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Abstract—Sea fog significantly threatens the safety of mar-
itime activities. This paper develops a sea fog dataset (SFDD)
and a dual branch sea fog detection network (DB-SFNet). We
investigate all the observed sea fog events in the Yellow Sea
and the Bohai Sea (118.1°E-128.1°E, 29.5°N-43.8°N) from 2010
to 2020, and collect the sea fog images for each event from
the Geostationary Ocean Color Imager (GOCI) to comprise the
dataset SFDD. The location of the sea fog in each image in SFDD
is accurately marked. The proposed dataset is characterized
by a long-time span, large number of samples, and accurate
labeling, that can substantially improve the robustness of various
sea fog detection models. Furthermore, this paper proposes a
dual branch sea fog detection network to achieve accurate and
holistic sea fog detection. The poporsed DB-SFNet is composed
of a knowledge extraction module and a dual branch optional
encoding decoding module. The two modules jointly extracts
discriminative features from both visual and statistical domain.
Experiments show promising sea fog detection results with an F1-
score of 0.77 and a critical success index of 0.63. Compared with
existing advanced deep learning networks, DB-SFNet is superior
in detection performance and stability, particularly in the mixed
cloud and fog areas.

Index Terms—sea fog detection, satellite imagery, deep learn-
ing, semantic segmentation.

I. INTRODUCTION

SEA fog is a common and disastrous weather phenomenon
when water vapor near the sea surface is condensed to

form suspended water droplets [1]. In foggy sea areas, hori-
zontal visibility is less than 1 km, thereby highly threatening
the safety of maritime activities such as shipping, aquaculture,
among others [2]–[4]. Therefore, the accurate detection of sea
fog is a highly demanding and significant task.

Yellow Sea and the Bohai Sea are two marginal seas
between mainland China and the Korean peninsula in the
western Pacific Ocean. Sea fog often occurs in these areas
adjacent to the land on three sides. This area’s primary type
of sea fog is the advection fog formed by warm and humid air
flowing on the underlying cold surface. In addition, there are
many important trade routes in the Yellow Sea and the Bohai
Sea. Frequent sea fog threatens navigation safety and trade
stability. Therefore, accurate sea fog detection in this area is
necessary.
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Data observed at meteorological stations, ships, and buoys
have been traditionally used for sea fog detection. However,
such observation data is sparse in spatial and temporal distri-
bution [5]. Therefore, satellite remote sensing technology has
facilitated sea fog observation over a large area in the past
three decades [6].

Existing sea fog detection is primarily based on physical
models. By theoretically studying the lower emissivity of tiny
droplets at mid-infrared and thermal infrared bands, Hunt [7]
has concluded that differences in the radiative characteristics
between fog types can be used as criteria in fog detection.
Among these radiative characteristics, brightness temperature
is the most distinctive for sea fog detection [8]–[10]. However,
solar radiation interfered with brightness temperature on the
thermal infrared band and thus cannot be used for daytime sea
fog detection.

In response to the daytime sea fog detection challenge,
scientists analyzed the difference between spectra bands
and developed a series of spectra-dependent detection algo-
rithms. With the moderate-resolution imaging spectroradiome-
ter (MODIS) data on polar-orbiting satellites Aqua and Terra,
Deng et al. [11] set fixed thresholds to segment sea fog. Wu
and Li [12] proposed a dynamic threshold setting method to
detect sea fog in the changing light conditions for MODIS
data. Using the Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) data based on vertical-resolved measurements,
Wu et al. [13] used the difference between the laser passing
through the cloud and the fog to optimize the sea fog detection.

Unlike polar-orbiting satellites, which provide only one or
two images of the same geographic area per day, geostationary
satellite sensors collect images at high temporal resolution.
Therefore, there are also some researches on sea fog detection
based on geostationary satellites. Based on Multi-functional
Transport Satellite (MTSAT) data, Heo et al. [14] used the
differences between dual-channel and texture to study the
Korean Peninsula sea fog. Based on Geostationary Operational
Environmental Satellite (GOES) data, Lee [15] presented a
method to detect fog continuously that used shortwave infrared
data during the day.

The methods mentioned above are primarily linear algo-
rithms based on thresholds; thus, such methods have limita-
tions in complicated nonlinear scenarios. Recently, owing to its
nonlinear fitting ability, deep learning technology has shown
promising potential in oceanographic research [16]–[18].

However, there are only a few studies on deep-learning-
based sea fog detection. Zhu et al. [19] used 16 samples to
train a U-Net model [20] for sea fog detection. Due to the
scarcity of labeled samples, Huang et al. [21] proposed a sea
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fog detection method that uses GAN [22] to generate enhanced
sea fog images to compensate for the insufficient samples.

The lack of labeled data limits the performance of deep
learning sea fog detection studies. The training of the deep
learning models requires large-scale labeled datasets. However,
the existing research does not provide any large-scale data set
to support the deep learning-based sea fog detection methods.

Moreover, sea fog detection is more complicated than other
segmentation tasks in the computer vision because of the
difficulty in separating clouds and fogs. There are statistical
differences between sea fog and cloud from the remote sensing
image. Therefore, it is reasonable to detect sea fog from sta-
tistical differences. The aforementioned deep-learning-based
methods directly applied existing deep learning models to
sea fog detection tasks without considering the visual and
statistical characteristics of the fog area.

To solve the above issues, we first built a dataset and then
designed a deep learning model that is more suitable for
sea fog detection. The main contributions of this paper are
summarized as follows:

1) We propose a new sea fog detection dataset (SFDD) on
remote sensing data. We selected 1032 sea fog images
recorded by the Geostationary Ocean Color Imager
(GOCI) over the Yellow and Bohai through collecting,
sorting, and careful annotation of many historical sea
fog events seas from 2010 to 2020. The prerequisite for
a deep learning model to be effective in real scenarios is
that the distribution of the data set should be consistent
with the distribution in the actual scenario. Therefore,
the dataset is constructed considering the seasonal dis-
tribution and geographical distribution consistency be-
tween SFDD and historical statistics. Statistical studies
show that the data distribution of SFDD exhibits ade-
quate consistency with that of the actual scenes.

2) We designed a dual branch sea fog detection model (DB-
SFNet). The two branches extract features from visual
representation and statistical characteristics individually.
In addition, a knowledge extraction module (KEM) is
designed to represent the pixel-level neighbor relation
statistical characteristics to accurately detect sea fog
events in complex scenes.

The remainder of this paper is organized as follows. In
Section II, we describe the proposed sea fog dataset. Section
III introduces the preliminary related to our work. Section IV
describes the method. Section V analyzes the detection results
of DB-SFNet. Finally, this paper is concluded in Section VI.

II. CONSTRUCT SEA FOG SATELLITE IMAGE DATA SET

A dataset with rich categories, sufficient data and accurate
annotation is the cornerstone of deep learning-based sea fog
detection algorithm. In the past, annotations for sea fog areas
were station-level. That is, the sea fog was only sparsely
recorded by individual ocean sites or buoys. Compared to
these station-level labels, the labels in SFDD are pixel-level
annotated based on satellite imagery and weather forecast
reports. To the best of our knowledge, the proposed SFDD
is the first sea fog detection dataset with an extended period,
large sample number, and pixel-level labeling.

A. Satellite Data

The satellite data used to construct the dataset is the Level-
2C multispectral data from GOCI. GOCI is one of the three
payloads onboard the Communication, Ocean and Meteorolog-
ical Satellite (COMS). It is the world’s first geostationary orbit
satellite image sensor used for the observation or monitoring of
ocean color around the Korean Peninsula. The spatial resolu-
tion of GOCI is 500m and the imaging area is 2,500 km×2,500
km centered on 130°E, 36°N (shown in Fig.1(a)). GOCI
provides satellite images at hourly intervals up to 8 times a
day from 00:16 UTC to 07:16 UTC, allowing observations of
short-term changes in the northeast Asia region. Six visible
bands and two near-infrared bands are provided by GOCI.
The region of interest area (118.1°E-128.1°E, 29.5°N-43.8°N)
is shown in Fig.1(b).

B. Construction of sea fog detection dataset

The National Satellite Meteorological Centre (NSMC) of
China has recorded fog events over the past ten years. During
the ten years from 2011 to 2020, 133 sea fog incidents
occurred in the Yellow Sea and the Bohai Sea. Based on
each record, we downloaded GOCI Level-2C remote sensing
images (after radiation correction, geometric correction and
atmospheric correction) on the corresponding date. From 00:00
UTC to 08:00 UTC, GOCI takes one shot every hour and
records eight bands of spectral information for each shot. We
selected 490nm, 550nm, and 680nm wavebands as the red,
green and blue channels to form color images. The region
of interest area (118.1°E-128.1°E, 29.5°N-43.8°N) is cropped
from the color image.

The fog inversion product released by NSMC is used as
ground truth. In this product, fog areas are manually labeled by
meteorological experts, according to the fog product inversion
manual of the NSMC. The labeling process is as follows.

1) L1B level reflectance data is obtained from Fengyun
Geostationary satellite;

2) Sea fog inversion is performed on reflectance data and
terrain data using a threshold-based inversion algorithm;

3) Meteorologists correct the inversion results of Step 2
by using the visibility information recorded by the
observation stations;

4) Meteorologists make a second correction based on their
experience.

As a fog-monitoring product that has been applied in
business for many years, its sea fog inversion results are highly
reliable to be the ground truth labels.

Three meteorological experts were hired to manually an-
notate the GOCI data using the fog inversion product of
NSMC, according to the latitude and longitude. Each expert
independently completed the annotation without interference
from the others. The winner-take-all strategy was used to
generate a more reliable label mask as the ground truth for
error analysis.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.XX, NO.XX, XXXX 3

Fig. 1: Study area. (a) GOCI target area. The spatial resolution of GOCI is approximately 500m and the range of target
area is approximately 2,500 km×2,500 km, centered on the Korean Peninsula. (b) Focused area. The Yellow and Bohai seas,
surrounded by China and the Korean Peninsula.

C. Statistical analysis of sea fog detection dataset

We analyze to verify the consistency of data distribution for
the proposed dataset. The statistical properties of the dataset
are plotted in Fig. 2.

Fig. 2(a) has been drawn by evaluating the frequency of
sea fog occurrence each month. The high occurrence of sea
fog in the Yellow Sea and the Bohai Sea starts in March and
ends in July. The fog period is four months. Zhang et al. [23]
used observations from 15 standard weather stations between
1971 and 2000 to analyze the seasonal variations of sea fog in
the Yellow Sea. The two main findings are: 1) The fog season
onset is abrupt, with the number of fog days increasing rapidly
from March to April. (As shown in Fig. 2(a), the number of
sea fog images has increased significantly since March.) 2)
The frequency of sea fog incidence suddenly drops from its
peak in July to almost zero in August. (The number of sea fog
images in Fig. 2(a) is still substantial in July, but it begins to
drop suddenly in August.) This analysis demonstrates that the
seasonal variation of the SFDD is consistent with historical
statistics.

From spatial distribution, Fig. 2(b) illustrates the distribution
of sea fog in the Yellow Sea and the Bohai Sea during ten
years. Wu et al. [24] analyzed sea fog distribution and seasonal
characteristics in the Yellow Sea and the Bohai Sea from 1989
to 2008. They concluded that 1) in the Bohai Sea, only the
coasts of the Liaodong Peninsula and the Shandong Peninsula
have sea fog, and 2) sea fog appears most frequently in the
central part of the Yellow Sea and the West Korea Bay. These

Fig. 2: Statistical properties of SFDD. (a) Monthly statistics
of sea fog images. Average monthly number of sea fog images
collected by SFDD in the past ten years (b) Location Map
of Sea Fog Frequency. Geographical location statistics with
frequent occurrence of sea fog from 2011 to 2020. The darker
the pixel color, the higher the frequency of sea fog in the
corresponding geographic location in the past ten years.

conclusions on the spatial distribution of sea fog are consistent
with the result shown in Fig. 2(b).

The statistical information of SFDD is consistent with the
conclusion of [23] and [24], indicating that the data distri-
bution of SFDD is closer to the natural data distribution. A
model trained on the SFDD dataset is expected to demonstrate
an improving generalization ability.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.XX, NO.XX, XXXX 4

III. PRELIMINARY: FULLY CONVOLUTIONAL NETWORK

Sea fog detection is usually considered a segmentation task
in the computer vision community. The fully convolutional
network (FCN) proposed by Long et al. [25] is the classical
deep learning method for segmentation tasks. It is capable of
achieving pixel-wise classifications in the sea fog detection
task. The structure of FCN is shown in Fig. 3.

Fig. 3: The structure of Fully Convolution Network.

As shown in Fig. 3, an FCN network consists of one
encoder and one decoder. A series of stacked convolutional
layers constitute the encoder. The first layer takes the image
(xi ∈ RI×I×3) as the input. The inputs of the subsequent
layer are 3D feature maps sized I

n
I
nd, where n is the scaling

factor of the feature map, and d denotes the channel dimension.
After the original encoder reduces the feature map to 1/32
of the original image, the decoder restores the feature map
to the size of the original image through convolution and
upsampling layers. By using the paradigm of encoding and
decoding, FCN can realize the foreground detection of natural
images. During detection, the convolutional layer extracts
discriminator features from the visual representation.

Statistical features are also important when detecting sea
fog from remote sensing images mixed with clouds and fog.
Therefore, by retaining the encoding and decoding paradigm
of FCN, we design a dual-branch network for sea fog detection
tasks that can encode features from both visual and statistical
spaces. In addition, to avoid the problem of complex decoding
caused by the large number of features encoded from the two
spaces, we designed a feature selection module for the decoder.

IV. PROPOSED METHOD

A. Network Architecture

A dual-branch sea fog detection network (DB-SFNet) is
proposed here. Unlike the state-of-the-art semantic segmen-
tation methods, DB-SFNet extracts information from visual
representation domain and comprehensively considers the in-
formation of the statistical domain. A flowchart of the overall
network is shown in Fig. 4. DB-SFNet contains three main
components: a knowledge extraction module (KEM), a dual-
branch optional autoencoder (DOAE), and a prediction mask
generation unit. The input of the proposed model is the
true color band composition of GOCI, and the output is the
detection result. KEM realizes the mapping of the input from
the RGB domain to the statistical domain. The DOAE of the
encoder-decoder structure comprises a dual-branch encoder
and a decoder with feature selection. The prediction mask

generation unit is responsible for pixel-level classification. The
pixels classified as positive samples are detected as sea fog in
the prediction map.

B. Knowledge Extraction Module
To distinguish between cloud and fog in the statistical space,

we designed a KEM module to transform from visual space
to statistical space. Using prior knowledge, KEM can extract
statistical information in the visual space. The input and output
of KEM are the images in visual space and statistical space,
respectively. The structure of KEM is shown in Fig. 4(b). The
four main steps are explained below.

Step 1: Patch composition. As an input, the KEM receives
an image D ∈ RH×W×C , where (H,W ) is the resolution of x
, and C is the number of channels. Let dh,w,c denote the pixel
value of each color channel in the h-th row, w-th column, and
c-th color channel of D.We first grayscale the image D using
the formula.

dgh,w =
1

C

C−1∑
c=0

dh,w,c (1)

where dgh,w is the pixel value of the grayscale image Dg in
the h-th row and w-th column, After that, we crop rectangular
areas with length t from Dg , taking each pixel of Dg as
the center points of those rectangular areas. Each rectangular
area is regarded as a patch, and the subsequent steps will be
performed on each patch.

Step 2: Gray-level reduction. The rectangular areas in
grayscale image Dg are stitched in the channel dimension
to obtain a tensor X ∈ Rt×t×HW . Calculating the statistical
features on a large gray level tensor is inefficient, therefore,
the gray level of X should be reduced by upsampling. As
shown in Fig. 4(b), Xα ∈ Rt×t×HW (α = 1, 2, 3, . . . , N) is
the tensor obtained after the gray-level reduction, whereas α
represents the value of the gray level. xαi,j,k and xi,j,k denote
the value in the i-th row, j-th column and the k-th channel
of the tensor Xα and X , respectively. We upsample the gray
level of X according to the formula

xαi,j,k =
⌈
(xi,j,k + 1)× 2α−8

⌉
− 1 (2)

where d·e denotes the round-up operation for each element in
the tensor.

Step 3: Pixel-level neighbor relationship statistics. Statis-
tical features are essentially the statistics of position and value
relationships of every two pixels in Xα. From the position
relationship analysis, there are four adjacent relationships
between two adjacent pixels: the up and down, the left and
right, and the two diagonal relationships. In Fig. 4(b), four
tensors represent these four relationships. From the value
analysis, the value range of pixels is [0, α− 1]. Let l ∈ [0, 3]
represent the position relationship between two adjacent pix-
els, m,n ∈ [0, α− 1] represent the values of adjancent pixels.
A relationship space is denoted as H ∈ Rα×α,4, where the
elements in H are triads represented as (m,n, l). The number
of triads corresponding to Xα is 4α2.

Let Qα denote the relationship matrix, whereas the coor-
dinates are the values of the adjacent pixels in H (i.e., m
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Fig. 4: The architecture of the proposed DB-SFNet. DB-SFNet is divided into the knowledge extract module, dual branch
optional encoding-decoding module, and predict mask generation. (a) Overall architecture. (b) Structure of the knowledge
extraction module. (c) Structure of the feature selection module.

and n), and qαm,n,k denotes the value in the m-th row, the
n-th column, and the k-th channel of Qα. According to the
principle of gray level co-occurrence matrix [26], qαm,n,k can
be calculated using

qαm,n,k=
1

4

3∑
l=0

t−1∑
i=1

t−1∑
j=1

(xαi,j,k∧m) ∧ (n∧xαi+bias(l;0),j+bias(l;1),k)

(3)
bias (l; .) denotes the pixel shift according to the position
relationship l. For l =0, 1, 2 and 3, (bias (l; 0),bias (l; 1))

is set to (0, 1), (1, 0), (1, 1) and (−1, 1), respectively.

Step 4: Statistical feature calculation and pixel restora-
tion. The confusion matrix Q obtained in the previous step
is the statistical information of the relationship between the
pixel pairs at different gray levels. By selecting eight sets of
knowledge calculation, we map the statistical information of
the input to statistical features FS ∈ RHW with elements fSk ,
where S separates different statistical characteristics involving
mean, variance, homogeneity, contrast, dissimilarity, entropy,
energy, correlation. Values of these statistical characteristics
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are calculated according to standard statistical formulas [26].
To measure the average level of pixel values in the t-

neighborhood of the center pixel, we calculate the mean
feature Fmean by

fmeank =
1

N

N∑
α=1

N2−1∑
m,n=0

i× qαm,n,k (4)

where Z represents the number of gray-level upsampling in
step two, qαm,n,k denotes the statistical information in the m-
th row and n-th at the patch centered on the k-th pixel at the
α-th grey level.

To measure how far the pixel value is spread out from their
average value, we calculate the variance feature F variance by

fvariancek =
1

N

N∑
α=1

N−1∑
m,n=0

qαm,n,k × (i− fmeank )
2 (5)

The larger the variance of a patch, more discrete is the pixel
distribution in this patch.

The homogeneity feature Fhomogeneity is calculated to
measure the extent of image statistical changes locally.

fhomogeneityk =
1

N

N∑
α=1

N−1∑
m,n=0

qαm,n,k

1 + (m− n)
2 (6)

Compared with clouds, the change in reflectance of sea fog
areas is small, and the value of Fhomogeneity is higher.

The contrast feature F contrast is calculated to measure the
clarity of the patch and the depth of the statistical groove. The
formula is as follows:

f contrastk =
1

N

N∑
α=1

N−1∑
m,n=0

qαm,n,k × (m− n)
2 (7)

In the remote sensing image, the statistical groove of the cloud
is deeper, and the statistical groove of the fog is shallow.
Therefore, F contrast of the point corresponding to the cloud
is large, and the point corresponding to the fog is small.

Entropy feature F entropy and dissimilarity feature
F dissimilarity are calculated so as to measure the degree of
non-uniformity of patch. The formulas are as follows:

fdissimilarityk =
1

N

N∑
α=1

N−1∑
m,n=0

qαm,n,k × |m− n| (8)

fentropyk =
1

N

N∑
α=1

N−1∑
m,n=0

qαm,n,k × ln (qm,n,k) (9)

Unlike clouds, the pixel distribution in the sea fog area in the
multispectral image is more uniform, therefore the F entropy

and F dissimilarity of the corresponding position are smaller.
We use energy feature F energy to measure the thickness of

patch in the co-occurrence matrix.

fenergyk =
1

N

N∑
α=1

N−1∑
m,n=0

(
qαm,n,k

)2
(10)

A smaller F energy indicates lesser thickness of the sea fog.
We calculate the correlation feature F correlation to measure

the local correlation in the image.

f correlationk =
1

N

N∑
α=1

N−1∑
m,n=0

qαm,n,k ×
(m− fmeank ) (n− fmeank )

fvariancek

(11)
When the element values are uniformly equal, the F correlation

is large; on the contrary, if the element values differ signif-
icantly, F correlation is small. In general, F correlation of the
cloud is smaller than F correlation of the sea fog.

Finally, eight statistical features on each patch are cal-
culated: mean, variance, homogeneity, contrast, dissimilarity,
entropy, energy, and correlation. Then, each patch’s eight sta-
tistical feature values are spliced according to the coordinates
of the pixel to obtain the statistical space representation.

C. Dual Branch Optional Encoding Decoding Network

We design DOEN to extract features from D and F . DOEN
consists of two parts: an encoder and a decoder. The essence
of the encoder is to extract the discriminative features of
two spaces. The encoder is a dual-branch CNN. One branch
encodes the features of the visual space, and the other branch
encodes the statistical space features. The two branches have
the same structure, but the parameters are not shared. Through
the operation of convolution + maxpooling, coding features of
different scales are extracted from D and F . The structure of
visual encoder branch is shown in TableI. These multiscale
features are all involved in the decoding process.

TABLE I
THE STRUCTURE OF VISUAL ENCODER BRANCH

Layer Output Shape Params
InputLayer 3×256×256 0
Conv2D 64×256×256 1792
Conv2D 64×256×256 36928
MaxPooling2D 64×128×128 0
Conv2D 128×128×128 73856
Conv2D 128×128×128 147584
MaxPooling2D 128×64×64 0
Conv2D 256×64×64 295168
Conv2D 256×64×64 590080
MaxPooling2D 256×32×32 0
Conv2D 512×32×32
Conv2D 512×32×32
MaxPooling2D 512×16×16 0
Conv2D 512×16×16 2359808
Conv2D 512×16×16 2359808
MaxPooling2D 512×8×8 0

Total:5865024

The function of the decoder is to fuse the encoded features
of different scales and restore them to the scale of the original
image. We first fuse the smallest-scale features θ5 and ε5.
After that, the feature θω−1 from the visual space and the
feature εω−1 from the statistical space with the scale ω − 1
are fused by feature selection module, with the fused features
ψω−1 from the previous scale ω − 1. As shown in Fig. 4(c),
the feature selection module is computed as

ψω = F(GAP ([θω−1, ψω−1, εω−1]))� [θω−1, ψω−1, εω−1] (12)
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where GAP (·) denotes the global average pooling, F (·)
denotes a fully connected network, � denotes the Hadamard
product, and [·] is the concatenate operation in the matrix.
A convolution and deconvolution layer follow each feature
selection module to restore feature scales.

D. Predict Mask Generation

Through five sets of deconvolution feature selection
modules and deconvolution operations, the obtained tensor
ΦεRH,W,K is with the same length and width as the original
image, and the number of channels is the same as the number
of prediction categories. In the sea fog detection task, the
number of predicted categories K = 2. The generation of
the prediction mask Γ can be written as

Γ (i, j) =

0, eΦ(i,j,1)∑K
k=0 e

Φ(i,j,k) < thresh

1, eΦ(i,j,1)∑K
k=0 e

Φ(i,j,k) ≥ thresh
(13)

where thresh denotes the threshold that distinguishes sea fog
from the background, the value of the threshold is discussed
in Section V.C.

V. EXPERIMENTAL RESULTS

This section comprehensively evaluates the proposed DB-
SFNet on GOCI satellite thumbnails. Specifically, we first
discuss data preparation and experimental settings. Then, we
analyze the sea fog detection performance by DB-SFNet and
other state-of-the-art methods. After that, we design ablation
experiments showing that each module plays an influential role
in detecting. Finally, we present case studies to show the real-
world applications.

A. Data Preparation and Experimental Settings

1) Data Set Partitioning: The model is trained on the
observed true- color images and tested on the newly acquired
true- color images from real scenarios. The newly acquired
data is entirely different from the historical data. However,
randomly dividing the dataset will lead to the training, and
test sets will contain similar true- color images. The reason
is that each daytime sea fog in the data set consists of
eight consecutive true- color images required every hour.
Therefore, randomly dividing the training and test sets will
cause impractically high test performance.

To ensure the practicality of the test performance, we restrict
the foreground distribution of the training set, verification set,
and test set during datasets partitioning. The 1,040 sea fog
images included in SFDD describe 133 sea fog events. There-
fore, we randomly select 78 sea fog processes (616 images)
as training sets, 27 processes (208 images) as validation sets,
and 27 processes (208 images) as test sets.

2) Data Augmentation: Three data augmentation methods
(as follows) are chosen to compensate for the limited number
of training sets.

• Noise Injection: Affected by the periodic drift of sensors
and electromagnetic interference between components,
remote sensing images are prone to noise. The typical

noise in SFDD is the light spot. Therefore, 20% of the
images are contaminated with speckle-noise during the
data augmentation;

• Rotation: The shape of the sea fog does not correlate
with its position in the image. Therefore, rotation can
increase the number of samples in the training set. Each
image used to train exhibits a 50% probability of -20° to
20° clockwise rotation;

• Random Erasing: Due to the occlusion of clouds, the
structure of some parts of the observed sea fog is incom-
plete. To simulate a partial occlusion of the foreground,
we randomly erase the training images. As a result, the
foreground of each image has a 20% probability of being
blocked by the mask.

3) Evaluation Metrics: To comprehensive measure the
sensitivity and specificity of the model, we utilize seven
widely used quantitative metrics, that is, intersection-over-
union (IoU), mean intersection-over-union (mIoU), accuracy,
precision, recall, F1-score, critical success index (CSI), and
kappa coefficient (Kappa).

TABLE II
CONFUSION MATRIX AND EVALUATION METRICS

Predicted Condition

Pixels Positive(PP ) Negtive(PN )
Po

si
tiv

e(
P

)

True-positive
TP
hit

False-negative
FN

miss underestimation

Recall
R = TP

TP+FN

A
ct

ua
l

C
on

di
tio

n

N
eg

at
iv

e(
N

)

False-positive
FP

false alarm

True-negative
TN

correct rejection

background IoU
back IoU = TN

TN+FP+FN

Precision

P = TP
TP+FP

Accuracy

Acc = TP+TN
TP+FN+TN+FP

Kappa

Kap = Acc×n2−P×PP+N×PN
n2−P×PP+N×PN

CSI

CSI = TP
TP+FP+FN

F1Score

f1 = 2×precision×recall
precision+recall

mean IoU

mIoU = CSI+background IoU
2

Table II shows the confusion matrix and evaluation metrics
of sea fog forecast results. The confounding matrix composed
of TP , FN , FP and TN was obtained based on the statistical
prediction results in pixel unit. The statistical content is:

• TP : sea fog is existent and detected;
• FN : sea fog is existent but not detected;
• FP : sea fog is not existent but detected;
• TN : sea fog is not existent and not detected.
The green metrics in the table only evaluate the model’s

performance in detecting sea fog or background, that is, recall,
precision, sea fog IoU, and background IoU. The blue metrics
are the comprehensive evaluation of the model detection
ability, accuracy, Kappa, F1-score, and mIoU.

4) Experimental Setting: The DB-SFNet and all compar-
ison segmentation methods were trained under the Tensor-
flow2.5.0 framework and optimized by the Adam algorithm
[27]. The operating system is Ubuntu 18.04, equipped with
NVIDIA GTX 1080 Ti GPU. The proposed DB-SFNet is
trained in an end-to-end manner. The learning rate started
with 0.001, whose decay policy is cosine annealing [28]. The
minibatch size and total iterations are 12 and 8.66 × 103,
respectively. In addition, the warmup [29] strategy is used in
the initial stage of training. Finally, the comparison methods
are trained with the same parameter settings as those of the



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,VOL.XX, NO.XX, XXXX 8

DB-SFNet and fine-tuned with their corresponding pre-trained
CNN weights.

B. Comparison with Advanced Segmentation Methods

1) Comparison Methods: Sea fog detection is a particular
semantic segmentation task in computer vision. We compared
our proposed DB-SFNet with three types of advanced segmen-
tation models. The first category is convolution-based segmen-
tation algorithms, including SegNet [30], RefineNet [31], PAN
[32], BiSeNet [33], DenseASPP [34], and DeepLabV3+ [35].
The second category contains three transformer-based segmen-
tation algorithms, that is, Swin-Transformer [36], Segmenter
[37] and Segformer [38]. The third category is segmentation
algorithms for sea fog detection, including Unet [19] and
SFCNet [21].

2) Quantitative study: DB-SFNet and the other comparison
models are tested on 208 images in the test set. Table III
presents the quantitative results in CSI, mIoU, Accuracy,
Precision, Recall, F1-score, and Kappa. It should be noted that
there are a few images without sea fog or with low-coverage
sea fog in the test set. Yang et al. [39] indicated that a low
foreground coverage of less than 5% may cause an apparent
reduction in the evaluation metrics. Some scholars prefer
removing these samples while evaluating the performance of
a model. Nevertheless, images without sea fog or small sea
fog coverage are common real scenarios. Therefore, we chose
to retain these samples for evaluation.

The highest score in the segmentation method are bold
and second-highest score are underlined in Table II. Among
the deep learning-based detection methods, DB-SFNet shows
better performance than the other algorithms in terms of all the
parameters, except for precision. DB-SFNet is the only model
with CSI above 0.6. The comprehensive evaluation metrics F1
score, Kappa, and mIoU of DB-SFNet are also significantly
higher than those of the other models. The results of the
quantitative analysis show that: 1. Deep learning models can
distinguish sea fog from the other areas; 2. Statistical features
are effective in sea fog detection; 3. The proposed DB-SFNet
exhibits advantages in sea fog detection owing to using CNN
to process statistical features extracted from prior knowledge.

The output of the deep learning-based sea fog detection
models is essentially the probability of sea fog at each pixel.
Pixels with a probability greater than the critical value are
detected as fog areas. The evaluation indicators in Table II
are calculated when the critical value is 0.5. To evaluate our
models independently from the critical value, Fig. 5 shows
the Precision-Recall curve (PR curve) and Receiver Operating
Characteristic curve (ROC curve) of different semantic seg-
mentation models.

PR curve plots the precision of a model as a function
of its recall. A given critical value corresponds to a single
point in PR space, and by varying the critical value, a PR
curve can be obtained: while decreasing t from 1.0 to 0.0,
an increasing number of instances is predicted as positive,
causing the recall to increase, whereas precision may increase
or decrease. Point (1,1) in the PR curve represents a classifier
that obtains 100% precision and sensitivity, which is the ideal

PR curve point. Hence, the closer the PR curve is to the upper
right corner, the better is the performance of sea fog detection
[40]. As shown in Fig. 5(a), the curve of DB-SFNet is closer
to the upper left corner of the figure than the other detection
models, confirming that DB-SFNet exhibits better detection
performance.

ROC curve is a two-dimensional graph, with the TP plotted
along the y-axis and FP plotted along the x-axis. The ROC
curve is used to balance the benefits, i.e., true positives and
costs, i.e., false positives. Similar to the PR curve, the ROC
curve is generated by changing the critical value on the
confidence score; hence, each critical value generates only one
point in the ROC curve. The larger the area between the ROC
curve and the horizontal axis, the better the performance of
the corresponding detection algorithm [40]. Among the seven
ROC curves shown in Fig. 5(b), the area between the ROC
curve of DB-SFNet and the horizontal axis is the largest,
implying that DB-SFNet has better detection performance.

3) Qualitative study: The DB-SFNet is not only superior
to the existing models in terms of statistical indicators but is
also closer to ground truth in randomly selected cases. We
performed a visual analysis of some samples from the test
set. Depending on the different foreground coverage, sea fog
images of the test set can be divided into two categories: with
and without cloud interference. For visualization, we randomly
selected a complete sea fog event with mixed clouds and fog
from 00:16 UTC to 07:16 UTC. The qualitative comparison
chart is shown in Fig. 6. In addition, we randomly selected
some images with mixed clouds and no time continuity and
visualized them in Fig 7. It can be found from Fig. 6 and
Fig. 7 that DB-SFNet can effectively improve the success rate
of fog area detection. We also select a sea fog event without
clouds and show the results in Fig. 8. In this case, the results
of models exhibit slight visual difference.

C. Case Study on Different Seasons
The sea fog in the Yellow and Bohai Sea generally belongs

to the type of advection fog that forms as warm/moist air
passing over colder water. The formation of warm/moist air is
closely related to seasonal variations. Thus, sea fog generation
is also influenced by seasonal variations. To examine the
influences of seasonal variations on sea fog generation, we
applied DB-SFNet to detect sea fog across the four seasons of
spring, summer, autumn, and winter in 2019. The four cases
shown in Fig. 9 were selected to examine the sea fog detection
across different seasons. We chose January, March, June, and
October to represent winter, spring, summer, and autumn.

It can be seen from the synoptic situation in Fig. 9 that the
sea temperature difference across four cases is considerably
different. In Case 2 and Case 3 (spring and summer), the air
temperature is higher than the sea surface temperature. Thus
sea fog is more likely to occur. As shown in Fig. 9 (b) and (c),
sea fog areas are prominent in these two cases. In contrast, the
sea surface temperature is higher in Case 1 and Case 4, which
is not conducive to sea fog formation. The fog area in autumn
and winter is often smaller than in spring and summer.

DB-SFNet generates the detection results in Fig. 9. The
yellow pixels are the correctly detected areas (TP), the red
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TABLE III
COMPARISON OF DIFFERENT DETECTION MODELS ON SFDD

CSI mIoU Acc Precision Recall F1 Kappa
DeepLabV3+ [35] 0.559 0.747 0.940 0.813 0.641 0.717 0.684
SegNet [30] 0.478 0.699 0.925 0.738 0.576 0.647 0.606
RefineNet [31] 0.500 0.713 0.931 0.778 0.584 0.667 0.629
PAN [32] 0.527 0.730 0.937 0.841 0.585 0.690 0.657
BiSegNet [33] 0.563 0.749 0.941 0.831 0.635 0.720 0.688
DenseASPP [34] 0.524 0.727 0.935 0.808 0.599 0.688 0.653
Unet [19] 0.565 0.747 0.943 0.804 0.696 0.746 0.714
SFCNet [21] 0.571 0.748 0.940 0.815 0.602 0.692 0.704
Swin-Transformer [36] 0.597 0.768 0.943 0.798 0.703 0.748 0.716
Segmentor [37] 0.545 0.740 0.940 0.833 0.607 0.702 0.673
Segformer [38] 0.565 0.752 0.943 0.867 0.619 0.722 0.692
DB-SFNet 0.627 0.784 0.946 0.775 0.767 0.771 0.740

Fig. 5: PR curves and ROC curves of different detection algorithms. (a) PR curves. PR curve plots the precision of a model
as a function of its recall. The curve of DB-SFNet is closer to the upper left corner compared with that of other detection
models. (b) ROC curves. The ROC curve is used to make a balance between the benefits, i.e., true positives, and costs, i.e.,
false positives. The area between the ROC curve of DB-SFNet and the horizontal axis is the largest.

areas correspond to undetected sea fog that occurred (FP),
and the green areas are erroneous reports (FN). It can be seen
from the detection results that the detection ability of DB-
SFNet is not affected by seasonal variations. Across different
seasons and weather conditions, the sea fog area detected by
DB-SFNet is consistent with the actual sea fog area. Smaller
sea fog areas appear in autumn and winter (Case 1 and Case
4), and larger sea fog areas appear in spring and summer (Case
2 and Case 3) are successfully detected.

D. Ablation Experiments

This paper proposes a novel dataset (SFDD) and model
(DB-SFNet) to improve the performance of sea fog detection.

To validate the proposed dataset and model, we set up two
ablation experiments Our ablation studies aim to answer the
following questions:

1) Can training on a long period of data improve the
model’s generalization ability?: The SFDD data covers ten
years, and the sample types are abundant. To prove that the
model trained on a long time span of data is less prone to
overfitting, we trained DeeplabV3+ and DB-SFNet on data
with different periods (the longer the period, the closer the data
distribution is to the real distribution). The following variants
of SFDD are implemented to verify that SFDD can reduce the
risk of overfitting. The test set is data from 2019-2020.

• Model-SFDD-2: Data from 2011 to 2012 is used for
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Fig. 6: The detection results of different detection models on a complete sea fog event with mixed clouds and fog. The selected
sea fog event occurred on 03 June 2011. The images record the changes in sea fog every hour from 00:16 UTC to 07:16
UTC. The first and second lines present the original images and ground truth. The rest are the sea fog detection results of
different models. The correct pixels for foreground detection are indicated in yellow. False-negative and false-positive pixels
are indicated by green and red, respectively.
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Fig. 7: The detection results of different detection models on occurred sea fog events with mixed clouds and fog. The correct
pixels for foreground detection in each subfigure are red, while the correct pixels for background detection are black. False-
negative and false-positive pixels are indicated in purple.
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Fig. 8: The detection results of different detection models on a complete sea fog event without clouds. The selected sea fog
event occurred on 19 March 2019. The images record the changes in sea fog every hour from 00:16 UTC to 07:16 UTC. The
first and second lines present the original images and ground truth. The rest are the sea fog detection results of different models.
The correct pixels for foreground detection are indicated in yellow. False-negative and false-positive pixels are indicated by
green and red, respectively.
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Fig. 9: Four sea fog events across four seasons. Each column represents a sea fog event. RGB images are the true color images
collected by GOCI. In the detection result, the yellow pixels are the correct areas, the red area corresponds to undetected sea
fog that occurred, while the green areas correspond to erroneous reports. The synoptic situation shows the wind field, mean sea
level pressure field, and the difference between SAT and SST. (a) Case 1: Winter sea fog event at 05:16 UTC on 24 January
2019. (b) Case 2: Spring sea fog event at 00:16 UTC on 19 March 2019. (c) Case 3: Summer sea fog event at 07:16 UTC on
04 June 2019. (d) Case 4: Autumn sea fog event at 05:16 UTC on 22 October 2019.

training;
• Model-SFDD-4: Data from 2011 to 2014 is used for

training;
• Model-SFDD-6: Data from 2011 to 2016 is used for

training;
• Model-SFDD-8: Data from 2011 to 2018 is used for

training.

Training on SFDD can improve the model’s generalization
ability. As shown in Table IV, the longer the period of the
training set, the higher the detection scores of DeepLabV3+

and DB-SFNet, partly because the training set’s data distri-
bution is closer to the actual observation data distribution
when the period is longer. In addition, by comparing the
detection scores of DB-SFNet and DeepLabV3+, it can be
found that the detection performance of DB-SFNet is always
better than DeepLabV3+ when the data set is fixed, confirming
the advantages of DB-SFNet.

2) Are the discriminative features extracted from the statis-
tical domain useful? If it is useful, at what scale does the fusion
of statistical features perform better?: Unlike the current
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TABLE IV
ABLATION RESULT ON TIME SPAN

mIoU F1-Score Kappa
DeeplabV3+-SFDD2 0.6607 0.5167 0.5427
DeeplabV3+-SFDD4 0.6939 0.5801 0.6017
DeeplabV3+-SFDD6 0.6984 0.5892 0.6113
DeeplabV3+-SFDD8 0.7187 0.6261 0.6464
DB-SFNet-SFDD2 0.7033 0.5986 0.6206
DB-SFNet-SFDD4 0.7163 0.6211 0.6408
DB-SFNet-SFDD6 0.7261 0.6393 0.6593
DB-SFNet-SFDD8 0.7597 0.6944 0.7101

TABLE V
ABLATION RESULT ON THE SCALE OF FEATURE FUSION

mIoU F1Score Kappa
DB-SFNet (Base) 0.7466 0.7209 0.7115
DB-SFNet (block1) 0.7707 0.7512 0.7205
DB-SFNet (block2) 0.7743 0.7567 0.7259
DB-SFNet (block3) 0.7747 0.7564 0.7262
DB-SFNet (block4) 0.7765 0.7595 0.7291
DB-SFNet (complete) 0.7835 0.7707 0.7399

advanced sea fog detection methods, DB-SFNet combines the
discriminative features from the statistical domain. To explore
whether to introduce statistical features and at which scale
is better to fuse, we designed the following variants of DB-
SFNet.

• DB-SFNet (Base): Basic model without statistical fea-
tures.

• DB-SFNet (block1): Fuse statistical features after the first
up sampling layer.

• DB-SFNet (block2): Fuse statistical features after the
second up sampling layer.

• DB-SFNet (block3): Fuse statistical features after the
third up sampling layer.

• DB-SFNet (block4): Fuse statistical features after the
fourth up sampling layer.

• DB-SFNet (overall): Overall DB-SFNet model.
As shown in Table V, models that fuse statistical features

at each scale have the best performance in sea fog detec-
tion. When the model does not add statistical features (DB-
SFNet(Base)), the effects of the three sea fog detection indi-
cators are not ideal. Combining statistical features at any scale
can effectively improve the detection index. It is demonstrated
that extracting features from the statistical domain is valuable.

3) How much improvement does each statistical feature
contribute?: On the basic architecture of DB-SFNet, we
design ablation studies that only introduce one statistical
feature. These studies demonstrate the contribution of each
statistical feature. As shown in Table VI, the introduction
of each statistical feature has a positive effect on sea fog
detection.

4) How much improvement does the feature selection mod-
ule contribute?: To prove that the feature selection module
(FS) has a positive effect, we separately trained the DB-
SFNet with feature selection and that without feature selection.

TABLE VI
ABLATION EXPERIMENTS ON STATISTICAL FEATURES

mIou F1-Score Kappa
Base 0.7346 0.6975 0.6641
Base+Fmean 0.7381 0.7027 0.6696
Base+F variance 0.7453 0.7118 0.6808
Base+Fhomogeneity 0.7420 0.7075 0.6757
Base+F contrast 0.7406 0.7057 0.6736
Base+F entropy 0.7411 0.7064 0.6740
Base+F dissimilarity 0.7496 0.7183 0.6876
Base+F energy 0.7508 0.7203 0.6896
Base+F correlation 0.7352 0.6994 0.6652
DF-SFNet 0.7835 0.7707 0.7399

As shown in TableVII, the performance of DB-SFNet without
feature selection is already higher than most of the comparison
models. And DB-SFNet using feature selection can achieve
better performance. We believe that the feature selection block
reduces the decoding complexity of visual and statistical
features, thereby significantly improving model performance.

TABLE VII
ABLATION EXPERIMENTS ON FEATURE SELECTION

mIou F1Score Kappa
DF-SFNet without FS 0.757 0.7293 0.7113
DF-SFNet 0.7835 0.7707 0.7399

E. Backwhirling Application in Real World

Sea fog in the Yellow Sea and the Bohai Sea mostly
appears on China’s east coast and the west of the Korean
Peninsula due to the temperature difference between the sea
and land. Therefore, we selected two sea fog incidents that
caused significant losses from the sea fog reports recorded in
China and South Korea as the analysis cases. To understand
the causes behind these two sea fog events, we additionally
used the fifth-generation global climate reanalysis data from
ECMWF (ERA5) to analyze the climatic conditions in the
areas where sea fog occurred. The selected meteorological el-
ements include 10m u-component of wind, 10m v-component
of wind, sea surface temperature (SST), surface air temperature
(SAT), and mean sea level pressure.

Case 1: Fig. 10 shows a sea fog event at 00:16 UTC on
27 February 2016. In this case, sea fog appears in the Yellow
Sea on the south side of the Shandong Peninsula (yellow area
in Fig. 10(b)). In this case, a bulk carrier and a fishing boat
collided (redpoint in Figure 10(a)). Eight people died, two
were missing, and the direct economic loss was approximate
1.2 million CNY. On 27 February, a low-pressure system was
formed in inland China and the western Yellow Sea (shown in
Fig. 10(d)). The existence of the low-pressure system makes
the Yellow Sea affected by the southeasterlies wind (shown in
Figure 10(e)). The warm and humid southerly air is transported
to the colder sea, causing the temperature difference between
the sea surface and surface air in the accident sea area above
0.5◦C (shown in Fig. 10(f)). The temperature difference and
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Fig. 10: Case 1: A sea fog event on 27 February 2016. This
event caused a ship collision at approximately 18 n miles south
of Chaolian Island, Qingdao (Red point in (a), (b) and (c)). (a)
GOCI true color image. The acquisition time is 00:16 UTC
on 27 February 2016. (b) Actual sea fog area. The sea fog is
indicated in yellow. (c) Sea fog area detected by DB-SFNet.
The sea fog is indicated in yellow. (d) Mean sea level pressure
field provided by ERA5. Qingdao is in the east of the low-
pressure system. (e) Wind field provided by ERA5. Southerly
wind prevails in the Shandong Peninsula (f) Temperature
difference (SAT-SST). The temperature difference between the
ocean and the air at the accident site is greater than 0.5◦C.

humidity meet the conditions for sea fog. Fig. 10(c) shows the
sea fog detection result from DB-SFNet. The detection model
proposed in this paper successfully detects the sea fog event.
Specifically, the fog area detected by DB-SFNet is almost
the same as the actual fog area, and only the edge of the
fog area has individual false negatives. The detection results
appropriately correspond to the accident point.

Case 2: Fig. 11 shows a sea fog event at 06:16 UTC on
25 March 2016. The sea fog event occurred at the Yellow
Sea, and West Korea Bay (indicated by the yellow area in
Fig.11(b)). As the sea fog reduced visibility, a passenger ship
carrying about 160 people was grounded on rocks in waters
off the coast of Sinan in South Jeolla Province (indicated by
the red point in Fig. 11(a)). On 25 March, a high-pressure
system was formed on the south of the Korean peninsula (as
shown in Fig. 11(d)). The sea fog area was at the rear of the
offshore high-pressure region, causing southerly wind in the
Yellow Sea (as shown in Fig. 11(e)). The warm and humid
southerly air is transported to the colder sea, thus causing
the temperature between the sea surface and surface air in
the accident sea area to be greater than 0.5◦C (as shown in
Fig. 11(f)). The temperature difference and humidity meet the
conditions for sea fog formation. Fig. 11(c) depicts the sea
fog detection result using DB-SFNet. DB-SFNet effectively
detects the sea fog event. Specifically, the fog region detected
by DB-SFNet is the actual fog area, and only the periphery of

Fig. 11: Case 2: A sea fog event on 25 March 2018. This
event caused a Korean ship to strike a massive rock in the
southwest islands of South Korea (Redpoint in (a), (b), and
(c)). (a) GOCI true-color image. The acquisition time is 06:16
UTC on 25 March 2018. (b) Actual sea fog area. The sea
fog is indicated in yellow. (c) Sea fog area detected by DB-
SFNet. The sea fog is indicated in yellow. (d) Mean sea level
pressure field provided by ERA5. A high pressure system
is formed on the south side of the Korean peninsula. (e)
Wind field provided by ERA5. Southerly wind prevails in the
Korean Peninsula (f) Temperature difference (SAT-SST). The
temperature difference between the ocean and the air at the
accident site is greater than 0.5◦C.

the fog area contains individual false negatives. The detection
results appropriately correspond to the accident spot.

F. Complexity Analysis

In this part, we analyze the complexity of the proposed
algorithm according to parameter amount, computational com-
plexity and execution time. The results are illustrated in Fig.
12.

As shown in Fig. 12 (a), our DB-SFNet achieves high per-
formance with an affordable parameter number, compared with
other methods. With regard of the execution time in Fig. 12 (b),
the proposed method takes only 0.058 seconds to process an
image, which is superior to a lot of comparative state-of-the-
art methods. Comparisons about FLOPs and performance are
shown in Fig. 12 (c), which demonstrate that the proposed DF-
SFNet has a better tradeoff between FLOPs and performance.

G. Generalization Ability on Other Satellite Data

To evaluate the generalization ability and effect of the
proposed method, we have selected 77 sea fog images recorded
by the Himawari-8 satellite. Among them, 56 images are used
to train the models, and the remaining 21 images are used to
test the performance. As shown in Table VIII, even though
the model was trained on images from another satellite, our
method compares favorably with most other methods in terms
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Fig. 12: Complexity Analysis. (a) Comparison of Kappa and model parameters; (b) Comparison of Kappa and inference
time; (c) Comparison of Kappa and FLOPs.

TABLE VIII
COMPARISON OF DIFFERENT DETECTION MODELS ON HIMAWARI-8 SATELLITE

CSI mIoU Acc Precision Recall F1 Kappa
DeepLabV3+ [35] 0.761 0.8717 0.9834 0.9456 0.7958 0.8643 0.8555
SegNet [30] 0.7502 0.8658 0.9824 0.9246 0.7991 0.8573 0.8479
RefineNet [31] 0.6638 0.8179 0.9734 0.8023 0.7936 0.7979 0.7837
PAN [32] 0.749 0.8653 0.9825 0.9391 0.7872 0.8565 0.8472
BiSeNet [33] 0.7564 0.8692 0.9829 0.9336 0.7994 0.8613 0.8523
DenseASPP [34] 0.7449 0.8625 0.9811 0.8798 0.8293 0.8538 0.8437
Unet [19] 0.7567 0.8694 0.9831 0.9443 0.792 0.8615 0.8526
SFCNet [21] 0.7488 0.8643 0.981 0.8586 0.8541 0.8563 0.8462
Swin Transformer [36] 0.7755 0.8793 0.9841 0.9246 0.8278 0.8735 0.8651
Segmenter [37] 0.6639 0.8187 0.9748 0.8504 0.7517 0.798 0.7846
SegFormer [38] 0.779 0.8813 0.9845 0.934 0.8244 0.8758 0.8676
DB-SFNet 0.7953 0.8901 0.9857 0.9368 0.8404 0.886 0.8784

of all the conventional metrics. This shows that DB-SFNet has
a satisfactory generalization ability and effect.

VI. CONCULSION

This paper proposes a sea fog detection dataset (SFDD)
and a dual branch sea fog detection model (DB-SFNet) for
robust, rapid, and accurate daytime sea fog detection. To the
best of our knowledge, SFDD is the first sea fog detection
dataset with an extended period, large sample number, and
accurate labeling. SFDD is comprised of 1033 sea fog images
collected by GOCI, containing all the observed sea fog events
occured in the Yellow Sea and the Bohai Sea from 2010
to 2020. Moreover, we propose DB-SFNet that realize the
rapid detection of sea fog from remote sensing. DB-SFNet
contains a statistical feature extraction module that converts
the visual representation to statistical domains and an encoder-
decoder module for extracting discriminative features in the

visual and statistical domains. By extracting the discriminative
information in the statistical domain, the proposed model can
improve the performance of sea fog detection, significantly
reducing the false alarms of the cloud and fog mixing area.

The main conclusions of this paper are as follows: (1) Large-
scale SFDD can reflect real scenarios better. The seasonal
variation and distribution of the SFDD is consistent with
historical statistics, and it significantly reduces the risk of over-
fitting and improves the performance of fog detection models;
(2) DB-SFNet outperforms advanced semantic segmentation
algorithms in sea fog detection, especially, it can effectively
detect sea fog in a mixed image of cloud and fog; (3) DB-
SFNet that fuse statistical features at each scale have the best
performance. It indicates that the statistical features facilitate
the sea fog detection.
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