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Shizhen Chang, Member, IEEE, Pedram Ghamisi, Senior Member, IEEE

Abstract—Recently, many collaborative representation-based
(CR) algorithms have been proposed for hyperspectral anomaly
detection. CR-based detectors approximate the image by a linear
combination of background dictionaries and the coefficient ma-
trix, and derive the detection map by utilizing recovery residuals.
However, these CR-based detectors are often established on
the premise of precise background features and strong image
representation, which are very difficult to obtain. In addition,
pursuing the coefficient matrix reinforced by the general l2-min
is very time consuming. To address these issues, a nonnegative-
constrained joint collaborative representation model is proposed
in this paper for the hyperspectral anomaly detection task.
To extract reliable samples, a union dictionary consisting of
background and anomaly sub-dictionaries is designed, where the
background sub-dictionary is obtained at the superpixel level
and the anomaly sub-dictionary is extracted by the pre-detection
process. And the coefficient matrix is jointly optimized by the
Frobenius norm regularization with a nonnegative constraint
and a sum-to-one constraint. After the optimization process,
the abnormal information is finally derived by calculating the
residuals that exclude the assumed background information.
To conduct comparable experiments, the proposed nonnegative-
constrained joint collaborative representation (NJCR) model and
its kernel version (KNJCR) are tested in four HSI datasets and
achieve superior results compared with other state-of-the-art
detectors. The codes of the proposed method will be available
online1.

Index Terms—Anomaly detection, hyperspectral imagery, joint
collaborative representation, superpixel segmentation

I. INTRODUCTION

USING very rich spectral information existing in hyper-
spectral images (HSIs), we can diagnose the distribution

of land covers and recognize specific objects in a scene [1], [2],
[3]. Target detection, which detects targets of interest utilizing
the spectral differences between targets and backgrounds, is
one of the important applications for hyperspectral image
processing. Technically, target detection can be viewed as a
special binary classification problem, which identifies the test
pixel as a target or background under the binary hypothesis
theory. This technique has been applied in military, civil, and
other fields to detect, identify, and monitor specific objects [4],
[5].
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Depending on the availability of prior target information,
target detection can be divided into two categories, supervised
[6] and unsupervised [7]. The accuracy of supervised target
detection methods is highly dependent on that of the target
spectra, which are practically hard to obtain [8]. Unsupervised
target detection, which is also referred to as anomaly detection
(AD) or outlier detection, experienced rapid development in
the past 20 years [9].

So far, most classic anomaly detection algorithms focus
on constructing a profile of the distribution of backgrounds
to identify those objects that do not belong to the profile as
anomalies, or designing a statistical or geometric measurement
to separate the anomalies from background instances. An
example of the latter is the Reed-Xiaoli (RX) detector [10],
which solves the anomaly detection task through the Ma-
halanobis distance and the multivariate Gaussian distribution
assumption. Two types of the RX have been widely applied:
global RX which considers the entire image as the background
statistics, and local RX, which estimates the background using
local statistics [11]. In addition to the traditional RX model,
several improved methods based on Mahalanobis distance
have also been proposed. A blocked adaptive computationally
efficient outlier nominator (BACON) was proposed in [12] to
iteratively construct the robust background subset, a random
selection based anomaly detector (RSAD) was described in
[13]. Inspired by non-negative matrix factorization (NNMF),
a robust iterative consensus anomaly RX detector is proposed
in [14] which generates clusters for RX tests and uses a
weighted consensus voting process to detect anomalies. Be-
sides the Gaussian distributions models, some non-Gaussian
detectors were proposed to model the backgrounds, such
as the anisotropic super-Gaussian (AS) [15] and Elliptically
Contoured (EC) t-distributions [16]. Based on the Gaussian-
Markov random field, GMRF [17] models the clutter as
spatially–spectrally correlated random fields and derives the
simplified detection output. Considering the possible non-
validation of the original statistical distribution for real-world
HSIs, nonlinear version detectors that map the original data
space into a high-dimensional feature space to produce a
nearly Gaussian distribution were subsequently formulated.
Representative algorithms include the kernel RX (KRX) [18],
support vector data description (SVDD) [19], robust nonlinear
anomaly detector (RNAD) [20], and selective kernel principal
component analysis (KPCA) algorithm [21], among others.

Except for assuming the conditional probability density
functions (pdfs) or estimating the covariance matrix of the
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image scene, some nonparametric detectors have also been
proposed [22], [23]. Recently, the representation-based meth-
ods have been used more frequently. Considering that the nec-
essary prior knowledge of the anomaly dictionary is unknown
for anomaly detection, R. Zhao et al. proposed a background
joint sparse representation detector [24], which learns and
updates the weights of the potential background dictionary,
and estimates the reconstructed residual of the background.
To balance the influence of the dictionaries, collaborative
representation-based detectors were proposed by applying the
`2-norm regularization term to the original sparse represen-
tation model. The most typical algorithm of this type is the
collaborative representation-based detector (CRD) [25], which
applies the dual-window strategy and a distance-weighted ma-
trix to balance the effect of background dictionaries. Inspired
by the local summation strategy, K. Tan et al. proposed a
detector based on the collaborative representation and inverse
distance weight for hyperspectral anomaly detection [26].

Recently, low-rank matrix decomposition has emerged as
a powerful tool for image analysis and has been used for
anomaly detection by exploiting the sparse matrix. Since the
background features are always dense and overlapped, they
can be obtained from the lowest rank representation of the
HSI pixels, and the relatively rare anomalies can be obtained
by computing the residual of the original image and the
recovered background. A low-rank and sparse representation
(LRASR) method was proposed in [27], which designs a
dictionary construction strategy for the sparse component. In
[28], LSMAD was proposed which employs the Mahalanobis
distance for similarity measurement. A low-rank and sparse
decomposition with a mixture of Gaussian (LSDM-MoG) was
investigated in [29] for a variety of anomalies and noise. A
low-rank-based detector was proposed in [30] with the graph
and total variation regularization. Additionally, by combining
the low-rank and collaborative representation theory, H. Su et
al. designed a new anomaly detection model that decomposes
the image into background and anomaly components, and
extracts anomalies by adding column sparsity constraints [31].

However, there is still a common defect in these anomaly
detection algorithms: the distinction between the background
class and the anomaly class needs to be optimized. This prob-
lem is limited by several factors, such as the lack of precise
features, insignificant differences after image reconstruction,
and inappropriate representation models. The challenges of
strengthening the suppression of backgrounds and enhancing
the separation of the two classes still need to be explored. At
present, the dictionary contribution rules of the representation-
based methods as well as the low-rank matrix decomposition-
based methods either apply a dual concentric window or
are trained by dictionary learning methods. However, these
processes may not take full account of global information and
result in poor time consumption. Additionally, the coefficients
solved by partial derivation of the CR model usually contain
negative elements that are contrary to the reality of spectral
mixing of HSIs.

In this paper, a novel collaborative representation model
with a nonnegative constraint and joint learning is proposed
for hyperspectral anomaly detection. All coefficients corre-

sponding to the image are jointly derived through the ob-
jective function, which also assumes that the coefficients are
nonnegative and obey the sum-to-one rule. For better signal
recovery, a global union dictionary containing a background
part and an anomaly part are utilized for optimization. The
background sub-dictionary is learned by calculating the den-
sity peaks within superpixels of the image and the anomaly
sub-dictionary is constructed by a number of pixels that have
larger outputs after the RX detection. The main contributions
of the proposed framework can be summarized as follows:

1. The traditional representation-based anomaly detection
methods solve the objective function pixel-wise [32],
[33]. With a regularization term of the coefficient vector,
the error between the test pixel and its reconstructing
vector is minimized. The proposed model substitutes the
original `2-norm with the Frobenius norm and jointly
optimizes the whole coefficient matrix of the image.
Thus, possible local anomalies and redundant optimiza-
tion processes can be prevented [34].

2. Unlike previous detectors that only assume the back-
ground dictionary by means of a dual-concentric win-
dow or other feature selection methods [35], [36], our
model designs a unified dictionary constructed by reliable
backgrounds and potential anomalies. By excluding the
anomaly information of the final residual, the unified
dictionary helps to better separate the binary classes.

3. With the nonnegative and sum-to-one constraints, the pro-
posed model is more consistent with the spectral mixture
characteristics [37], and the reconstruction accuracy of
the coefficient matrix is improved.

The remainder of this paper is organized as follows. Section
II gives a detailed introduction to the proposed non-negative
constrained joint collaborative representation (NJCR) and ker-
nel NJCR models. The experimental results of the proposed
method with other traditional anomaly detectors are presented
in section IV. Finally, the conclusions are given in section V.

II. NONNEGATIVE CONSTRAINED COLLABORATIVE
REPRESENTATION-BASED DETECTION FRAMEWORK

In this section, the proposed NJCR model and its kernel
version are explored. We will first give an introduction to the
general collaborative representation model. Then, a detailed
discussion of the construction of the union dictionary, the
proposal for the nonnegative-constrained joint collaborative
representation (NJCR) model and its kernel version (KNJCR),
and the derivation of the models will be described. Fig. 1 gives
the overall flowchart of our method.

A. General CR model

Given a hyperspectral image denoted by X =
[x1, x2, · · · , xN ] ∈ RL×N , where L is the number of bands
and N is the total number of pixels, general collaborative
representation-based classifiers (CRCs) [38] approximate
each test pixel by the following l2-minimization optimization
problem with the training dictionary D from all classes:

α̂ = arg min
α
‖x−Dα‖22 + λ‖α‖22, (1)



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. **, NO. **, JUNE 2022 3

Background Anomaly Union Dictionary Construction Nonnegative-constrained Joint 
Collaborative Representation 

HSI Data set

PCA

Superpixel MapThe First 
Component

𝐷𝐷𝐵𝐵

𝑑𝑑1 𝑑𝑑𝑖𝑖

…

𝑑𝑑𝐾𝐾𝐵𝐵

…

Calculating 
density peaks 

𝐿𝐿

KNJCR: min
𝐴𝐴𝜙𝜙

𝜙𝜙 𝑋𝑋 − 𝜙𝜙 𝐷𝐷 𝐴𝐴𝜙𝜙 𝐹𝐹
2

+
𝜆𝜆
2

𝐴𝐴𝜙𝜙 𝐹𝐹
2

s. t. 𝐴𝐴𝜙𝜙𝑇𝑇 𝟏𝟏𝐾𝐾 = 𝟏𝟏𝑁𝑁, 𝐴𝐴𝜙𝜙≽ 0.

min
𝐴𝐴

𝑋𝑋 − 𝐷𝐷𝐷𝐷 𝐹𝐹
2+

𝜆𝜆
2

𝐴𝐴 𝐹𝐹
2

s. t. 𝐴𝐴𝑇𝑇𝟏𝟏𝐾𝐾 = 𝟏𝟏𝑁𝑁, 𝐴𝐴 ≽ 0.RX Detection

Optimization:
1. Inequality-constrained LASSO problem
2. Extended ADMM

NJCR:

Output: 𝑅𝑅NJCR 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝐷𝐷𝐵𝐵𝐴𝐴𝑖𝑖∗ 2

𝑅𝑅KNJCR 𝑥𝑥𝑖𝑖 = 𝜙𝜙 𝑥𝑥𝑖𝑖 − 𝜙𝜙 𝐷𝐷𝐵𝐵 𝐴𝐴𝜙𝜙∗ 𝑖𝑖 2

Ground Truth

Accuracy  
Evaluation

Detection Map

Ncut
Segmentation 

𝐷𝐷𝐴𝐴

𝑑𝑑1

…

𝐿𝐿

𝑑𝑑2 𝑑𝑑𝐾𝐾𝐴𝐴

…

𝐷𝐷 ∈ ℝ𝐿𝐿×𝐾𝐾

…… ……

Potential 
anomaly pixels

Model

Fig. 1. The flowchart of the proposed method. A unified background and anomaly dictionary is first constructed, where the background sub-dictionary is
obtained by calculating the density peaks of each superpixel and the anomaly sub-dictionary is selected by the RX pre-detection process. Then, the union
dictionary is utilized to train the nonnegative-constrained joint collaborative representation models. Finally, the detection result is derived and the accuracies
of the proposed models are evaluated.

where λ is a regularized scalar. After calculating the partial
deviation of α in Eq. (1), and setting the resultant equation to
zero, the optimized solution is derived:

α̂ = (DTD + λI)−1DTx. (2)

By collaboratively representing the test sample using a training
dictionary, the decision rule of the original CRC compares the
class-specific representation residual:

R(xi) = ‖xi − x̂i‖2 = ‖xi −Dα̂i‖2. (3)

The reason CRC works is that it emphasizes the collabo-
rative relationship between training dictionaries with a much
lower computational burden compared to sparse representation
classifiers (SRCs). In fact, [39] even argued that it is not
the sparse representation but the adoption of collaborative
representations in general that play a more crucial role in the
success of SRCs.

In this paper, an improved CR model for hyperspectral
anomaly detection is proposed based on the following three
aspects: 1) Since no prior information is available, we need
to define appropriate ways to construct the dictionary matrix,
and to expand the recovery residuals of the test samples
belonging to the anomaly class and the background class as
much as possible. 2) Considering that the coefficient vectors
usually have negative elements that violate the non-negative
correlation between the dictionary and the test samples, we
update the general CR model to better fit the reality. 3)
To save the expensive time consuming process of pixel-wise
optimization, the joint CR model is designed to minimize the
reconstruction errors of the whole image jointly. A detailed
description of these three parts will be shown subsequently.

B. The Construction of the Union Dictionary

For representation-based methods, giving an over-completed
training dictionary to accurately approximate the test samples
is very important. The supervised target detection research
can construct a union dictionary with backgrounds and targets
that are usually regarded as prior knowledge [36]. But for the
proposed anomaly detection problem, neither the backgrounds
nor the anomalies are known previously. Considering that
the anomaly information is rather difficult to obtain, previous
representation-based detectors only learn or select potential
background information as the dictionary to estimate the test
samples. Thus, the detection result will be influenced if the
background is contaminated or not representative enough.
To improve the approximation accuracy, we design a union
dictionary consisting of a background sub-dictionary and an
anomaly sub-dictionary.

To construct the background part of the dictionary, we first
use the over-segmentation process to partition the image into
superpixels, then we calculate the density peak of each super-
pixel and select pixels that potentially belong to backgrounds
as the background part.

The superpixel is a relatively new concept for image anal-
ysis tasks. By incorporating neighboring pixels into the same
material of the thematic map, superpixel segmentation algo-
rithms can efficiently reduce the computational complexity, as
they can assist in reducing the complexity of images from hun-
dreds of thousands of pixels to only a few hundred superpixels.
In hyperspectral imagery, superpixels are often regarded as a
uniform parcel of the individual land-cover objects [40]. So
useful background information can be extracted by the over-
segmentation procedure.
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Current state-of-the-art graph-based superpixel segmenta-
tion approaches include Ren and Malik’s normalized cut
(NCut) [41], Felzenszwalb and Huttenlocher’s (FH) superpixel
generation [42], and entropy rate (ER) superpixels [43]. The
method utilized in this paper is the NCut method that uses
mathematical graph theory to connect the spatially contiguous
pixels in the image.

Based on the graph theory, a weighted undirected graph
G = (V,E) can be constructed from the image, where V =
(v1, ..., vn) is the set of nodes and E = {ei,j} represents the
connecting edges between the nodes vi and vj . For a weighted
undirected graph, each edge has an associated weight wi,j that
shows the similarity between the nodes, and we always have
wi,j = wj,i. Intuitively, the edges define the “neighborhood”
relationship between pixels, and the weights show how “close”
they are [44], [45]. With the over-segmentation process, the
NCut method separates V into two or more groups such
that nodes that have larger weights are in the same cluster,
while nodes that have small weights are divided into different
clusters.

If we assume V is partitioned into two subgroups A and B,
the cut between them can be defined as:

cut(A,B) =
∑

i∈A,j∈B
wi,j . (4)

Theoretically, the optimal segmentation exists when Eq.
(4) is maximized. However, it usually results in segmenting
the nodes into small groups of outliers that lie far away and
the remaining instances. To overcome this problem, the NCut
method defines the association of A ⊂ V as:

assoc(A) = cut(A, V ) =
∑

i∈A,v∈V
wi,v.

So the criterion of the normalized cut is defined as:

ncut(A,B) =
cut(A,B)

assoc(A)
+
cut(A,B)

assoc(B)
. (5)

Detailed descriptions to minimize ncut(A,B) can be found
in [41].

After obtaining the superpixel map with approximate size,
we adopt the density peak (DP) clustering method to calculate
the density of each pixel in the superpixel and extract those
pixels that have larger peaks to create the training samples
of the background sub-dictionary. Assume a superpixel XS ∈
RL×n contains a number of spectral pixels [xS1 , x

S
2 , · · · , xSn ],

where n is the number of pixels located in this superpixel.
The Euclidean distance between two pixels xi and xj can be
expressed as:

dij = ||xi − xj ||2. (6)

To calculate the local density of each pixel, several thresholds
can be utilized, such as the cut-off kernel and the Gaussian
kernel. It has been proved that the Gaussian kernel threshold
can decrease the negative impact of statistical errors caused
by using fewer samples [46]. So it is adopted in this paper,
and the local density γi of the pixel xi can be defined as:

γi =
∑

j
exp(−

d2ij
d2c

), (7)

where dc is the cut-off distance. Then, the minimum distance
δi between xi and other higher-density data points is defined
as:

δi = min
j:γj>γi

dij . (8)

The values of γi and δi can generate a two-dimensional
decision graph used to choose the cluster centers [47]. Data
points with relatively higher γs and δs are usually viewed
as cluster centers and can be selected as the representative
training samples of the current superpixel Xs. The background
sub-dictionary DB is then constructed by a union of all these
training samples.

For the anomaly part, we first implement the RX detection
process to the whole image. According to the approximated
general likelihood ratio test (GLRT), the detection rule of the
test pixel xi under the RX detector is written as:

RRX(xi) = (xi − µ)>C−1(xi − µ), (9)

where µ and C represent the mean vector and the covariance
of the HSI. Then, a number of pixels that have relatively larger
outputs are selected to construct the anomaly sub-dictionary
DA.

Finally, the dictatory D that has a total of K samples is
constructed by the union of the background sub-dictionary DB

and the anomaly sub-dictionary DA:

D = [DB DA]. (10)

C. Nonnegative-Constrained Joint Collaborative Representa-
tion (NJCR) Model and Kerneled NJCR (KNJCR)

Assuming that the HSI pixels with high spectral similarities
can be approximated by the given global union dictionary,
these pixels are dominant in the same subspaces and can be
represented as:

X = [x1 x2 · · · xN ]

= [Dα1 + e1 Dα2 + e2 · · · DαN + eN ]

= D [α1 α2 · · · αN ]︸ ︷︷ ︸
A

+E,
(11)

where A is the set of all coefficient vectors corresponding to
HSI pixels, and E is the noise matrix. Note that the spectral
signals have nonnegative correlation with the dictionary, and
the sum of the weights in their dominant subspaces should
equal one, which means that the sum of each coefficient vector
is 1.

Combining the nonnegative and sum-to-one conditions of
the coefficient vectors, the aforementioned problem can be
optimized by solving the following nonnegative-constrained
joint collaborative representation (NJCR) model:

min
A
‖X −DA‖2F +

λ

2
‖A‖2F

s.t. AT1K = 1N , A � 0.
(12)

where 1K and 1N are all one vectors with sizes of K and N ,
respectively.

To provide a further nonlinear analysis for the NJCR model,
its kernel version can be explored. Suppose there exists a
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Algorithm 1 Solving the NJCR model by the extended
ADMM algorithm
Input: X ∈ RL×N and D ∈ RL×K .
Initialization: Set k = 0, Terminate ← False. Initialize ω0,

∆0 and η0 to zero.
1: while (Terminate == False) do
2: update Ak+1 by solving the following linear equation

Ak+1 =(2DTD + λI + ρI + ρ1K1TK)−1(2DTX−
ρ(∆k − ωk − 1K1TN + 1K(ηk)T)),

3: update ωk+1 as ωk+1 = (Ak+1 + ∆k)+,
4: update ∆k+1 as ∆k+1 = ∆k +Ak+1 − ωk+1,
5: update ηk+1 as ηk+1 = ηk +A(k+1)T1K − 1N ,
6: k ← k + 1
7: if (‖rk+1‖F ≤ ε and ‖sk+1‖F ≤ ε) then
8: Terminate ← True
9: end if

10: end while
Output: Optimal coefficient matrix A∗ = Ak.

nonlinear feature mapping function φ(·) that maps the HSI
data and the dictionary to a kernel induced space: X → φ(X),
A→ φ(A); the proposed NJCR model can be reformulated as
its Gaussian kernel version, which is referred to as the KNJCR:

min
Aφ
‖φ(X)− φ(D)Aφ‖2F +

λ

2
‖Aφ‖2F

s.t. AT
φ1K = 1N , Aφ � 0.

(13)

D. Optimization

Referring to [48], which solves the inequality-constrained
LASSO problem, we utilize the extended alternating direction
method of multipliers (ADMM) with slack variables to solve
the proposed optimizers.

To start with, let us introduce a slack variable ω = α, so
that the problem Eq. (12) is equivalently written as:

min
A
‖X −DA‖2F +

λ

2
‖A‖2F + IR+

(ω)

s.t. AT1K = 1N
A− ω = 0K×N .

(14)

where IR+ is the indicator function for the nonnegative reals,

IR+
(ωij) =

{
0 ωij ≥ 0

∞ otherwise.

Hence, by introducing the Lagrange multiplier ∆ ∈ RK×N
and η ∈ RK , the augmented Lagrangian function of (12), or
equivalently (14), is:

L(A,ω,∆, η) = ‖X −DA‖2F +
λ

2
‖A‖2F + IR+

(ω)

+ ρ(ηT(AT1K − 1N )) +
ρ

2
||AT1K − 1N ||2F

+ ρtr(∆T(A− ω)) +
ρ

2
||A− ω||2F ,

(15)

where ρ > 0 is the step size defined by user.

Algorithm 2 Solving the KNJCR model by the extended
ADMM algorithm
Input: X ∈ RL×N , D ∈ RL×K , KDD, and KDX .
Initialization: Set k = 0, Terminate ← False. Initialize ω0

φ,
∆0 and η0 to zero.

1: while (Terminate == False) do
2: update Ak+1

φ by solving the following linear equation

Ak+1
φ = (2KDD + λI + ρI + ρ1K1TK)−1(2KDX−

ρ(∆k − ωkφ − 1K1TN + 1K(ηk)T)).

3: update ωk+1
φ as ωk+1

φ = (Ak+1
φ + ∆k)+,

4: update ∆k+1 as ∆k+1 = ∆k +Ak+1
φ − ωk+1

φ ,
5: update ηk+1 as ηk+1 = ηk +A

(k+1)T
φ 1K − 1N ,

6: k ← k + 1
7: if (‖rk+1

φ ‖F ≤ ε and ‖sk+1
φ ‖F ≤ ε) then

8: Terminate ← True
9: end if

10: end while
Output: Optimal coefficient matrix A∗ = Ak.

Given ωk, ∆k, and ηk as the current solution of (15), the
updating steps can be calculated as follows [49]:

Ak+1 = arg min
A

‖X −DA‖2F +
λ

2
‖A‖2F +

ρ

2
||AT1K − 1N + ηk||2F +

ρ

2
||A− ωk + ∆k||2F ,

ωk+1 = arg min
ω

IR+
(ω) +

ρ

2
||Ak+1 − ω + ∆k||2F ,

∆k+1 = ∆k +Ak+1 − ωk+1,

ηk+1 = ηk +A(k+1)T1K − 1N .

So the optimization problems for updating Ak+1, ωk+1 is
solvable:
• The optimization for updating Ak+1 is a least squares

problem with `2 penalty terms. Some calculation yields:

Ak+1 =(2DTD + λI + ρI + ρ1K1TK)−1(2DTX−
ρ(∆k − ωk − 1K1TN + 1K(ηk)T)).

• Due to the special structure of function IR+
(ω), the

updated ωk+1 can be written as:

ωk+1 = (Ak+1 + ∆k)+.

The updating process will stop when convergence is
achieved. The stopping criteria of this problem are:

||rk+1||F ≤ ε ||sk+1||F ≤ ε,

where rk+1 and sk+1 are the primal and dual residuals [50],
respectively, given by

rk+1 =

[
1TKα− 1T

N

αk+1 − ωk+1

]
, sk+1 = −ρ(ωk+1 − ωk),

and ε denotes the error tolerance specified by the user. In
practice, the choice of ε = 10−4 works well.
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Similarly, to solve the kerneled version, Eq. (13) is also
rewritten to a Lagrangian dual function:

L(Aφ,ωφ,∆, η) =

‖φ(X)− φ(D)Aφ‖2F +
λ

2
‖Aφ‖2F + IR+

(ωφ)

+ ρ(ηT(AT
φ1K − 1N )) +

ρ

2
||AT

φ1K − 1N ||2F
+ ρtr(∆T(Aφ − ωφ)) +

ρ

2
||Aφ − ωφ||2F ,

(16)

and then the extended ADMM method is utilized to optimize
this function. It should be noted that at iteration k, the
coefficient matrix Ak+1

φ is derived with a kernel version

Ak+1
φ = arg min

Aφ

‖φ(X)− φ(D)Aφ‖2F +
λ

2
‖Aφ‖2F+

+
ρ

2
||AT

φ1K − 1N + ηk||2F +
ρ

2
||Aφ − ωkφ + ∆k||2F ,

and the calculation yields that

Ak+1
φ = (2KDD + λI + ρI + ρ1K1TK)−1(2KDX−

ρ(∆k − ωkφ − 1K1T
N + 1K(ηk)T)),

where KDD = κ(D,D) = 〈φ(D), φ(D)〉 and KDX =
κ(D,X) = 〈φ(D), φ(X)〉 are the inner products that project
the data into the feature space. The kernel function we
adopt is the radial basis function (RBF) kernel κ(xi, xj) =
exp(−||xi − xj ||2/2σ2) [51].

Finally, by calculating the recovery residual of each pixel
that is constructed by the background sub-dictionary, the
detection results of the proposed NJCR and KNJCR models
are derived:

RNJCR(xi) = ||xi −DBA
?
i ||2, (17)

RKNJCR(xi) = ||φ(xi)− φ(DB)(A?φ)i||2. (18)

In summary, Algorithm 1 and Algorithm 2 show the updat-
ing process of the proposed joint collaborative representation
models under the extended ADMM implementations.

III. EXPERIMENTS AND ANALYSIS

To illustrate the effectiveness of the proposed NJCR and
KNJCR models, experiments were conducted on four HSI
datasets, which include one simulated hyperspectral dataset
and three real-world hyperspectral datasets. Seven traditional
anomaly detectors are applied as a comparison. The detec-
tion results are evaluated via receiver operation characteristic
(ROC) curves, the area under the ROC curve (AUC) values
caluclated by ((PD, PF )) and (PF , τ), and the anomaly-
background separability maps. Then, detailed parametric
analysis and ablation study of the proposed nonnegative-
constrained joint representation models are discussed.

A. Hyperpsectral datasets

The first dataset is a simulated dataset collected by the Air-
borne Visible/Infrared Imaging Spectrometer (AVIRIS) from
the Lunar Crater Volcanic Field (LCVF) in Northern Nye
County, NV, USA [52], [53]. The spectral resolution of this
image is 5nm with 224 spectral channels in wavelengths

TABLE I
TARGET PANELS CHARACTERISTICS

Location Size Target abundance
1st row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
2nd row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
3rd row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
4th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
5th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%

ranging from 370 to 2510nm. The size of the image is
200 × 200 pixels. The original image contains a two-pixel
alunite object that is regarded as the target of interest. We
collect the spectrum of this alunite object and implant 5 × 5
target panels into the image using a nonlinear mixture model.
The size and target spectrum abundance of each panel are
shown in Table I. The true-color image of the LCVF dataset
and the corresponding ground truth are shown in Fig. 2.
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(ROC) curves, the area under the ROC curve (AUC) values,
and anomaly-background separability maps. Finally, a detailed
parametric analysis of the proposed nonnegative-constrained
joint representation models is conducted.
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The first data set is a simulated data set collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
from the Lunar Crater Volcanic Field (LCVF) in Northern
Nye County, NV, USA [43], [44]. The spectral resolution of
this image is 5nm with 224 spectral channels in wavelengths
ranging from 370 to 2510nm. The size of the image is
200 × 200 pixels. The original image contains a two-pixel
alunite object that is regarded as the target of interest. We
collect the spectrum of this alunite object and implant 5 × 5
target panels into the image using a nonlinear mixture model.
The size and target spectrum abundance of each panel are
shown in Table I. The true-color image of the LCVF data set
and the corresponding ground truth are shown in Fig. 2.

The second data set covers a scene of Reno, Nevada, USA,
and has 356 spectral bands [45]. The spatial resolution of
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Fig. 2. (a) LCVF image scene in true color. (b) Ground truth.

TABLE I
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Location Size Target abundance
1st row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
2nd row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
3rd row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
4th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
5th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%

this image is less than 2m per pixel. This hyperspectral data
set can be downloaded from http://www.spectir.com/free-data-
samples/. For our experiments, a region of 250×100 pixels was
chosen as the test data. The anomaly targets to be detected are
located on the right side of the scene, which are represented
by 214 pixels. The true-color image and the ground truth are
shown in Fig. 3.

(a) (b)

Fig. 3. (a) Reno image scene in true color. (b) Ground truth.

The third data set is acquired from the airborne Viareggio
trial [46], the benchmark hyperspectral detection campaign
that took place in Viareggio, Italy in 2013. The sensor collects
spectral information ranging from 400 to 1000 nm at a spectral
resolution of 1.2 nm approximately, and the spatial resolution
is about 0.6 m. A region of 300×300 pixels from the original
D1F12H2 scene is selected for our experiments. The anomalies

Fig. 2. (a) LCVF image scene in true color. (b) Ground truth.

The second dataset was captured by the AVIRIS sensor over
the area of the SanDiego airport, CA, USA with a spatial
resolution of 3.5 m and a spectral resolution of 10 nm. This
dataset has 224 spectral bands in total. 189 bands are utilized
for the detection task after eliminating the noisy bands. The
size of the SanDiego dataset is 100 × 100. In this dataset,
three aircrafts, which include 58 pixels, are treated as anomaly
targets. The visualized 2-D true-color image and the ground-
truth of this dataset are shown in Fig. 3.
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Similarly, to solve the kerneled version, Eq. (13) is also
rewritten to a Lagrangian dual function:

L(Aϕ,ωϕ,∆, η) =

∥ϕ(X)− ϕ(D)Aϕ∥2F +
λ

2
∥Aϕ∥2F + IR+

(ωϕ)

+ ρ(ηT(AT
ϕ1K − 1N )) +

ρ

2
||AT

ϕ1K − 1N ||2F
+ ρtr(∆T(Aϕ − ωϕ)) +

ρ

2
||Aϕ − ωϕ||2F ,

(16)

and then the extended ADMM method is utilized to optimize
this function. It should be noted that at iteration k, the
coefficient matrix Ak+1

ϕ is derived with a kernel version

Ak+1
ϕ = argmin

Aϕ

∥ϕ(X)− ϕ(D)Aϕ∥2F +
λ

2
∥Aϕ∥2F+

+
ρ

2
||AT

ϕ1K − 1N + ηk||2F +
ρ

2
||Aϕ − ωk

ϕ +∆k||2F ,
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ϕ − 1K1T

N + 1K(ηk)T)),
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κ(D,X) = ⟨ϕ(D), ϕ(X)⟩ are the inner products that project
the data into the feature space. The kernel function we
adopt is the radial basis function (RBF) kernel κ(xi, xj) =
exp(−||xi − xj ||2/2σ2) [49].

Finally, by calculating the recovery residual of each pixel
that is constructed by the background sub-dictionary, the
detection results of the proposed NJCR and KNJCR models
are derived:

RNJCR(xi) = ||xi −DBA
⋆
i ||2, (17)

RKNJCR(xi) = ||ϕ(xi)− ϕ(DB)(A
⋆
ϕ)i||2. (18)

In summary, Algorithm 1 and Algorithm 2 show the updat-
ing process of the proposed joint collaborative representation
models under the extended ADMM implementations.

III. EXPERIMENTS AND ANALYSIS

To illustrate the effectiveness of the proposed NJCR and
KNJCR models, experiments were conducted on four HSI
data sets, which include one simulated hyperspectral data set
and three real-world hyperspectral data sets. Seven traditional
anomaly detectors are applied as a comparison. The detec-
tion results are evaluated via receiver operation characteristic
(ROC) curves, the area under the ROC curve (AUC) values
caluclated by ((PD, PF )) and (PF , τ), and the anomaly-
background separability maps. Then, detailed parametric
analysis and ablation study of the proposed nonnegative-
constrained joint representation models are discussed.

A. Hyperpsectral Data Sets

The first data set is a simulated data set collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
from the Lunar Crater Volcanic Field (LCVF) in Northern
Nye County, NV, USA [50], [51]. The spectral resolution of
this image is 5nm with 224 spectral channels in wavelengths

TABLE I
TARGET PANELS CHARACTERISTICS

Location Size Target abundance
1st row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
2nd row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
3rd row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
4th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
5th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%

ranging from 370 to 2510nm. The size of the image is
200 × 200 pixels. The original image contains a two-pixel
alunite object that is regarded as the target of interest. We
collect the spectrum of this alunite object and implant 5 × 5
target panels into the image using a nonlinear mixture model.
The size and target spectrum abundance of each panel are
shown in Table I. The true-color image of the LCVF data set
and the corresponding ground truth are shown in Fig. 2.
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200 × 200 pixels. The original image contains a two-pixel
alunite object that is regarded as the target of interest. We
collect the spectrum of this alunite object and implant 5 × 5
target panels into the image using a nonlinear mixture model.
The size and target spectrum abundance of each panel are
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and has 356 spectral bands [45]. The spatial resolution of
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this image is less than 2m per pixel. This hyperspectral data
set can be downloaded from http://www.spectir.com/free-data-
samples/. For our experiments, a region of 250×100 pixels was
chosen as the test data. The anomaly targets to be detected are
located on the right side of the scene, which are represented
by 214 pixels. The true-color image and the ground truth are
shown in Fig. 3.
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Fig. 3. (a) Reno image scene in true color. (b) Ground truth.

The third data set is acquired from the airborne Viareggio
trial [46], the benchmark hyperspectral detection campaign
that took place in Viareggio, Italy in 2013. The sensor collects
spectral information ranging from 400 to 1000 nm at a spectral
resolution of 1.2 nm approximately, and the spatial resolution
is about 0.6 m. A region of 300×300 pixels from the original
D1F12H2 scene is selected for our experiments. The anomalies

Fig. 2. (a) LCVF image scene in true color. (b) Ground truth.

This dataset was captured by the AVIRIS sensor, which has
a spatial resolution of 3.5 m and a spectral resolution of 10
nm. This dataset has 224 original spectral bands in total, and
189 bands are utilized for the detection task after eliminating
the noisy bands. It records the area of the San Diego airport,
CA, USA in 100 × 100 pixels, three aircrafts including 58
pixels are selected as the anomaly target. The visualized 2-
D image scene and the ground-truth map of this dataset are
shown in Figure. The true-color image and the ground truth
are shown in Fig. 4.

The third data set is acquired from the airborne Viareggio
trial [52], the benchmark hyperspectral detection campaign
that took place in Viareggio, Italy in 2013. The sensor collects
spectral information ranging from 400 to 1000 nm at a spectral
resolution of 1.2 nm approximately, and the spatial resolution

(a) (b)
Fig. 3. The San Diego dataset. (a) Image scene. (b) Ground-truth.

Fig. 3. (a) SanDiego image scene in true color. (b) Ground truth.

The third dataset is acquired from the airborne Viareggio
trial [54], the benchmark hyperspectral detection campaign
that took place in Viareggio, Italy in 2013. The sensor collects
spectral information ranging from 400 to 1000 nm at a spectral
resolution of 1.2 nm approximately, and the spatial resolution
is about 0.6 m. A region of 300×300 pixels from the original
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D1F12H2 scene is selected for our experiments. The anomalies
to be detected include 191 pixels in total. The image scene and
its corresponding ground truth are shown in Fig. 4.
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to be detected include 191 pixels in total. The image scene and
its corresponding ground truth are shown in Fig. 4.

(a) (b)

Fig. 4. (a) Viareggio image scene in gray color. (b) Ground truth.

The fourth hyperspectral data set was acquired by the CRi
Nuance hyperspectral sensor [47]. This image covers an area
of 400× 400 pixels and has 46 spectral channels from 650 to
1100nm. The spectral resolution of this data set is 10nm. The
background land-cover types in this image are various kinds
of grasses. There are ten rocks located in the grassy scene,
as shown in Fig. 5(a); a total of 1254 pixels was selected to
include the anomalies to be detected, as shown in Fig. 5(b).
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Fig. 5. (a) CRi image scene in gray color. (b) Ground truth.

B. Detection Efficiency

The detection efficiency of the proposed NJCR and KNJCR
models are compared with four representative anomaly detec-
tion methods: RX [9], CRD [20], ADLR [23], and LRASR
[21] methods, and a kerneled detector: KRX [13]. To conduct
balanced detection performances, all of these algorithms are
implemented with optimal parameter settings. To construct the
union dictionary, we first segment the image into 100 superpix-
els and extract 5 representative samples within each superpixel
by density peak clustering method as the background sub-
dictionary. Fifty potential anomaly samples are selected after
the RX detection as the anomaly sub-dictionary.

Figs. 6−9 show the 2D colored detection map of the
detectors in four data sets. It can be seen from Fig. 6 that the
overall output of the RX method is lower than other methods,
and it fails to identify the anomalies by visual observation. The
CRD and the LRASR methods perform better than RX. The
KRX and the ADLR methods have higher detection values on
both the anomalies and the backgrounds. And comparing to

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. 2D colored detection maps for the LCVF data set. (a) Ground truth.
(b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h) KNJCR.
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(c) (d)

(e) (f)

(g) (h)

Fig. 7. 2D colored detection maps for the Reno data set. (a) Ground truth.
(b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h) KNJCR.

all the other methods, the proposed NJCR and KNJCR models
can highlight the anomalies from the background with properly
constrained background outputs, while the suppression on the
backgrounds’ output is not sufficient.

The visual detection maps of these methods on the Reno
data set are shown in Fig. 7. It is clear that the output values of
the KRX are much higher than those of the other six methods,
which makes discovering the anomalies very difficult. The
visual results of the RX and the CRD are very similar. The
proposed NJCR and KNJCR models have balanced outputs
between the backgrounds and the anomalies.

Fig. 8 shows the colored maps of all methods in the Viareg-
gio data set. The KRX and ADLR methods fail to suppress

Fig. 5. (a) CRi image scene in gray color. (b) Ground truth.

B. Detection Efficiency

The detection efficiency of the proposed NJCR and KNJCR
models are compared with four representative anomaly detec-
tion methods: RX [9], CRD [20], ADLR [23], and LRASR
[21] methods, and a kerneled detector: KRX [13]. To conduct
balanced detection performances, all of these algorithms are
implemented with optimal parameter settings. To construct the
union dictionary, we first segment the image into 100 superpix-
els and extract 5 representative samples within each superpixel
by density peak clustering method as the background sub-
dictionary. Fifty potential anomaly samples are selected after
the RX detection as the anomaly sub-dictionary.

Figs. 6−9 show the 2D colored detection map of the
detectors in four data sets. It can be seen from Fig. 6 that the
overall output of the RX method is lower than other methods,
and it fails to identify the anomalies by visual observation. The
CRD and the LRASR methods perform better than RX. The
KRX and the ADLR methods have higher detection values on
both the anomalies and the backgrounds. And comparing to
all the other methods, the proposed NJCR and KNJCR models
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Fig. 6. 2D colored detection maps for the LCVF data set. (a) Ground truth.
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Fig. 7. 2D colored detection maps for the Reno data set. (a) Ground truth.
(b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h) KNJCR.

can highlight the anomalies from the background with properly
constrained background outputs, while the suppression on the
backgrounds’ output is not sufficient.

The visual detection maps of these methods on the Reno
data set are shown in Fig. 7. It is clear that the output values of
the KRX are much higher than those of the other six methods,
which makes discovering the anomalies very difficult. The
visual results of the RX and the CRD are very similar. The
proposed NJCR and KNJCR models have balanced outputs
between the backgrounds and the anomalies.

Fig. 8 shows the colored maps of all methods in the Viareg-
gio data set. The KRX and ADLR methods fail to suppress
the output values of backgrounds, which makes it hard to

Fig. 4. (a) Viareggio image scene in gray color. (b) Ground truth.

The fourth hyperspectral dataset was acquired by the CRi
Nuance hyperspectral sensor [55]. This image covers an area
of 400× 400 pixels and has 46 spectral channels from 650 to
1100nm. The spectral resolution of this dataset is 10nm. The
background land-cover types in this image are various kinds
of grasses. There are ten rocks located in the grassy scene,
as shown in Fig. 5(a); a total of 1254 pixels were selected to
include the anomalies to be detected, as shown in Fig. 5(b).

B. Detection Efficiency

The detection efficiency of the proposed NJCR and KN-
JCR models are compared with six representative anomaly
detection methods: RX [10], CRD [25], ADLR [35], LRASR
[27], PAB-DC [56], and RGAE [57] methods, and a ker-
neled detector: KRX [18]. To conduct balanced detection
performances, all of these algorithms are implemented with
optimal parameter settings. The PAB-DC method is conducted
in Python on a workstation with Intel Xeon Gold 6254 CPU @
3.10GHz with 1.58 TB of RAM. Except that, all experiments
are conducted in MATLAB on an Intel Core i7-8550U CPU
with 16 GB of RAM.

To construct the union dictionary, the number of samples
in the sub-dictionaries should be large enough to represent
the most important information of the anomalies and the
backgrounds. On the other hand, an appropriate number of
samples is also needed to prevent huge time consumption
caused by over-segmentation and interference. With reference
to the results of the existing publications [27], [24], we can
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which makes discovering the anomalies very difficult. The
visual results of the RX and the CRD are very similar. The
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Fig. 5. (a) CRi image scene in gray color. (b) Ground truth.
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and then the extended ADMM method is utilized to optimize
this function. It should be noted that at iteration k, the
coefficient matrix Ak+1

φ is derived with a kernel version

Ak+1
φ = arg min

Aφ

‖φ(X)− φ(D)Aφ‖2F +
λ

2
‖Aφ‖2F+

+
ρ

2
||AT

φ1K − 1N + ηk||2F +
ρ

2
||Aφ − ωkφ + ∆k||2F ,

and the calculation yields that

Ak+1
φ = (2KDD + λI + ρI + ρ1K1TK)−1(2KDX−

ρ(∆k − ωkφ − 1K1T
N + 1K(ηk)T)),

where KDD = κ(D,D) = 〈φ(D), φ(D)〉 and KDX =
κ(D,X) = 〈φ(D), φ(X)〉 are the inner products that project
the data into the feature space. The kernel function we
adopt is the radial basis function (RBF) kernel κ(xi, xj) =
exp(−||xi − xj ||2/2σ2) [42].

Finally, by calculating the recovery residual of each pixel
that is constructed by the background sub-dictionary, the
detection results of the proposed NJCR and KNJCR models
are derived:

RNJCR(xi) = ||xi −DBA
?
i ||2, (16)

RKNJCR(xi) = ||φ(xi)− φ(DB)(A?φ)i||2. (17)

In summary, Algorithm 1 and Algorithm 2 show the updat-
ing process of the proposed joint collaborative representation
models under the extended ADMM implementations.

III. EXPERIMENTS AND ANALYSIS

To illustrate the effectiveness of the proposed NJCR and
KNJCR models, experiments were conducted on four HSI
data sets, which include one simulated hyperspectral data set
and three real-world hyperspectral data sets. Five traditional
anomaly detectors are applied as a comparison. The detec-
tion results are evaluated via receiver operation characteristic
(ROC) curves, the area under the ROC curve (AUC) values,
and anomaly-background separability maps. Finally, a detailed
parametric analysis of the proposed nonnegative-constrained
joint representation models is conducted.

A. Hyperpsectral Data Sets

The first data set is a simulated data set collected by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
from the Lunar Crater Volcanic Field (LCVF) in Northern
Nye County, NV, USA [43], [44]. The spectral resolution of
this image is 5nm with 224 spectral channels in wavelengths
ranging from 370 to 2510nm. The size of the image is
200 × 200 pixels. The original image contains a two-pixel
alunite object that is regarded as the target of interest. We
collect the spectrum of this alunite object and implant 5 × 5
target panels into the image using a nonlinear mixture model.
The size and target spectrum abundance of each panel are
shown in Table I. The true-color image of the LCVF data set
and the corresponding ground truth are shown in Fig. 2.

The second data set covers a scene of Reno, Nevada, USA,
and has 356 spectral bands [45]. The spatial resolution of
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Fig. 2. (a) LCVF image scene in true color. (b) Ground truth.

TABLE I
TARGET PANELS CHARACTERISTICS

Location Size Target abundance
1st row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
2nd row 2× 2 pixel 100%, 25%, 50%, 75%, 95%
3rd row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
4th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%
5th row 1× 1 pixel 100%, 25%, 50%, 75%, 95%

this image is less than 2m per pixel. This hyperspectral data
set can be downloaded from http://www.spectir.com/free-data-
samples/. For our experiments, a region of 250×100 pixels was
chosen as the test data. The anomaly targets to be detected are
located on the right side of the scene, which are represented
by 214 pixels. The true-color image and the ground truth are
shown in Fig. 3.

(a) (b)

Fig. 3. (a) Reno image scene in true color. (b) Ground truth.

The third data set is acquired from the airborne Viareggio
trial [46], the benchmark hyperspectral detection campaign
that took place in Viareggio, Italy in 2013. The sensor collects
spectral information ranging from 400 to 1000 nm at a spectral
resolution of 1.2 nm approximately, and the spatial resolution
is about 0.6 m. A region of 300×300 pixels from the original
D1F12H2 scene is selected for our experiments. The anomalies
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to be detected include 191 pixels in total. The image scene and
its corresponding ground truth are shown in Fig. 4.

(a) (b)

Fig. 4. (a) Viareggio image scene in gray color. (b) Ground truth.

The fourth hyperspectral data set was acquired by the CRi
Nuance hyperspectral sensor [47]. This image covers an area
of 400× 400 pixels and has 46 spectral channels from 650 to
1100nm. The spectral resolution of this data set is 10nm. The
background land-cover types in this image are various kinds
of grasses. There are ten rocks located in the grassy scene,
as shown in Fig. 5(a); a total of 1254 pixels was selected to
include the anomalies to be detected, as shown in Fig. 5(b).
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B. Detection Efficiency

The detection efficiency of the proposed NJCR and KNJCR
models are compared with four representative anomaly detec-
tion methods: RX [9], CRD [20], ADLR [23], and LRASR
[21] methods, and a kerneled detector: KRX [13]. To conduct
balanced detection performances, all of these algorithms are
implemented with optimal parameter settings. To construct the
union dictionary, we first segment the image into 100 superpix-
els and extract 5 representative samples within each superpixel
by density peak clustering method as the background sub-
dictionary. Fifty potential anomaly samples are selected after
the RX detection as the anomaly sub-dictionary.

Figs. 6−9 show the 2D colored detection map of the
detectors in four data sets. It can be seen from Fig. 6 that the
overall output of the RX method is lower than other methods,
and it fails to identify the anomalies by visual observation. The
CRD and the LRASR methods perform better than RX. The
KRX and the ADLR methods have higher detection values on
both the anomalies and the backgrounds. And comparing to
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Fig. 6. 2D colored detection maps for the LCVF data set. (a) Ground truth.
(b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h) KNJCR.
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Fig. 7. 2D colored detection maps for the Reno data set. (a) Ground truth.
(b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h) KNJCR.

all the other methods, the proposed NJCR and KNJCR models
can highlight the anomalies from the background with properly
constrained background outputs, while the suppression on the
backgrounds’ output is not sufficient.

The visual detection maps of these methods on the Reno
data set are shown in Fig. 7. It is clear that the output values of
the KRX are much higher than those of the other six methods,
which makes discovering the anomalies very difficult. The
visual results of the RX and the CRD are very similar. The
proposed NJCR and KNJCR models have balanced outputs
between the backgrounds and the anomalies.

Fig. 8 shows the colored maps of all methods in the Viareg-
gio data set. The KRX and ADLR methods fail to suppress
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Fig. 7. 2D colored detection maps for the Reno data set. (a) Ground truth.
(b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h) KNJCR.

can highlight the anomalies from the background with properly
constrained background outputs, while the suppression on the
backgrounds’ output is not sufficient.

The visual detection maps of these methods on the Reno
data set are shown in Fig. 7. It is clear that the output values of
the KRX are much higher than those of the other six methods,
which makes discovering the anomalies very difficult. The
visual results of the RX and the CRD are very similar. The
proposed NJCR and KNJCR models have balanced outputs
between the backgrounds and the anomalies.

Fig. 8 shows the colored maps of all methods in the Viareg-
gio data set. The KRX and ADLR methods fail to suppress
the output values of backgrounds, which makes it hard to

Fig. 4. (a) Viareggio image scene in gray color. (b) Ground truth.

B. Detection Efficiency

The detection efficiency of the proposed NJCR and KN-
JCR models are compared with six representative anomaly
detection methods: RX [10], CRD [23], ADLR [33], LRASR
[25], PAB-DC [55], and RGAE [56] methods, and a ker-
neled detector: KRX [17]. To conduct balanced detection
performances, all of these algorithms are implemented with
optimal parameter settings. The PAB-DC method is conducted
in Python on a workstation with Intel Xeon Gold 6254 CPU @
3.10GHz with 1.58 TB of RAM. Except that, all experiments
are conducted in MATLAB on an Intel Core i7-8550U CPU
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the KRX are much higher than those of the other six methods,
which makes discovering the anomalies very difficult. The
visual results of the RX and the CRD are very similar. The
proposed NJCR and KNJCR models have balanced outputs
between the backgrounds and the anomalies.
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Fig. 6. 2D colored detection maps for the LCVF data set. (a) RX. (b) KRX.
(c) CRD. (d) ADLR. (e) LRASR. (f) PAB-DC. (g) RGAE. (h) NJCR. (i)
KNJCR.

with 16 GB of RAM. The codes of the proposed method will
be available online1.

To construct the union dictionary, the number of samples in
the sub-dictionaries should be large enough to represent the
most important information of the anomalies and the back-
grounds. On the other hand, appropriate number of samples
is also needed be prevent huge time consumption caused by
over-segmentation and interference. From the results of the
existed publications [25], [22], we can find it is reasonable
to set the size of background dictionary around [300, 600].
Taking an overall consideration of image size and background
complexity of the data sets, we first segment the image into
100 superpixels and extract 5 representative samples within
each superpixel by density peak clustering method as the
background sub-dictionary. And 50 potential anomaly samples
are selected after the RX detection as the anomaly sub-
dictionary, by experience.

Figs. 6−9 show the 2D colored detection map of the
detectors in four data sets. It can be seen from Fig. 6 that
for the LCVF data set, the overall output of the RX method is
lower than other methods, and it fails to identify the anomalies
by visual observation. The PAB-DC method can not diagnose
the anomaly pixels through the visualized detection map.
The CRD and the LRASR methods perform better than RX.

1https://github.com/ShizhenChang/NJCR

Fig. 6. 2D colored detection maps for the LCVF dataset. (a) RX, (b) KRX,
(c) CRD, (d) ADLR, (e) LRASR, (f) PAB-DC, (g) RGAE, (h) NJCR, and (i)
KNJCR.

find it is reasonable to set the size of background dictionary
around [300, 600]. By taking the image size and background
complexity of the datasets into account, we first segment the
image into 100 superpixels and extract 5 representative sam-
ples within each superpixel using the density peak clustering
method as the background sub-dictionary. And 50 potential
anomaly samples are selected after the RX detection as the
anomaly sub-dictionary, by experience.

Figs. 6−9 show the 2D colored detection map of the
detectors in four datasets. It can be seen from Fig. 6 that
for the LCVF dataset, the overall output of the RX method
is lower than other methods, and it fails to identify the
anomalies by visual observation. PAB-DC can not diagnose
the anomaly pixels through the visualized detection map. The
CRD and the LRASR methods perform better than RX. KRX,
ADLR, and RGAE have higher detection values on both the
anomalies and the backgrounds. And comparing with all the
other methods, the proposed NJCR and KNJCR models can
highlight the anomalies from the background with properly
constrained background outputs, although the suppression on
the backgrounds is not very strict.

The visual detection maps of all methods on the SanDiego
dataset are shown in Fig. 7. It is clear that the output values of
the KRX and ADLR are much higher than those of the other
eight methods, which makes discovering the anomalies very
difficult. The visual results of RX, CRD, and RGAE are very
similar. Compared to other methods, the proposed NJCR and



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. **, NO. **, JUNE 2022 8JOURNAL OF LATEX CLASS FILES, , VOL. **, NO. **, MARCH 2022 8

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Fig. 7. 2-D colored detection maps for the SanDiego data set. (a) Ground-
truth. (b) RX. (c) KRX. (d) CRD. (e) ADLR. (f) LRASR. (g) NJCR. (h)
KNJCR.

balanced visualized outputs between the backgrounds and the
anomalies.

Fig. 9 shows the colored maps of all methods in the
Viareggio data set. The KRX and ADLR methods fail to
suppress the output values of backgrounds, which makes it
hard to determine the anomaly targets. RX, LRASR, and
RGAE have similar outputs as the proposed models, but the
anomalies are better highlighted in the proposed models.

For the CRi data set, Fig. 10 shows that the visualized
outputs of the anomalies and the backgrounds are not clearly
detected by RX, CRD, and LRASR. Compared to KRX,
ADLR, and PAB-DC, RGAE and the two proposed models
obtain better visualization results between the two classes.
Meanwhile, we can find that the visualized result of the
background obtained by KNJCR is sharper than that of NJCR.

To better illustrate how anomalies are separated from
backgrounds, we utilize the statistical range to evaluate the
anomaly visibility enhancements. The pixels belonging to the
background class and the anomaly class are extracted and
show their statistical distributions in a box diagram. Since the
detection results of different methods vary widely, we adopt a
normalized detection result, which can be written as

R̃(x) =
R(x)−Rmin(x)

Rmax(x)−Rmin(x)
,
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Viareggio data set. The KRX and ADLR methods fail to
suppress the output values of backgrounds, which makes it
hard to determine the anomaly targets. RX, LRASR, and
RGAE have similar outputs as the proposed models, but the
anomalies are better highlighted in the proposed models.

For the CRi data set, Fig. 10 shows that the visualized
outputs of the anomalies and the backgrounds are not clearly
detected by RX, CRD, and LRASR. Compared to KRX,
ADLR, and PAB-DC, RGAE and the two proposed models
obtain better visualization results between the two classes.
Meanwhile, we can find that the visualized result of the
background obtained by KNJCR is sharper than that of NJCR.

To better illustrate how anomalies are separated from
backgrounds, we utilize the statistical range to evaluate the
anomaly visibility enhancements. The pixels belonging to the
background class and the anomaly class are extracted and
show their statistical distributions in a box diagram. Since the
detection results of different methods vary widely, we adopt a
normalized detection result, which can be written as

R̃(x) =
R(x)−Rmin(x)

Rmax(x)−Rmin(x)
,

where R(x) is the detection result corresponding to x,
Rmin(x) and Rmax(x) are the minimum and the maximum
values of all pixels, respectively, and R̃(x) is the normalized
detection result.

The normalized background-anomaly statistical range of
these methods for four data sets is shown in Fig. 11. The
anomaly class is represented by the red box and the back-
ground class is represented by the blue one. The normalized
values range between 10% and 90% is enclosed by the box,
and the top line to the bottom line of each column represents
the range of values between 1% ∼ 99%. It is known that
the positions of the background and anomaly boxes reflect
the separability of the detector, so we expect to have a larger
separability distance and a smaller background range.

For the LCVF data set, ADLR, PAB-DC, and RGAE
failed to separate the enclosed part of two classes, and the
background distribution range of KRX is relatively high. The
background and anomaly boxes of RX, CRD, LRASR, NJCR,
and KNJCR are separated, while the proposed NJCR model
can better exclude anomalies with a smaller distribution range.
For the Reno data set, RX and CRD have very similar distri-
butions, and the gaps between the two classes are very tight.
ADLR, PAB-DC, and RGAE fail to separate the main part of
the backgrounds and the anomalies. The proposed NJCR and
KNJCR methods have reasonable separation gaps. Considering
that the anomalies of the Viareggio data set are more difficult
to be detected, as shown in Fig. 11 (c), only the proposed
NJCR model can separate the middle 80% values of the two
classes. In contrast, the KNJCR models have smaller overlaps
between the anomaly box and the background box. For the
CRi data set, KRX, ADLR, PAB-DC, and NJCR separate the
backgrounds and the anomalies perfectly, while the proposed
NJCR model can suppress the background information into a
smaller distribution range.

For quantitative comparisons, the receiver operating charac-
teristic (ROC) curves plotted by the probability of detection
(PD) and false alarm rate (PF ) are the most effective way to
evaluate the detection efficacy of all algorithms. And the area
under ROC curves (AUC) values have been used to further
compare the performances. It is known that every pair of
(PD, PF ) is determined by a specific value of threshold τ ,
thus, the AUC values calculated by (PF , τ ) can also evaluate
the effectiveness of the detectors on background suppression
[58]. Effective methods are supposed to have relatively larger
AUC values calculated by (PD, PF ) and smaller AUC values
calculated by (PF , τ) [59].

In this article, the conventional ROC curves, the
AUC(PD,PF ), and the AUC(PF ,τ) are utilized for quantitative
analysis, as shown in Fig. 12 and Table. II, respectively. It
can be found that in most cases, the proposed nonnegative-
constrained joint collaborative representation models outper-
form other existing detectors. Among them, the proposed
NJCR model yields the best ROC curves and the highest
AUC(PD,PF ) values on all four HSI data sets. And the
AUC(PF ,τ) values of the NJCR are obviously smaller than
other detectors. For the kerneled detectors, the performance of
KNJCR is better than KRX in the LCVF, Reno, and Viareggio
data sets. In the CRi data set, KRX outperforms the proposed

Fig. 8. 2D colored detection maps for the SanDiego data set. (a) RX, (b)
KRX, (c) CRD, (d) ADLR, (e) LRASR, (f) PAB-DC, (g) RGAE, (h) NJCR,
and (i) KNJCR.

where R(x) is the detection result corresponding to x,
Rmin(x) and Rmax(x) are the minimum and the maximum
values of all pixels, respectively, and R̃(x) is the normalized
detection result.

The normalized background-anomaly statistical range of
these methods for four data sets is shown in Fig. 11. The
anomaly class is represented by the red box and the back-
ground class is represented by the blue one. The normalized
values range between 10% and 90% is enclosed by the box,
and the top line to the bottom line of each column represents
the range of values between 1% ∼ 99%. It is known that
the positions of the background and anomaly boxes reflect
the separability of the detector, so we expect to have a larger
separability distance and a smaller background range.

For the LCVF data set, ADLR, PAB-DC, and RGAE
failed to separate the enclosed part of two classes, and the
background distribution range of KRX is relatively high. The
background and anomaly boxes of RX, CRD, LRASR, NJCR,
and KNJCR are separated, while the proposed NJCR model
can better exclude anomalies with a smaller distribution range.
For the Reno data set, RX and CRD have very similar distri-
butions, and the gaps between the two classes are very tight.
ADLR, PAB-DC, and RGAE fail to separate the main part of
the backgrounds and the anomalies. The proposed NJCR and
KNJCR methods have reasonable separation gaps. Considering
that the anomalies of the Viareggio data set are more difficult
to be detected, as shown in Fig. 11 (c), only the proposed

Fig. 7. 2D detection maps for the SanDiego dataset. (a) RX, (b) KRX, (c)
CRD, (d) ADLR, (e) LRASR, (f) PAB-DC, (g) RGAE, (h) NJCR, and (i)
KNJCR.

KNJCR models have balanced visualized outputs between the
backgrounds and the anomalies.

Fig. 8 shows the colored maps of all methods in the Viareg-
gio dataset. The KRX and ADLR methods fail to suppress
the output values of backgrounds, which makes it hard to
determine the anomaly targets. RX, LRASR, and RGAE have
similar outputs as the proposed models, but the anomalies are
better highlighted in the proposed models.

For the CRi dataset, Fig. 9 shows that the visualized outputs
of the anomalies and the backgrounds are not clearly detected
by RX, CRD, and LRASR. Compared to KRX, ADLR, and
PAB-DC, RGAE and the two proposed models obtain better
visualization results between the two classes. Meanwhile, we
can find that the visualized result of the background obtained
by KNJCR is sharper than that of NJCR.

To better illustrate how anomalies are separated from
backgrounds, we utilize the statistical range to evaluate the
anomaly visibility enhancements. The pixels belonging to the
background class and the anomaly class are extracted and
show their statistical distributions in a box diagram. Since the
detection results of different methods vary widely, we adopt a
normalized detection result, which can be written as

R̃(x) =
R(x)−Rmin(x)

Rmax(x)−Rmin(x)
,

where R(x) is the detection result corresponding to x,
Rmin(x) and Rmax(x) are the minimum and the maximum
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Fig. 8. 2D colored detection maps for the Viareggio data set. (a) RX. (b)
KRX. (c) CRD. (d) ADLR. (e) LRASR. (f) PAB-DC. (g) RGAE. (h) NJCR.
(i) KNJCR.

smaller distribution range. For the Reno data set, the RX and
the CRD methods have very similar distributions, and the gaps
between the two classes are very tight. The ADLR, the PAB-
DC and the RGAE methods fail to separate the main part of
the backgrounds and the anomalies. The proposed NJCR and
KNJCR methods have reasonable separation gaps. Considering
that the anomalies of the Viareggio data set are more difficult
to detect, as shown in Fig. 10 (c), only the proposed NJCR
model can separate the middle 80% values of the two classes.
In contrast, the KNJCR models have smaller overlaps between
the anomaly box and the background box. For the CRi data set,
the KRX, ADLR, PAB-DC and NJCR methods separate the
backgrounds and the anomalies perfectly, while the proposed
NJCR model can suppress the background information into a
smaller distribution range.

For quantitative comparisons, the receiver operating charac-
teristic (ROC) curves plotted by the probability of detection
(PD) and false alarm rate (PF ) are the most effective way to
evaluate the detection efficacy of all algorithms. And the area
under ROC curves (AUC) values have been used to further
compare the performances. It is known that every pair of
(PD, PF ) is determined by a specific value of threshold τ ,
thus, the AUC values calculated by (PF , τ ) can also evaluate
the effectiveness of the detectors on background suppression
[57]. Effective methods are suppose to have relatively larger
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Fig. 9. 2D colored detection maps for the CRi data set. (a) RX. (b) KRX. (c)
CRD. (d) ADLR. (e) LRASR. (f) PAB-DC. (g) RGAE. (h) NJCR. (i) KNJCR.

AUC values calculated by (PD, PF ), and smaller AUC values
calculated by (PF , τ) [58].

In this article, the conventional ROC curves, the
AUC(PD,PF ), and the AUC(PF ,τ) are utilized for quantitative
analysis, as shown in Fig. 11 and Table. II, respectively. It
can be found that in most cases, the proposed nonnegative-
constrained joint collaborative representation models outper-
form other existing detectors. Among them, the proposed
NJCR model yields the best ROC curves and the highest
AUC(PD,PF ) values on all of the four HSI data sets. And
the AUC(PF ,τ) values of the NJCR are obviously smaller than
other detectors. For the kerneled detectors, the performance of
KNJCR is better than KRX in the LCVF, Reno, and Viareggio
data sets. While in the CRi data set, KRX outperforms the
proposed KNJCR. The possible reasons are: 1) in some cases,
the global union dictionary we construct is not suitable to the
kerneled model; 2) the spectra differences between anomalies
and backgrounds in these data sets are linearly separable and
have hardly nonlinear correlations. We may thus conclude that
directly mapping the CR model into a nonlinear feature space
may not help improve the detection performances. Considering
the computational complexity usually caused by computing
kernels, the original NJCR model is more appropriate for the
proposed anomaly detection task.

Furthermore, the processing time of all algorithms is also
recorded and shown in Table. II. We can see that the con-

Fig. 8. 2D colored detection maps for the Viareggio dataset. (a) RX, (b)
KRX, (c) CRD, (d) ADLR, (e) LRASR, (f) PAB-DC, (g) RGAE, (h) NJCR,
and (i) KNJCR.

values of all pixels, respectively, and R̃(x) is the normalized
detection result.

The normalized background-anomaly statistical range of
these methods for four datasets is shown in Fig. 10. The
anomaly class is represented by the red box and the back-
ground class is represented by the blue one. The normalized
values range between 10% and 90% is enclosed by the box,
and the top line to the bottom line of each column represents
the range of values between 1% ∼ 99%. It is known that
the positions of the background and anomaly boxes reflect
the separability of the detector, so we expect to have a larger
separability distance and a smaller background range.

For the LCVF dataset, ADLR, PAB-DC, and RGAE failed
to separate the enclosed part of two classes, and the back-
ground distribution range of KRX is relatively high. The
background and anomaly boxes of RX, CRD, LRASR, NJCR,
and KNJCR are separated, while the proposed NJCR model
can better exclude anomalies with a smaller distribution range.
For the SanDiego dataset, KRX and PAB-DC fail to separate
the main part of the backgrounds and the anomalies. The gaps
between the two boxes of RX, CRD, LRASR, and RGAE are
very tight. The ADLR cannot correctly separate the anomaly
class and the background class. Among all these methods,
the proposed NJCR and KNJCR methods have relatively
large separation gaps. Considering that the anomalies of the
Viareggio dataset are more difficult to be detected, as shown
in Fig. 10 (c), only the proposed NJCR model can separate the
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Fig. 8. 2D colored detection maps for the Viareggio data set. (a) RX. (b)
KRX. (c) CRD. (d) ADLR. (e) LRASR. (f) PAB-DC. (g) RGAE. (h) NJCR.
(i) KNJCR.

smaller distribution range. For the Reno data set, the RX and
the CRD methods have very similar distributions, and the gaps
between the two classes are very tight. The ADLR, the PAB-
DC and the RGAE methods fail to separate the main part of
the backgrounds and the anomalies. The proposed NJCR and
KNJCR methods have reasonable separation gaps. Considering
that the anomalies of the Viareggio data set are more difficult
to detect, as shown in Fig. 10 (c), only the proposed NJCR
model can separate the middle 80% values of the two classes.
In contrast, the KNJCR models have smaller overlaps between
the anomaly box and the background box. For the CRi data set,
the KRX, ADLR, PAB-DC and NJCR methods separate the
backgrounds and the anomalies perfectly, while the proposed
NJCR model can suppress the background information into a
smaller distribution range.

For quantitative comparisons, the receiver operating charac-
teristic (ROC) curves plotted by the probability of detection
(PD) and false alarm rate (PF ) are the most effective way to
evaluate the detection efficacy of all algorithms. And the area
under ROC curves (AUC) values have been used to further
compare the performances. It is known that every pair of
(PD, PF ) is determined by a specific value of threshold τ ,
thus, the AUC values calculated by (PF , τ ) can also evaluate
the effectiveness of the detectors on background suppression
[57]. Effective methods are suppose to have relatively larger
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Fig. 9. 2D colored detection maps for the CRi data set. (a) RX. (b) KRX. (c)
CRD. (d) ADLR. (e) LRASR. (f) PAB-DC. (g) RGAE. (h) NJCR. (i) KNJCR.

AUC values calculated by (PD, PF ), and smaller AUC values
calculated by (PF , τ) [58].

In this article, the conventional ROC curves, the
AUC(PD,PF ), and the AUC(PF ,τ) are utilized for quantitative
analysis, as shown in Fig. 11 and Table. II, respectively. It
can be found that in most cases, the proposed nonnegative-
constrained joint collaborative representation models outper-
form other existing detectors. Among them, the proposed
NJCR model yields the best ROC curves and the highest
AUC(PD,PF ) values on all of the four HSI data sets. And
the AUC(PF ,τ) values of the NJCR are obviously smaller than
other detectors. For the kerneled detectors, the performance of
KNJCR is better than KRX in the LCVF, Reno, and Viareggio
data sets. While in the CRi data set, KRX outperforms the
proposed KNJCR. The possible reasons are: 1) in some cases,
the global union dictionary we construct is not suitable to the
kerneled model; 2) the spectra differences between anomalies
and backgrounds in these data sets are linearly separable and
have hardly nonlinear correlations. We may thus conclude that
directly mapping the CR model into a nonlinear feature space
may not help improve the detection performances. Considering
the computational complexity usually caused by computing
kernels, the original NJCR model is more appropriate for the
proposed anomaly detection task.

Furthermore, the processing time of all algorithms is also
recorded and shown in Table. II. We can see that the con-

Fig. 9. 2D colored detection maps for the CRi dataset. (a) RX, (b) KRX,
(c) CRD, (d) ADLR, (e) LRASR, (f) PAB-DC, (g) RGAE, (h) NJCR, and (i)
KNJCR.

middle 80% values of the two classes. In contrast, the KNJCR
models have smaller overlaps between the anomaly box and
the background box. For the CRi dataset, KRX, ADLR, PAB-
DC, and NJCR separate the backgrounds and the anomalies
perfectly, while the proposed NJCR model can suppress the
background information into a smaller distribution range.

For quantitative comparisons, the receiver operating charac-
teristic (ROC) curves plotted by the probability of detection
(PD) and false alarm rate (PF ) are the most effective way to
evaluate the detection efficacy of all algorithms. And the area
under ROC curves (AUC) values have been used to further
compare the performances. It is known that every pair of
(PD, PF ) is determined by a specific value of threshold τ ,
thus, the AUC values calculated by (PF , τ ) can also evaluate
the effectiveness of the detectors on background suppression
[58]. Effective methods are supposed to have relatively larger
AUC values calculated by (PD, PF ) and smaller AUC values
calculated by (PF , τ) [59].

In this article, the conventional ROC curves, the
AUC(PD,PF ), and the AUC(PF ,τ) are utilized for quantitative
analysis, as shown in Fig. 11 and Table. II, respectively. It
can be found that in most cases, the proposed nonnegative-
constrained joint collaborative representation models outper-
form other existing detectors. Among them, the proposed
NJCR model yields the best ROC curves and the highest
AUC(PD,PF ) values on the SanDiego, Viareggio, and CRi
datasets. And the AUC(PF ,τ) values of the NJCR are obviously
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Fig. 10. The background-target separability maps for four datasets. (a) LCVF.
(b) SanDiego. (c) Viareggio. (d) CRi.

smaller than other detectors. In LCVF datasets, it can be seen
that CRD and LRASR can quickly detect 90% of the anoma-
lies when the false alarm rate is relatively low (< 1e−3), while
they cannot perfectly detect the remaining 10% anomalies
with low FARs. Since the inserted anomalies are small, some
of them are subpixel-level, correctly detecting all pixels that
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TABLE II
AUC VALUES AND TIME CONSUMPTION OF THE COMPARABLE METHODS FOR FOUR DATASETS.

Methods LCVF SanDiego Viareggio CRi
AUC(Pf,Pd) AUC(Pf,τ) Time(s) AUC(Pf,Pd) AUC(Pf,τ) Time(s) AUC(Pf,Pd) AUC(Pf,τ) Time(s) AUC(Pf,Pd) AUC(Pf,τ) Time(s)

RX 0.9293 0.0630 1.05 0.8520 0.1198 0.1 0.7970 0.2006 6.67 0.9677 0.0319 0.56
CRD 0.9144 0.0272 2200 0.9096 0.0706 299.1 0.8757 0.1218 3989 0.8205 0.1791 4534

ADLR 0.8950 0.0969 49.71 0.4906 0.4264 5.12 0.5367 0.4606 75.12 0.9933 0.0066 138.4
LRASR 0.8355 0.0444 1735 0.8973 0.0844 597.5 0.8658 0.1319 4159 0.8542 0.1454 6462
PAB-DC 0.5156 0.4752 5677 0.8878 0.0883 607.3 0.6591 0.3383 113723 0.9970 0.0029 44318
RGAE 0.8205 0.1709 631.5 0.9692 0.0239 163.9 0.5560 0.4414 2800 0.9756 0.0241 1359
NJCR 0.9586 0.0363 79.67 0. 9856 0.0115 13.60 0.9541 0.0436 216.9 0.9978 0.0021 328.1

KRX 0.9285 0.0511 1070 0.9215 0.0598 79.85 0.8877 0.1097 1018 0.9804 0.0194 716.5
KNJCR 0.9621 0.0408 114.2 0.9944 0.0306 41.52 0.9151 0.0897 374.7 0.9780 0.0313 419.1

contains abnormal information is highly important for this
dataset. Combining the AUC values, we can recognize that the
proposed NJCR methods have more balanced performances
with higher AUCs.

For the kerneled detectors, the performance of KNJCR
is better than KRX in the LCVF, SanDiego, and Viareggio
datasets. In the CRi dataset, KRX outperforms the proposed
KNJCR. The possible reasons are: (1) In some cases, the
constructed global union dictionary is not suitable for the
kerneled model; (2) the spectra differences between anomalies
and backgrounds in these datasets are linearly separable and
have hardly nonlinear correlations. We may thus conclude that
directly mapping the CR model into a nonlinear feature space
may not help improve the detection performances. Considering
the computational complexity usually caused by computing
kernels, the original NJCR model is more appropriate for the
proposed anomaly detection task.

Furthermore, the processing time of all algorithms is also
recorded and shown in Table. II. We can see that the consum-
ing time of the proposed NJCR and KNJCR models are much
smaller than other representation-based models, such as CRD,
LRASR, and PAB-DC. The good performance of PAB-DC
in the CRi dataset is compromised with huge computational
requirements and time consumption. On the other hand, the
detection performances of RX and ADLR, whose processing
time is quite fast, are not satisfactory. By Taking an overall
consideration of the computation time and detection perfor-
mances, the proposed NJCR and KNJCR models are more
competitive for the anomaly detection task.

C. Parametric Analysis

This section primarily discusses how detection perfor-
mances are affected by the parameters of the proposed NJCR
and KNJCR objectives in the four HSI datasets used for testing
and experimentation.

The parameter of the NJCR model that is evaluated is the
regularized scalar λ. Fig. 12 shows the AUC values of NJCR
model when λ is set from 0.001 to 1000. It can be seen that
as λ increases, the detection efficacy of the NJCR model in
LCVF and Viareggio dataset decreases, and that λ = 0.001 is
optimum. When the value of λ is less than 1, the detection
efficacy is not much influenced. For both the SanDiego and
CRi datasets, the AUC values of the NJCR model increase
at first and then slightly decrease when λ is greater than 100.

The suggested value of λ is 100. We may derive an interesting
conclusion that the suggested values of λ for the NJCR model
are influenced by the sizes of anomalies. For subpixel-level
detection tasks, like what we encounter in the LCVF and
Viareggio datasets, λ needs to be small. And for larger target
detection tasks, the value of λ is larger.

For the KNJCR model, we made a joint evaluation of the
kernel width σ and the regularized scalar λ. The AUC values
of KNJCR under different parametric settings are shown in
Fig. 13 with a 3D colored surface map. It can be seen that
the optimal values of λ are partly influenced by the value of
σ. Interestingly, these two parameters are similarly negatively
correlated in all four datasets: the combination of a larger σ
and smaller λ, or a smaller σ and larger λ each has better
AUCs. Experience shows that the value of kernel width σ can
be set in the range of [0.25, 0.5] for the LCVF and Viareggio
datasets and 4 for the SanDiego and CRi datasets. And the
regularized scalar λ can be set to 100.

D. Ablation Study

In this section, a detailed ablation study is conducted on
the LCVF dataset to further investigate the efficacy of the
proposed models.

First of all, to test the effect of the constraints added to
the objective function, we evaluate the performances of the
proposed models concerning the sum-to-one constraint and the
nonnegative constraint. As shown in Table III, the AUC values
are calculated by the joint CR model, the nonnegative con-
strained objective, the sum-to-one constrained objective, and
with both nonnegative and sum-to-one constrained objectives,
respectively. It can be seen that both constraints are helpful in
terms of improving the performances of the model compare
to the original joint CR model, and with a fully constrained
version, both NJCR and KNJCR, the model reaches the best
detection performance.

Furthermore, we also give an analysis about the influences
of the union dictionary and the Frobenius norm for the joint
collaborative representation models. The AUC values of two
models under these settings are also illustrated in Table III.
It can be clearly seen that the union dictionary can obviously
improve the detection accuracy of the proposed models. By
means of the unified background and anomaly dictionary, the
spectral information belonging to the background class and the
anomaly class is separated and will return a more separable
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Fig. 11. The ROC curves for four datasets. (a) LCVF. (b) SanDiego. (c)
Viareggio. (d) CRi.
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Fig. 12. The parametric analysis of NJCR for four datasets. (a) LCVF. (b)
SanDiego. (c) Viareggio. (d) CRi.

TABLE III
ABLATION STUDY OF THE PROPOSED MODELS.

NCR KNCR

Joint CR Objective 0.7543 0.8982
Nonnegative Constrained 0.7992 0.8979
Sum-to-one Constrained 0.9194 0.8929

Background sub-dictionary 0.6614 0.8633
`2-norm 0.7867 0.9304

All Constrained 0.9586 0.9504

result after calculating the residual of the CR model. Thus,
the AUC values are obviously improved. It is known that the
original CR model optimizes the reconstruction error pixel-
by-pixel, thus, the objectives of NJCR and KNJCR are solved
by the `2-minimization process. The time consumption of the
original CR model corresponding to NJCR and KNJCR are
774.6s and 962.1s, respectively. We can find that both the time
consumption and detection performance are greatly improved
by using the designed Frobenius norm.

IV. CONCLUSION

In this paper, a novel joint collaborative representation
model is explored by designing nonnegative constraints
and constructing a global union dictionary. Unlike previous
representation-based detectors, the proposed NJCR models
assume that the coefficients are nonnegative, obey the sum-to-
one rule, and adopt the Frobenius norm to jointly optimize the
whole coefficient matrix of the image. To better approximate
the signals, a unified background and anomaly dictionary is
constructed, and the final result is obtained by calculating
residuals that exclude the background information. Further-
more, a kernel version is proposed for nonlinear analysis. To
verify the effectiveness of the proposed methods, extensive ex-
periments have been conducted comparing the proposed model
with seven state-of-the-art detectors. The original NJCR model
shows superior results by providing effective separations be-
tween the backgrounds and the anomalies, and the kerneled
NJCR model also shows great performances compared to the
nonlinear detector KRX and other comparative algorithms.
Compare to classic representation-based methods, our method
can achieve good performance while saving time consumption.
The ablation study further emphasizes that the Frobenius norm,
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Fig. 13. The parametric analysis of KNJCR for four datasets. (a) LCVF. (b)
SanDiego. (c) Viareggio. (d) CRi.

sum-to-one constraint, and nonnegative constraint have a great
impact on improving the detection performance. Through the
experiments, we have noticed that the preferred value of
λ varies in different datasets, which may be influenced by
the size of anomalies. We will keep finding possible proofs
by conducting more experimental research and mathematical
analysis in the further. We have also noticed that directly
mapping the collaborative representation model into a high
dimensional feature space may not necessarily improve the
efficacy of signal recovery, and thus, result in worse perfor-
mances. Therefore, we will persist in our study to construct
precise dictionaries and design more accurate models to better
approximate the HSI data and separate the binary classes.
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