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Abstract—In this paper, an unrolling algorithm of the iterative
subspace-based optimization method (SOM) is proposed for solv-
ing full-wave inverse scattering problems (ISPs). The unrolling
network, named SOM-Net, inherently embeds the Lippmann-
Schwinger physical model into the design of network structures.
The SOM-Net takes the deterministic induced current and the
raw permittivity image obtained from back-propagation (BP)
as the input. It then updates the induced current and the
permittivity successively in sub-network blocks of the SOM-
Net by imitating iterations of the SOM. The final output of the
SOM-Net is the full predicted induced current, from which the
scattered field and the permittivity image can also be deduced
analytically. The parameters of the SOM-Net are optimized in a
supervised manner with the total loss to simultaneously ensure
the consistency of the induced current, the scattered field, and the
permittivity in the governing equations. Numerical tests on both
synthetic and experimental data verify the superior performance
of the proposed SOM-Net over typical ones. The results on
challenging examples like scatterers with tough profiles or high
permittivity demonstrate the good generalization ability of the
SOM-Net. With the use of deep unrolling technology, this work
builds a bridge between traditional iterative methods and deep
learning methods for solving ISPs.

Index Terms—Inverse scattering problem, deep unrolling,
subspace-based optimization.

I. INTRODUCTION

FUll-wave electromagnetic inverse scattering problems

(ISPs) aim at determining the shape, position, and con-

stitutive parameters of unknown scatterers from the measured

scattering field. It is well known that the full-wave ISP is

usually highly nonlinear and ill-posed [1], which needs to

be solved by nonlinear iterative methods based on govern-

ing physical models. Typical nonlinear iterative ISP methods
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include the distorted Born iterative method (DBIM) [2], the

contrast source inversion (CSI) method [3], the contrast source

extended Born (CS-EB) method [4], and the subspace-based

optimization method (SOM) [5], [6], etc. Those methods have

achieved great success in reconstructing scatterers in various

ISP applications. However, one main bottleneck of nonlinear

iterative methods is the lack of real-time reconstruction perfor-

mance due to the expensive computational cost. In addition,

the reconstruction quality is also highly dependent on the

complicated regularization.

In recent years, researchers have successfully introduced

deep learning (DL) technology to solve ISPs [7]–[9]. Many

studies demonstrate that DL-based methods outperform con-

ventional iterative ones for both reconstruction speed and

accuracy. Nevertheless, a major concern of DL-based methods

is the generalization ability of the learned models. Namely, the

performance of DL-based methods may degrade significantly,

when the testing target is quite different from those training

ones on the aspects such as shape, size, and parameter ranges.

This is because DL models are typically data-driven, and the

constraints of the governing physical laws are only partially

satisfied compared to existing iterative full-wave methods.

Many efforts have been made to improve the model gen-

eralization ability of DL-based inversion methods, which are

often referred to as physics-inspired models. In general, ex-

isting physics-inspired methods can be divided into two types

according to the different ways of model learning. The first

type of methods accelerate the conventional iterative methods

using the DL technique, which only adopt neural networks to

replace some expensive components in the traditional objective

function method.

For example, Guo et al. [10] introduced a supervised descent

method (SDM) to learn the average descent directions from

data. In [11], Guo et al. applied the SDM to the pixel-based

and model-based inversion of microwave data for dielectric

targets. This type of methods have a great advantage on

generalization ability, but the real-time performance is still a

challenge.

The second type of physics-inspired methods are composed

of two steps, i.e., a rough permittivity image reconstruction

by a fast imaging method, followed by a permittivity im-

age enhancement to get a high-resolution target [12], [13].

Among these methods, the back-propagation (BP) method is

commonly used to reconstruct the rough permittivity image

from the scattered field. Then, the resolution of rough input

http://arxiv.org/abs/2209.03567v2
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image is enhanced in an image-to-image translation way using

various networks, such as the U-Net [14], GANs [15], [16],

cGANs [17], etc. The performance of this kind of methods

is dominated by both the quality of input images and the

way of conducting image resolution enhancement. Wei et al.

[18] proposed the dominant current scheme (DCS) instead of

BP to generate a better rough input for the U-Net. Zhang et

al. [19] improved the input by combining the rough images

from both qualitative and quantitative methods. Yao et al. [20]

proposed to obtain the initial input image using a shallow

convolutional neural network (CNN) and then enhance the

resolution using U-Net. In addition to these efforts to improve

the quality of input images, Huang et al. [21] adopted the

structural similarity index measure (SSIM) loss and the mean

squared error (MSE) loss to jointly constrained image features

and improve the reconstruction quality. Song et al. [22] defined

a novel perceptual adversarial network to improve the quality

of image-to-image translation. Wei et al. [23] introduced an in-

duced current learning method (ICLM) to solve the translation

in the contrast source domain instead of the contrast domain.

Although these methods achieve better reconstructions, the

image-to-image translation in ISP is still lacking of physical

insight, thereby restricting the generalization ability of this

kind of DL-based ISP methods. Specifically, the image-to-

image translation in existing ISP methods only restricts the

match of a single physical variable, which is usually the

permittivity. The ignoring of the consistency of other physical

parameters may also degenerate the model generalization

ability.

Recently, the unrolling technique [24] has attracted exten-

sive attention in image processing and computational imaging

research, which builds a bridge between conventional iter-

ative methods and DL-based methods. The deep unrolling

technique constructs neural networks with a few sub-network

modules to imitate iterations of conventional methods. The

unknown target parameters are successively updated in each

sub-network module like doing iterations. It effectively em-

beds physical knowledge into deep neural networks, which

makes the DL model more interpretable and efficient. The

unrolling technique has been verified to be efficient in solving

various tasks like medical imaging [25]–[27], and image

restoration [28], [29], etc. It has also been introduced to solve

nonlinear ISPs very recently. Liu et al. [30] introduced the PM-

Net to simulate the ADMM iterative process, which defines

four unconstrained sub-problems to achieve the alternating

optimization of contrast source and contrast. Guo et al. [31]

proposed an ISP SOLVER to simulate the iterative gradient-

based inversion method, where a pre-trained forward model is

used repeatedly to calculate the data fitness. The performance

of the ISP SOLVER is strongly affected by that of the pre-

trained FWD SOLVER model. These methods have been

verified to obtain good generalization capability compared to

direct data-to-model networks. However, only partial physical

variables are explicitly enforced to satisfy the consistency in

these methods. The embedding of the governing physical law

in learned networks can still be further improved.

In this work, an unrolling of the subspace-based optimiza-

tion, named SOM-Net, is proposed to solve nonlinear ISPs.

The input of the SOM-Net is taken as the deterministic induced

current obtained by the singular value decomposition (SVD)

and the raw permittivity image obtained from BP, while the

output of SOM-Net is the predicted full induced current.

The induced current and the permittivity image are updated

alternatively by passing through the sub-network blocks in

SOM-Net, which is like performing successive iterations in

SOM. Particularly, the update of the induced current in the

SOM-Net is realized by the mapping of each sub-network,

while the permittivity is still updated analytically. Finally, the

scattered field and the permittivity are also deduced analyti-

cally from the output induced current. The whole SOM-Net

model is optimized with residuals defined simultaneously on

the induced current, the scattered field, and the permittivity

image in a supervised manner. The match of all these physical

parameters which are governed by the Lippmann-Schwinger

equation ensures the generalization ability of the SOM-Net

model. Numerical tests on both synthetic and experimental

data verify the superior performance of the proposed SOM-

Net over existing ones.

In summary, the contributions of this work are listed as

follows:

• The proposed SOM-Net inherently embeds physical

knowledge by unrolling SOM, which introduces an ef-

fective way to design physics-inspired deep learning

networks from the conventional iterative methods. Specif-

ically, the update of the induced current and the per-

mittivity image within each sub-network of the SOM-

Net effectively reduces the nonlinearity of the mapping.

Besides, the permittivity is always updated analytically in

SOM-Net which greatly simplifies the network structure.

Therefore, the SOM-Net is physically interpretable and

efficient.

• The full constraints of physical variables, including the

induced current, the scattered field, and the permittivity

image, make the output of the SOM-Net physically

consistent with the governing law. Guided by those con-

straints, the prediction of the SOM-Net is more reliable

and consistent, in terms of not only the reconstructed

images but also the induced current and the scattered

field.

• The testing results on various challenging examples

demonstrate the effectiveness and good generalization

ability of the SOM-Net. In particular, the comparison

results on scatterers with tough profiles or high permit-

tivity verify the advantages of the proposed method over

other comparable ones in terms of both accuracy and

generalization ability.

This paper is organized as follows. In Section II, we in-

troduce the formulations of the proposed algorithm. Synthetic

and experimental data are then tested in Section III for the

performance verification. In Section IV, we discuss the benefit

of SOM-net and its applications in other scenarios. Finally, we

conclude our work in Section V.

II. METHOD

For clarity, the notations are declared first. We use ¯̄X
and X̄ to denote the matrix and vector of the discretized
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Fig. 1. The configuration of a 2-D ISP under TM illuminations.

operator or parameter X , respectively. The superscripts H
and ∗ respectively indicate the conjugate transpose and the

complex conjugate of a matrix or vector.

A. Formulation of the Problem

The configuration of ISPs is shown in Fig. 1. For conve-

nience, a 2-D transverse magnetic (TM) [32] wave is consid-

ered, where the longitude direction is along ẑ. The background

is free-space with permittivity ǫ0 and permeability µ0. The

unknown scatterers are supposed to be lossless by default and

located in the domain of interest (DOI) D. The Ni transmitters

located at rl with l = 1, 2, ..., Ni sequentially illuminate the

unknown scatterers, and the Nr receivers located at rq with

q = 1, 2, ..., Nr simultaneously measure the scattered field.

1) Forward Scattering: The forward scattering aims to

calculate scattering field with known permittivity of scatterers.

The method of moments (MoM) [33] is taken to calculate

the scattered field. The domain D is discretized into M
subunits, and the centers of subunits are located at rm with

m = 1, 2, ...M . Accordingly, taking into account of all

subunits, the state equation is discretized as

Ēt = Ēi + ¯̄GD · J̄ , (1)

where Ēi and Ēt represent the incident and total electric

field in domain D, respectively. The matrix ¯̄GD with M ×M
dimensions maps the induced current to the scattered field in

domain D. In the forward problem, (1) describes the wave-

scattering interaction in domain D.

The induced current J̄ is defined as J̄ = ¯̄χ · Ēt. It is well

known that the contrast ¯̄χ and the relative permittivity ¯̄ǫr have

a relationship of ¯̄χ = −i (k0/η0) (¯̄ǫr − 1), where i =
√
−1,

k0 and η0 respectively represent the wavenumber and the

impedance of homogeneous medium background.

The discretized data equation is expressed as

Ēs = ¯̄GS · J̄ , (2)

where Ēs is the scattered field measured by all receivers. The

matrix ¯̄GS with Nr×M dimensions maps the induced current

from the domain D to the space of scattered field in domain

S. In the forward problem, (2) describes the scattered field as

a reradiation of the induced current.

2) SOM Algorithm: The purpose of the inverse problem

is to retrieve the relative permittivity ¯̄ǫr of the scatterer from

the measured scattering field Ēs. For solving nonlinear ISPs,

the induced current cannot be obtained directly from (2).

Suppose the singular value decomposition (SVD) of ¯̄GS is
¯̄GS =

∑

nūnσnν̄
H
n with σ1 ≥ σ2 ≥, ..., σM = 0, where µ̄n,

ν̄n and σn are the orthogonal left, right singular vectors, and

singular values of ¯̄GS , respectively. The singular values are

sorted in the descending order.

In SOM, the full induced current J̄ is decoupled into the

deterministic induced current J̄+ and the ambiguous induced

current J̄− as

J̄ = J̄+ + J̄− = J̄+ + ¯̄V − · ᾱ−, (3)

where ¯̄V − is composed of the last M − L columns of right

singular vectors, ᾱ− is the unknown coefficient vector with

the length of M − L, and J̄+ satisfies

J̄+ =

L
∑

j=1

µ̄H
j · Ēs

σj

ν̄j . (4)

The initializations of SOM are taken as the deterministic

induced current J̄+ and the contrast ¯̄χbp obtained by back-

propagation in (5),

¯̄χbp(r) =

∑Ni

l=1 J̄l(r) ·
[

Ēt
l (r)

]

∗

∑Ni

l=1

∣

∣Ēt
l (r)

∣

∣

2 . (5)

In SOM, the unknown parameters, ᾱ− and ¯̄χ are updated

alternatively. For the mth subunits, the induced current (J̄l)m
is updated by (3) , the total field (Ēt

l )m is updated by (1) and

the contrast ( ¯̄χ)m is straightforwardly updated by (6) [1],

( ¯̄χ)m =

[

Ni
∑

l=1

(Ēt
l )

∗

m
∥

∥J̄+
l

∥

∥

· (J̄l)m∥

∥J̄+
l

∥

∥

]

/





Ni
∑

l=1

∣

∣

∣

∣

∣

(Ēt
l )m

∥

∥J̄+
l

∥

∥

∣

∣

∣

∣

∣

2


 , (6)

where Ni is the total number of transmitters, which is set as

16.

B. The SOM-Net Algorithm

1) Structure of SOM-Net: The flowchart of the proposed

SOM-Net is shown in Fig. 2. The SOM-Net is designed by

unrolling the iterations in SOM, which not only incorporates

physical knowledge into the model, but also alleviates the

nonlinear coupling of the induced current and the permittivity.

As seen, there are K sub-networks in SOM-Net to imitate

the SOM iterations. Suppose ¯̄ǫbpr denotes the permittivity

image reconstructed by the BP method with all scattered field.

The ¯̄J+ represents the deterministic induced current matrix

reformulated from the vector J̄+. For the lth incidence, the

deterministic induced current ¯̄J+
l is concatenated with the

permittivity image ¯̄ǫbpr as a single input sample of the SOM-

Net. Accordingly, the input of the SOM-Net model is denoted

as ¯̄J+ ⊕ ¯̄ǫbpr with the number of input channels as 3, in

which the first two channels are occupied by the real and

imaginary part of the induced current and the third channel

is occupied by the permittivity image, and the symbol ⊕
indicates the concatenation operation of two variables on the
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Fig. 2. The structure of the proposed SOM-Net. The input of the SOM-Net is a combined variable with 3 input channels, which contains the deterministic

induced current and the raw permittivity image obtained from BP. The output of the SOM-Net is the predicted full induced current ¯̄Jpre with 2 output
channels, which is further used to calculate the predicted scattered field Ēs,pre and the predicted permittivity image ¯̄ǫ

pre

r through (2) and (6), respectively.
The superscript pre indicates the variable is obtained from prediction. The symbol ⊕ denotes the concatenation operation for the input channels. The orange
arrows denote the variables are updated analytically.

real and imaginary channels. For the same reconstruction, all

the Ni resulting samples from the total Ni incidences will be

simultaneously employed to train the SOM-Net. Namely, the

batch size is set to Ni.

Similar to SOM, the SOM-Net updates the induced current
¯̄J(k) and the permittivity variable ¯̄ǫr,(k) alternatively by passing

variables across the sub-network Sθ,k, k = 1, 2, . . . ,K , where

θ indicates model parameters. Finally, the predicted induced

current ¯̄Jpre with the channel number as 2 at all incidence

is directly obtained by network reconstruction. Then, the

predicted scattered field Ēs,pre is calculated analytically by

(2) and the permittivity image ¯̄ǫprer can also be reconstructed

directly from the contrast ¯̄χpre by (6). In SOM-Net, the analyt-

ical update of physical variables is indicated by orange arrows

in Fig. 2. It significantly simplifies the network complexity and

embeds physical knowledge into the model.

Overall, the data flow in SOM-Net is summarized in

Algorithm 1, where F represents the analytical update of

permittivity from the contrast ¯̄χ by (6). Specifically, four sub-

networks (i.e., K = 4) are experimentally taken to design

SOM-Net in this paper. It is worth noting that K can be

adjusted according to the complexity of the target ISP.

2) Loss Functions: In this paper, a comprehensive loss

function is defined to train the SOM-Net Sθ . The full loss

function LS(θ) of SOM-Net is defined as

LS(θ) = LJ(θ) +LE(θ) +λ1LSSIM (θ) +λ2LMSE(θ), (7)

where LJ(θ) denotes the induced current loss, LE(θ) is

the scattered field loss, LSSIM (θ) indicates the structural

similarity loss of two permittivity images, and LMSE(θ) is the

pixel-wise MSE loss. Here, λi(i = 1, 2) are hyperparameters.

Specifically, each term of LS(θ) is defined as

Algorithm 1 Data Flow in SOM-Net

1: Calculate Ēi, ¯̄GD , ¯̄GS ;

2: Obtain network input ¯̄J(0) ← ¯̄J+, ¯̄ǫr,(0) ← ¯̄ǫbpr ;

3: for each k ∈ [2,K] do

4:
¯̄J(k−1) = Sθ,k−1

(

¯̄J(k−2) ⊕ ¯̄ǫr,(k−2)

)

;

5: ¯̄ǫr,(k−1) = F
(

¯̄J(k−1)

)

;

6: end for

7:
¯̄Jpre = ¯̄J(K);

8: Ēs,pre = ¯̄GS · ¯̄Jpre;

9: ¯̄ǫprer = ¯̄ǫr,(K);

LJ =
1

Ni

Ni
∑

l=1

∣

∣

∣

¯̄Jpre
l − ¯̄JMoM

l

∣

∣

∣

2

, (8)

LE =
1

Nr

Nr
∑

q=1

∣

∣Ēs,pre
q − Ēs

q

∣

∣ , (9)

LSSIM = 1− SSIM(¯̄ǫprer , ¯̄ǫtr), (10)

LMSE =
∣

∣¯̄ǫprer − ¯̄ǫtr
∣

∣

2
, (11)

where ¯̄Jpre, Ēs,pre and ¯̄ǫprer are the predicted induced cur-

rent, the predicted scattered field and the permittivity image,

respectively, while ¯̄JMoM, Ēs and ¯̄ǫtr are the corresponding

reference variables, respectively.

It can be seen that the total loss LS(θ) enforces the

consistency of the induced current, the scattered fiel, and the

permittivity. The use of SSIM and MSE constraints on the

permittivity image further ensures the structural and pixel-wise

match with the reference one. Hence, from the physical point
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Fig. 3. Reconstruction results of Test#1 to Test#4 from the MNIST data set with 10% white Gaussian noise.

TABLE I
ERROR METRICS OF RECONSTRUCTION RESULTS FOR 1500 TESTING SAMPLES FROM MNIST DATA SET BY SOM, U-NET, AND SOM-NET IN FIG.3.

Method
Test#1 Test#2 Test#3 Test#4 1500 MNIST

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

SOM 0.84 0.09 0.84 0.11 0.77 0.18 0.83 0.12 0.80 0.13

U-Net 0.89 0.09 0.88 0.11 0.84 0.20 0.87 0.10 0.88 0.13

SOM-Net 0.92 0.07 0.94 0.07 0.88 0.14 0.95 0.07 0.91 0.10

of view, the total loss LS(θ) guarantees the consistency of

all physical variables in the Lippmann-Schwinger governing

equation, thereby improving the prediction accuracy of the

SOM-Net model. The proper design of network and loss

functions enables the model to learn physical laws from the

data, thereby making the model have good generalization

ability.

C. Computational Complexity

The computational complexity of the SOM-Net is mainly

divided into three parts, preparing input data, feed-forward

calculation of SOM-Net, and the estimation of the scattered

field and the permittivity.

To prepare input data, it needs to obtain the raw permittivity

image ¯̄ǫbpr by BP and get the deterministic induced current J̄+.

The computational complexity of BP is O (NiM logM) [18]

if the Fast Fourier transform (FFT) is applied in the matrix-

vector multiplication, and Ni is the number of incidences. The

computational cost of obtaining J̄+ is O
(

N2
rM

)

[34], which

lies in the thin SVD decomposition of ¯̄GS .

For the feed-forward of SOM-Net, the computational cost

includes several basic operations like convolutions, activation

function, and max pooling, where the complexity is dominated

by convolutions. Especially, assume that when performing

convolution operation, the number of input feature maps is

Qi and the number of output feature maps is Qo. Thus,

the complexity is calculated as O
(

QiQoM1M2K
2
f

)

[18],

where the feature map size and the convolution kernel size are

M1×M2 and Kf ×Kf (Kf = 3 in this paper), respectively.

To calculate the scattered field, the computational cost of the

matrix-vector multiplication in (2) is O (NrM). To calculate

the permittivity, the computational cost of the vector-vector

multiplication in (6) is O (M).

III. NUMERICAL AND EXPERIMENTAL RESULTS

In this section, we conduct verifications of SOM-Net with

both synthetic and experimental examples. The performance of

the SOM-Net is compared with the classical SOM method and

U-Net [18]. The comparison with SOM indicates the benefit of

the improvement on reconstruction quality and speed of SOM-

Net, while the comparison with U-Net denotes the superior

performance of SOM-Net over existing physics-inspired deep

learning methods.

A. Configuration of the Scattering System

The configuration of synthetic ISPs is defined as follows.

16 line sources and 32 line receivers are equally placed

on a circle with a radius of 3 m centered at the origin.

The operating frequency is 400 MHz. For each transmitting
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Fig. 4. The fitting of induced currents by the first transmitter for Test#1 to Test#4: (a) Test#1, (b) Test#2, (c) Test#3, (d) Test#4. For each test, the left,
middle, and right columns are the deterministic induced current, the output induced current of SOM-Net, and the target induced current, respectively. And the
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Fig. 5. The fitting of all scattered fields for Test#1 to Test#4: (a) Test#1, (b) Test#2, (c) Test#3, (d) Test#4. For each test, the predicted scattered field by
SOM-Net is represented by the orange dots, and the reference one is indicated by the blue line.

antenna, all receivers measure the scattered field. By default,

each scatterer is assumed to be lossless if not mentioned.

And the inversion of lossy scatterers will be described in the

discussions. The domain D has the size of 2 m × 2 m in a

free space background. It is discretized into 100× 100 grids

to simulate the measured scattered field by MoM, while the

discretization is changed to 64×64 grids in inversion to avoid

the inverse crime. Suppose that the measured scattered fields of

all receivers from all transmitters are recorded in a matrix ¯̄Es

with the size of Nr×Ni.
¯̄Es is noise-free in the training stage,

while Gaussian noise is added to ¯̄Es in the testing stage to

validate the robustness of SOM-Net against noise. The noise

level is defined as (‖¯̄n‖F /
∥

∥

∥

¯̄Es
∥

∥

∥

F
), where ‖·‖F represents

Frobenius norm of a matrix.

B. Training Details

The training details of the SOM-Net are as follows. The

MNIST data set [35] is used to generate the training data.

Considering the complexity of the ISP, we randomly choose

5000 handwritten digits in the MNIST database for training

and another 2500 digits for validation. In order to increase

the richness of data and enhance the generalization ability of

the model, each digit is randomly rotated with an angle of

[−170◦, 170◦] degrees. Besides, a circle with a random radius

between 0.1 m to 0.5 m is also added in D. The relative

permittivity of all training scatterers is set between 1.5 and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

1

1.5

1

1.5

1

1.5

2

1

1.5

2

1

1.5

2

1

1.5

2

1

1.5

2

2.5

1

1.5

2

2.5

Fig. 6. Reconstruction results of Test#5 to Test#12 for scatterers with complex profiles.

TABLE II
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#5-TEST#12.

Method
Test#5 Test#6 Test#7 Test#8 Test#9 Test#10 Test#11 Test#12

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

SOM 0.77 0.07 0.84 0.07 0.80 0.13 0.78 0.13 0.91 0.07 0.83 0.10 0.82 0.11 0.85 0.12

U-Net 0.84 0.09 0.85 0.07 0.76 0.20 0.69 0.17 0.94 0.08 0.92 0.10 0.84 0.17 0.90 0.12

SOM-Net 0.93 0.05 0.91 0.05 0.83 0.12 0.86 0.10 0.97 0.04 0.94 0.08 0.92 0.09 0.95 0.07

TABLE III
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#13-TEST#16.

Method
Test#13 Test#14 Test#15 Test#16

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

SOM 0.69 0.15 0.68 0.15 0.67 0.16 0.66 0.16

U-Net 0.80 0.16 0.77 0.17 0.76 0.18 0.77 0.19

SOM-Net 0.90 0.11 0.88 0.11 0.88 0.12 0.86 0.13

2.5. Here L = 15 is used in (4) to generate deterministic

induced current following the criterion of [18].

The hyperparameters for training the SOM-Net are set as

follows. Both the λ1 and λ2 are experimentally set to 2.0.

The Adam optimizer is taken to optimize the SOM-Net with

β1 = 0.9 and β2 = 0.999. The batch size is set to 16, and the

training epochs are set to 40. The first 20 epochs are running

with the same learning rate of 0.0002, while the learning

rate decays linearly to 0 from the 21st to the 40th epochs.

The code is implemented using PyTorch on a server with

Intel(R) Core(TM) i9-10900X CPU @3.70GHz and GeForce

RTX 3090 GPU. The training process of the SOM-Net took

about 7.26 hours under the above configurations.

C. Within-Database Test: Synthetic Data

In the first example, we randomly select another 1500

images from MNIST database as the testing set. All the

scattered fields of testing samples are added with 10% White

Gaussian noise. The relative permittivity of all testing scat-

terers is between 1.5 and 2.5. The reconstruction results of

four randomly selected examples, i.e., Test#1 to Test#4, are

shown in Fig. 3. We take the structural similarity measure

(SSIM) and the root-mean-square error (RMSE) of the relative

permittivity of scatterers as the quality metrics [22] to evaluate

the performance of all methods. The results are summarized

in Table I. It can be seen that the SOM-Net achieves superior

performance compared to other two methods.

Since the SOM-Net is trained by enforcing the consistency

of the induced current, the scattered field, and the permittivity

images, Fig. 4 shows the deterministic induced current, the

predicted induced current distribution, and the corresponding

target one for Test#1 to Test#4. The induced currents of other

transmitters are similar and are omitted here. Meanwhile,

the predicted scattered field and its reference with respect

to all incidences are plotted in Fig. 5, where the predicted

field is represented by the orange dots and the reference

one is indicated by the blue line. It is observed that the

physical constraints of SOM-Net on the induced current and

the scattered field make all those variables consistent with

their references. Therefore, the SOM-Net learns the governing

physical law and achieves much better reconstruction results

compared to U-Net.

Considering the simulation time, the SOM-Net only takes

about 0.53 seconds to reconstruct a single result with given

inputs. Specifically, it takes about 0.03 seconds to obtain the

rough contrast by BP, and another 1.4 seconds to obtain the
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Fig. 7. Reconstruction results of the “Austria” profile with the relative permittivity of 2.0 under different noise levels. From Test#13 to Test#16, 10%, 20%,
25% and 30% white Gaussian noise are added to the scattered field, respectively.
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Fig. 8. The fitting of induced currents by the first transmitter for Test#15 and
Test#16: (a) Test#15, (b) Test#16. For each test, the left, middle, and right
columns are the deterministic induced current, the output induced current of
SOM-Net, and the target induced current, respectively. And the first row is
the real part (Re), and the second row is the imaginary part Im).

deterministic induced current J̄+. So, the whole simulation

time of SOM-Net to reconstruct one example is about 1.96

seconds. In comparison, the SOM method needs about 27.5

seconds for 50 iterations of reconstruction. The simulation

time has been significantly reduced by 92% with the SOM-

Net.
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Fig. 9. The fitting of all scattered fields for Test#15 and Test#16: (a) Test#15,
(b) Test#16. For each test, the predicted scattered field by SOM-Net is
represented by the orange dots, and the reference one is indicated by the
blue line.

D. Cross-Database Test: Synthetic Data

To verify the generalization ability of SOM-Net, we also

test the SOM-Net with more challenging examples, including

scatterers with complex shapes, high-level noise interference,

and scatterers with high relative permittivity. We still use the

same testing model as the MNIST examples.

1) Complex Profiles: We test Test#5-Test#12 where scat-

terers have complex shapes different from the MNIST train-

ing data. All the scattered field are contaminated with 10%
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Fig. 10. Reconstruction results of the star profile with the relative permittivity of 1.5, 2.0, 2.5, and 3.0, respectively.

TABLE IV
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#17-TEST#20.

Method
Test#17 Test#18 Test#19 Test#20

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

SOM 0.92 0.05 0.91 0.09 0.92 0.11 0.78 0.18

U-Net 0.93 0.06 0.94 0.08 0.83 0.23 0.83 0.24

SOM-Net 0.94 0.05 0.94 0.08 0.93 0.11 0.92 0.16

white Gaussian noise. The reconstruction results of Test#5-

Test#12 are shown in Fig. 6, where the quality metrics are

summarized in Table II. The results shows that the SOM-Net

outperforms the comparison methods. Particularly, in Test#11

and Test#12, although there are three different scatterers and

scatterers have diverse permittivity values, the SOM-Net still

accurately reconstructs all examples. The results effectively

verify the good generalization ability of the SOM-Net, which

is attributed to the unrolling model design and the physical

loss constraints for model training.

2) High-level Noise Interference: We also test the noise

robustness of the SOM-Net model under different noise levels.

In this testing, we choose the “Austria” profile as the scatterer

with the εr as 2.0. And 10%, 20%, 25%, and 30% white

Gaussian noise are respectively added to the scattered field.

The reconstruction results of Test#13-Test#16 with different

noise levels are shown in Fig. 7. The corresponding error

metrics are summarized in Table III. It demonstrates that the

SOM-Net is still robust against noise, which achieves better

reconstruction results compared to the other methods. It is

worth noting that compared with the “Austria” test in existing

unrolling ISP methods [30] and [31], the SOM-Net obtains

better imaging results, especially showing clear gaps between

two small rings and large rings. It can be considered that the

high-quality restoration of induced current plays an important

role in the reconstruction of permittivity images.

The fitting of induced current and the scattered field are

shown in Fig. 8 and Fig. 9, respectively. The induced current is

still from the first transmitter and the one for other transmitters

are similar. Fig. 8 and Fig. 9 show that the SOM-Net can

accurately predict the induced current and the scattered field

for “Austria” profile with 25% and 30% high-level noise.

These results verify the noise robustness of the SOM-Net.

3) Scatterers with Different Permittivities: To further check

the generalization ability of the SOM-Net, we also test the

reconstruction performance of a star profile with varying

permittivities. The results of Test#17-Test#20 are shown in

Fig. 10, where the relative permittivity ranges from 1.5 to 3.0.

And 10% white Gaussian noise is added to all testing cases.

The corresponding error metrics are summarized in Table

IV. It is worth noting that the SOM-Net has shown superior

performance even for the case of the relative permittivity of

3.0, where the shape and the acute angles of the scatterer

can still be recovered. The explicit constraints on physical

variables and the unrolling design of SOM-Net ensure that the

network learns the ISP mapping with good generalizations.

Although the SOM-Net successfully retrieves the high-

permittivity scatterer, it is still very challenging to reconstruct

scatterers with a quite high permittivity. One potential way to

overcome this issue is to unroll the existing model that can
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handle the ISP with high permittivity. For example, Zhong et

al. [36] has demonstrated that the contraction integral equation

for inversion (CIE-I) is very effective to solve highly nonlinear

ISP with high contrasts. Sanghvi et al. [37] introduced a deep

learning method to provide good initials for the two-fold SOM

(TSOM) to reconstruct scatterers with high permittivity. Dubey

et al. [38] introduces a new Rytov approximation for solving

high-permittivity ISP with phaseless data. It is meaningful to

unroll such iterative methods into neural networks to retrieve

high-permittivity scatterers.

Fig. 11. The “FoamDielExt” profile from Fresnel experimental data.
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Fig. 12. Reconstruction results of the “FoamDielExt” profile at 3GHz and
4GHz, respectively.

TABLE V
ERROR METRICS OF RECONSTRUCTION RESULTS IN FIG.12 FOR

EXPERIMENTAL DATA AT 3GHZ AND 4GHZ, RESPECTIVELY.

f/GHz 3.0 4.0

Method SSIM RMSE SSIM RMSE

SOM 0.91 0.09 0.88 0.12

U-Net 0.91 0.07 0.89 0.15

SOM-Net 0.94 0.07 0.92 0.13

E. Cross-Database Test: Experimental Data

We finally validate the proposed method with the exper-

imental data provided by Fresnel Institute [39]. As shown

in Fig. 11, the “FoamDielExt” profile is considered in this

section. It is composed of two cylinders, a foam cylinder with

a diameter of 80 mm and εr = 1.45 ± 0.15, and a plastic

cylinder with a diameter of 31 mm and εr = 3.0 ± 0.3.

Different from the previous synthetic examples, there are 8

linear transmitters and 241 receivers to measure experimental

R
e

-5

0

5

10
-2

Im

-5

0

5

10
-2

-0.4

-0.2

0

-0.4

-0.2

0

0.2

-0.4

-0.2

0

-0.4

-0.2

0

0.2

R
e

-5

0

5

10
-2

Im

-5

0

5

10
-2

-0.5

0

0.5

1

-0.4

-0.2

0

0.2

-0.5

0

0.5

1

-0.4

-0.2

0

0.2

Fig. 13. The fitting of induced currents by the first transmitter for
“FoamDielExt” profile at 3 GHz and 4 GHz, respectively: (a) 3 GHz, (b)
4 GHz. For each test, the left, middle, and right columns are the deterministic
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Fig. 14. The fitting of all scattered fields for the “FoamDielExt” profile at
3GHz and 4GHz, respectively: (a) 3 GHz, (b) 4 GHz. For each test, the
predicted scattered field by SOM-Net is represented by the orange dots every
5 points, and the reference one is indicated by the blue line.

data, which are located on a circle with a radius of 1.67m
from the center of the target.

The operating frequency is 3 GHz and 4 GHz, respectively,

instead of the 400 MHz used in the synthetic examples.

Accordingly, the size of DOI is also changed from 2 m ×
2 m to 0.2 m × 0.2 m. In this experimental example, we use

the same MNIST profiles with a random circle to generate

the training data set, and the relative permittivity range of all

scatterers is between 1.1 and 3.0.is In Fig. 12, we present

the reconstruction profiles of SOM-Net, SOM, and U-Net,
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Fig. 15. The Fresnel experimental data: (a) the “FoamDielInt” profile and
(b) the “FoamTwinDiel” profile.

respectively. The corresponding error metrics are summarized

in Table V. Specifically, the best SSIM is 0.94 at 3GHz, and

0.92 at 4GHz, respectively. The comparison results of the

induced current and the scattered field are demonstrated in

Fig. 13 and Fig. 14, respectively. The preferable reconstruction

results once again verify the strong generalization ability of

the SOM-Net.
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Fig. 16. Reconstruction results of the experimental data: (a) the
“FoamDielExt” profile, (b) the “FoamDielInt” profile, and (c) the
“FoamTwinDiel” profile at 4GHz, respectively.

TABLE VI
ERROR METRICS OF RECONSTRUCTION RESULTS OF SOM-NET IN FIG. 16

FOR EXPERIMENTAL DATA AT 4GHZ.

Test SSIM RMSE

FoamDielExt 0.95 0.09

FoamDielInt 0.95 0.08

FoamTwinDiel 0.90 0.16

IV. DISCUSSION

In this section, we further discuss some aspects of the SOM-

Net. It includes the comparison of SOM-Net with existing

unrolling methods [30], [31], and the extension of SOM-Net

for other cases like limited aperture and lossy scatterers.

A. Comparison with Existing Unrolling Methods

Here we take a further comparison of SOM-Net with

the existing unrolling work [30], [31] using the Fresnel’s

experimental data in Fig. 11 and Fig. 15. In order to take

a fair comparison, we employ the same configurations of

generating training data as [31], where each training sample

consists of 2 or 3 random circles. More details can be seen in

Table II in [31]. Specially, the predicted results of the SOM-

Net are presented in Fig. 16, where both the reconstructed

relative permittivity values and the shape are of high precision.

Meanwhile, the corresponding SSIM and RMSE metrics are

summarized in Table VI. Considering the complexity to imple-

ment the methods in [30], [31], we directly compare the SOM-

Net results with those ones in the two papers. In comparison,

the reconstruction results of SOM-Net are visually superior to

the comparison algorithms. It should be noted that there is no

quality metric given in [30], and only the metric of data misfit

(rmsD) on the scattered field is defined in [31]. Accordingly,

the rmsD of SOM-Net results for the “FoamDielExt” and

“FoamDielInt” examples in Fig. 16 (a) and (b) reaches 0.08

and 0.07, respectively, while that in [31] is 0.12 and 0.08,

respectively. It shows that the predicted scattered field of the

proposed method also matches better with the observed field.

B. Limited Aperture

Measurement within a limited aperture is a common ISP

configuration in many real applications. Here, we conduct

the limited-aperture experiment using the same setup as the

above full-aperture ones for synthetic examples, except that

only measurements from transmitters and receivers within the

observable aperture are used. Since available measurements

are limited if the aperture is too small, we only consider an

experiment with a 270◦ aperture, where 12 line sources and

24 line receivers are available.

The reconstruction results with the 270◦ aperture are

demonstrated in Fig. 17, and the corresponding quality metrics

are summarized in Table VII, where we use (L) and (F) to

represent the results of limited and full apertures, respectively.

As observed, the proposed SOM-Net can still achieve better

reconstruction performance for challenging cases than the

SOM and U-Net. Meanwhile, the fitting results of the induced

current by the first transmitter and the corresponding scattered

fields for Test#21 are shown in Fig. 18, which indicates a good

consistency with the references.

Meanwhile, it is also found that the reconstruction perfor-

mance of SOM-Net degrades in the limited-aperture case com-

pared to the full-aperture ones. As shown in the comparison

results of SOM-Net(L) and SOM-Net(F) in Fig. 17 and Table

VII, it is observed that the SOM-Net with full-aperture data

achieves better reconstruction results compared to that of the

SOM-Net(L). For example, there is a noticeable deterioration

in the image quality for Test#21 in the limited-aperture case.

Meanwhile, the SSIM decreases from 0.91 to 0.88, and the

RMSE changes from 0.13 to 0.11. Similar quality dropping

has also been observed in other examples. This suggests that

extra regularization is required to improve the reconstruction

of SOM-Net for dealing with such a challenging case, which

needs further research but is beyond the scope of the current

work.

C. Lossy Profiles

Finally, we verify the performance of the SOM-Net for

the reconstruction of lossy profiles. Accordingly, we still

conduct the lossy experiments using the same configurations

as the synthetic lossless ones. The only difference is that

each scatterer here has an imaginary part randomly defined

between 0 and 0.9. In addition, another channel representing
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Fig. 17. Reconstruction results of Test#21 to Test#28 for scatterers with 10% white Gaussian noise.

TABLE VII
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#21-TEST#28 AND 1500 MNIST TESTS.

Method
Test#21 Test#22 Tset#23 Test#24 Test#25 Test#26 Test#27 Test#28 1500 MNIST

SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE

SOM(L) 0.69 0.15 0.91 0.07 0.83 0.10 0.81 0.12 0.78 0.16 0.82 0.11 0.92 0.11 0.76 0.18 0.78 0.14

U-Net(L) 0.79 0.15 0.93 0.07 0.91 0.10 0.88 0.10 0.84 0.18 0.82 0.15 0.89 0.15 0.85 0.24 0.86 0.13

SOM-Net(L) 0.86 0.13 0.96 0.04 0.93 0.08 0.91 0.09 0.87 0.13 0.91 0.15 0.92 0.11 0.90 0.15 0.88 0.12

SOM-Net(F) 0.90 0.11 0.97 0.04 0.94 0.08 0.95 0.07 0.91 0.11 0.92 0.09 0.93 0.11 0.92 0.16 0.91 0.10
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Fig. 18. Fitting results of induced currents and scattered field in Test#21: (a) the fitting of induced currents by the first transmitter, where the left, middle,
and right columns are the input, the output, and the target induced current, respectively. (b) the fitting of all scattered fields, where the predicted scattered
field by SOM-Net is represented by the orange dots, and the reference one is indicated by the blue line.

the imaginary part of the complex relative permittivity image

for lossy profiles also needs to be added to the SOM-Net. The

reconstruction results of the real and imaginary parts for some

typical samples are shown in Fig. 19 and Fig. 20, respectively.

The corresponding quality metrics are listed in Table VIII.

According to the reconstruction results, it can be seen that

the average results of 1500 lossy samples in the MNIST

data set verify the superior performance of SOM-Net over

the compared ones. In particular, as observed in Fig. 19

and Fig. 20, the proposed SOM-Net can still reconstruct

challenging lossy profiles in high quality. In Fig. 21, the fitting

results of the induced current and all scattered fields for the

“Austria” profile are drawn to further demonstrate the effective

learning of physical knowledge. Note that in the presentation

of concrete results, the first row is the real part (Re) and the

second row is the imaginary part (Im) for the induced current

and the scattered field.

It should be mentioned that, although we only describe

the SOM-Net with a TM case, considering the similarity of

the iterative SOM algorithms for the TM [5] and transverse
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Fig. 19. Reconstruction results of the real parts for lossy scatterers in Test#29 to Test#36 with 10% white Gaussian noise.
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Fig. 20. Reconstruction results of the imaginary parts for lossy scatterers in Test#29 to Test#36 with 10% white Gaussian noise.

TABLE VIII
ERROR METRICS OF RECONSTRUCTION RESULTS FOR TEST#29-TEST#36 AND 1500 MNIST TESTS.

Test Test#29 Test#30 Tset#31 Tset#32 Tset#33 Tset#34 Tset#35 Tset#36 1500 MNIST

SSIM Re Im Re Im Re Im Re Im Re Im Re Im Re Im Re Im Re Im

SOM 0.64 0.13 0.67 0.21 0.68 0.29 0.77 0.19 0.76 0.23 0.74 0.23 0.86 0.21 0.61 0.10 0.69 0.12

U-Net 0.87 0.75 0.89 0.81 0.75 0.67 0.95 0.90 0.94 0.89 0.89 0.82 0.92 0.79 0.87 0.79 0.89 0.59

SOM-Net 0.87 0.84 0.92 0.86 0.89 0.80 0.96 0.94 0.95 0.92 0.94 0.91 0.91 0.88 0.91 0.88 0.90 0.70

electric (TE) [40] cases, it is also easy to extend the SOM-Net

to the TE case. However, the computational complexity will

increase quickly compared to the TM case.

V. CONCLUSION

In this work, we have proposed the SOM-Net for solving

the full-wave ISPs by unrolling the iterative SOM. The SOM-

Net has been designed with several sub-networks to imitate the

iterations of the SOM. The deterministic induced current and

the rough permittivity image got by BP are used as the input,

while the direct output of the SOM-Net is the full induced

current. The induced current and the permittivity variables

have been updated alternately in the cascade sub-networks of

SOM-Net, which greatly reduces the nonlinearity of the ISP.

Joint physical constraints of the induced current, the scattered

field, and the permittivity image have been employed to guide

the training of the SOM-Net model. The generalization ability

of the resulting SOM-Net model has been greatly enhanced,

considering the inherent embedding of physical law on the

network structure and the consistent matches of all physical

variables of the governing Lippmann-Schwinger equations.

All numerical tests have validated that the proposed SOM-
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Fig. 21. Fitting results of induced currents and scattered field in Test#29: (a) the fitting of induced currents by the first transmitter, where the left, middle,
and right columns are the input, the output, and the target induced current, respectively. (b) the fitting of all scattered fields, where the predicted scattered
field by SOM-Net is represented by the orange dots, and the reference one is indicated by the blue line.

Net has superior performance than SOM and U-Net. Overall,

the SOM-Net has been verified to be a learning-based fast

inversion method with strong generalization ability and good

physical interpretability, which provides a new idea for the

application of deep unrolling technology to solve ISPs.

Despite the good results achieved, the proposed SOM-Net

still needs to be further improved and extended in many

aspects, such as the inversion under a limited aperture, and

the extension to the 3D case.
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