AFnet and PAFnet: Fast and Accurate SAR Autofocus Based on Deep Learning | IEEE Journals & Magazine | IEEE Xplore
Scheduled Maintenance: On Monday, 27 January, the IEEE Xplore Author Profile management portal will undergo scheduled maintenance from 9:00-11:00 AM ET (1400-1600 UTC). During this time, access to the portal will be unavailable. We apologize for any inconvenience.

AFnet and PAFnet: Fast and Accurate SAR Autofocus Based on Deep Learning


Abstract:

Autofocus plays a key role in synthetic aperture radar (SAR) imaging, especially for high-resolution imaging. In the literature, the minimum-entropy-based algorithms (MEA...Show More

Abstract:

Autofocus plays a key role in synthetic aperture radar (SAR) imaging, especially for high-resolution imaging. In the literature, the minimum-entropy-based algorithms (MEA) have been proven to be robust and have been widely applied in SAR. However, this kind of method needs hundreds of iterations and is computationally expensive. In this article, we proposed a noniterative autofocus scheme based on deep learning and minimum-entropy criterion. It’s an unsupervised framework, which utilizes entropy as the loss function. In this scheme, deep neural networks are utilized for feature extraction and parameter estimation. Based on this scheme, two autofocus models (autofocus network and progressive autofocus network) are proposed. After training, the network learned the rules of autofocus from a large number of examples. Experimental results on real SAR data show that the proposed methods have focusing quality close to the state-of-the-art but with real-time focusing speed.
Article Sequence Number: 5238113
Date of Publication: 27 October 2022

ISSN Information:

Funding Agency:


References

References is not available for this document.