each sensing cell.

B. Baseline
We compare SCLearn with a rich set of state-of-the-art base-

lines that are widely used in the previous literature for both the
land usage classification and satellite imagery super-resolution
tasks. In our experiments, we keep the same inputs to all
the compared schemes for a fair comparison. In particular,
the inputs to a scheme include 1) the studied low-resolution
satellite imagery data and 2) the high-resolution satellite
imagery data and land usage class labels in the training dataset.

1) Land Usage Classification:

1) InceptionResNet [49]: a recent land usage classification
model that integrates the inception architectures with
residual block design in a holistic deep neural network
architecture for effective land usage classification.

2) DenseNet [50]: a deep land usage classification model
that achieves dense connections between convolutional
layers by incorporating a feed-forward mechanism.

3) Neural search architecture network (NASNet) [51]: a
dynamic deep convolutional network that adjusts its
convolutional network architecture for an optimized land
usage classification performance.

4) VGG [5]: a popular deep convolutional network archi-
tecture that uses intensive sequential convolutional oper-
ations to boost land usage classification accuracy.

4https://www.eea.europa.eu/data-and-maps/data/urban-atlas/
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5) Radius-adaptive convolutional neural network
(RACNN) [15]: a joint super-resolution and
classification framework that leverages convolutional
image super-resolution operations to improve
classification results.

6) EfficentNetV2 [52]: a recent deep classification frame-
work that uses a lightweight neural architecture search
and scaling design to achieve fast model training and
optimized classification accuracy.

7) ResNeSt [53]: a recent convolutional classification
framework that leverages a split-attention network
design to ensure a desirable classification accuracy.

In addition, we also consider the Random baseline, which
estimates the land usage class of a sensing cell by randomly
choosing a land usage class from all available class candidates.

2) Super-Resolution:
1) Nearest-Neighbor [54]: a conventional satellite image

super-resolution model that applies the RGB values from
the nearest neighboring pixels to improve the spatial
resolution of the input satellite image.

2) Bilinear/Bicubic [55]: a set of widely used
super-resolution solutions that apply the bilinear/bicubic
upscaling operations to refine the visual details of the
image.

3) SFSR18 [13]: a recent deep super-resolution solution
that uses a set of recursive convolutional operations to
refine the reconstructed satellite images.

4) SRRES19 [28]: a powerful deep super-resolution frame-
work that uses multiple residual blocks with skip con-
nection to boost the quality of reconstructed images.

5) CycleCNN19 [29]: a novel deep learning framework that
applies the cycle-consistent neural network design to
improve the reconstructed high-resolution image quality.

6) Enhanced super-resolution generative adversarial net-
work (ESRGAN) [56]: a state-of-the-art GAN frame-
work that uses residual-in-residual dense block and
relativistic GAN to ensure desirable reconstructed image
quality.

7) Super-resolution residual convolutional generative
adversarial network (SRResCGAN) [57]: a new
generative adversarial learning approach that introduces
a deep cyclic generative adversarial residual network
design to capture the complex mapping between low-
and high-resolution images in the image reconstruction
process.

8) Unfolding super-resolution network (USRNet) [58]: a
recent deep-learning-based super-resolution framework
that uses a deep unfolding network design to ensure a
good quality of the reconstructed image.

9) Blind image super-resolution generative adversar-
ial network (BSRGAN) [59]: a deep degradation
super-resolution model that integrates shuffled blur,
downsampling, and noise degradation to improve the
visual details of the reconstructed image.

C. Evaluation Metrics
1) Classification Metrics: To evaluate the land usage clas-

sification performance, we adopt four representative met-
rics for multiclass classification problem in our evaluation:

1) micro-F1, 2) macro-F1, 3) Cohen’s kappa score
(K-score) [60], and 4) Matthews correlation coefficient
(MCC) [61]. Intuitively, a higher value of micro-F1,
macro-F1, K-score, and MCC indicates a better classification
performance.

2) Super-Resolution Metrics: The land usage classification
application studied in this article focuses on examining the
surface object variations and fine-grained details of an image
(i.e., the scene classification task) to infer its land usage class
as perceived by humans instead of identifying low-level pixels
or physical objects (e.g., trees and buildings) in the image.
Hence, we select the perceptual metric (Definition 8), which
has been proven to be close to human perception in evaluating
the performance of super-resolution schemes [39], [41]. Note
that we do not use the pixel-wise evaluation metrics [e.g., peak
signal-to-noise ratio (PSNR) and structural similarity index
measure (SSIM)] in our evaluation because they have been
proven to be inappropriate to measure the actual perceptual
quality of the reconstructed images [43]. In particular, follow-
ing [39], [41], we select four commonly used deep features
[i.e., E(·) in (1)] extracted by the 13th to 16th convolutional
layers in the VGG19 model. We refer to them as deep feature 1
(DF_1) to deep feature 4 (DF_4) in the evaluation. We adopt
the commonly used error measurement function [i.e., MAE as
the F(·) in (1)] to calculate the difference between the deep
features extracted from the actual and reconstructed images.
A lower value in the error metrics indicates a better super-
resolution performance.

D. Evaluation Results

1) Q1 (Performance Comparisons on Land Usage Clas-
sification): In the first set of experiments, we evaluate the
performance of all the compared schemes in estimating the
land usage classes in the studied area. The evaluation results
are presented in Tables I and II. We observe that the SCLearn
scheme consistently outperforms all compared baselines in all
the studied cities with different scale factors. For example,
the performance gains of SCLearn over the best performing
baseline (i.e., EfficientNetV2) in Barcelona at scale factor =
4 × 4 on micro-F1, macro-F1, K-score, and MCC are 4.65%,
4.96%, 5.48%, and 6.72%, respectively. Such performance
gains mainly come from the fact that SCLearn integrates both
the super-resolution and classification tasks into an integrated
learning framework to improve the accuracy of land usage
classification. In particular, our scheme incorporates a set of
collaborative upscaling and classification convolutional layers
that are dedicated to reconstructing high-resolution images
with refined visual details to boost the classification accu-
racy. We also note that the hybrid baselines (i.e., RACNN)
that leverage the reconstructed HR images for classification
tasks do not always improve the classification accuracy. This
is because the classification result could be wrong when
the reconstructed HR images generated by a one-size-fits-all
super-resolution model are of low quality. We also present
the visual results of our SCLearn compared with the best
performing classification baseline (i.e., RACNN) in Fig. 7.
We observe that our SCLearn can accurately identify a rich
set of land usage class labels that RACNN misclassifies.
The visual results further demonstrate the capability of our
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TABLE I

LAND USAGE CLASSIFICATION PERFORMANCE COMPARISONS (CITY = BARCELONA)

TABLE II

LAND USAGE CLASSIFICATION PERFORMANCE COMPARISONS (CITY = BERLIN)

TABLE III

SUPER-RESOLUTION PERFORMANCE COMPARISONS (STUDIED CITY = BARCELONA)

SCLearn in accurately identifying the land usage class of the
studied area.

2) Q2 (Performance Comparisons on Super-Resolution):
In the second set of experiments, we further evaluate the
performance of all the compared schemes in accomplishing

the super-resolution task. The evaluation results are shown
in Tables III and IV. We observe that SCLearn consistently
outperforms all the compared super-resolution baselines over
different city and scale factor settings. For example, the
performance gains achieved by SCLearn compared with the
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TABLE IV

SUPER-RESOLUTION PERFORMANCE COMPARISONS (STUDIED CITY = BERLIN)

Fig. 7. Examples of classification results for SCLearn.

best performing baseline (i.e., ESRGAN) for Barcelona at
scale factor = 4 × 4 with DF_1, DF_2, DF_3, DF_4 (i.e.,
deep features extracted by the 13th to 16th convolutional
layers in VGG19) are 10.28%, 13.57%, 13.65%, and 7.51%,
respectively. Such consistent performance gains over various
scenarios demonstrate the effectiveness of the CPR network
design in SCLearn. We observe that the reconstructed images
from the ESRGAN model are suboptimal compared with
SCLearn because the reconstructed images are generated
by a one-size-fits-all ESRGAN model that is trained with
images from all possible land usage classes. As a result,
ESRGAN could impair the refined image quality and intro-
duce undesirable noise by adding fine-grained visual details
from other land usage classes with very different visual
characteristics. In contrast, our SCLearn designs a set of
principled CRNs in the CPR module that works collab-
oratively to refine the object details in the reconstructed
high-resolution images by augmenting class-specific visual
features using their specific class labels generated by the SCN
module. In addition, our SCLearn includes a novel aggregated
loss function design [i.e., (14)] that jointly optimizes all
the CPR networks to collaboratively refine the reconstructed
high-resolution image under a probabilistic learning frame-
work. We also observe that the size of each CRN in our
SCLearn is only 25.74 MB and it only requires an average
of 11.50 s/epoch to train our CRNs on a single NVIDIA
Quadro RTX 6000 GPU, which is a reasonable space and

Fig. 8. Examples of super-resolution results for SCLearn.

time overhead of deep learning models for super-resolution
and classification tasks in RUS applications [62]. In addition,
we present the reconstructed images of our SCLearn com-
pared with the best performing super-resolution baseline (i.e.,
ESRGAN) in Fig. 8. We observe that our SCLearn achieves
an improved reconstructed image quality by successfully aug-
menting fine-grained details while avoiding unexpected noisy
points. Such a visual quality improvement further demon-
strates the effectiveness of our CPR network that effectively
refines the reconstructed images to boost the perceptual quality
of reconstructed images. The land usage classification appli-
cation studied in this article focuses on examining the surface
object variations and fine-grained details of an image (i.e.,
the scene classification task) to infer its land usage class as
perceived by humans instead of identifying low-level pixels
or physical objects (e.g., trees and buildings) in the image.
We further include the evaluation results using the traditional
pixel-wise evaluation metrics (i.e., PSNR and SSIM). The
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TABLE V

PERFORMANCE COMPARISONS ON PIXEL-WISE EVALUATION METRICS
(STUDIED CITY = BARCELONA)

TABLE VI

PERFORMANCE COMPARISONS ON PIXEL-WISE EVALUATION METRICS
(STUDIED CITY = BERLIN)

evaluation results are shown in Tables V and VI. In addition,
we show the visual result comparison between our model
and the best performing baseline in terms of PSNR and
SSIM (i.e., SFSF18) in Fig. 9. We observe that our SCLearn
achieves a clearly better perceptual quality of the reconstructed
images (e.g., avoiding making the image blurry) than SFSF18
despite the fact that SFSF18 has better PSNR and SSIM
performance. Our observation also matches with the findings
in current super-resolution literature that reports the pixel-wise
evaluation metrics are inappropriate to measure the actual
perceptual quality of the reconstructed images [39], [41].

3) Q3 (Ablation Study of SCLearn Scheme): In the third set
of experiments, we perform a comprehensive ablation study to
evaluate whether the key designs in our SCLearn can effec-
tively explore the interdependence between the classification
and super-resolution tasks to achieve the mutual promotion
for both the tasks. First, we present the classification results
by removing the UN (i.e., w/o UN) in SCN, where we use

Fig. 9. Visual comparisons between SFSR18 and SCLearn.

Fig. 10. Ablation study of SCLearn on classification. (a) Barcelona Scale
Factor = 2 × 2. (b) Barcelona Scale Factor = 4 × 4. (c) Berlin Scale
Factor = 2 × 2. (d) Berlin Scale Factor = 4 × 4.

low-resolution images for classification tasks. The results are
shown in Fig. 10. We observe that the UN design makes essen-
tial contributions in improving the classification performance,
which indicates the effectiveness of our SCLearn in explicitly
leveraging the super-resolution task to improve the classifi-
cation performance. Second, we present the super-resolution
results by removing the CRN (i.e., w/o CRN) in CPR,
where we do not use the classification results to improve the
super-resolution tasks and output the high-resolution images
reconstructed by the one-size-fits-all UN in SCN. The results
are shown in Fig. 11. We observe that the CRN component
effectively reduces the perceptual errors of the reconstructed
high-resolution images, which indicates the effectiveness of
our SCLearn in leveraging the classification tasks to improve
the super-resolution performance in a closed-loop learning
framework design.5

4) Q4 (Per-Class Performance of SCLearn Scheme): In the
fourth set of experiments, we study the per-class performance
of the SCLearn scheme by plotting the confusion matrix for
the classification task and the class-wise perceptual error for
the super-resolution task under various evaluation settings
(i.e., different cities and scale factors). First, the confusion
matrices for the classification task are presented in Fig. 12.
We observe that SCLearn achieves a high classification accu-
racy in forest and green land and urban fabric classes in

5Due to the space limit, we only present the results on a subset of metrics
(micro/macro-F1, DF_1/2). The results on other metrics are similar.
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Fig. 11. Ablation study of SCLearn on super-resolution. (a) Barcelona Scale
Factor = 2 × 2. (b) Barcelona Scale Factor = 4 × 4. (c) Berlin Scale Factor =
2 × 2. (d) Berlin Scale Factor = 4 × 4.

Fig. 12. Confusion matrices of the SCLearn scheme. (a) Barcelona Scale
Factor = 2 × 2. (b) Barcelona Scale Factor = 4 × 4. (c) Berlin Scale
Factor = 2 × 2. (d) Berlin Scale Factor = 4 × 4.

all evaluation settings. We also note that the transportation
and agriculture classes are sometimes misclassified with each
other. This is because these two classes sometimes share
similar object shapes and layouts (e.g., the shape of highway
in transportation class looks similar to the squared farmland
in agriculture class as shown in Fig. 6). Such ambiguity
leads to misclassifications between the two classes. Second,
we show the class-wise perceptual error in Fig. 13. We observe
that SCLearn achieves a low perceptual error in forest and
green Land and agriculture classes in all evaluation settings.
We also note that SCLearn has a higher perceptual error
on urban fabric and transportation classes. This is because
these two classes often contain more complex object layouts
and fine-grained details compared with the other two classes,
which presents a more challenging super-resolution task to our
SCLearn framework.

Fig. 13. Class-wise perceptual error of the SCLearn scheme. (a) Barcelona
Scale Factor = 2 × 2. (b) Barcelona Scale Factor = 4 × 4. (c) Berlin Scale
Factor = 2 × 2. (d) Berlin Scale Factor = 4 × 4.

Fig. 14. Examples of low-resolution images under different noise ratios.
(a) Noise ratio = 5%. (b) Noise ratio = 10%. (c) Noise ratio = 15%. (d) Noise
ratio = 20%. (e) Noise ratio = 25%. (f) Noise ratio = 30%.

5) Q5 (Impact of Image Noise on SCLearn Scheme): In the
last set of experiments, we study the impact of image noise
on the performance of our SCLearn scheme on both the classi-
fication and super-resolution tasks. In particular, we adopt the
widely used random_noise tool from the scikit-image package6

to add random noise to the studied low-resolution images.
In particular, the random_noise tool changes the RGB values
to random values for a specific percentage of pixels within
an image (we refer to such percentage as noise ratio). In our
evaluation, we vary the noise ratio from 5% to 30% (examples
of low-resolution images under different noise ratios are shown
in Fig. 14). The performance of our SCLearn on classification

6https://scikit-image.org/docs/stable/api/skimage.util.html#random-noise
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Fig. 15. Impact of image noise to SCLearn on classification. (a) Barcelona
Scale Factor = 2 × 2. (b) Barcelona Scale Factor = 4 × 4. (c) Berlin Scale
Factor = 2 × 2. (d) Berlin Scale Factor = 4 × 4.

Fig. 16. Impact of image noise to SCLearn on super-resolution. (a) Barcelona
Scale Factor = 2 × 2. (b) Barcelona Scale Factor = 4 × 4. (c) Berlin Scale
Factor = 2 × 2. (d) Berlin Scale Factor = 4 × 4.

and super-resolution is shown in Figs. 15 and 16, respec-
tively. We observe that the classification accuracy of SCLearn
decreases when the noise ratio increases (marked as “Noise”
in Fig. 15). This is because noise could confuse our model
by recognizing incorrect object layouts and color distributions

for inaccurate land usage classification. In addition, we also
observe that the perceptual error of our SCLearn increases
when the noise ratio increases (marked as “Noise” in Fig. 16).
This is because the added noise could mislead our SCLearn
to add inaccurate fine-grained details that result in suboptimal
reconstructed images. To mitigate the negative effect of noise,
we noted that our SCLearn can be coupled with the current
image denoising approaches (e.g., median filtering [63]) to
preprocess the input images to reduce noise. We observe
that our SCLearn can clearly achieve improved classification
accuracy and better reconstructed image quality using denoised
images generated by the image denoising tool (marked as
“Denoise” in both Figs. 15 and 16).

VI. DISCUSSION

The land usage classification performance gains achieved
by our SCLearn clearly demonstrate that improving the spa-
tial resolution of the satellite image can help improve the
classification accuracy. In particular, our SCLearn designs
a holistic super-resolution-assisted convolutional classifica-
tion (SCN) network to explicitly reconstruct high-resolution
images with enhanced global features (e.g., color distributions,
object layouts, contrast ratios) and local details (e.g., local
object contours, shapes, and textures) that optimize intraclass
similarity and interclass dissimilarity to improve the clas-
sification accuracy. In general, we observe that the global
features and local details enhanced by our SCLearn model
are complementary to each other and work collaboratively to
improve the land usage classification accuracy. On one hand,
the enhanced global features provide global visual evidence
to describe the land usage of an image but it can be limited
by object occlusion and intraclass variation. For example, the
global features can help us clearly distinguish the forest and
green land class from the urban fabric class as those two
classes have clearly different color distributions and object
layouts. However, global feature alone does not provide suffi-
cient visual evidence to generate accurate classification results.
For example, global features are insufficient to distinguish the
images of the agriculture class from the ones of the forest and
green land class as they share similar global visual features
(e.g., dominant color, object texture). On the other hand, local
details provide fine-grained visual evidence of local objects
but different land usage classes can share the same type of
local objects. For example, enhanced contour and texture of
crops can help distinguish the agriculture class from the forest
and green land class. However, the texture and shape of a tree
can occur in both forest and green land class and urban fabric
class. Therefore, our SCLearn jointly uses both the enhanced
global features and local details to effectively boost the land
usage classification accuracy. .

In our SCLearn design, we focus on integrating
super-resolution with scene classification to improve the per-
formance of both the tasks. However, our SCLearn frame-
work can be further extended to integrate the super-resolution
with the pixel or object-based classification under an end-to-
end learning framework for object-driven RUS applications
(e.g., measuring traffic flow from satellite images, segmenting
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damaged areas after a disaster using remote sensing). First,
we can replace the scene CN in our SCN module with a pixel
or object-based CN [64] to build an integrated CNN archi-
tecture. Similar to our SCN, the new integrated convolutional
network can be used to explicitly reconstruct high-resolution
images with enhanced visual details that optimize the intraob-
ject similarity and interobject dissimilarity to improve the
object- or pixel-based classification accuracy. Second, we can
modify the CRN in the CPR module to an object-aware
refinement network. In particular, we can leverage the dense
network connection design to connect the object-oriented
convolutional layers with our current CPR module so that it
can specifically focus on refining the image quality of each
identified object. Each object-aware refinement network can
then be used to refine a subset of closely related objects
identified by the updated SCN model given the fact that the
closely-related objects often share similar visual characteristics
(e.g., similar shape and layouts). There also exist several
open-ended questions that can be further explored in integrat-
ing the super-resolution task with the pixel- or object-based
classification task. For example, how to effectively scale up the
proposed solutions when the satellite images contain a rich set
of surface objects with diversified visual characteristics? How
to establish a robustness model when we only have sparse
training labels of surface objects (e.g., buildings, trees, and
infrastructures)?

In our experiments, we observe that noise within satellite
images can affect the performance of our SCLearn model.
In particular, a noisy satellite image could lead to a poorly
reconstructed satellite image from the super-resolution task.
The poorly reconstructed satellite image could lead to inac-
curate classification labels, which could further reduce the
quality of the reconstructed image during the iteratively
super-resolution and classification tasks. To address this chal-
lenge, we could further extend our SCN to a discriminative
learning-based deep network by introducing a noise-sensitive
discriminator network to explicitly identify the noise within
each image. In addition, we can introduce an adversarial loss
function design to supervise our SCN network to effectively
reduce noise within satellite images so that the discriminator
network cannot detect any noise within each image. In general,
such a design aims to effectively reduce noise within satellite
images before reconstructing high-resolution images to boost
the classification accuracy.

VII. CONCLUSION

This article presents a SCLearn framework to tackle a
new CSC problem in RUS applications. SCLearn addresses
two challenges, namely, complex interdependence and noise
amplification. In particular, we develop a novel integrated deep
learning framework to integrate the super-resolution and clas-
sification tasks to concurrently boost the performance of both
the tasks. The results on a real-world RUS application show
that SCLearn significantly outperforms both the state-of-the-
art classification and super-resolution baselines. We believe
SCLearn will provide useful insights to integrate important
tasks with similar complex interdependence in other domains.
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