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Abstract—As an essential reprocessing method, dimensionality 

reduction (DR) can reduce the data redundancy and improve the 

performance of hyperspectral image (HSI) classification. A novel 

unsupervised DR framework with feature interpretability, which 

integrates both band selection (BS) and spatial noise reduction 

method, is proposed to extract low-dimensional spectral-spatial 

features of HSI. We proposed a new Neighboring band Grouping 

and Normalized Matching Filter (NGNMF) for BS, which can 

reduce the data dimension whilst preserve the corresponding 

spectral information. An enhanced 2-D singular spectrum analysis 

(E2DSSA) method is also proposed to extract the spatial context 

and structural information from each selected band, aiming to 

decrease the intra-class variability and reduce the effect of noise in 

the spatial domain. The support vector machine (SVM) classifier 

is used to evaluate the effectiveness of the extracted spectral-

spatial low-dimensional features. Experimental results on three 

publicly available HSI datasets have fully demonstrated the 

efficacy of the proposed NGNMF-E2DSSA method, which has 

surpassed a number of state-of-the-art DR methods. 

 
Index Terms—Hyperspectral image (HSI), dimensionality 

reduction, band selection, enhanced 2DSSA, image classification. 

I. INTRODUCTION 

YPERSPECTRAL image (HSI), with a three-

dimensional data structure as a hypercube, has 

abundant spectral and spatial information [1]. 

Covering the wavelengths from the visible light to infrared, the 

spectral profile can be used to identify the changing properties 

of the objects in terms of moisture, temperature, and chemical 

components [2]. For each spectral band, the corresponding 

grayscale image formed by the spectral reflectance response 

contains certain spatial structure information of the objects. 

These characteristics have enabled HSI to be widely applied in 

urban mapping [3], land cover classification [4], mineral 

detection [5], and precision agriculture [6]. However, two we 

face extra challenges when dealing with HSI for remote sensing 

applications [7]. 

The classification accuracy of HSI can be easily affected by 

the Hugh’s phenomenon, i.e. less samples than the number of 

spectral bands [8, 9]. To tackle this issue, a number of 
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dimensionality reduction (DR) methods have been proposed 

[10-12], which can in general divided into two categories: 

feature extraction (FE) and band selection (BS) based ones.  

In FE methods, the original high-dimensional data are often 

transferred into a lower-dimensional representation to reveal 

the associated distinctive properties. Typical examples include 

the principal component analysis (PCA) and its variations [13], 

and linear discriminant analysis (LDA) [14]. In order to further 

extract the nonlinear structure of the HSI, manifold learning 

methods have been introduced for improving the classification 

accuracy, such as the local preserving projection (LPP) [15], 

local Fisher discriminant analysis (LFDA) [16], and spatial-

spectral manifold reconstruction preserving embedding 

(SSMRPE) [17]. However, due to the lack of spectral 

characteristic analysis of the ground objects, the feature-space 

metrics obtained after DR has no real meaning of the associated 

physical and/or chemical properties [18, 19]. 

BS aims to select a subset of the original spectral bands, based 

on certain predefined criteria. Conventional BS methods can be 

divided into two main groups: i.e. ranking-based and clustering-

based methods, yet they both unfortunately suffer from some 

drawbacks. For ranking-based methods, the correlation among 

the selected representative bands can be quite high. While 

clustering-based methods can reduce data correlation and 

redundancy, most of them are sensitive to noisy bands. 

Therefore, the combination of these two is found to be 

particular useful. In [20], an enhanced fast-peak-based 

clustering (E-FDPC) method was proposed, in which local 

density and intra-cluster distance were combined for band 

ranking. Sun et al. [21] proposed an adaptive distance-based 

band hierarchy (ADBH) clustering with E-FDPC for ranking. 

Wang et al. [22] proposed a fast neighborhood grouping BS 

method (FNGBS), in which a coarse-to-fine grouping strategy 

was used for band clustering with reduced redundancy, whilst 

the product of local density and information entropy for band  

ranking. Compared with feature extraction, band selection can 

better preserve the spectral information of the original data, i.e. 

clear interpretability and representability of the original data, 

along with a limited classification improvement [3, 23].  
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Another important factor that affects the accuracy of HSI 

classification is the spectral variability, which is often degraded 

by the improvement of the spatial resolution [8]. Specifically, 

rich information provided by high-resolution images may 

increase the intra-class variability and decrease the interclass 

variability [24], leading to poor classification performance.  

To alleviate this issue, contextual and structural information 

from the spatial domain are needed to tackle the ambiguity in 

the spectral domain, leading to a series of spatial feature 

extraction methods. As one of the classic spatial methods, the 

extended morphological attribute profiles (EMAPs) [25] were 

used to extract multilevel spatial structural features with a series 

of attribute profiles, providing a rich description of the scene. 

In [26], the Gabor filters at different scales and orientations 

were used to represent the abundant spatial texture features of 

HSI. In addition, some edge-preserving filtering based methods, 

such as bilateral filtering (BF) [27] and domain transform 

recursive filtering (DTRF) [28], have been found effective in 

extracting spatial context information, which can smooth out 

texture and noise while preserving spatial details. Zabalza et al. 

[29] proposed an interesting 2D singular spectrum analysis 

(2DSSA) method, decomposing each band image into varying 

spatial feature components. By selecting certain components as 

spatial features, 2DSSA can achieve state-of-the-art 

classification performance. However, it still has some 

limitations, such as feature ambiguity and loss of structural 

information [30, 31]. 

In order to address both of these issues above, some spectral-

spatial methods, combining FE/BS with spatial feature 

extraction methods, were further proposed for effective feature 

extraction. Kang et.al. [32-34] proposed a few spectral and 

spatial feature integration frameworks, in which the DR 

approach (e.g., PCA, band averaging) was utilized as pre-

processing, followed by  the subsequent spatial technique (e.g., 

intrinsic image decomposition, Gaussian pyramid and edge-

preserving filtering) for extracting spectral-spatial features. In 

[35], a novel ICA and EMAP based spectral-spatial DR method 

was proposed, in which spectral features extracted by ICA was 

suitable for representing each class, whilst the improved and 

reduced AP (rAP) could further address the spatial redundancy 

of EMAP. In [36], the guided filter (GF) was used to extract 

spatial context information, with the LFDA for low-

dimensional embedding. Zheng et.al [18] performed graph-

based feature extraction on the selected band subset, which 

achieved superior classification results yet with a high 

computational cost. Although being successful in reported work, 

there are still some shortcomings in these methods. First of all, 

the interpretability of the extracted spectral-spatial features 

decreases after applying various transformation techniques. In 

addition, some spatial methods need quite a few parameters for 

spatial processing, which again increases the feature 

dimensionality and calculation cost to some extent. 

In recent years, deep learning techniques [37, 38] have been 

widely used, including hyperspectral image classification, due 

to their strong ability to mine high-level spatially invariant and 

discriminant features [39, 40]. In some typical models [41-43], 

feature transformation or feature selection for hyperspectral 

pre-processing is used, followed by a deep network, e.g. the 

convolutional neural network, (CNN), to further extract robust 

features before data classification [8, 44]. He et al. [45] used the 

maximum noise fraction (MNF) for DR and covariance features 

construction, where a classical 2-D CNN (2DCNN) model was 

adopted for HSI classification. In [46], the proposed adaptive 

DR (ADR) was used to reduce the high dimensionality along 

with a semi-supervised 3-D deep neural network to further 

extract the spatial-spectral features. Unfortunately, these deep 

networks still face serious problems, such as time-consuming 

and error-prone process, huge hyper-parameters, high 

computational cost, and more importantly, low interpretability 

of the extracted deep features compared with the handcrafted 

features [47]. 

The key to improve the classification accuracy of HSI is the 

extraction of significant features [30], which usually show 

several characteristics, including high interpretability, low 

redundancy, robustness to noise, and strong land cover 

separability. It is thus essential to investigate how to extract 

such features from HSIs within a simple yet effective 

framework.  

To this end, we propose in this paper a novel unsupervised 

DR framework that combine BS and 2DSSA based spatial 

methods to extract significant features of HSI. Firstly, we 

designed an effective BS method, namely neighborhood 

grouping normalized matched filter (NGNMF), by combining 

clustering and ranking approaches to fully reduce the spectral 

redundancy. Then, an improved enhanced 2DSSA, E2DSSA, 

was proposed and applied to each selected band to extract 

significant spatial context features while eliminating the effect 

of noise within the scene. Finally, the support vector machine 

(SVM) classifier was applied for classification to evaluate the 

efficacy of the extracted features.  

The major contributions of our paper are highlighted below: 

1) A DR framework, NGNMF-E2DSSA, is proposed for 

significant low-dimensional spectral-spatial feature extraction 

in HSIs. By combining NGNMF based band selection and 

E2DSSA based spatial processing, DR and feature extraction 

are carried out simultaneously, benefiting from high efficiency, 

low spectral redundancy, noise robustness, and feature efficacy. 

2) With a new band grouping strategy to reduce the spectral 

redundancy of the raw data, and an improved MF-based ranking 

strategy to further eliminate the effect of noisy bands, NGNMF 

is able to obtain the most representative spectral bands with 

assured quality of band selection.  

3) By introducing local spatial similarity-based adaptive 

embedding to construct a low-rank trajectory matrix, the 

proposed E2DSSA can extract more effective spatial context 

and structural features in terms of improved intra-class 

similarity and inter-class variability of land covers, which 

appears to be superior to most existing techniques. 

4) Experiments on three datasets demonstrate that NGNMF-

E2DSSA achieves superior classification performance to 

several state-of-the-art DR methods and deep learning methods, 

even with a small number of training samples. 

The remainder of this paper is organized as follows. Section 

II introduces the proposed NGNMF-E2DSSA method. In 

Section III, we discussed and analyzed the experimental results. 

Finally, some concluding remarks are provided in Section IV. 
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II. PROPOSED METHODOLOGY 

The workflow of the proposed NGNMF-E2DSSA method is 

shown in Fig. 1, which contains three main steps as detailed 

below. First, NGNMF is used for DR and spectral feature 

extraction on the original HSI data. Second, E2DSSA is applied 

to extract and enhance the spatial contextual features on each 

selected band in order to generate low-dimensional spectral-

spatial features. Third, the resulting spectral-spatial features are 

classified using the SVM classifier. In terms of notations, we 

use italic letters to denote scalars (e.g., a and A), boldface 

lowercase letters for vectors (e.g., a), boldface capital letters for 

matrices (e.g., A), and calligraphic letters for tensors (e.g., A). 

The input HSI data is denoted as X ∈ ℝ𝑊×𝐻×𝐵 , in which W, H, 

and B denote the row, column and number of bands, 

respectively. 

A. NGNMF for band selection 

The BS method can effectively reduce the dimension of a HSI 

whilst preserving the relevant information of the hypercube. To 

tackle the noise sensitivity of clustering based methods and the 

band redundancy of ranking based methods, we propose 

NGNMF, which combines clustering and ranking together to 

select bands of high significance from the HSI. NGNMF 

consists of two main steps: i.e. i) grouping of neighboring bands, 

and ii) band ranking with the normalization matched filter (MF). 

Detailed implementation of these two steps are described below. 

1) Grouping of neighboring bands: The B bands of X are first 

divided equally into K (K<B) groups, and each band group Xk 

(k =1,…, K) is given by: 

    (1) 

where X(i) represents the ith band image of X, and [B/K] is the 

smallest integer no less than B/K. Then, the fine partition 

algorithm [22] is performed on the initial band group Xk (k 

=1,…, K) to obtain a new band group Xk’ (k =1,…, K) below, 

where the number of bands in each group is no longer the same.  

X      (2) 

where Bk represents the number of bands in the new group Xk’. 
After the fine band partition, highly correlated spectral bands 

will be grouped and the correlation between band groups is low. 

As a result, it is also more reasonable to select representative 

bands from each band group. 

2) Band ranking with the normalization matched filter (MF): 

During the selection of representative bands, water absorption  

and/or low signal-to-noise bands may be incorrectly selected. 

Inspired by the MF ranking based bad band removal [48], a 

modified band normalization MF ranking strategy is developed 

for more effective section of the representative bands as follows.  

Firstly, a band normalization is applied to each band group 

Xk’, and the normalization range is [0, 1]. Compared with the 

normalization using a normalization matrix in [48], which 

significantly reduces the band difference, this band 

normalization is more conducive to band distinction. Each 

subset Xk’ is then converted into a two-dimensional matrix 

{x1
𝑘 , … , x𝑖

𝑘 , … , x𝑊𝐻
𝑘 }∈ ℝ𝑊𝐻×𝐵𝑘 , in which x𝑖

𝑘 represents the ith  

pixel vector with a dimension of 𝐵𝑘. Each pixel x𝑖
𝑘 is selected 

as the target pixel, and its weight w𝑖
𝑘 can be obtained by the 

MF detector as: 

 (3)               

                    (4) 

where mk is the mean of all x𝑖
𝑘. C∈ ℝ𝐵𝑘×𝐵𝑘  is the covariance 

matrix, and is a normalization constant.  

Finally, we calculate the average of the absolute weight 

vectors to obtain the weights of each band below: 

             (5) 

where |wk|mean represents the weight vector corresponding to the 

band subset Xk’. The bands with larger weights are assumed to 

have higher signal-to-noise ratios and image quality, and 

smaller weights indicate a potential bad bands. Therefore, the 

band with the maximum weight is selected as the most 

representative band.  

By selecting a representative band in each group, we can 

obtain a spectral band set Y with a dimension K.  

Y              (6) 

where Yi represents the selected bands from the ith band group. 

The low dimensional spectral feature Y is then taken as the 

input to E2DSSA for further refinement. 

Original HSI

Band K

NED metric
Spatial binary mask

Band i

Band 1

Band K

Band i

Band 1

Classification 

map
SVD

Trajectory matrix 

… …

Reconstruction 
matrix

Search 
region

Weight

Similar pixels

Processed pixels

1.NGNMF for BS

Selected K Bands

2.E2DSSA for each band

3.SVM based 

classification

 
Fig. 1. Flowchart of the proposed NGNMF-E2DSSA method for HSI classification. 
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 B. E2DSSA for spatial feature extraction 

After BS, the remaining K bands contain major spectral 

features yet with a lower dimension. To effectively extract 

spectral-spatial joint features, E2DSSA is applied to Y  to 

extract the spatial context features in two steps, i.e. i) spatial 

binary mask generation based on spectral similarity; and ii) 

band-based spatial processing guided by a spatial binary mask. 

1) Spatial binary mask generation: From the original 

hypercube, a spatial binary mask is generated according to the 

similarity between the center pixel and the neighboring pixels. 

Taking each spectral pixel xi  ∈ ℝ𝐵×1  (i =1,…, WH) as the 

central pixel, a local search window with a size of w×w can be 

determined. The similarity of pixels in the search window to the 

central one can be calculated using the normalized Euclidean 

distance (NED) [49]. The similarity of any two spectral pixel 

vectors is given by: 

                   (7) 

where sij represents the similarity of pixels xi and xj, and ||||2 

represents the 2-norm of the spectral vector.  

By initializing a mask of size w×w and defining the number 

of embedded pixels to be L (L< w×w), we set the position of the 

first L highly similar pixels, according to sij, including the center 

pixel, to 1, and the rest to 0. In this way we can obtain a spatial 

binary mask corresponding to each pixel, as shown in Fig. 2. 

Note that the search window size w×w is set to 17×17 to ensure 

balance between the efficiency and efficacy in selection of 

qualified similar pixels [50, 51]. As the search windows can be 

overlapped to each other, the pixel mirror filling of the original 

image is needed to meet the construction of the search window 

of the edge pixels. 

2) band-based spatial processing: In this step, the spatial 

binary mask obtained above is used to guide the E2DSSA to 

extract features in each band in four steps, i.e. adaptive 

embedding, singular value decomposition (SVD), grouping, 

and reprojection as detailed below.  

a. Adaptive embedding: For each band image Yi, each pixel 

and its (L-1) similar neighbors guided by the binary mask are 

selected to build the trajectory matrix. Compared with 2DSSA 

that uses a fixed window (Fig. 3a), our method can more 

effectively utilize local spatial information (Fig. 3b). The L 

pixels corresponding to each central pixel are expanded into a 

column vector, and all the column vectors are arranged to a 

matrix, i.e., a trajectory matrix Mi ∈ ℝ𝐿×𝑊𝐻. Each band image 

can obtain a corresponding trajectory matrix, thus the resulting 

trajectory matrix contains both global and local spatial features 

of the image for enhanced image characterization [52]. The 

matrix Mi has several characteristics: First of all, it is not strictly 

a Hankel-block-Hankel (HbH) matrix compared with the 

trajectory matrix of 2DSSA, that is, the elements on the anti-

diagonal line of the matrix are not exactly the same. In addition, 

Mi has pixel similarity in column direction and high correlation 

in row direction, i.e. a low-rank characteristic. 

b. Singular value decomposition (SVD): SVD is applied to the 

trajectory matrix Mi, a process equivalent to calculating the 

eigenvalues ( 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿 ) and their corresponding 

eigenvectors (𝑢1, 𝑢2, … 𝑢𝐿) of MiMiT. Therefore, the trajectory 

matrix Mi is decomposed by: 

      (8) 

each submatrix 𝐌𝑗
𝑖
 can be defined as: 

   (9) 

where ui and vi are denoted as the left and right singular vectors, 

respectively, and √ 𝜆𝑖 is the singular value of the trajectory 

matrix. Different submatrices 𝐌𝑗
𝑖  usually contain different 

spatial structure contents, including the trend, texture, edge and 

noise, etc.  

c. Grouping: In order to retain the main information and 

remove the noise or insignificant components, in this step, we 

select the submatrix corresponding to the larger singular value 

for reconstruction [29-31]. As the trajectory matrix Mi has a low 

rank (or rank-1) characteristic, we choose 𝐌1
𝑖  to approximate 

the matrix Mi for efficiency.  

d. Reprojection: The selected submatrix 𝐌1
𝑖  is reprojected to 

the image size as the refined feature image. For each column of 

the matrix 𝐌1
𝑖 , these processed pixels are returned to their 

original position. This requires to record the position of similar 

pixels according to each central pixel in the previous steps. For 

multiple pixel values at the same position, the average value of 

these pixels is used at the position. Homogeneous regions in the 

image include more similar pixels, and the regional consistency 

is enhanced after the averaging. While in the heterogeneous 

areas (e.g., edges), there are fewer similar pixels to be averaged, 

pixel differences are preserved.  

Compared with 2DSSA, the main advantage of E2DSSA is 

the construction of a low rank trajectory matrix based on 

adaptive embedding. In the low rank trajectory matrix, the 

pixels in the column direction have high similarity and the 

(a) (b) (c) (d)  
Fig. 4. (a) Test image. Feature image corresponding to maximum singular value 

of (b) SVD, (c) 2DSSA, and (d) E2DSSA. 

w

Similarity calculation 

between center pixel and 

neighboring pixels

0 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 1 0 0 0 0

0 1 0 0 0 0 0

w

w

Local search region Spatial binary mask

w

 
Fig. 2. Spatial binary mask generation using NED metrics. Each pixel 

corresponds to a local search area, and these search regions overlap. 

 

(a) 2DSSA embedding (b) E2DSSA embedding  
Fig. 3. The regular embedding window in 2DSSA (a), and adaptive 

embedding in E2DSSA (b) with the same number of embedding pixels. 
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columns have a high correlation. This low-rank feature makes   

most of the spatial information after SVD decomposition 

concentrate on the first component, which is crucial for the 

distinction of ground objects. 

The spatial feature maps of E2DSSA, as well as SVD and 

2DSSA are compared in Fig. 4. Compared with SVD, the 

feature maps structured by 2DSSA and E2DSSA improve the 

continuity of land covers, mainly because the trajectory matrix 

retains the local spatial information. Moreover, the feature map 

of E2DSSA contains more edges and textures features, which 

further improves the distinguishability of different land covers.  

C. SVM based classification 

The obtained low-dimensional spectral-spatial features Z 

after E2DSSA can be represented as: 

Z           (10) 

where Zi represents the feature band image of Yi.  

The spectral direction of feature Z contains the main 

spectral identification information for distinguishing the ground 

objects. While in the spatial direction, it retains the spatial 

context and structure information of the original band, where 

the effects of noise are removed whilst improving the intra-class 

consistency. As a result, the low-dimensional feature Z has an 

improved interpretability. 

In addition, the choice of a classifier is crucial for the 

performance evaluation of the obtained features, especially 

with a limited number of labelled training samples in HSI. 

Among many classifiers, the support vector machine (SVM) 

has achieved excellent performance in HSI classification due to 

its applicability to small samples and robustness to the data 

dimensionality [53,54]. Therefore, we chose the SVM to 

perform the classification using the obtained low-dimensional 

features as input, and the results are given in the next section. 

III. EXPERIMENTAL SETUP AND RESULTS 

In this section, we described the details of three benchmark 

HSI datasets and experimental settings. The effectiveness of 

NGNMF and E2DSSA were validated respectively. Finally, we 

compared the proposed framework with several state-of-the-art 

methods using small random training samples, as well as deep 

learning methods with spatial disjoint samples. 

A. Datasets description 

The three hyperspectral datasets utilized in our experiments 

include Indian Pines, Pavia University (PaviaU), and Salinas. 

The Indian Pines dataset was gathered by the AVIRIS sensor at 

the Indian Pines test site in Northwest Indiana, USA. The 

spatial size of this data is 145×145 pixels with a spatial 

resolution of 20m, and these pixels are divided into 16 classes. 

It has 220 spectral bands covering the range from 0.4 to 2.5μm. 

In this experiment, a total of 200 bands were used after 

removing 20 water absorption bands (104-108, 150-163 and 

220). More detailed information is given in Fig. 5, which shows 

the false-color image with corresponding ground truth, as well 

as the name and the number of samples for each class.  

The PaviaU dataset was acquired by the Reflective Optics 

System Imaging Spectrometer (ROSIS) sensor, which has a 

spatial size of 610×340 pixels and 115 bands with a wavelength 

range of 0.43–0.86μm. In this experiment, the number of bands 

was reduced to 103 by removing 12 noisy bands. Nine land 

cover categories are used in this dataset. The false-color image 

with corresponding ground truth is shown in Fig. 6, and the 

sample size of each class is indicated by values in brackets. 

The Salinas dataset was also collected by the AVIRIS sensor 

over an agricultural area of Salinas Valley, California. With a 

spatial size of 512×217 pixels, this dataset contains 224 bands, 

presenting a spatial resolution of 3.7m. Again, 20 water 

absorption bands were removed and the remaining 204 bands 

were used for classification. In Fig. 7, the false color image and 

corresponding ground reference map are shown, as well as the 

detailed information on 16 land cover categories.  

B. Experimental setup 

In our experiment, two types of sampling strategies are used 

to generate the training set, i.e. random sampling and spatially 

disjoint sampling, which are mainly used in subsections C-E 

and F, respectively. In order to avoid systematic errors and 

reduce random discrepancies, all experiments were carried out 

ten times independently, aiming to obtain a better presentation 

of results. As for the classifier, the kernel SVM to classify the 

data was implemented using the LIBSVM library [55]. An RBF 

Alfalfa(46) 
Corn-Notill(1428) 
Corn-Min(830) 
Corn(237) 
Grass/Psature(483) 
Grass/Tress(730) 
Grass/psature-mowed(28)
Hay-Windrowed(478)
Oats(20) 
Soybean-Notill(972) 
Soybean-Min(2455) 
Soybean-Clean(593) 
Wheat(205)
Woods(1265) 
Buildings-Grass-Trees-Drives(386)
Stone-Steel-Towers(93)

(a) (b)  
Fig. 5. Indian Pines. (a) False-color image; (b) Ground truth image. 

Asphalt(6631)

Meadows(18649)

Gravel(2099)

Trees(3064)

Painted metal sheets(1345)

Bare Soil(5029)
Bitumen(1330)

Self-Blocking Bricks(3682)

Shadows(947)

(a) (b)  
Fig. 6. PaviaU. (a) False-color image; (b) Ground truth image. 

Brocoli_green_weeds_1(2009)

Brocoli_green_weeds_2(3726)

Fallow(1976)

Fallow_rough_plow(1394)

Fallow_smooth (2678)

Stubble(3959)

Celery(3579)

Grapes_untrained(11271)

Soil_vinyard_develop(6203)

Corn_senesced_green_weeds(3278)

Lettuce_romaine_4wk(1068)

Lettuce_romaine_5wk(1927)

Lettuce_romaine_6wk(916)

Lettuce_romaine_7wk(1070)

Vinyard_untrained(7268)

Vinyard_vertical_trellis(1807)

(a) (b)  
Fig. 7. Salinas. (a) False-color image; (b) Ground truth image. 
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kernel was adopted with a ten-fold cross-validation for tuning 

the parameter. In addition, five metrics, including class-by-

class accuracy, overall accuracy (OA), average accuracy (AA), 

kappa coefficient (kappa), and computation time are used for 

the assessment of different methods’ performance. All the 

experiments were performed on a computer with a 3.5-GHz 

CPU, 8-GB memory and 64-bit Windows 10 using MATLAB 

2017a.  

C. Analysis of NGNMF 

In this subsection, classification accuracy is used to evaluate 

the performance of the selected band subsets on the three 

datasets. The proposed NGNMF was compared with the 

classical EFDPC [20], state-of-the-art NMFW [48], and 

FNGBS [22] methods. NMFW acts directly on the original HSI 

data instead of combining it with other BS methods as in [46] 

in our experiment. In addition, the number of selected bands 

varies from 5 to 50 with an interval of 5, and 10% of labeled 

samples are used in SVM for classification on all band subsets. 

The classification accuracy in terms of OA is shown in Fig. 8. 

As seen in Fig. 8, NGNMF has outperformed all other BS 

methods on all the three datasets, which have shown the 

superiority of the proposed algorithm. For the ranking-based 

NMFW method, it only achieves limited classification 

accuracies, mainly because the correlation between selected 

bands is relatively high, leading to loss of some spectral 

discrimination information. By contrast, the EFDPC and 

FNGBS methods combine the clustering and ranking strategies 

and achieve better classification accuracies on the three 

datasets.  For NGNMF, it firstly retains the advantages of 

combining clustering and ranking strategies. Moreover, 

compared with FNGBS, it further reduces the possibility of 

selecting noisy bands as representative bands and thus 

effectively improves the classification accuracy. 

D. Analysis of E2DSSA 

In this subsection, the performance of E2DSSA is analyzed 

and compared with 2DSSA, including embedding window 

parameters, number of singular values, and corresponding sub-

images. Moreover, E2DSSA is compared with several classical 

spatial feature extraction methods in terms of feature images 

and classification accuracy for the first time. 

1) Parameters Sensitivity Analysis 

Similar to 2DSSA, the embedding window size of E2DSSA 

affects the classification performance, though the former uses a 

fixed rectangle window while the latter adopts an irregularly 

shaped mask, containing a certain number of pixels similar to 

the central one. In order to objectively and consistently compare 

the performance of these two methods, the number of pixels in 

the respective embedding window was set to be the same in our 

experiment, for example, the window of 2DSSA is 5×5 and the 

similar pixels of E2DSSA is 25 (including the center pixel). In 

the experiment, six different window sizes from 3×3 (9) to 

15×15 (225) were used for comparison, and from the three 

datasets 2%, 1%, and 1% of labeled samples per class were 

randomly selected for training, with the detailed results given 

in Fig. 9.  

 As seen in Fig. 9, the performance of E2DSSA is superior 

to 2DSSA for all window parameters, with an improved OA 

averaging about 6%, 2%, and 0.5%, respectively. According to 

the classification accuracies of 2DSSA, it can be inferred that 

2DSSA

(a) 3×3 (b) 5×5 (c) 7×7 (d) 9×9

(e) thick

EMAP

Gabor

(i) 

DTRF

500a  (f) thin 500a  (g) thick 15s  (h) thin 15s 

8  (j) (k) (l) 3 8  5 8  7 8 

50, 0.3s r  (m) (n) 100, 0.5s r   (o) 150, 0.7s r   (p) 200, 0.9s r  

(q) 9 

E2DSSA

(r) 25 (s) 49 (t) 81  
Fig. 10. Feature maps obtained by 2DSSA (a-d), EMAP (e-h), Gabor (i-l), DTRF 
(m-p) and E2DSSA (q-t) with different parameters on band-20 of Indian Pines. 

 

TABLE I 

CLASSIFICATION ACCURACY (%) OF DIFFERENT SPATIAL METHODS USING 

THE SVM CLASSIFIER. 

Methods OA AA kappa time(s) 

2DSSA 81.74±0.74 76.15±1.06 0.79±0.01 10.68 

EMAP 82.64±1.37 81.32±1.43 0.80±0.02 2.79 

Gabor 82.02±0.62 81.40±2.36 0.80±0.01 1.09 

DTRF 83.55±1.65 83.26±2.82 0.81±0.02 4.16 

E2DSSA 88.01±0.83 87.50±0.45 0.86±0.01 36.09 

 

 
Fig. 8. OA comparisons of different BS methods on (a) Indian Pines, (b) PaviaU, 
and (c) Salinas. 
 

 
Fig. 9. Parameters comparisons between E2DSSA and 2DSSA on (a) Indian Pines, 

(b) PaviaU, and (c) Salinas. 
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the performance of 2DSSA is severely affected by the shape of 

land covers. The bigger embedding window can obtain better 

classification results on Indian Pines and Salinas datasets 

because these datasets have a large area of ground features, 

while the smaller window is better for the PaviaU due to its 

finely broken and striped ground features. In contrast, the 

strategy of selecting similar pixels in E2DSSA can adaptively 

extract features of ground objects, thus it has a more robust 

performance for complex land covers, with the best parameters 

of the three datasets concentrated in the range of 49-121 in Fig. 

9. 

2) Comparisons with classical spatial methods 

In this part, the proposed E2DSSA method was further 

compared with some classic spatial methods including EMAP 

[25], Gabor [26], DTRF [28] and 2DSSA [29] on the Indian 

Pines dataset. For the parameters of these methods, four 

different embedding windows, i.e. 3×3 to 9×9 for 2DSSA and 

9 to 81 for E2DSSA are used. EMAP was built with 𝜆𝑎=500 

for the area attribute and 𝜆𝑠 =15 for the standard deviation 

attribute in thinning and thickening operators. Regarding the 

Gabor filter, the four orientations θ = [𝜋/8, 3𝜋/8, 5𝜋/8, 7𝜋/8] 

were considered. In DTRF, the parameters δs and δr were set in 

the range from 50 to 200 with a step of 50 and 0.3 to 0.9 with a 

step of 0.2 to adjust the amount of smoothness. The 

corresponding spatial feature images on band-20 of these 

methods are shown in Fig. 10.  

According to the experimental results, 2DSSA seems to 

smooth out spatial detailed information such as edges, 

especially in the larger embedded window. For EMAP and 

Gabor, the image feature information under a single parameter 

is very limited, thus the multi-scale feature fusion in various 

parameters is widely used for improved classification. As for 

DTRF, it can smooth areas within classes and preserve the 

edges between classes, however, it is sensitive to noise, 

resulting in foggy artifacts. In contrast, E2DSSA with different 

parameters can retain the shape and edge features of land 

covers, and eliminate the influence of noise to a certain extent. 

Moreover, as the embedding window expands, E2DSSA can 

further improve the intra-class similarity and retain interclass 

differences of ground objects, which can be beneficial for the 

classification of ground objects. 

Moreover, we also quantitatively evaluated the classification 

accuracy of the above features on the SVM classifier with 2% 

labelled samples. 2DSSA, DTRF and E2DSSA are applied to 

each band of HSI, with parameters of an embedding window of 

7×7, δs=50 and δr=0.3, L=49, respectively, while EMAP and 

Gabor filter with multiple parameters shown in Fig. 10, both act 

on the first three principal components after PCA. The 

classification results are given in Table I. As shown in Table I, 

the proposed E2DSSA method outperforms all other spatial 

 
Fig. 11. Classification accuracy (OA) with different numbers of training samples on the (a) Indian Pines, (b) PaviaU, and (c) Salinas datasets. 

 

TABLE II 

CLASSIFICATION ACCURACY (%) OF DIFFERENT COMPARED METHODS ON THE INDIAN PINES DATASET (5% TRAINING). 

Class 
Samples SVM 

Dimension=200 

SuperPCA GF-LFDA IAPs SSMRPE NGNMF-E2DSSA 

Train Test Dimension=35 

1 3 43 10.85±8.17 100.00±0.0 94.57±1.34 81.40±22.2 61.11±15.1 84.50±12.8 

2 72 1356 66.37±7.78 87.30±5.45 90.81±1.11 87.83±6.26 88.50±2.37 93.17±0.37 

3 42 788 55.29±5.29 89.35±1.01 89.21±0.71 85.91±6.38 77.68±0.83 93.02±0.89 

4 12 225 28.59±2.72 62.08±0.31 67.41±7.47 62.81±2.60 45.57±4.24 88.15±10.8 

5 25 458 86.54±2.53 96.66±0.68 96.43±1.98 96.00±2.53 92.94±0.26 96.00±1.20 

6 37 693 92.74±3.60 96.20±3.14 99.37±0.58 99.13±0.76 99.45±0.09 98.03±0.96 

7 2 26 60.26±13.5 96.30±0.20 100.00±0.0 98.72±2.22 96.00±0.02 91.03±5.88 

8 24 454 94.42±2.42 99.57±0.00 97.72±1.50 99.05±0.89 98.63±0.79 97.21±2.33 

9 1 19 12.28±10.9 100.00±0.0 100.00±0.0 75.44±4.53 70.37±6.42 85.96±4.31 

10 49 923 68.33±7.43 91.61±3.17 86.75±2.39 85.41±3.24 86.09±0.84 91.84±1.02 

11 123 2332 81.63±1.29 92.57±4.34 89.11±0.72 90.38±2.80 87.13±0.36 95.21±0.76 

12 30 563 46.95±2.00 88.56±7.07 84.78±2.21 81.88±7.23 85.02±0.42 90.47±6.98 

13 11 194 95.19±2.54 99.50±0.56 98.97±0.52 98.80±0.60 98.76±0.31 96.05±0.30 

14 64 1201 91.73±2.62 99.84±0.21 94.98±2.06 97.06±1.84 96.68±0.84 98.95±0.38 

15 20 366 40.98±6.70 98.67±0.29 88.34±3.48 83.24±5.37 81.03±0.65 95.81±2.48 

16 5 88 67.05±15.9 80.00±21.1 88.26±5.83 90.53±9.11 71.37±4.75 99.24±0.66 

OA 73.84±0.50 92.53±0.60 90.81±0.23 90.03±1.58 87.97±0.24 94.78±0.29 

AA 62.45±0.89 92.39±1.26 91.67±0.49 88.35±5.29 83.52±1.33 93.41±1.08 

kappa 0.699±0.006 0.915±0.007 0.895±0.003 0.886±0.019 0.863±0.003 0.94±0.003 

Computation time (s) 3.9 6.5 14.5 16.3 12.2 8.7 
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methods, which demonstrates it can effectively extract the 

spatial features of HSI and improve the separability of ground 

objects. Nevertheless, the calculation cost of the proposed 

E2DSSA method is high, which is mainly due to the 

construction of the adaptive embedded window.  

E. Comparisons with other state-of-the-art methods 

To highlight the superiority of the proposed NGNMF-

E2DSSA method, in this subsection, we compare a few state-

of-the-art spectral-spatial methods, i.e. the SuperPCA [55], GF-

LFDA [36], IAPs [56] and SSMRPE [17], while the raw data 

with SVM was set as the baseline method (abbreviated as 

“SVM”). These state-of-the-art methods can jointly utilize the 

spectral and spatial information and reduce the dimensions of 

the HSI data. We downloaded the source code or wrote the code 

of each compared method and set the parameters optimally as 

suggested in [17, 36, 55, 56] to generate the results. The 

embedding window of E2DSSA was set to 81 for all three 

datasets. For a fair comparison, the reduced feature dimension 

was set to 35 for these spectral-spatial methods.  

Firstly, to fully investigate the performance of the involved 

DR methods, different number of training samples are used, i.e., 

varying within {1%, 2%, 3%, 4%, 5%} for Indian Pines, {0.5%, 

1%, 1.5%, 2%, 2.5%} for both PaviaU and Salinas datasets per 

class. Fig. 11 displays and compares the classification 

accuracies under different training samples on the three 

datasets. According to Fig. 11, the OA of all DR methods has 

improved with the increased training samples, mainly because 

a large training set can provide more information to learn the 

discriminant features. In addition, some compared methods, 

such as SuperPCA and GF-LFDA, achieve superior results on 

some datasets, but poor results on others. The proposed 

NGNMF-E2DSSA can achieve the highest classification 

accuracies under all conditions, demonstrating its high 

effectiveness and robustness, thanks to the enhanced spatial 

characteristics on the selected band subset and improved 

discriminability of object features. In order to quantitatively 

evaluate the performance of each class in different DR methods, 

5%, 1% and 1% labeled samples of each class were randomly 

selected as training samples and the rest were used for testing 

from the three datasets, respectively. Tables II-IV compare the 

detailed classification accuracies of the three datasets, with the 

classification maps shown in Figs. 12-14 for comparison. 

In Tables II-IV, NGNMF-E2DSSA achieved the highest 

classification accuracies in terms of OA, AA, kappa and many 

class based metrics on the three datasets. SuperPCA transforms 

within each superpixel region to reduce the data dimension, but 

it has poor classification performance on smaller ground objects 

due to the problem of segmentation scale, especially on the 

PaviaU dataset. The classification accuracy obtained by GF-

TABLE III 

CLASSIFICATION ACCURACY (%) OF DIFFERENT COMPARED METHODS ON THE PAVIAU DATASET (1% TRAINING). 

Class 
Samples SVM SuperPCA GF-LFDA IAPs SSMRPE NGNMF-E2DSSA 

Train Test Dimension=103 Feature Dimension=35 

1 67 6564 83.31±2.71 77.28±0.99 80.76±1.14 97.73±0.14 78.54±2.94 98.47±0.81 

2 187 18462 92.20±1.45 95.84±1.04 90.79±0.33 99.87±0.03 95.95±0.68 99.32±0.54 

3 21 2078 56.77±17.5 84.02±3.39 67.71±0.52 71.90±1.26 72.87±7.21 91.72±0.43 

4 31 3033 76.64±13.9 47.62±8.57 93.66±1.02 86.05±2.61 94.87±4.96 90.97±6.13 

5 14 1331 98.90±0.17 98.07±0.88 100.00±0.0 99.92±0.13 66.16±4.55 99.40±0.39 

6 51 4978 71.28±3.98 91.11±1.13 79.15±2.41 77.13±3.68 92.09±5.09 94.48±0.31 

7 14 1316 74.10±10.7 65.73±9.71 69.06±4.77 59.32±5.94 88.38±3.54 94.38±1.28 

8 37 3645 76.35±5.73 73.42±2.41 73.02±0.52 88.65±1.79 76.23±3.60 91.80±4.04 

9 10 937 99.79±0.02 33.69±4.38 99.96±0.06 93.95±1.82 98.41±2.45 86.91±7.53 

OA 83.96±1.27 84.20±0.80 85.59±0.47 92.15±0.44 88.07±0.93 96.58±0.42 

AA 81.04±1.98 74.09±2.05 83.79±0.88 86.06±0.59 84.83±0.63 94.16±1.16 

kappa 0.786±0.018 0.788±0.012 0.807±0.006 0.894±0.006 0.841±0.012 0.954±0.006 

Computation time (s) 2.5 8.6 32.5 26.2 33.2 47.5 

 

TABLE IV 

CLASSIFICATION ACCURACY (%) OF DIFFERENT COMPARED METHODS ON THE SALINAS DATASET (1% TRAINING) 

Class 
Samples SVM SuperPCA GF-LFDA IAPs SSMRPE NGNMF-E2DSSA 

Train Test Dimension=204 Feature Dimension=35 

1 21 1988 98.76±0.57 100.00±0.0 99.98±0.03 98.39±0.96 98.57±2.40 99.09±1.57 

2 38 3688 99.01±0.52 100.00±0.0 99.46±0.51 99.73±0.29 94.27±8.22 99.45±0.42 

3 20 1956 97.60±1.74 81.10±16.0 98.72±0.53 99.61±0.16 99.19±0.35 99.97±0.06 

4 14 1380 98.09±0.73 70.58±14.2 94.57±6.02 96.86±1.09 97.75±0.56 98.69±0.51 

5 27 2651 97.47±0.70 98.46±1.88 98.24±1.44 99.01±0.81 99.99±0.02 96.72±1.50 

6 40 3919 99.57±0.10 99.92±0.02 100.00±0.0 99.68±0.47 97.17±2.50 99.46±0.47 

7 36 3543 99.25±0.17 90.39±10.8 99.93±0.04 99.60±0.13 98.05±1.25 99.73±0.11 

8 113 11158 75.91±2.18 99.73±0.34 89.45±3.92 94.48±2.75 92.96±1.55 93.55±2.00 

9 63 6140 98.43±0.41 96.26±2.72 98.82±0.70 99.72±0.32 99.75±0.22 99.79±0.10 

10 33 3245 86.59±1.89 90.64±10.3 96.24±1.25 92.96±1.08 90.81±4.04 96.34±2.42 

11 11 1057 90.79±2.49 67.42±8.57 92.91±5.61 97.48±1.23 99.97±0.06 96.87±2.70 

12 20 1907 98.20±1.87 84.30±6.22 96.74±1.02 98.99±1.06 99.60±0.38 99.93±0.06 

13 10 906 98.12±0.38 98.25±0.04 95.11±2.49 97.39±0.63 96.68±2.66 97.83±1.02 

14 11 1059 89.39±1.34 83.54±19.8 96.85±0.80 90.71±3.46 98.57±0.46 96.15±1.89 

15 73 7195 66.18±2.24 94.17±9.44 78.33±5.29 82.09±4.34 91.66±4.36 92.51±3.04 

16 19 1788 96.36±3.44 85.29±3.84 98.82±0.26 99.40±0.31 90.27±7.35 97.57±1.63 

OA 88.38±0.38 93.95±0.99 93.66±1.39 95.38±0.66 95.40±0.78 96.82±0.25 

AA 93.11±0.33 90.00±1.67 95.89±032 96.63±0.15 96.58±0.42 97.73±0.26 

kappa 0.871±0.004 0.933±0.011 0.929±0.015 0.949±0.007 0.949±0.009 0.965±0.003 

Computation time (s) 13.1 18.9 22.4 26.5 56.4 42.2 
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LFDA on the Salinas dataset is relatively low. IAPS can quickly 

extract invariant structural features from images, while its 

overall classification performance is poor. SSMRPE has a high 

computation cost because it extracts the manifold structure 

based on the graph embedding theory. NGNMF-E2DSSA can 

reduce the spectral dimension and remove the noisy bands 

simultaneously, and the subsequent E2DSSA can extract and 

enhance the image features to improve the identification ability 

of ground objects, which achieves superior classification 

results. However, since the trajectory matrix is embedded from 

the whole image, the computation time will increase 

exponentially with the increased image size, which is also a 

problem that needs to be further addressed in the future. 

The numerical results can be visually compared by 

inspecting corresponding classification maps in Figs. 12–14. 

Due to the spectral mixture in hyperspectral images, there are 

many salt-and-pepper noise in the classification maps. 

Compared with SVM, GF-LFDA and SSMRPE reduced the 

classification noise to a certain extent, but they cannot 

completely remove them. Some misclassified plaques appear in 

the classification map of SuperPCA due to the superpixel 

segmentation scale. IAPs basically solves the problem of 

classification noise inside the land covers, but their 

performance is limited at the edge of the ground features. 

Finally, NGNMF-E2DSSA can produce more homogeneous 

and smoother classification maps while preserving the edges. 

Furthermore, it is clear from the classification details in the 

white boxes that E2DSSA has excellent classification 

performance on irregularly shaped and small ground objects. 

The morphology of the ground objects is well preserved with a 

much higher internal smoothness. This again demonstrates the 

effectiveness of the extracted features of NGNMF-E2DSSA for 

HSI classification and land mapping. 

F. Comparisons with deep learning methods 

In this section, we further compare the proposed NGNMF-

E2DSSA with several deep learning methods, including LSTM, 

2DCNN, 3DCNN, Morphological Convolutional Neural 

Networks (MorphCNN), and HybridSN, as provided in [57]. 

Their classification accuracies are evaluated under spatially 

disjoint train-test samples based on the Indian Pines and PaviaU 

datasets (http://dase.grss-ieee.org/index.php), and the results 

are shown in Tables V and VI. As seen, the proposed NGNMF-

E2DSSA achieved the highest classification accuracy on the 

Indian Pines dataset, while the AA was slightly lower than that 

of MorphCNN. In addition, the accuracy of NGNMF-E2DSSA 

was also better than that of LSTM, 2DCNN, 3DCNN and 

HybridSN on the PU dataset, but lower than that of 

MorphCNN. NGNMF-E2DSSA can extract the spectral-spatial 

features of hyperspectral images in a simpler way than the 

(a) (b) (c) (d) (e) (f)  
Fig. 12. Classification maps on the Indian Pines dataset  by  SVM (a), SuperPCA (b), GF-LFDA (c), IAPs (d), SSMRPE (e), and NGNMF-E2DSSA (f). 

(a) (b) (c) (d) (e) (f)  
Fig. 13. Classification maps on the PaviaU dataset by  SVM (a), SuperPCA (b), GF-LFDA (c), IAPs (d), SSMRPE (e), and NGNMF-E2DSSA (f). 

(a) (b) (c) (d) (e) (f)  
Fig. 14. Classification maps on the Salinas dataset obtained by SVM (a), SuperPCA (b), GF-LFDA (c), IAPs (d), SSMRPE (e), and NGNMF-E2DSSA (f). 
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traditional 2D/3D convolution methods, and the obtained 

features have stronger interpretability without being too 

abstract. The main reason why the proposed method does not 

have a significant advantage over MorphCNN model is that the 

latter embeds the feature extraction MP method into the deep 

network, which effectively improves the feature extraction 

capability. Such deep models embedded in traditional methods 

are also an interesting trend of current research. This also 

inspires us to carry out subsequent related research. 

IV. CONCLUSION 

In this paper, a novel dimensionality reduction method, 

namely NGNMF-E2DSSA, is proposed to extract interpretable 

low-dimensional features in HSI. The NGNMF is used to 

reduce the dimension and preserve the relevant original spectral 

information, where E2DSSA is used to enhance the spatial 

context and structural information of each selected band. The 

obtained low-dimensional features can significantly improve 

the classification performance of HSI. 

Compared with existing DR methods, experimental results 

on three publicly available HSI datasets have fully 

demonstrated that the proposed NGNMF-E2DSSA can achieve 

superior classification results, and shows good smoothness and 

continuity in the classification maps. In addition, the extracted 

low-dimensional features are obtained from the space of the 

original data without data transformation or projection, hence a 

higher interpretability of the features. 

While E2DSSA can adaptively extract the local features of 

different objects whilst taking into account the global features, 

the use of a large embedding window will increase the 

computational cost, especially on large-size images. This 

problem also exists in conventional 2DSSA. In our future work, 

we will focus on how to combine other techniques, such as 

image partition, to improve the computational efficiency of 

E2DSSA and further benefit more efficient the HSI 

classification. 
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