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Motion-Guided Global–Local Aggregation
Transformer Network for Precipitation Nowcasting

Xichao Dong , Member, IEEE, Zewei Zhao , Yupei Wang , Jianping Wang ,

and Cheng Hu , Senior Member, IEEE

Abstract— Nowadays deep learning-based weather radar echo
extrapolation methods have competently improved nowcasting
quality. Current pure convolutional or convolutional recurrent
neural network-based extrapolation pipelines inherently struggle
in capturing both global and local spatiotemporal interactions
simultaneously, thereby limiting nowcasting performances, e.g.,
they not only tend to underestimate heavy rainfalls’ spatial
coverage and intensity but also fail to precisely predict nonlinear
motion patterns. Furthermore, the usually adopted pixel-wise
objective functions lead to blurry predictions. To this end, we pro-
pose a novel motion-guided global–local aggregation Transformer
network for effectively combining spatiotemporal cues at differ-
ent time scales, thereby strengthening global–local spatiotemporal
aggregation urgently required by the extrapolation task. First,
we divide existing observations into both short- and long-term
sequences to represent echo dynamics at different time scales.
Then, to introduce reasonable motion guidance to Transformer,
we customize an end-to-end module for jointly extracting motion
representation of short- and long-term echo sequences (MRS,
MRL), while estimating optical flow. Subsequently, based on
Transformer architecture, MRS is used as queries to retrospect
the most useful information from MRL for an effective aggre-
gation of global long-term and local short-term cues. Finally,
the fused feature is employed for future echo prediction. Addi-
tionally, for the blurry prediction problem, predictions from our
model trained with an adversarial regularization achieve superior
performances not only in nowcasting skill scores but also in
precipitation details and image clarity over existing methods.
Extensive experiments on two challenging radar echo datasets
demonstrate the effectiveness of our proposed method.
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I. INTRODUCTION

PRECIPITATION nowcasting (PN) is of great value for
reducing adverse effects of weather disasters on modern

society. Weather radar provides high-quality data support
for developing nowcasting algorithms. Based on recent past
weather radar observations in local regions, weather radar echo
extrapolation algorithms aim to predict near future radar echo
sequences precisely and promptly.

Traditional methods [1], [2], [3], [4], [5], [6], [7] usually
extrapolate linearly relying on the precalculated motion vec-
tors. However, they either simplify intricacy strong radar echo
as isolated storm cells [1], [2] or assume the echo intensity
remains constant [3], [4], [5], [6], [7], failing in extrapolating
scattered or split echo as well as predicting fine-grained
precipitation pattern evolutions. Furthermore, traditional meth-
ods cannot benefit fully from the large amount of historical
weather radar data.

Nowadays, the data-driven deep learning (DL)-based meth-
ods have shown remarkable potential [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24] for pn tasks. They are either based on pure convolu-
tional structures or convolutional recurrent neural networks
(ConvRNNs).

The convolutional structures [9], [10], [11] are with advan-
tages of simple and easy to understand while inherently limited
to the size of the reception field, hence unable to capture
long-range spatiotemporal relationships.

Prevailing ConvRNN models [12], [13], [14], [15], [16],
[17], [18], [19], [20], [25], [26] are generally dedicated to
designing more satisfied ConvRNN units based on convolu-
tional long short-term memory (ConvLSTM) network [12].
However, basic topologies of these recent developed units are
too complex to be optimized easily and bring higher computa-
tion burden. What is more, common ConvRNNs are first-order
Markovian models, i.e., they only use information from the
previous time step to update the hidden state, resulting in
inherent struggles in perceiving long-range spatiotemporal
dependencies simultaneously. Furthermore, previous models
only consider short-term input sequence with limited dynamics
to encode spatiotemporal interactions.

In addition, for the choice of objective functions, current
deep prediction models [12], [13], [14], [15], [16], [17]
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usually minimize the mean squared error (MSE) or mean
absolute error (MAE) between the ground-truth and the
predicted images, which leads to conservative, blurry, and
over-smoothing results lacking the key texture information of
precipitation fields. However, since the nowcasting products
are aimed for forecasters, the human perceptual quality and the
clarity of predicted images are also important and the blurry
results cannot provide effective references for the issuance of
severe weather forecast warning.

In summary, previous DL-based nowcasting models strug-
gle in 1) capturing both global and local spatiotemporal
interactions simultaneously, limiting their performance and
2) predicting high fidelity echo image sequence with rich
rainfall details. For example, they tend to underestimate heavy
rainfalls’ spatial coverages and intensities at longer nowcast-
ing lead times, and show constrains in precisely nowcasting
complex echo dynamics such as convective initialization,
dissipation, and deformation.

More recently, the Transformer [27], [28] architectures’
emergence provides an alternative to mitigate the limitations
of previous pure convolutional or ConvRNN models applied
for nowcasting tasks. The self-attention module in Transformer
is dedicated to calculating the long-range spatial correlations
among pixels and cross-attention module is proper for per-
ceiving the temporal similarities among echo sequences with
different temporal scales. Thus, the Transformer architecture
essentially resonates with the goal of effective global–local
spatiotemporal aggregation urgently required by pn.

Nevertheless, using existing Transformers directly for now-
casting precipitations has the following issues. On the one
hand, the computational burden is sometimes unaffordable
when we directly use the whole standard encoder–decoder
vision Transformer [27] architecture, since the computational
cost becomes quadratic to spatiotemporal dimensions [29].
On the other hand, when performing attention mechanism, the
guidance of motion information is lacked in previous Trans-
former architecture. This leads to the model neglects some
key information of similar and fine-grained echo patterns in
the spatiotemporal neighborhood when fast echo motions such
as convection generation present, thereby fails in capturing
correct and accurate echo pattern evolutions.

To tackle aforementioned challenges, we propose a novel
motion-guided global–local aggregation Transformer network
for pn. Particularly, we divide existing observations into both
short- and long-term sequences to represent echo dynam-
ics at different time scales. Instead of directly using the
whole encoder–decoder structure of Transformer architecture,
we mainly leverage the decoder part for effectively and effi-
ciently combining spatiotemporal cues at different time scales.
What is more, to introduce reasonable motion guidance to
Transformer, we customize an end-to-end module for jointly
extracting motion representation of short- and long-term echo
sequences abbreviated to MRS and MRL, while estimat-
ing optical flow. Then based on Transformer architecture,
MRS is used to perform the self-attention in addition to the
cross-attention operations to MRL, so as to retrospect the most
useful information from MRL for an effective aggregation
of global long-term and local short-term cues. Finally, the

fused feature is employed for future echo prediction. For the
blurry prediction problem, we further adopt an adversarial
training strategy for improving predictions’ perceptual quality
and clarity.

The contributions of our work are summarized as follows.

1) We propose a motion-guided global–local aggregation
Transformer network for pn. We divide existing obser-
vations into both short- and long-term sequences, and
introduce the Transformer architecture for effective
combination of spatiotemporal cues at different time
scales, thereby strengthening global–local spatiotempo-
ral aggregation required by the pn task.

2) We propose an end-to-end module to jointly obtain
motion representation (MR) of echo sequences while
estimating optical flow, thereby introducing reasonable
motion guidance to the Transformer architecture.

3) We further train our proposed model with an adver-
sarial strategy to tackle the blurry prediction problem.
Experimental results demonstrate that our predictions
achieve superior performances not only in nowcasting
skill scores but also in precipitation details and image
clarity over existing methods.

The rest of this article is organized as follows. Section II
describes a review of the basics. Section III introduces the
details of our proposed method. In Section IV, we report and
analyze quantitative and qualitative experimental results. The
discussion and conclusion are drawn in Section V.

II. REVIEW OF THE BASICS

A. Problem Definition and ConvRNN Structures

We formulate the pn task as follows. Given past weather
radar echo observations S1:t = {Xk |k = 1, 2, . . . , t} ∈
R

t×H×W×C as input (where Xk ∈ R
H×W×C represents the

kth frame of S1:t ), our goal is to optimize the extrapolation
model F for obtaining predicted sequence S̃(t+1):T similar with
the ground-truth future sequence S(t+1):T . The echo images
are always stored as grayscale images hence the channel C
is 1 here.

In ConvLSTM [12] basic unit, full connections of the
standard LSTMs [30] are replaced with convolutions to capture
both the spatial and temporal information at the same time.
Additionally, [13] builds an encoder-forecaster structure by
stacking ConvLSTMs, as shown in Fig. 1. The cell states
and hidden states are delivered horizontally along the temporal
dimension. In addition, the hidden states are transferred ver-
tically to handle spatial appearances. The down sampling and
up sampling blocks are inserted in between two ConvLSTM
layers.

Follow-up ConvRNN methods [14], [15], [16], [17], [18],
[19], [20] are generally dedicated to designing more completed
ConvRNN units based on ConvLSTMs, e.g., PredRNN [14]
uses pairwise memory cells to extend ConvLSTM, memory
in memory (MIM) [16] adopts additional memory cells for
capturing both nonstationary and stationary processes better.
MotionRNN [17] is improved from MIM and it decomposes
motions into transient variations and motion trends. Interaction
dual attention long short-term memory (IDA-LSTM) [18]
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Fig. 1. Encoder-forecaster architecture based on ConvLSTMs. The super-
script l denotes the lth ConvLSTM layer in spatial dimensions and J denotes
the total ConvLSTM layers. The subscript represents the time step.

leverages attention mechanism to reweight the fused hidden
state and cell state features in channel and spatial dimension.
They have achieved promising performances.

B. End-to-End Optical Flow Estimation

Optical flow encodes motion information between echo
frames and traditional optical flow-based pn methods [4], [5],
[6], [7] still provide important references for the issuance of
severe weather forecast warnings. However, the bottlenecks of
cumbersome calculation of optical flow and using optical flow
to extrapolating linearly hinder further applications of optical
flows in pn task.

For the first bottleneck, encouraged by the success of
DL-based optical flow estimation [31], [32] methods and
3-D convolutions for video optical flow estimation [33], [34],
we customize an end-to-end module for optical flow estimation
but emphasize on improving pn qualities.

For the second bottleneck, instead of using optical flow for
linear echo extrapolation, our model jointly obtains MR of
echo sequences while estimating optical flow, thereby intro-
ducing reasonable motion guidance. Obtaining high-level MR
of the echo sequence in latent space enhances the robustness
of our model, and further helps model nowcast fine-grained
echo pattern evolutions precisely.

C. Brief Review of Transformers

The Transformer architecture [27] is originally proposed
for natural language processing tasks. Recently many variant
Transformer structures have been adopted for computer vision
tasks [27], [28], [29], [35] and achieved impressive results.
The prominent performance of Transformers in these tasks
has fascinated researchers to explore their applications in
remote sensing fields, including hyperspectral image classifica-
tion [36], remote sensing image change detection [37], remote
sensing image captioning [38], and so on.

The self-attention and cross-attention mechanisms are key
components of Transformers. The intuition of the attention
mechanisms in Transformer is that each token can interact with
others and exploit rich semantic information more efficiently,
which makes Transformers suitable for preforming long-range
interactions [27].

D. Blurry Prediction Problem in pn

Despite the promising performances in improving nowcast-
ing skill scores, the DL-based pn models tend to produce
blurry predictions, which is a common problem of ill repute.
This could be explained by the analysis of the adopted
objective functions, i.e., current models [12], [13], [14], [15],
[16], [17], [18], [19], [20] usually minimize the MSE or
MAE between the ground truth and the predictions. However,
the widely used MSE estimator tends to return the average
of many possible solutions and the MAE estimator tends
to return the median of the set of equally like values [39],
which leads to conservative, blurry, and over smoothing
results lacking the key texture information of precipitation
fields.

Some recent studies [40], [41], [42], [43], [44] try adding
different generative adversarial (GAN) losses to tackle this
problem. However, instead of specially designing new net-
work architectures for the underestimation problem of rainfall
regions and intensities, these methods mainly add adver-
sarial training strategies based on the existing extrapolation
frameworks and explore the performances. For example, the
generator in [42] is based on the spatiotemporal long short-
term memory (ST-LSTM) [14], the generator in [43] is based
on a simple 3D-convolutional neural network (CNN), in [44]
the authors mainly adopt the network architecture from [45]
for radar extrapolation, and in [41] the authors explore two
classic DL-based radar extrapolation models’ (U-Net [8] and
ConvLSTM [12]) performance when combined with GAN
losses. This adoption of existing architectures limits further
improvements.

III. OUR PROPOSED METHOD

As shown in Fig. 2, our model has two branches, i.e.,
we adopt the encoder-forecaster structure as our basic echo
prediction branch (hereinafter referred to as the prediction
branch), and we further propose the global–local aggregation
branch (hereinafter referred to as the aggregation branch)
which contains of the optical flow guided MR module (here-
inafter referred to as the motion module), Transformer decoder
(TD), and a channel attention-based fusion module.

We first divide existing observations into both short- and
long-term sequences, mainly considering that storms usually
have their own life cycles [46]. For example, the single-cell
storms are usually small scale and fairly disorganized con-
vective elements which generate or dissipate rapidly, having
2 h or less life cycle [46]. For the future 1 h nowcasting
with the past 1 h observations as input, the past 1-hour
short-term sequence hardly capture the whole evolution cycle
of these convective elements. However, with a longer term
sequence as reference, we have the possibility to accu-
rately describe its motion. For the multicell storms which
are maintained in an organized linear pattern, they tend to
persist longer and evolve less rapidly. In this situation, the
short- and long-term sequence split strategy is also better
for tracking this slower movement trend because the motion
trend of the short-term sequence is reflected in the long-term
sequence.
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Fig. 2. Overall framework of our proposed network for pn. (a) Data flow of the “update” training stage. (b) Data flow of the “fixed” training stage. (c) Structure
of the TD unit.

Fig. 3. (a) Overall structure of our proposed optical flow guided MR
module. (b)–(d) Demonstrates the detail architectures of our used Res-block,
down sampling block, and the tokenizer, respectively. BN represents Batch
Normalization layer. LReLU denotes Leaky-ReLU activation function.

A. Our Motion Module

Taken S1:t as input, our motion module outputs the cor-
responding optical flows Ot = {ok |k = 1, 2, . . . , t} ∈
R

t×H×W×2, where ok ∈ R
H×W×2 is the 2-D optical flow vector

for the kth and (k + 1)th input frames.
As shown in Fig. 3, our designed motion module is

an encoder–decoder architecture based on 3-D residual
blocks [47] (Res-blocks). Particularly, the encoder contains of
one Res-block and three down-sampling blocks, the decoder
has three Res-blocks, three up-sampling blocks, and four
1 × 1 × 1 convolutional layers. To mitigate the information

lost by down sampling in the encoding stage, we also adopt the
skip connections [8], i.e., the red dashed lines in Fig. 3. This
is helpful for deep network training [48], [49], and enables
the decoder to obtain more high-resolution information so as
to restore better detailed information.

Note that ot is the optical flow for the t th and (t + 1)th
input frames while we do not give the (t + 1)th frame to
the model. We predict this last echo image’s optical flow
mainly considering the following two benefits: 1) the model
requires semantic inference to predict the future optical flow,
and this may force the model to exploit better motion cues
for pn task [34] and 2) because the output dimensions of
the deconvolution layers are usually a multiple of the input,
it is actually easier to implement a model with same input
and output dimensions. With optical flow as supervision, our
module learns MR without relying on explicit optical flow
computation.

For the Res-blocks, as illustrated in Fig. 3(b), we adopt
the preactivation mechanism [47] to construct the identify
mapping, i.e., the input feature map passes through the nor-
malization layer, the activation layer, and the regularization
layer before passing through the 3 × 3 × 3 convolutional
layer. Instead of using max pooling layers for down sam-
pling, we adopt stride convolutions to preserve spatiotemporal
details. Details of our used down sampling blocks are shown
in Fig. 3(c). Note that our used down sampling blocks can be
seen as special forms of the Res-blocks where we add one
3 × 3 × 3 convolutional layer with a normalization layer in
the identity skip connection stream, and for convolutions in the
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down sampling block, the strides are set to 2. The up-sampling
blocks are implemented by 3-D deconvolution layers.

After S1:t is passed through the encoder of our motion
module and with the guidance of optical flow motion infor-
mation, our intuition is that here the high-level feature maps
A ∈ R

(t/Dt )×(H/Dhw)×(W/Dhw)×C1 could describe the motion
information of the input sequence in an abstract way, where
Dt and Dhw represent the down sampling factor in temporal
and spatial dimensions, respectively, and C1 is the channel
dimension of A.

Additionally, to generate vector sequence as token embed-
ding which meets the input form requirements of the
Transformer module and further aggregate spatiotemporal
information, we forward A to a tokenizer to obtain motion
tokens T . In specific, we map A into an embedding through
one 1 × 1 × 1 convolutional layer with an activation layer.
After that, we use a max-polling layer to further aggregate
spatial information. Additionally, an adaptive pooling layer is
employed for aggregating temporal information. Here we get
the intermediate feature map A1 ∈ R

(H/D′
hw)×(W/D′

hw)×C1 , and
finally we flat A1 in raster-scan order to obtain T ∈ R

L×C1 ,
where L = H W/(D′

hw)2 and D′
hw = kskt Dhw is another down

sampling factor similar with Dhw, ks and kt are the aggregating
factors in spatial dimension of the max pooling layer and
temporal dimension of the adaptive pooling layer, respectively.
The detail structure of our tokenizer is shown in Fig. 3(d).

B. TDs for Global–Local Aggregation

1) TD Structure: As shown in Fig. 2(c), the TD has two
groups of inputs, denoted as output tokens α ∈ R

m×C and
input tokens β ∈ R

n×C .
First, to retain positional information, the positional encod-

ing εpos ∈ R
m×C is added to α to generate α0 = α + εpos.

Taken α0 as input, the multihead self-attention (MSA) block
with Nhead heads is expressed as

Qi = α0W i
q , Ki = α0W i

k , Vi = α0W i
v (1)

hi = Attn[Qi ; Ki; Vi ] = softmax

(
Qi K T

i√
dk

)
Vi (2)

h = Concat[h1, . . . , hi , . . . , hNhead ]Wd (3)

where Qi , Ki , Vi ∈ R
m×(C/Nhead ) are the query, key, and value

vectors, respectively. W i
q, W i

k , W i
v ∈ R

C×(C/Nhead ) and Wd ∈
R

C×C are linear projection layers. hi denotes the output from
the i th head. Concat[·] denotes the concatenation operation.
After that, with a layer normalization layer and an identity
shortcut, we obtain α1 ∈ R

m×C , written as

α1 = LayerNorm(h + α0). (4)

Subsequently, in the multihead cross-attention (MCA)
block, the query vector is projected linearly from α1, and the
key and value vectors are projected linearly from the input
embedding β. The output from MCA r ∈ R

m×C is formed as
follows:

r = Concat[r1, . . . , r j , . . . , rNhead ]W ′
d (5)

where

r j = Attn
[
α1W j

q ; βW j
k ; βW j

v

]
(6)

is the output from the j th head, W ′
d , W j

q , W j
k , and W j

v

represent linear projections.
Then, to provide nonlinearity, the feedforward network

(FFN) layer is adopted, which is consist of two linear pro-
jection layers with a rectified linear unit (ReLU) activation in
between. Formally, the output of FFN λ ∈ R

m×C is calculated
as

λ = FFN(γ ) = ReLU(γ W1)W2 ∈ R
m×C (7)

where W1 ∈ R
C×Cin and W2 ∈ R

Cin×C are linear projections,
Cin is the dimension of the FFN inter layer.

Finally, after another layer normalization layer and an
identity shortcut, we obtain the TD output θ ∈ R

m×C as
follows:

θ = LayerNorm(λ + γ ). (8)

In short, the operations in a TD unit are summarized as

θ = TD(α, β) ∈ R
m×C . (9)

2) “Update” Training Stage Using TDs: To make compre-
hensive use of echo motion characteristics at different time
scales, we divide the existing observations into both long- and
short-term histories (denoted as Slong = S1:T0(t < T0 ≤ T ),
Sshort = S1:t ), and leverage TDs to perceive the global and
local correlations. Note that for a spatiotemporal prediction
task like pn, the precondition is that, we have no future
observation information as input at model inference stage.
Therefore, the divided Slong and Sshort are conceptions only
for the training data, and we still only use as the model input
during the model inference stage. To this end, we adopt an
“update/fixed” strategy to train the proposed model inspired
by memory networks [50], [51].

Concretely, in this stage, we use both Slong and Sshort as input
of our model. As shown in Fig. 2(a), Slong is forwarded to the
aggregation branch and Sshort is forwarded to our prediction
branch. Under the guidance of optical flows, the long-term
sequence is encoded by our motion module to obtain the
corresponding MRL Tlong ∈ R

L×C1 . Then we use the TDs to
update the latent long-term motion information into an external
memory bank G ∈ R

M×C1 , where L and M are the number
of tokens of Tlong and G, respectively. In specific, Tlong and
G are adopted as the two sets of inputs of TD unit to obtain
corresponding motion prototype θupdate, as defined in (9)

θupdate = TD(Tlong, G) ∈ R
L×C1 (10)

where the subscript represents the feature in “update” stage.
Subsequently, we reshape θupdate ∈ R

L×C1 to obtain the
motion context representation θ ′

update ∈ R
(H/D′

hw)×(W/D′
hw)×C1 for

further fusion with inadequate-spatiotemporal-representation
features output from the prediction branch.

In the “update” training stage, we first initialize the weights
of the memory bank G with normal distribution. Then, during
training, the weights in G are updated continuously with
the backpropagation algorithm [50], [51], i.e., once there are
updates of G’s weights, it could be seen as that the MRL is
stored to G iteratively.
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Fig. 4. (a) Data flow in traditional encoder-forecaster structure. (b) Data flow
between encoder-forecaster and our aggregation branch. (c) Detail structure
of our used channel attention fusion submodule.

3) Channel Attention-Based Feature Fusion: Since
ConvLSTMs are the basic components of our prediction
branch, and the cell state Ct in ConvLSTM stores the
long short-term information iterations from the history to
the current, we choose Ct to refine θ ′

update for inserting
the necessary motion context at present time step t . This
refinement is based on a channel-attention submodule [52].
Let C L

t , H L
t ∈ R

(H/D′
hw)×(W/D′

hw)×C2 represents the cell state
and hidden state of the Lth ConvLSTM layer (i.e., the deepest
layer) in our prediction branch, where C2 is the number of
channels. As shown in Fig. 4(c), the spatial information of
C L

t and θ ′
update are first aggregated using both max-pooling

and average-pooling operations, obtaining two sets of spatial
context embedding Fmax and Favg, respectively. Then Fmax

and Favg are forwarded to a shared FFN layer, added together
and passed through a Sigmoid activation layer to generating
the channel attention map MC ∈ R

1×1×C1 . Subsequently,
Hadamard product is performed between θ ′

update and MC to
obtain θ ′

att. In addition, θ ′
att is concatenated with H L

t and
forwarded to a 1 × 1 convolutional layer to obtain Rl=L

t .
Finally, Rl=L

t is fed to the corresponding up sampling layer
in the prediction branch for subsequent operations, and
predict corresponding next echo image X̃ t+1 as illustrated in
Fig. 4(b).

4) “Fixed” Training Stage Using TDs: The “fixed” training
stage is designed to allow the most proper MRL in the memory
bank G to be retrieved by the dynamic-limited MRS extracted
from Sshort . In this stage, only Sshort is forwarded to the
aggregation and prediction branch. Similar to the “update”
training process, Sshort is encoded by our motion module to
obtain MRS (i.e., Tshort ∈ R

L×C1 ) under the guidance of optical
flows. Note that the motion module used here has the same
structure with that used in the “update” training process while
does not share weights for unique and diverse expression of
MRL and MRS characteristics.

Subsequently, Tshort and G are adopted as two sets of inputs
of TD unit to obtain corresponding motion prototype θfixed

θfixed = TD(Tshort, G) ∈ R
L×C1 (11)

where the subscript “fixed” represents the feature map in
the “fixed” training stage. Additionally, we also reshape
θfixed ∈ R

L×C1 to obtain the motion context representation
θ ′

fixed ∈ R
(H/D′

hw)×(W/D′
hw)×C1 . This procedure is the same as the

“update” training stage (10). However, we lock the gradient
of G, and the weights of G are no longer updated and
optimized but remain fixed for retrieving the motion context
in MRL during this “fixed” training stage. That is, the entire
model parameters are trained to nowcast the long-term echo
sequence, except for the memory bank G. Actually, the TD
units can be seen as a unique soft addressing paradigm [53],
[54] here, i.e., given the query vectors, the attention scores
are calculated from the similarity between key-value pairs and
appended to the value vectors in a weighted manner, instead
of strictly meeting the condition that the key vectors are equal
to query vectors to retrieve the corresponding stored values,
which is adopted in the hard addressing process. Based on
the MSA and MCA mechanism of TD, it enables the most
proper MRS extracted by our motion module to access the
most useful MRL, realizing effective aggregation of global
long-term and local short-term motion cues. In addition, as the
same with the “update” training stage, there is also a channel
attention-based fusion between the prediction and aggregation
branch to generate the predicted image X̃ t+1.

In short, the “update” and “fixed” training stages are
performed alternately to predict future echo sequences. The
short-term echo sequence S1:t is forwarded to the prediction
branch in both the “update” and “fixed” training stage. The
long- and short-term sequences S1:T0 and S1:t are forwarded to
our aggregation branch alternatively during the two training
stages.

C. Loss Functions

Our adopted loss functions include the pixel-wise loss, the
optical flow loss, the GAN loss, and the feature-wise style
loss. The pixel-wise loss Lpred in both the “update” and “fixed”
training phases are the MAE and MSE error, denoted as

Lpred = 1

(T − t)H W

T∑
i=t+1

∑
j

(|s̃i, j − si, j | + (s̃i, j − si, j )
2)

(12)

where s̃i, j and si, j are the i th grid points of the j th timestamp
in the predicted sequence S̃(t+1):T and ground-truth S(t+1):T .

The optical flow loss Lflow is based on the endpoint error,
i.e., the sum of L2 distance between the estimated optical flows
and ground-truth optical flows, denoted as

Lflow =
K∑

k=1

∑
p

‖ õk,p − ok,p ‖2 (13)

where K is the number of predicted 2-D optical flow vectors.
õk,p is the estimated 2-D optical flow vector of the kth
and (k + 1)th image at pixel p. ok,p is the corresponding
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Fig. 5. (a) Split each event into three echo sequences. (b) Determine whether
an echo image is eligible or not by average filtering.

ground-truth optical flow vector. The subscript “2” represents
the L2-norm. We use the recent EpicFlow [55] method to
calculate the pseudo-ground-truth optical flows.

What is more, for the blurry prediction problem, we explore
the conditional GAN loss [56] and the style loss [57] to further
improve the fidelity and perceptual quality of our predictions,
written as

LGAN = min
G

max
D

{
E[log(D(S(t+1):T , S̃(t+1):T ))]

+ E[log(1 − D(S(t+1):T , S̃(t+1):T ))]
}

(14)

Lstyle =
T −t∑
i=1

N�∑
j=1

∥∥Gram�
i, j (Si ) − Gram�

i, j (S̃i )
∥∥

F
(15)

where D is the convolutional discriminator [45]. � is the
pretrained Visual Geometry Group (VGG)-19 network. N� is
the number of adopted layers for feature extraction in VGG-19
network. Subscript “F” in (15) represents the Frobenius norm
of the matrix. Gram�

i, j is the feature map’s Gram matrix [58],
which is formed as

Gram�
i, j (Si ) = � j(Si ) · � j(Si )

T
/

C�
i, j H �

i, j W
�
i, j (16)

where � j(Si ) ∈ R
C�

i, j ×(H �
i, j W

�
i, j ) is the reshaped output feature

map from the j th VGG-19 layer, with the i th frame Si as
input, and � j (Si )

T is the corresponding transpose matrix.
The total loss function Ltot is finally formulated as

Ltot = Lpred + μ1 · Lflow + μ2 · LGAN + μ3 · Lstyle (17)

where μ1, μ2, μ3 are individual loss weights for Lflow, LGAN,
and Lstyle, respectively.

IV. EXPERIMENTS AND ANALYSES

A. Dataset and Preprocessing

Two challenging real-world weather radar datasets (Storm
EVent ImageRy (SEVIR) [59] and standardized radar dataset
(SRAD2018) [60]) are adopted to evaluate our model.

1) SEVIR Dataset: The SEVIR dataset [59] is mainly
sampled from storm events such as heavy rainfalls over the
US and it contains spatiotemporally aligned image sequences
from the geostationary environmental satellite system (GOES)
and the next-generation radar (NEXRAD).

Each sequence, or “event” in SEVIR contains a 384 ×
384 km region with a spatial resolution of 1 × 1 km and
spanning a 4 h of time which is sampled in 5 min steps.
Note that we only use NEXRAD derived vertically integrated
liquid (VIL) data and do not use other kinds of data such as
data from GOES. The VIL images in SEVIR are stored as
integers in the range of 0–255. The converting rule between
these encoded integers and the true VIL data with units of
kg/m2 is as follows [59]:

VIL =

⎧⎪⎨
⎪⎩

0, if p ≤ 5

(p − 2)/90.66, if 5 < p ≤ 18

exp[(p − 83.9)/38.9], if p > 18

(18)

where p is the integers stored in the images.
Our data preprocessing process mainly contain two steps,

i.e., event splitting and echo images filtering. For the event
splitting, we concretize the pn task into predicting echo
sequence of the future one hour based on previous one-hour
observations, i.e., for SEVIR dataset, given the previous
12 echo images, we aim to predict the future 12 echo images.
Therefore, as shown in Fig. 5(a), we split each SEVIR event
into three input-output subsequences, and each of them has
T = 24 images spanning 2 h of time.

For the echo images filtering, we use an average filtering
strategy [24] to determine whether each image is a rainy image
or not, and further determine whether a subsequence is kept or
not. Concretely, as shown in Fig. 5(b), a filter was convolved
with each image in the subsequences to detect areas of high
rainfall intensities and the subsequence is kept if more than
half of the images in the subsequence contain at least one pixel
exceeding a predefined threshold. The filter size is 1/8th of the
image size and the threshold for SEVIR VIL dataset is set to
0.7 kg/m2 which correspond to a reflectivity value of 30 dBZ.

The sequences are divided into train dataset, validation
dataset, and test dataset and finally we obtain 14 154 training
sequences, 3654 validation sequences, and 4304 test sequences
for SEVIR dataset. The data distribution is shown in Fig. 6.

2) SRAD2018 Dataset: The SRAD2018 dataset is from
Tianchi IEEE International Conference on Data Mining
(ICDM) 2018 Global Artificial intelligence (AI) Challenge on
Meteorology, collected by Shenzhen Meteorological Bureau
and Hong Kong Observatory. Each sequence or “event” in
SRAD2018 originally contains a 501 × 501 km region with
a spatial resolution of 1 × 1 km and spanning a 6 h of time
which is sampled in 6 min steps, and is taken from an altitude
of 3 km. The reflectivity values are directly stored in images
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Fig. 6. Histograms of the pixel values in SEVIR dataset.

Fig. 7. Histograms of the pixel values in SRAD2018 dataset.

in SRAD2018. Considering the limited computing resources
to process image sequence with such spatial sizes, we crop
the central part of images in SRAD2018 to get echo images
with the size of 384 × 384, which is the same with the echo
image size in SEVIR.

We also preprocess SRAD2018 dataset by event splitting
and echo images filtering. Since images in SRAD2018 are
sampled in 6 min’ time steps, we split each SRAD2018 event
into three input-output subsequences, and each of them has
T = 20 images spanning a 2 h of time. For the echo images
filtering of SRAD2018, the filter size is also 1/8th of the image
size and the threshold is set to 40 dBZ. Moreover, a nonlinear
scaling operation [18] is performed on SRAD2018 dataset to
make converting between the reflectivity values and integers
as follows:

dBZ = p × 95/255 − 10 (19)

where p is the integers stored in the images after the conver-
sion.

We divide the sequences into train dataset, validation
dataset, and test dataset and finally we obtain 7258 training
sequences, 1802 validation sequences, and 1200 test sequences
for SRAD2018 dataset. The dataset distribution is shown in
Fig. 7.

B. Experimental setups

1) Evaluation Protocols: We evaluate the models with
nowcasting skill scores, pixel-wise image evaluation indexes,
and perceptual image evaluation indexes.

First, for the nowcasting skill scores, we qualify the model
performance using the widely adopted metrics in the area

of pn, including the probability of detection (POD), critical
success index (CSI), false alarm ratio (FAR), and the Heidke
skill score (HSS) [61], [62]. Higher POD, CSI, and HSS
values and lower FAR values indicate better nowcasting per-
formance of the model. Note that the POD metric is biased to
overestimating the size of precipitation areas while the FAR
metric does the opposite [63]. The HSS and CSI metrics take
into account of both the false alarm rate and probabilities of
detection, hence HSS, CSI are mainly adopted for judging
model performances while POD, FAR are mainly for analyzing
why the HSS and CSI of a model are better or worse than
another.

Above metrics are actually based on the binary classi-
fication, therefore the reflectivity (or VIL) threshold must
be clarified for any metrics. As shown in Figs. 5 and 6,
there are not enough samples satisfying the threshold of
50 dBZ and 12.0 kg/m2 in the SRAD2018 and SEVIR
dataset, respectively, hence for the SRAD2018 dataset, our
adopted thresholds are 10, 20, 30, and 40 dBZ. For SEVIR
dataset, our adopted thresholds for VIL are 0.140 kg/m2,
0.700 kg/m2, 3.50 kg/m2, and 6.90 kg/m2 [64]. We can easily
modify these thresholds according to users’ requirements in
applications.

Additionally, we adopt peak signal to noise ratio (PSNR),
MSE, and structural similarity (SSIM) [65] metrics to measure
the pixel-level performances. What is more, the perceptual
evaluation metrics including learned perceptual image patch
similarity (LPIPS) [66] and Frechet inception distance (FID)
[67] are also considered. LPIPS is a perceptual metric which
indicates the perceptual similarity between two images ranging
from 0 to 1, and it is considered to be similar with human
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TABLE I

PERFORMANCE COMPARISONS OF DIFFERENT DL-BASED MODELS FOR PN TASK UNDER METRICS OF MSE, PSNR, SSIM, LPIPS, AND FID.
↑ DENOTES THE HIGHER THE BETTER, AND ↓ DENOTES THE LOWER THE BETTER. THE BEST PERFORMANCE UNDER SPECIFIC SETTINGS IS

MARKED WITH BOLD RED. THE SECOND-BEST PERFORMANCE IS MARKED WITH BOLD BLUE (SAME BELLOW)

TABLE II

PERFORMANCE COMPARISONS OF DIFFERENT DL-BASED MODELS FOR PN TASK UNDER POD AND CSI METRICS ON SEVIR DATASET

TABLE III

PERFORMANCE COMPARISONS OF DIFFERENT DL-BASED MODELS FOR PN TASK UNDER HSS AND FAR METRICS ON SEVIR DATASET

Fig. 8. CSI and HSS scores against different nowcasting lead times under different VIL thresholds on SEVIR dataset. Results in the upper row show CSI
scores. Results in the lower row show HSS scores.

objects’ recognition system. The FID indicates the generated
images clarity.

2) Model Configurations: For the prediction branch,
we adopt an encoder-forecaster structure with four ConvLSTM
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Fig. 9. Visualizations of a convective organization process in SEVIR dataset. (a) Observations. (b) Our proposed model trained with GAN strategy. (c) Our
proposed model trained without GAN strategy. (d) rainymotion. (e) ConvLSTM. (f) PredRNN. (g) IDA-LSTM. (h) Conv-TT-LSTM. (i) U-Net.

TABLE IV

PERFORMANCE COMPARISONS OF DIFFERENT DL-BASED MODELS FOR PN TASK UNDER POD AND CSI METRICS ON SRAD2018 DATASET

layers (i.e., J = 4 in Fig. 1), with the number of hidden
states for the RNNs setting to 16, 64, 128, and 128. For the
motion module, the output channel of the first Res-block is set
to 32. Then, each time the feature maps are passed through
the down sampling block, their channel dimension is doubled.
The rest three up sampling blocks keep the channel dimension
unchanged. The first three 1 × 1 × 1 convolutional layers are

used to adjust channel dimensions for the skip connections.
The channel dimension of the last 1 × 1 × 1 convolutional
layer is set to 2 for the 2-D optical flow vector estimation. For
TDs, the channel dimensions of the input and output tokens
are set to 128. We set the length of long-term sequence as
the same with the total length of subsequences in training
data.
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TABLE V

PERFORMANCE COMPARISONS OF DIFFERENT DL-BASED MODELS FOR PN TASK UNDER HSS AND FAR METRICS ON SRAD2018 DATASET

Fig. 10. CSI and HSS scores against different nowcasting lead times under different VIL thresholds on SRAD dataset. Results in the upper row show CSI
scores. Results in the lower row show HSS scores.

Our adopted discriminator consists of six convolutional
layers, of which the kernel size of the first five layers is set
to 4, the stride is set to 2, and each of them is with a ReLU
layer behind. The kernel size of the last convolution layer
is set to 1 and the stride is set to 1. For the first layer, the
output channel dimension is set to 64 and then after each
convolutional layer, the number of channels is doubled.

Four other recent competitive ConvRNN-based models
including ConvLSTM [12], PredRNN [14], convolutional
tensor-train LSTM (Conv-TT-LSTM) [26], and IDA-LSTM
[18] and one convolutional model U-Net [8] are implemented
to compare performances. We also use an optical flow-based
method (rainymotion) [7] for comparison.

The models are implemented by PyTorch framework on a
server which is equipped with three NVIDIA TITAN RTX
graphics cards. The Adam optimizer is adopted. Batch-size
is set to 4 and learning rate is set to 0.0001. Except for
U-Net, we train each of the other models for 10 000 iterations,
since we observe obvious nonconvergence after 10 000 itera-
tions on SRAD2018 dataset when training U-Net. Therefore,
another 10 000 iterations are added when we train U-Net on
SRAD2018 dataset.

Note that due to the adoption of different datasets in which
the dataset size and data distribution are significantly various,

and the limited computing resources, when implementing
reference methods, sometimes we cannot keep the parameters
consistent with that given in the literature and put the same
effort to optimize all these models. Hence, there is still the
possibility of performance biases and these biases are hard to
be eliminated completely.

C. Quantitative and Qualitative Results

1) Results on SEVIR Dataset: We first analyze quantitative
results. Table I lists performance comparisons under MSE,
SSIM, PSNR, LPIPS, and FID metrics. Our model trained
without GAN strategy achieves the best result for the pixel-
wise metrics. When trained with the GAN strategy, our model
is no longer optimal among pixel-wise indicators; however,
it performs either the best or the second best in perceptual
evaluation indicators including LPIPS and FID. The perceptual
quality of predictions is significantly improved, which is
comparable to the optical flow method.

Tables II and III list nowcasting skill score performance
comparisons under POD, CSI, HSS and FAR metrics. Our
proposed model when trained without GAN strategy out-
performs all other reference methods in terms of HSS and
CSI scores, and it maintains the FAR scores at a relatively
low level at the same time. The HSS and CSI scores at
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Fig. 11. Visualizations of a convective organization process in SRAD dataset. (a) Observations. (b) Our proposed model trained with GAN strategy. (c) Our
proposed model trained without GAN strategy. (d) rainymotion. (e) ConvLSTM. (f) PredRNN. (g) IDA-LSTM. (h) Conv-TT-LSTM. (i) U-Net.

3.5 and 6.9 kg/m2 thresholds are significantly better than
other methods. These results imply that our model is more
advanced in nowcasting heavy rainfalls, which is challenging
for other models. When trained with the GAN strategy, there is
a slight drop in HSS and CSI indicator except for the 3.5 and
6.9 kg/m2 thresholds. We think this performance fluctuation
when introducing the GAN losses is acceptable since the
image clarity is ameliorated, and the predictions provides more
precipitation details.

Fig. 8 shows CSI and HSS scores against different now-
casting lead times over different thresholds. From Fig. 8,
we intuitively see that the U-Net performs the worst among
all thresholds and during all nowcasting lead times. For other
ConvRNN-based models, ConvLSTM get better nowcasting
results than PredRNN, IDA-LSTM, and Conv-TT-LSTM in
the first 12 min’ lead time period. However, the perfor-
mance of ConvLSTM drops sharply after 12 min. Perfor-
mances of PredRNN, IDA-LSTM, and Conv-TT-LSTM on
SEVIR dataset are similar and PredRNN gets slightly higher
HSS and CSI scores than IDA-LSTM and Conv-TT-LSTM
during 6 to 48 min’ lead time. However, the results of

all these models are inferior to those of our proposed
method.

For qualitative analyses, we visualize a convective orga-
nization process selected from SEVIR dataset. As shown in
Fig. 9, we focus on the area enclosed by the black circles and
black rectangle. These areas are with strong rainfall intensities
even exceeding a value of 32 kg/m2 during the convective
organization process. The rainfall field during this procedure
has complex motion patterns. Our proposed model alleviates
the problem of underestimating the intensity and spatial area
of heavy rainfall, no matter with or without the introduction
of GAN losses, while other models tend to underestimate
the strong rainfall. In addition, the image clarity is improved
significantly when trained with GAN loss, and there are more
precipitation details compared with other blurry predictions.
The optical flow method also predicts clear images; however,
the distortions appear and worsen as nowcasting lead time
increases. What is more, although the perceptual quantity is
improved with the introduction of GAN loss, we could tell
from Fig. 9 that there are still inaccurate nowcasting regions.
This indicates that the image perceptual quality such as the
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clarity is not always positively correlated with nowcasting skill
scores.

2) Results on SRAD2018 Dataset: As shown in Tables IV
and V, performances of our proposed model using HSS, CSI
metrics under all the adopted thresholds are superior to those
of other models. The optical flow method is characterized by
high POD values while high FAR values at the same time,
resulting in low HSS and CSI values. When trained with the
GAN strategy, there is a slight performance drop in both HSS
and CSI.

Fig. 10 shows the CSI and HSS scores against different
nowcasting lead times under different reflectivity thresholds
on SRAD2018 dataset. For the results under 40 dBZ threshold,
ConvLSTM shows good scores before a nowcasting lead time
of 18 min but its performance drops rapidly after 18 min.
Conv-TT-LSTM does not obtain competitive results in the first
12 min but achieves similar performances with PredRNN and
IDA-LSTM during 12 to 60 min, under both 30 and 40 dBZ
thresholds. Different with results on SEVIR dataset, the U-Net
model even gets competitive nowcasting scores with other
ConvRNN-based models. Our model does not show significant
improvements under the 30 dBZ threshold, where IDA-LSTM
achieves the best scores at a nowcasting lead time of 1 h.
However, when we raise the threshold to 40 dBZ, HSS and
CSI scores of our model is obviously superior to others. The
optical flow method still has good POD scores while poor FAR
scores, as a result, there HSS and CSI scores are the worst at
long nowcasting lead times.

Fig. 11 shows a nowcasting result comparison of a develop-
ing squall line system. We mainly focus on the four enclosed
areas with solid black lines. The oblique black rectangle
encloses the main structure of the squall line. All of the
models nowcast the general structure of the squall line to a
certain extent, but the prediction results of our models (trained
with or without GAN loss) are more consistent with the
real observations in terms of echo intensity and echo pattern
evolutions. The left vertical black rectangle encloses an area
of convection generation, and only our models successfully
nowcast this convection initiation compared with other meth-
ods. The area enclosed by the horizontal black ellipse indicates
the convective core strengthen, and only our models capture
and predict this trend of echo intensity increasing precisely.
This case study shows our model is more sensitive to complex
echo motions such as convection generation and deformation,
especially in strong rainfall cases, no matter with or without
the introduction of GAN loss. It is interesting that although
the optical flow method seems to predict sharp and clear
images, however, the quantitative metrics are not so satisfied.
Importantly, the predictions from the addition of GAN loss
contains more echo structures although there are not obvious
improvements in the nowcasting skill scores.

3) Effects of the Optical Flow Guidance: Fig. 12 shows
an example of the learned optical flows and corresponding
ground-truth optical flows calculated from EpicFlow. From
Fig. 12, we know that the learned optical flow is consistent
with the ground truth in the overall motion trend. This ensures
a reasonable echo sequence MR learning. To further evaluate
the importance of the optical flow guidance, we make the

Fig. 12. (a) and (b) Two consecutive echo frames from SEVIR dataset.
(c) Ground-truth optical flow calculated from Epicflow. (d) Learned optical
flow by our motion module. In the middle, we show the color wheel.
The different colors indicate the motion directions, and the color intensity
represents the displacement’s magnitude.

TABLE VI

EFFECTS OF ADOPTING OPTICAL FLOW AS MOTION GUIDANCE ON
PERFORMANCE OF NOWCASTING QUALITIES

following ablation studies. In the aggregation branch of our
model, we only adopt the encoder part of the motion module
but without the decoder part and the supervision of the
ground-truth optical flow. As listed in Table VI, for both
datasets, after we remove the optical flow as motion guidance,
the performances under heavy rainfall thresholds have different
degrees of decline. This indicates the effectiveness of adopting
a clear and reasonable motion guidance for improving now-
casting quality.

V. DISCUSSION AND CONCLUSION

In this article, we proposed a motion-guided global–local
aggregation Transformer network for improving pn quality.
Different with previous convolutional structures or ConvRNN
models for pn, on the one hand, we innovatively explore
the Transformer architecture for an effective and efficient
combination of spatiotemporal cues at different time scales,
thereby further enhancing the global–local aggregation which
is desperately required by pn task.
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On the other hand, we notice that previous Transformer
architecture lacks the guidance of motion information when
performing attention calculations. To introduce reasonable
motion guidance, we customize an end-to-end learning module
for jointly extracting MR of echo sequences while estimating
optical flow. This has the following benefits. First, an end-
to-end learning manner avoids nontrivial computation burden
of calculating optical flow. What is more, using optical flow
as priori motion guidance forces our model learning latent
MRs which are proper for nowcasting, and further benefits
our model nowcasting fine-grained echo pattern evolutions
precisely. Additionally, we do not use optical flow to extrapo-
late linearly. This enhances the nowcasting robustness of our
model.

Furthermore, for the blurry prediction problem, we intro-
duce the GAN training strategy to the proposed model. The
experimental results show that the introduction of GAN loss
help improve the predictions’ perceptual quality and image
clarity notably while the nowcasting skill scores are slightly
unstable and maybe with acceptable performance drop.

For the evaluation metrics, many existing methods only
adopts the pixel-wise indicators and the nowcasting skill scores
for performance evaluation. As our experimental show, the
blurry predictions sometimes have close HSS and CSI scores
and better pixel-wise evaluation scores, compared with the
clear results. However, the clear predictions which have rich
echo structure details provide better reference for refined and
accurate nowcasting. Hence, we propose to use nowcasting
skill scores as the main evaluation metrics while use pixel-wise
evaluation indicators (such as MSE) as optional insignificant
references. What is more, when the skill score indicators of
different models are almost equivalent, it is recommended to
use perceptual indicators such as the clarity indicator FID for
further judgment.

REFERENCES

[1] J. Johnson et al., “The storm cell identification and tracking algorithm:
An enhanced WSR-88D algorithm,” Weather Forecast., vol. 13, no. 2,
pp. 263–276, 1998.

[2] M. Dixon and G. Wiener, “TITAN: Thunderstorm identification, track-
ing, analysis, and nowcasting—A radar-based methodology,” J. Atmos.
Ocean. Technol., vol. 10, no. 6, pp. 785–797, Dec. 1993.

[3] R. Rinehart and E. Garvey, “Three-dimensional storm motion detection
by conventional weather radar,” Nature, vol. 273, no. 5660, pp. 287–289,
1978.

[4] H. Sakaino, “Spatio–temporal image pattern prediction method based on
a physical model with time-varying optical flow,” IEEE Trans. Geosci.
Remote Sens., vol. 51, no. 5, pp. 3023–3036, May 2013.

[5] N. E. Bowler, C. E. Pierce, and A. Seed, “Development of a precipitation
nowcasting algorithm based upon optical flow techniques,” J. Hydrol.,
vol. 288, nos. 1–2, pp. 74–91, Mar. 2004.

[6] W.-C. Woo and W.-K. Wong, “Operational application of optical flow
techniques to radar-based rainfall nowcasting,” Atmosphere, vol. 8,
no. 12, p. 48, Feb. 2017.

[7] G. Ayzel, M. Heistermann, and T. Winterrath, “Optical flow models as an
open benchmark for radar-based precipitation nowcasting (rainymotion
v0. 1),” Geosci. Model Develop., vol. 12, no. 4, pp. 1387–1402, 2019.

[8] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234–241.
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