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Abstract—The fast development of self-supervised learning 
lowers the bar learning feature representation from massive 
unlabeled data and has triggered a series of research on change 
detection of remote sensing images. Challenges in adapting self-
supervised learning from natural images classification to remote 
sensing images change detection arise from difference between the 
two tasks. The learned patch-level feature representations are not 
satisfying for the pixel-level precise change detection. In this 
paper, we proposed a novel pixel-level self-supervised 
hyperspectral spatial-spectral understanding network (HyperNet) 
to accomplish pixel-wise feature representation for effective 
hyperspectral change detection. Concretely, not patches but the 
whole images are fed into the network and the multi-temporal 
spatial-spectral features are compared pixel by pixel. Instead of 
processing the two-dimensional imaging space and spectral 
response dimension in hybrid style, a powerful spatial-spectral 
attention module is put forward to explore the spatial correlation 
and discriminative spectral features of multi-temporal 
hyperspectral images (HSIs), separately. Only the positive samples 
at the same location of bi-temporal HSIs are created and forced to 
be aligned, aiming at learning the spectral difference-invariant 
features. Moreover, a new similarity loss function named focal 
cosine is proposed to solve the problem of imbalanced easy and 
hard positive samples comparison, where the weights of those hard 
samples are enlarged and highlighted to promote the network 
training. Six hyperspectral datasets have been adopted to test the 
validity and generalization of proposed HyperNet. The extensive 
experiments demonstrate the superiority of HyperNet over the 
state-of-the-art algorithms on downstream hyperspectral change 
detection tasks. 

 
Index Terms—Hyperspectral change detection, self-supervised 

learning, pixel-level, spatial-spectral attention, feature 
understanding  

I. INTRODUCTION 

HANGE detection technology is a significant tool 
for urban development monitoring and land-
cover/land-use change detection [1]–[3]. Generally, 
change detection refers to detect the changes of two 

remote sensing images acquired on different times at the same 
location [4], [5]. Hyperspectral image (HSI) provides unique 
spectral curve for every kind of ground object, showing great 
potential for object discrimination and classification [6], [7]. 
Hyperspectral change detection is beneficial for discriminating 
the changes hard to notice. The two important tasks are 
hyperspectral anomalous change detection (HACD) and 
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general hyperspectral binary change detection (HBCD), 
respectively. HACD [8], [9] focuses on the changes that usually 
originate from the displacement, appearance, disappearance, 
and concealment of small and rare objects. HACD is motivated 
to highlight those rare changes used for air defense and 
emergency response, etc. And HBCD is targeted at detecting 
the precise land cover transformation under the embarrassed 
situation that changes may happen between some pretty similar 
ground objects [10], [11].  

The rise of deep learning has significantly promoted the 
development of change detection algorithms in recent 
years[12]–[15]. Most of the current hyperspectral change 
detection methods are mainly based on the deep supervised 
learning[16], [17], where the training labels are necessary for 
the model training. The high-quality training data do provide 
accurate supervision for parameter training and bring about 
good performance, but are labor-consuming and even elusive to 
obtain. Thus, alleviating or eliminating the reliance of 
annotated labels turns into a key to the problem of hyperspectral 
change detection.  

Self-supervised learning (SSL) [18]–[20] is a kind of new 
paradigm in machine learning enabling the model to learn 
feature representation from massive unlabeled data. And it has 
intrigued plenty of SSL representation learning algorithms for 
natural image processing. As a kind of discriminative SSL, 
contrastive learning (CL) [21], [22] aims at pulling together the 
positive sample pairs and pushing away the negative sample 
pairs, and has been applied for multi-spectral optical and 
synthetic aperture radar (SAR) remote sensing change 
detection[23], [24] . However, the self-supervised learning for 
hyperspectral change detection still faces following limitations.  
1) Pixel-level feature representation for precise change 

detection. The current SSL-based change detection 
methods are essentially dependent on instance 
discrimination. Concretely, the multi-temporal images are 
segmented into patches for model input. The patches are 
mapped into feature vectors in the feature space for feature 
comparison. As a result, the model can only learn the 
patch-level feature representation, leading to coarse change 
detection results.  

2) Fully utilization of spatial and spectral features. The spatial 
and spectral feature extraction are crucial for hyperspectral 
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change detection since the multi-temporal complex ground 
objects can be confusing due to the variant spectral 
difference. A common phenomenon is that the most deep-
learning based change detection methods adopt two-
dimensional (2D) convolutional layers to extract both 
spatial and spectral features simultaneously. However, 
with a spatial kernel filter sliding along horizontal and 
vertical direction, the 2D convolutional layer focuses on 
the spatial information along each channel but ignores the 
relationship between different spectral bands, leading to 
ineffective exploitation of spectral information. 

Given the consideration of problems and concerns mentioned 
above, a self-supervised hyperspectral spatial-spectral feature 
understanding network (HyperNet) is proposed. To achieve 
pixel-level feature for dense prediction task like change 
detection, we proposed an original fully-convolutional self-
supervised learning framework for convenient pixel-wise 
feature learning. The similarity comparisons of multi-temporal 
HSIs are conducted in pixel-level not the patch-level for fine-
grained alignment from totally unlabeled data. And a powerful 
spatial-spectral attention module is designed to fully exploit the 
informative spatial and spectral features, including the spatial 
attention branch and spectral attention branch. The former one 
is used to explore spatial features and selectively emphasize the 
most informative spatial objects. The latter one is tailored to 
make full use of the discriminative spectral information and the 
relationship between local and global spectral bands. The deep 
spatial and spectral feature are extracted separately from the 
proposed two branches and then are adaptively fused to produce 
comprehensive features. Considering the imbalanced easy and 
hard samples comparison for self-supervised learning, a new 
loss function named focal cosine is put forward to enlarge the 
weight of those hard samples and promote the network training. 
We explore the generalization of proposed self-supervised 
HyperNet on two kind of change detection tasks as 
hyperspectral anomalous change detection (HACD) and 
hyperspectral binary change detection (HBCD), as SSL is 
known for learning general features and strong generalization 
for different downstream tasks. The contribution of this 
research can be summed up as three parts: 
1) A self-supervised hyperspectral spatial-spectral feature 

understanding network (HyperNet) is elaborated for 
hyperspectral change detection. HyperNet successfully 
achieves pixel-level self-supervised feature representation 
learning for accurate dense change detection task. And a 
spatial attention branch and a spectral attention branch are 
designed to extract discriminative spatial and spectral 
information separately, instead of directly processing the 
hyperspectral images in a hybrid way.  

2) In order to relieve the imbalanced problem between the easy 
positive and hard positive samples in SSL training, a novel 
similarity loss function named focal cosine loss is proposed 
to emphasize the weight of hard positive samples and 
relieve the dominance of the large majority easy samples. 
Experimental results tested on six hyperspectral change 
detection datasets indicate the effectiveness of proposed 
focal cosine loss function. 

3) To demonstrate the validity of proposed HyperNet, we have 
conducted extensive experiments on hyperspectral 
anomalous change detection and hyperspectral binary 
change detection. HyperNet achieves good performance on 
both HACD and HBCD results and outperforms the state-
of-the-art algorithms, demonstrating the effectiveness and 
generalization of proposed extracting spatial and spectral 
feature separately for better hyperspectral image 
understanding. 

The paper is organized as follows. Section II will give a brief 
introduction of related works. The detailed description of the 
proposed HyperNet will be exhibited on Section III. The 
experimental results and analysis will be presented on Section 
IV. Finally, Section V will conclude this paper. 

II. RELATED WORK 

Hyperspectral anomalous change detection. HACD focuses 
on the dynamics of small objects, facing the challenges of the 
violent spectral differences between the unchanged area of 
multi-temporal HSIs, which are mainly caused by the complex 
atmosphere and illumination conditions, and the motion of 
sensors, etc. [25], [26] The predictor-based method is a very 
classic solution, where the spectral values of a pair pixels of 
multi-temporal HSIs can be mapped by a linear or nonlinear 
regression model [27], [28]. And the predictive image 
constructed by the predictor is adjusted to be as close as the 
other HSI for those unchanged background areas, like the 
vegetation, building area. Thus, the anomalous change can be 
separated easily from the residual image. Chronochrome (CC) 
[29] presented a linear space-invariant observation model to 
establish a linear mapping between two HSIs, where it is 
assumed that the observed spectral value is in linear regression 
with the real primitive spectral curve. However, the 
inhomogeneous spectral difference filed leaves the linear model 
with bad performance especially under variant weather 
conditions. Then a novel segmented linear prediction method 
[30] argued to represent multi-temporal HSIs by a normal 
mixture model and enable the linear predictor model to differ 
between the background subspaces. And ACDA [31] put 
forward to establish an effective nonlinear mapping relationship 
between the multi-temporal spectral vectors by auto-encoder 
with multiple structural layers. It is found that these methods 
overemphasize the spectral information while neglect the 
spatial information to detect the anomalous changes.  

Hyperspectral binary change detection. For HBCD, one of 
the key problems of HBCD is how to take advantage of the 
detailed spectral information, where two subproblems are 
involved, including the refinement of the redundant adjacent 
spectral information and the exploration of rich spectral 
features separating changes from pseudo-changes. The 
traditional methods can be roughly categorized as three groups 
[32], [33], where the algebraic-based calculates the spectral 
difference between multi-temporal HSIs, the transformation-
based compares the transformed information of new feature 
space, and the classification-based obtains the change detection 
result by comparison of the classification maps of multi-
temporal HSIs. Now researchers have attempted to solve the 
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HBCD problem with deep neural networks [34], [35]. GETNET 
[36] developed an end-to-end two-dimensional (2D) 
convolutional neural network framework, where the designed 
mixed affinity matrix integrated with abundance maps are 
beneficial for full exploitation of the spectral information of 
HSIs. A new unsupervised spectral mapping method [37] based 
on auto-encoder with adversarial learning was proposed for 
HBCD which utilized the spectral features and minimized the 
reconstruction loss of input spectral vectors. [38] presented a 
novel strategy which combined two unsupervised model-driven 
method to generate credible pseudo-labels for proposed 2D 
HSI-CD framework. And several attention-based methods have 
been developed for HBCD to enhance the most informative 
spatial and spectral features from the huge-volume HSI data. A 
multilevel encoder–decoder attention network (ML-EDAN 
[17]) was proposed to extract hierarchical features with the 
designed contextual-information guided attention module. 
SSA-SiamNet [39] was designed to emphasize discriminative 
channels and locations and suppress less informative ones. 
However, the deep-learning-based method mostly driven by 
annotated samples suffer from expensive samples or even no 
samples in practical applications. Thus, how to fully explore 
spatial and spectral information from HSI data with no labels or 
the coarse-grained labels turns into a research priority 
currently[40], [41]. 

Self-supervised learning. Self-supervised feature learning is 
a powerful feature learning paradigm on unlabeled data [18], 
[19], [21], [42], and has achieved great success on visual image 
processing, e.g. image classification [43], video representation 
learning [44], target recognition [45], etc. Generally, the SSL 
produces massive labelled data by pre-text tasks and then learns 
the feature representation from the self-produced labelled data 
[46], [47]. And contrastive learning is one kind of 
discriminative SSL, aiming at attracting the positive sample 
pairs and push away the negative sample pairs. Data 
augmentation is one of the common ways to produce abundant 
positive and negative samples. One single image and its 
augmented view form a pair of positive samples, while a pair of 
negative samples refers to augmented views of different images. 
Concretely, random horizontal flip, vertical flip, random crop 
and resize, rotation, and noise are important and useful data 
transformation operators. And a great number of new methods 
based on siamese network have been developed to drive feature 
representation learning. MoCo [48] builds a large dictionary 
look-up to facilitates contrastive feature learning. SimCLR [49] 
uses plenty of negative samples within a batch to balance the 
feature alignment and uniformity of the samples embedded into 
the feature space. BYOL [50] directly removes the negative 
samples and predicts the view of target network by training the 
online network, where the target network is updated with a 
slow-moving average of the online network. SimSiam [51] 
maximizes the similarity of the prediction target of one 
augmented view and the embedding vector of another view 
from the encoder under stop-gradient constraint.  

The prevailing of contrastive learning has sparked the 
development of advanced self-supervised learning-based 
change detection methods of remote sensing images[23], [24]. 

Currently, contrastive learning has also been applied for multi-
spectral optical and synthetic aperture radar (SAR) remote 
sensing change detection. Under the prior probability of little 
changes, bi-temporal remote sensing images are regarded as the 
different views of the same image acquired at different time on 
the same location. Image patches of the same location of bi-
temporal images are saw as positive sample pairs, while image 
patches of different location of the same training batch size are 
viewed as negative sample pairs. Without any labels, the 
network is capable of learning feature representation from input 
by minimizing the distance of embedding feature vectors of 
positive samples and pushing apart embedding feature vectors 
of negative samples. Generally, to avoid the collapse of the 
network, a large batch size is necessary for the satisfaction of 
enough negative samples of each batch.  

Under the situation of suboptimal exploitation of spatial and 
spectral information and the few and limited training samples 
for hyperspectral change detection, the proposed method is 
deeply inspired by the current self-supervised learning. We 
proposed a novel self-supervised spatial-spectral hyperspectral 
understanding network to accomplish accurate change 
detection. The proposed method processes the hyperspectral 
images exactly from the perspective of two-dimensional 
imaging space and the spectral dimension, digging the deep and 
effective spatial and spectral features. Without negative sample 
pairs, the proposed HyperNet uses only positive sample pairs 
for similarity comparison. And large training batch size is not 
necessary for HyperNet, improving the practicability of 
HyperNet. Rather than patch-based sample pairs, the whole 
images are fed into the HyperNet to acquire global sense of 
information comparison and pixel-wise features for change 
detection.  

III. METHODOLOGY 

This section gives a detailed representation of proposed 
approach HyperNet. Fig. 1 shows the flowchart of HyperNet for 
hyperspectral change detection, which is mainly composed of 
three parts: (a) spatial-spectral attention module, (b) projector, 
and (c) predictor. The whole bi-temporal hyperspectral images 
are firstly processed by the spatial-spectral attention module, 
aiming to fully exploit the spatial relationship and the diverse 
spectral information. The projector further maps the extracted 
feature embeddings to acquire deeper and more abundant 
features. And the predictor which is only equipped with single 
branch plays a role of creating the prediction target for the other 
branch. The self-supervised training objective is to force the 
projected embeddings of one view to be as similar as possible 
with the prediction target of the other view on the selected mask 
area. Under the circumstance of absence of labeled data, the 
pre-detection strategy provides a coarse pseudo label for 
supplement. A novel focal cosine similarity loss is designed to 
boost the contribution of those hard samples for better training. 
The two branches of HyperNet share the same weight, and is 
devoted to learn the aligned features for bi-temporal HSIs 
without labor-cost labels, where the distance map of the learned 
features is then used to separate the unchanged from the 
changed area easily.  
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Fig. 1 The structure of proposed HyperNet for hyperspectral 
change detection. (a) is the spatial-spectral attention module, 
which is especially designed to fully exploit the abundant 
information of hyperspectral images, including the residual 
spatial attention blocks (RSAB), residual channel attention 
blocks (RCAB) and the fusion block; (b) is the projector to 
improve the nonlinear feature mapping ability; (c) is the 
predictor, which is only assembled on one of branch of the 
HyperNet and is swapped for another branch to alternatively 
minimize the similarity loss.  
 

A. Spatial-Spectral Attention Module 
The spatial-spectral attention module is elaborated to focus 

on the spatial and spectral features separately. The spatial 
attention branch concentrates on the spatial relationship from 
the local and global scale while the spectral attention branch 
contributes to explore the useful and informative spectral 
features. Then the spatial and spectral features are adaptively 
fused together to acquire the advantaged information of each 
pixel.  

1) Spatial attention branch. The spatial attention branch 
consists of three effective building blocks, the residual spatial 
attention block (RSAB), which is specially designed for spatial 
feature representation. The detailed architecture of RSAB is 
shown in Fig. 2 (a). Take the hyperspectral image � ∈ ℝ�×�×�  
as the input for example, the 3×3 2D convolutional layer 
followed by the Batch Normalization (BN) layer, firstly extract 
the shallow edge and line information within the small inceptive 

field. The output can be denoted as �(�) ∈ ℝ�×�×� (Equation 
(1)), where � refers to the number of feature maps. 

 �(�) = BN(��×�(�)) (1) 
For the purposed of concentration on the most informative 

feature, the Convolutional Block Attention Module (CBAM) 
[52] is incorporated after the convolution. The CBAM contains 
a channel-wise attention (CA) (shown in Fig. 2 (c)) and a 
spatial-wise attention (SA) (shown in Fig. 2 (d)), respectively. 
The CA squeezes the spatial information and stimulates the 
most discriminative spectral information from hundreds of 
spectral bands. Specifically, the global average and max 
pooling convert  each channel  of spatial  map into a 
representative statistical value. Then another two shared 1×1 
2D convolutional layers are targeted to gain inspired channel 
representations. And the summation of the extracted channel  

(a) (b) (c) 

  
(d) (e) 

Fig. 2 The architecture of (a) residual spatial attention block 
(RSAB); (b) residual channel attention block (RCAB); (c) 
adaptive feature fusion block; (d) channel-wise attention, and 
(e) spatial-wise attention. 
 
features are converted into a channel attention map ��� ranging 
from 0 to 1 by the sigmoid activation function � . The 
mathematical definition of CA can be depicted as follows: 
 ��� = �(��×�(��×�(AvgPool(�(�)))) + ��×�(��×�(MaxPool(�(�)))))) (2) 
where the bigger the weight is, the more attractive the spectral 
information of the input feature is. The stimulated channel 
attention feature ���  is obtained by elemental multiplication, 
which can be expressed as formula: 

 ��� = ���⨂�(�) (3) 
Analogously, as shown in Fig. 2 (d), SA firstly reduces the 

channel number and then concentrates on how to exploit the 
most informative spatial information. The max pooling layer 
and average pooling layer of the SA focus on the edge and 
texture information, separately. The features extracted from the 
two pooling layers are further transformed by a 2D 
convolutional layer with a kernel filter size as 7×7. Then the 
sigmoid activation function transforms the features into the 
range from 0 to 1 to get a weight constraint map ���, which is 
finally multiplied by the input features to get the output ���.  
 ��� = �(��×�(AvgPool(���); MaxPool(���))) (4) 
 ��� = ���⨂��� (5) 

Noted that it is exactly the gate mechanism that controls the 
amount of information. The spatial information is emphasized 
at the location with the weight closer to 1, and suppressed at the 
area with the weight closer to 0. 

Besides, the spatial attention block is designed in a residual 
architecture [53] to avoid being overfitted and convenient 
fusion of deep and shallow features. The input feature here is 
� ∈ ℝ�×�×� , and the output feature of the spatial-wise 
attention is ��� ∈ ℝ�×�×�. The down-sampling on the input is 
necessary when the input channel is not equal to the output 
channel. Concretely, a 1×1 2D convolutional layer and BN are 
executed on the input to get �� ∈ ℝ�×�×�. Thus, the residual 

output of the first RSAB is described as �����
(�)

∈ ℝ�×�×�: 

 �� = BN(��×�(�))  (6) 

 �����
(�)

= ReLU(�� + ���)  (7) 
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(a) 

 
(b) 

Fig. 3 The architecture of (a) projector, and (b) predictor. 
 

Noted that the number of channels of output feature map is 
set as � for each RSAB block. As a result, only the first RSAB 
block is equipped with the down-sampling. 

2) Spectral attention branch. For the spectral attention 
branch, three residual channel attention blocks (RCAB) are 
specially designed for spectral feature representation. As Fig. 2 
(b) shows, take the hyperspectral image � ∈ ℝ�×�×�  as the 
input for example, the 2D convolutional layer with kernel size 
1×1 is selected for concentrating on the spectral space. Another 
BN layer is used to improve the generalization of the network. 

The output feature map �(�) ∈ ℝ�×�×� with the number set as 
� can be expressed as: 

 �(�) = BN(��×�(�))  (8) 
The RCAB block is assembled with the channel-wise 

attention which is tailored to stress the most useful spectral 
band and get the spectral attention map ���

′  ranging from 0 to 
1. The definition is defined as: 
 ���
′ =  �(��×�(��×�(AvgPool(�(�)))) + ��×�(��×�(MaxPool(�(�)))))) (9) 
For the RCAB, the short-cut connection is linked between 

the input and the output weighted spectral feature when they 
share the same size. Therefore, the output of first RCAB is 
exactly the weighted channel attention feature, which is 
acquired by formula (10). And we set the number of all feature 
maps acquired by the RCAB as �. 

 �����
(�)

= ���
′ ⨂�(�) (10) 

Compared with those that only a branch is designed to extract 
both the spatial and spectral information simultaneously, we 
elaborated two branches focused on spatial and spectral 
information, separately, for high-dimensional hyperspectral 
cube. The spatial attention branch stacked three RSABs to 
extract the high-level sematic features, while the spectral 
attention branch combined RCABs to extract discriminative 
spectral features. The spatial attention branch and the spectral 
attention branch are two independent branches and upgraded 
individually. 

3) Adaptive feature fusion block. After acquiring the 

advanced spatial features �����
(�)

and spectral features �����
(�)

, an 

adaptive spatial-spectral feature fusion block is tailored to get 
the fused feature. As Fig. 2 (c) shows, we adopt the 1×1 2D 
convolutional layer and BN to process the extracted spatial 
spectral features. The spatial feature is further enhanced and the 

 
Fig. 4 The comparison of cosine similarity loss function in blue 
and proposed focal cosine loss function in red. 
 
spectral features are aggregated by the adaptive fusion block. 
And these two reorganized features are concatenated together 
alone the channel axis to get the final fused features ����� ∈

ℝ�×�×(��), which can be described as follows:  

 ����� = (BN(��×�(�����
(�)

)); BN(��×�(�����
(�)

)))  (11) 

B. Siamese Projector and Predictor 

The projector is designed to promote the extracted spatial and 
spectral features to get deeper embedding vectors. As presented 

in Fig. 3 (a), the projector is comprised of three dense 1×1 

convolutional layers companied with BN layers and ReLU 
activation functions. Noted that these three 2D convolution 
layers hold the same output channel number as 2�.  

The predictor with the stop-gradient operation is a key part 
for the self-supervised training. Only one of the branches of 
HyperNet is equipped with the predictor. Though the HyperNet 
learns to extract aligned features of bi-temporal HSIs, it may 
induce identical but meaningless features to force similar the 
output features produced by the totally siamese network. As 
shown in Fig. 1, the output feature of the predictor in the first 
branch noted as �� is forced to be similar with the output feature 
�� of the projector in the second branch. Meanwhile, no 
gradient is back propagated in the second branch, where only 
the HSI �  is responsible for the gradient back propagation. 
Likewise, the output feature of the projector �� in the first 
branch and the output feature �� of the predictor in the second 
branch are forced to be similar, where the gradient propagation 
is stopped in the first branch. The learned feature from predictor 
may differ from the one from projector. But the similarity 
constraint and the swap strategy facilitate the features to be 
more similar with each other alternatively, making the 
HyperNet learn meaningful aligned spatial-spectral features 
from the bi-temporal HSIs.  

Fig. 3 (b) shows the structure of the predictor, which is 
composed of two dense 1×1 convolutional layers with BN as 

well as ReLU layer. Specifically, the first convolution layer 
outputs a squeezed feature map with channel number as �. And 
the final convolutional layer outputs the expanded feature map 
with channel number as 2�. The projector and predictor share 
the same outputted feature map size. 

C. Focal Cosine Loss Function 

Cosine (cos) similarity distance is a commonly used  

R
eL

U

1×
1

 C
on

v

B
N

R
eL

U

1×
1

 C
on

v

B
N

1×
1

 C
on

v

B
N

R
eL

U

1
×

1 
C

o
n

v

B
N

1
×

1 
C

o
n

v



6 

(a) (b) (c) (d) (e) 
Fig. 5 From left to right are the pseudo-color representation of 
“Viareggio 2013” dataset for hyperspectral anomalous change 
detection: (a) D1F12H1, (b) D1F12H2, (c) D2F22H2 for 
“Viareggio 2013” dataset, (d) reference map of EX-1: 
D1F12H1-D1F12H2, (e) reference map of EX-2: D1F12H1-
D2F22H2. 
 
measuring index to compare the similarity of two high-
dimensional vectors. The more similar the two vectors are, the 
closer the cosine similarity distance value is to 1. And the 
similarity value between the bi-temporal vectors of large 
difference is close to 0 or even -1. The natural imaging 
conditions may induce different spectral values over large areas. 
However, most of the spectral difference of the unchanged area 
are easy to be optimized. In other words, these positive samples 
are easy to be pulled together. Consequently, the large majority 
easy samples dominate during the training and the difficult 
samples are harder to be optimized. In order to solve the easy-
sample-dominant problem, a novel similarity loss function 
named Focal Cosine is proposed. 

Given �� ∈ ℝ�×�×(��) gained from the embedding space of 

first view and �� ∈ ℝ�×�×(��) from the prediction target of the 
other view, the proposed loss function named as focal cosine 
ℒ�� is defined as follows: 
 ℒ��(��, ��) = −(2 − cos (��, ��) ⊗ cos (��, ��) (12) 

 Cos(��, ��) =
��

‖��‖�
⋅

��

‖��‖�
 (13) 

where we call the (2 − cos (��, ��) as an adjustive factor. For 
the hard samples, cos(��, ��) → −1 , then the (2 −
cos (��, ��) → 3. In such case, the focal cosine loss function 
greatly increases the weight of hard samples. As for the easy 
samples, cos(��, ��) → 1 , (2 − cos (��, ��) → 1 . As a result, 
the weight of the easy samples keeps the same. As the Fig. 4 
shows, the blue line refers to the original cosine similarity loss 
function and the red line represents the proposed focal cosine 
loss function. For the original loss function painted as blue, the 
loss achieves the minimum when the two vectors are similar 
enough and hold zero angles. And proposed focal cosine loss 
function shares the same minimum with the cosine similarity 
loss function. Moreover, when two vectors hold a big angle, 
which is obviously a pair of hard positive samples, the proposed 
focal cosine loss of these two vectors move up to a very high 
value compared with the original cosine similarity loss. When 
the two vectors hold a small angle, which is more a pair of easy 
positive samples, the proposed focal cosine loss of these two 
vectors drops and is lower than the value gained form the 
original cosine similarity loss function. 

Considering extensive change may happen among multi- 
temporal HSIs, it heavily hampers the performance of the 
network to compute similarity loss for all pixels. We proposed 
a pre-detection strategy to get a pseudo mask �, where a limited 

number of the pixels with high probability to be unchanged are 
opted from the pre-detection result of a certain classic method.  

The final objective function is defined as ℒ: 

 ℒ =
�

�
⋅ � ⊗ (ℒ��(StopGrad(��), ��) + ℒ��(StopGrad(��), ��)) (14) 

The parameters of the whole network are upgraded by 
minimizing the loss function using gradient back propagation. 
And the proposed HyperNet is capable of learning powerful 
pixel-level deep features from the bi-temporal HSIs. Moreover, 
the bi-temporal features are aligned with each other in the 
feature space for those unchanged areas and scattered for the 
changed area. As a result, the learned features of the spatial-
spectral attention module are quite appropriate for separating 
the unchanged from the changed. For the post-processing, Diff-
RX [54] is used as anomaly detector to detect anomalous 
changes for three HBCD datasets. And the cosine similarity 
distance is adopted with K-means [55] is employed for 
thresholding for binary change maps.  

IV. EXPERIMENTS AND ANALYSIS 

To test the effectiveness of proposed method on 
hyperspectral change detection, extensive hyperspectral 
experiments have been conducted on hyperspectral anomalous 
change detection and hyperspectral binary change detection. In 
this section, the descriptions of the datasets are firstly presented. 
Next, the details of the experimental setting are given. Then the 
analyses of the experimental result tested on HACD and HBCD 
are exhibited and the ablation experiment results are discussed. 

A. Hyperspectral Datasets 

The datasets used for HACD include the benchmark dataset 
“Viareggio 2013” [56] and another simulated Hymap dataset.  

1) “Viareggio 2013” dataset: Generally, the “Viareggio 
2013” dataset involves three HSIs, namely D1F12H1, 
D1F12H2, and D2F22H2, as shown in Fig. 5. All of the three 
HSIs are shot in Viareggio, Italy by an airborne hyperspectral 
sensor SIM.GA. The spectral information covers spectrum 
ranging from 400 nm to 1000 nm, with a spectral resolution as 
1.2 nm approximately. And the spatial resolution is 0.6 m. The 
image sizes are all 450×375, with 127 bands. The data are 

processed by de-striped [57] and spectrally binned and 
available at http://rsipg.dii.unipi.it/. The D1F12H1 and 
D1F12H2 are acquired on the same day, May 8, 2013, making 
up the EX-1: D1F12H1-D1F12H2. And EX-2: D1F12H1-
D2F22H2 is composed of D1F12H1 and D2F22H2, which is 
acquired on May 9, 2013. Two HSIs of EX-1 share very similar 
imaging condition and the anomalous change mainly come 
from the movement of vehicles. But the case of EX-2 is quite 
different. There is severe shift between the gesture of the 
shooting platforms for EX-2, casting extensive distortion and 
great challenge for pixel-to-pixel anomalous change detection. 
Moreover, the weather condition of D2F22H2 has also changed 
compared with D1F12H1, where shadows appear around the 
trees and buildings.  

2) Simulated Hymap dataset: The Simulated Hymap dataset 
(shown in Fig. 6) is designed to test the impact of noised on 
proposed method, the first image is a hyperspectral target  
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(a) (b) 

  
(c) (d) 

Fig. 6 The pseudo-color map of Simulated Hymap dataset for 
hyperspectral anomalous change detection: (a) original Hymap 
image, (b) simulated Hymap image, (c) reference map, (d) the 
simulation noise map of random uniform distribution processed 
by a low-pass filter. 

    

    

    
(a) (b) (c)  

Fig. 7 From top to bottom are pseudo-color map of Hermiston 
dataset, Bay dataset, and Santa Barbara dataset for 
hyperspectral binary change detection: (a) hyperspectral image 
acquired at time 1, (b) hyperspectral image acquired at time 2, 
(c) reference map.  
 
detection dataset acquired at Cooke City, Montanta, on July 4, 
2006. And it is available at http://dirsapps.cis.rit.edu/blindtest/. 
The image sizes are 280×800×126. The spectrum ranges cover 
from 453 nm to 2486 nm. To simulate different imaging 
condition, a noise map of random uniform distribution ranging 
from -10 to 10 is firstly created and then is processed by a low-
pass filter with a standard deviation of ten pixels. The simulated 
HSI is created by an addition of the noise map and the original 
Hymap data. Besides, an offset of one pixel on horizontal and 
vertical direction are applied to the simulated HSI. And the 
anomalous changes are obtained by replacement of objects at 
other locations.  

Moreover, we have also tested the validity of HyperNet on 
another three hyperspectral binary change detection datasets. 

1) Hermiston dataset: As the first row of Fig. 7 presents, 
two HSIs are acquired on May 1, 2004, and May 8, 2007 by 
Hyperion in Hermiston city, respectively. And Fig. 7 (c) is the 
reference map of HBCD. The scene covers a wide range of 

TABLE I 
THE SELECTED SAMPLES FROM PRE-DETECTION RESULTS 

FOR SIX DATASETS 

Dataset Image size 
Selected 
numbers 

Ratio 
(%) 

� 

D1F12H1-D1F12H2 450*375*12 8192 4.85 64 
D1F12H1-D2F22H2 450*375 8192 4.85 64 
Simulated Hymap  280*800 8192 3.66 64 
Hermiston 307*241 8192 11.07 72 
Bay 600*500 8192 2.73 112 
Santa Barbara 492*740 8192*2 4.50 112 

 
irrigated fields, river, cultivated land, with size as 307 × 241 
pixels and 154 spectral bands. 

2) Bay dataset: The second row of Fig. 7 gives three-
dimensional pseudo-color cube representation of Bay dataset, 
which are taken on 2013 and 2015, individually, with the 
AVIRIS sensor surrounding the city of Patterson (California). 
Bay dataset is largely covered by farm lands and buildings, with 
spatial size as 600 × 500 pixels and 224 spectral bands. Noted 
that only the labeled changed and unchanged area are adopted 
for assessment.  

3) Santa Barbara dataset: The last one for HBCD is 
exhibited as the third row of Fig. 7, where (g) and (f) are shot 
on the years 2013 and 2014 with the AVIRIS sensor on the 
Santa Barbara region. The spatial dimensions are 984 × 740 
pixels and both have 224 spectral bands. The two HSIs have 
recorded the urban evolution and dynamic changes of farmland, 
and HBCD provides a powerful tool to detect the accurate 
dynamics changes of urban development. 

B. Implementation Details 

1) Experimental Settings: We implemented our method by 
Pytorch and conducted experiments on a single NVIDIA RTX 
3090 GPU. And the parameters of the network are initialized by 
He-normal way [58]. The optimizer is SGD with momentum as 
0.9 and L2 normalization efficient as 0.0001. We set the initial 
learning rate as 0.05 and a cosine decay [59] strategy is adopted. 
The number of total epochs for training is set 200. Since the 
proposed method is a full-convolutional neural network, the 
whole image is fed into the network without the need of batch 
size. As for the pre-detection strategy, Diff-RX is opted for pre-
detection methods for HACD and Change Vector Analysis 
(CVA) is opted for HBCD. The pseudo samples are selected 
from the pre-detection result. The selected numbers of pseudo 
samples for all datasets are listed as TABLE I. Noted that Santa 
Barbara dataset are segmented in two owing to the large size of 

984×740 for HyperNet. The parameter settings of feature num 

� are summarized in TABLE I.  
2) Comparison Methods: To testify the effectiveness of 

proposed method, several methods are opted for comparison. 
For HACD, another eight methods, namely, Chronochrome 
(CC) [29], Unsupervised Slow Feature Analysis (USFA) [60], 
Diff-RX [54], Hyperbolic Anomalous Change Detector 
(HACD) [9], Simple Difference Hyperbolic Anomalous 
Change Detector (SDHACD) [9], Straight Anomalous Change 
Detector (SACD) [9], MTC-NET (patch=13), and MTC-NET  

Changed

Unchanged

Uncertain

Changed

Unchanged

Uncertain

Changed

Unchanged
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Low  High 
Fig. 8 The anomalous change detection maps of EX-1: 
D1F12H1-D1F12H2 on (a) CC, (b) USFA, (c) Diff_RX, (d) 
HACD, (e) SDHACD, (f) SDACD, (g) MTC-NET (patch=13), 
(h) MTC-NET (patch=31), (i) proposed HyperNet, (j) 
Reference change map. 
 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Low  High 
Fig. 9 The anomalous change detection maps of EX-2: 
D1F12H1-D2F22H2 on (a) CC, (b) USFA, (c) Diff_RX, (d) 
HACD, (e) SDHACD, (f) SDACD, (g) MTC-NET (patch=13), 
(h) MTC-NET (patch=31), (i) proposed HyperNet, (j) 
Reference change map. 
 
(patch=31) [61]. In order to stress the effect of the patch size on 
the performance of change detection, MTC-NET (patch=13) 
with patch size set as 13×13, MTC-NET (patch=31) with patch 

size set as 31×31 are calculated for comparison. For HBCD, 

another six algorithms, CVA, Iterative Slow Feature Analysis 
(ISFA) [62], MSCD [24], OSCD [23], MTC-NET (patch=13), 
and MTC-NET (patch=31) are selected for comparison. Noted 
that OSCD and MSCD are two patch-based self-supervised 
learning method for multi-sensor change detection, and the 
latter has been tested on multi-spectral image change detection. 
The batch size of MSCD is set as 64 according to the [24], while 
the OSCD adopts patch size as 16 for Bay and Santa Barbara 
datasets, and 8 for Hermiston dataset. Except for OSCD, the rest 
comparative deep-learning-based methods all set the batch size 
as 256. And OSCD employs the multi-view contrastive loss of 
one positive sample and another N-1 negative sample within a 
simple batch, where the batch size is set N. Therefore, the batch 
size of OSCD is set as 1024.  

3) Evaluation Criteria: Moreover, the Receiver Operating 
Characteristic (ROC) and Area under Curve (AUC) are 
computed for quantitative evaluation of HACD, while OA, 
Kappa, F1 score, Precision and Recall rate are calculated for 
quantitative assessment of HBCD. The detection maps are 
segmented into four parts, True Positive (TP), True Negative 
(TN), False Negative (FN) and False Positive (FP). 

C. Hyperspectral Anomalous Change Detection Results 

The anomalous change detection results of eight comparative 
methods and proposed HyperNet on EX-1: D1F12H1-
D1F12H2 are represented in Fig. 8. The darker the detection 
map is, the more likely the area is unchanged. And vice versa. 
It can be found that the background of USFA, SDHACD, MTC-
NET (patch=31), and proposed HyperNet are nearly in black, 
indicating good performance on the compression of the 
background. However, for MTC-NET (patch=31), the large 
input patch size induces the wide range of information sharing 
and the decrease of location accuracy. As a result, there is some 
omission of anomalous changes in the detection map of MTC-
NET (patch=31). Although a smaller input patch size reduces 
those effect, much more noise appears in the detection map of 
the MTC-NET (patch=13). Based on fully convolutional neural 
network, the proposed HyperNet balances the need of spatial 
information and location accuracy with the design of spatial and 
spectral attention module, where the local spatial information, 
pixel-level spectral information, and the attention from global 
scale are integrated. As Fig. 8 (i) shows, the anomalous changes 
are almost highlighted and the edges of the change area are 
preserved in the detection map of HyperNet.  

Fig. 9 shows the anomalous detection maps of all methods 
on EX-2: D1F12H1-D2F22H2. Owning to the violent shift of 
the sensor, obvious brightness can be observed at the edge of 
the pine trees area in all results, extending from the top right to 
left middle. Most of the background of the results of USFA, 
HACD, and proposed HyperNet are at low value, showing nice 
performance on reducing the impact of pervasive spectral 
difference. Lots of noise can be observed on the results of MTC-
NET (patch=13) and MTC-NET (patch=31). For EX-2, the 
anomalous changes mainly hail from the appearance and 
disappearance of the vehicles, and are concentrated in the right 
center, which is a parking lot. Compared with the reference 
change map, HACD SDHACD, and HyperNet are capable of 
detecting nearly all anomalous changes, where the anomalous 
change values of the result of HyperNet seem to be brighter than 
the rest. In contrast with the maps of MTC-NET (patch=13) and 
MTC-NET (patch=31), there is no sharp edge expansion in the 
change region and the omission and noise is less on the result 
of HyperNet, indicating the better performance of proposed 
pixel-level HyperNet. The two-branch spatial-spectral attention 
module are tailored to focus on spectral and spatial information, 
separately, where sufficient features of two distinct dimensions 
are abstracted.  

The anomalous change detection results of all methods on 
the Simulated Hymap dataset are presented in Fig. 10. Owing 
to the offset on both horizontal and vertical direction, there are 
massive misplacements on the center of the image, which is a 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Low  High 
Fig. 10 The anomalous change detection maps of Simulated 
Hymap dataset on (a) CC, (b) USFA, (c) Diff_RX, (d) HACD, 
(e) SDHACD, (f) SDACD, (g) MTC-NET (patch=13), (h) 
MTC-NET (patch=31), (i) proposed HyperNet, (j) Reference 
change map. 
 
dense mixture of buildings, vehicles, and roads. All methods 
gain dense high values on the center area except for the HACD. 
Moreover, the noise also has a negative impact on detecting the 
anomalous changes. Obvious noise speckles can be found in the 
detection maps of all comparative methods except USFA. And 
the noise impact is magnified especially in the detection map of 
MTC-NET (patch=31). However, the noise has little influence 
on the detection result of HyperNet, indicating strong noise 
resistance of proposed method. Besides, HyperNet detects most 
simulated anomalous changes, gaining good performance on 
anomalous change detection. 

Quantitative assessment is also provided to test the validity 
of proposed method. The first column of Fig. 11 shows the ROC 
curves of all methods on three datasets, where the horizontal 
axis refers to the false alarm rate and the vertical axis is the 
probability of detection, respectively. And the method that 
gains high probability of detection at low false alarm rate is a 
terrific anomalous change detector. The ROC curve of proposed 
HyperNet in red overtops the rest comparative methods for all 
three datasets. And the MTC-NET (patch=13) in purple obtains 
good performance on the EX-1: D1F12H1-D1F12H2 and 
Simulated Hymap dataset; HACD in light green also acquires 
comparative effect on the EX-1: D1F12H1-D1F12H2 and EX-
2: D1F12H1-D2F22H2.  

The second column of Fig. 11 are the separability maps of 
all methods on three datasets. The output value of anomalous 
changes and background are collected, respectively, to test the 
ability of separating anomalous change and background. The  

  
(a) (b) 

  
(c) (d) 

 
 

(e) (f) 
Fig. 11 The first column are the ROC curves of all methods on 
(a) EX-1: D1F12H1-D1F12H2, (c) EX-2: D1F12H1-D2F22H2, 
(e) Simulated Hymap dataset, and the second column are 
separability maps of all methods on (b) EX-1: D1F12H1-
D1F12H2, (d) EX-2: D1F12H1-D2F22H2, (f) Simulated 
Hymap dataset. 
 
values are normalized to [0, 1] for convenience of visualization. 
The box in orange refers to the anomalous change, while the 
box in green denotes the background. The top and bottom of 
each box represent the maximum and minimum, individually, 
and the main part of the box hold values form the smallest 25% 
to the largest 75%. For EX-1: D1F12H1-D1F12H2, USFA, 
SDHACD, and MTC-NET (patch=31) can suppress the 
background values at low range, but their separability with the 
anomalous change values are less perfect. And there is larger 
intersection between the anomalous change box and 
background box of CC, Diff-RX, HACD and SDACD. By 
contrast, MTC-NET (patch=13) and HyperNet gain large gap 
between corresponding boxes, where the values of background 
of HyperNet fall into a lower range. The situation of EX-2: 
D1F12H1-D2F22H2 is very similar with EX-1. However, 
MTC-NET (patch=13) and MTC-NET (patch=31) both acquire 
larger background values, which intersect with corresponding 
anomalous change values to some extent. HyperNet gains good 
separability between the anomalous change box and 
background box. As for the Simulated Hymap dataset, there is 
a large distance separating the anomalous change from the 
background for the result of HyperNet. It is observed that the 
result of USFA and Diff-RX hold low anomalous change values, 
but they are intersected with the anomalous change values set 
to a great degree. In addition, HACD gains low separability, 
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TABLE II  

THE AUC COMPARISON OF ALL METHODS ON THREE 

HYPERSPECTRAL ANOMALOUS CHANGE DETECTION DATASETS 

Method EX-1 EX-2 
Simulated 

Hymap 

CC 0.6991 0.7196 0.8327 
USFA 0.8220  0.8479  0.8437 
Diff-RX 0.7993 0.8277 0.8249 
HACD 0.8489 0.8666 0.7232 
SDHACD 0.7978 0.8525 0.8343 
SDACD 0.7372 0.7896 0.8069 
MTC-NET (patch=13) 0.8346 0.8019 0.9589 
MTC-NET (patch=31) 0.7776 0.8411 0.9276 
HyperNet 0.9147 0.9126 0.9927 

 
which induces a dropped ROC curve shown in Fig. 11 (e). 
Although it is a simulated dataset, the noise from a random 
uniform distribution processed with low-pass filtering and the 
offset on whole image cast great challenge for anomalous 
change detection. HyperNet obtains good performance 
discriminating the anomalous change with the complex 
background. TABLE II gives a comparison of AUC 
performance of all method on three datasets. The AUC means 
the area under the ROC value, and is the comprehensive index 
for an anomalous change detector. The highest is in bold and 
the second best is underlined. For all three datasets, HyperNet 
outperforms other methods with best AUC of 0.9147 for EX-1, 
0.9126 for EX-2, and 0.9927 for Hymap dataset, which is much 
higher than the second best. HACD ranks second with AUC as 
0.8489 for EX-1: D1F12H1-D1F12H2 and 0.8666 for EX-2: 
D1F12H1-D2F22H2. MTC-NET (patch=13) gains second best 
for Simulated Hymap dataset with AUC equal to 0.9589. 

D. Hyperspectral Binary Change Detection Results 

The binary change detection results of all comparative 
methods and proposed HyperNet on the Hermiston dataset is 
showed in Fig. 12. Concretely, the TP is in white; TN is in black; 
FP is in red, and FN is in green. There are massive false 
detections in red in the detection map of the OSCD (Fig. 12 (d)), 
which is consistent with the low Precision as 0.2802 presented 
in TABLE III. It is analyzed that large batch size is necessary 
for the training of OSCD while the Hermiston dataset is a small 
size image with 307 × 241. And there are also some red false 
detections in the results of MSCD, MTC-NET (patch=13), and 
MTC-NET (patch=31), especially in the left bottom corner, 
where some buildings are located. And some missing detection 
in green can be found in the results of CVA and ISFA. By 
contrast, HyperNet is capable of detecting most of the changes 
with few false detections. TABLE III lists the quantitative 
assessment of all method on Hermiston dataset. The maximum 
is in bold and the second largest in underlined. CVA gains the 
best OA and Kappa as 0.9272 and 0.7670, separately. HyperNet 
obtains the comparative OA as 0.9206 and Kappa as 0.7613. 
The highest F1 score is 0.8112 acquired by HyperNet. Besides, 
the ISFA gains the largest Precision and the CVA ranks second, 
indicating the detected changes are almost really changed area.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 
Fig. 12 The binary change detection maps on Hermiston dataset 
on of (a) CVA, (b) ISFA, (c) MSCD, (d) OSCD, (e) MTC-NET 
(patch=13), (f) MTC-NET (patch=31), (g) proposed HyperNet, 
(h) Reference change map. 
 

TABLE III 
THE QUANTITATIVE EVALUATION OF ALL METHODS ON 

HERMINTON DATASET 

Method OA Kappa F1 Precision Recall 

CVA 0.9272 0.7670 0.8103 0.9819 0.6898 
ISFA 0.9023 0.6716 0.7262 0.9852 0.5750 
MSCD 0.7851 0.4788 0.6201 0.5154 0.7782 
OSCD 0.4332 0.1307 0.4344 0.2802 0.9656 
MTC-NET (patch 
size=13) 

0.7960 0.4741 0.6011 0.6111 0.6581 

MTC-NET (patch 
size=31) 

0.8343 0.5399 0.6468 0.6370 0.6733 

HyperNet 0.9206 0.7613 0.8112 0.8740 0.7569 

 
The OSCD detects all the changes with the cost of a low Kappa 
and Precision. On the whole, HyperNet gets the best 
comprehensive performance on Hermiston dataset. The 
proposed double-branches spatial-spectral attention module are 
targeted at extracting spatial objects relation and the 
discriminative spectral features, beneficial to reduce the false 
detection and improve the change detection, making a 
difference in the change detection result of Hermiston dataset. 

Fig. 13 represents the binary change detection results on Bay 
dataset. The uncertain area which is unlabeled is in gray. MSCD 
and OSCD gain a little more omitted changes in green than 
other methods especially for the left farmland area. And these 
two methods are originally designed for multi-spectral remote 
sensing change detection, facing challenges dealing with the 
hyperspectral images. Compared with the MTC-NET 
(patch=31), more false detections in red can be found in the 
detection map of MTC-NET (patch=13). However, MTC-NET 
(patch=31) omits more changes in green than MTC-NET 
(patch=13) does. The selection of batch size plays an import 
role in the detection performance. By contrast, HyperNet with 
a patch-free architecture avoids this problem and gains better 
change detection result with less false alarms. TABLE IV  

TP TN FP FN
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 
Fig. 13 The binary change detection maps on Bay dataset on of 
(a) CVA, (b) ISFA, (c) MSCD, (d) OSCD, (e) MTC-NET 
(patch=13), (f) MTC-NET (patch=31), (g) proposed HyperNet, 
(h) Reference change map. 
 

TABLE IV 
THE QUANTITATIVE EVALUATION OF ALL METHODS ON 

BAY DATASET 

Method OA Kappa F1 Precision Recall 

CVA 0.8723  0.7462  0.8708  0.9474  0.8057  
ISFA 0.8917  0.7848  0.8905  0.9695  0.8234  
MSCD 0.7503  0.5089  0.7260  0.8777  0.6190  
OSCD 0.7264  0.4533  0.7339  0.7644  0.7065  
MTC-NET (patch 
size=13) 

0.8821  0.7627  0.8910  0.8807  0.9016  

MTC-NET (patch 
size=31) 

0.8108  0.6240  0.8082  0.8818  0.7459  

HyperNet 0.9079 0.8152 0.9129 0.9224 0.9037 

 
shows the quantitative evaluation results of Bay dataset. 
HyperNet acquires the best OA as 0.9079, Kappa as 0.8152, F1 
score as 0.9129 and Recall rate as 0.9037 among all method, 
and outperforms the second largest one. And ISFA obtains the 
highest Precision as 0.9695 with lest false detection.  

The binary change detection results of Santa Barbara dataset 
are showed in Fig. 14. It is observed that plenty of false 
detections in red appears in the detection maps of OSCD and 
MTC-NET (patch=13), corresponding to low Precision shown 
in TABLE V. And obvious missing detection can be found in 
the results of CVA, MSCD, and OSCD, consistent with low 
recall rate shown in TABLE V. HyperNet is able to detect most 
of the changes under low false detection rate. As TABLE V 
presents, HyperNet gains the best OA as 0.9114, Kappa as 
0.8148, F1 score as 0.8880, and Recall as 0.8925 among all 
comparative methods, while the ISFA gain the highest 
Precision with 0.9071. To conclude, HyperNet is able to detect 
more precise change detection result, capturing subtle changes 
of the farmland in a self-supervised learning way. 

E. The Ablation Experiments of HyperNet 

To test the performance of proposed spatial-spectral attention 
module and the focal cosine loss function on change detection, 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

 
Fig. 14 The binary change detection maps on Santa Barbara 
dataset on of (a) CVA, (b) ISFA, (c) MSCD, (d) OSCD, (e) 
MTC-NET (patch=13), (f) MTC-NET (patch=31), (g) proposed 
HyperNet, (h) Reference change map. 
 

TABLE V 
THE QUANTITATIVE EVALUATION OF ALL METHODS ON 

SANTA BARBARA DATASET 

Method OA Kappa F1 Precision Recall 

CVA 0.8780  0.7403  0.8376  0.8792  0.7997  
ISFA 0.8912  0.7675  0.8535  0.9071  0.8059  
MSCD 0.7868  0.5313  0.6872  0.8127  0.5952  
OSCD 0.6869  0.3384  0.5914  0.6137  0.5751  
MTC-NET (patch 
size=13) 

0.8805  0.7550  0.8566  0.8288  0.8920  

MTC-NET (patch 
size=31) 

0.8886  0.7641  0.8539  0.8801  0.8301  

HyperNet 0.9114  0.8148  0.8880  0.8836  0.8925  

 
extensive ablation experiments have been designed. Concretely, 
the “Base” is designed using basic normal two-dimensional 
convolutional layers with the cosine similarity function. And 
“Base + SSA” denotes the spatial-spectral attention module is 
adopted compared with “Base”.  

TABLE VI gives AUC performance of ablation experiments 
of HyperNet on three hyperspectral anomalous change 
detection datasets. The largest one is in bold and the second 
largest is underlined. As shown in TABLE VI, the “Base + SSA” 
gains better AUC than “Base” does for all three datasets. And 
HyperNet acquires higher AUC than “Base + SSA” does. For 
intuitional representation of the validity of focal cosine loss 
function, Fig. 15 exhibits the ROC comparison of the ablation 
experiments for three datasets. The “Base + SSA” in blue gains 
higher probability of detection than “Base” in black does. And 
more anomalous changes are highlighted in the results of “Base 
+ SSA” (shown in the second row of Fig. 16) than the maps of 
“Base” (shown in the first row of Fig. 16), representing the 
effectiveness of the proposed spatial-spectral attention module. 
The ROC curve of HyperNet in red outperforms than the 
“Base+ SSA” in blue for all three datasets (shown in Fig. 15), 
where the focal cosine loss function is encouraged to put  

TP TN Uncertain FP FN

TP TN Uncertain FP FN
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TABLE VI 
THE AUC COMPARISON OF HYPERNET WITH AND 

WITHOUT PROPOSED FOCAL COSINE LOSS ON THREE 

HYPERSEPCTRAL ANOMALOUS CHANGE DETECTION DATASETS 

Method EX-1 EX-2 
Simulated 

Hymap 

Base  0.8562  0.8966  0.9886  
Base + SSA 0.9081 0.9112 0.9923 
HyperNet 0.9147 0.9126 0.9927 

  
(a) (b) 

 

 

(c)  
Fig. 15 The ROC comparison of ablation experiments of 
HyperNet on three hyperspectral anomalous change detection 
datasets of (a) EX1: D1F12H1-D1F12H2, (b) EX-2: D1F12H1-
D2F22H2, (c) Simulated Hymap dataset.  

B
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 (a) (b) (c) 

Low  High 
Fig. 16 The anomalous change detection map comparison of 
ablation experiments of (a) EX1: D1F12H1-D1F12H2, (b) EX-
2: D1F12H1-D2F22H2, (c) Simulated Hymap dataset. From 
top to bottom are result from Base, Base + SSA, and HyperNet. 
 
emphasis on hard positive samples promoting the training of 
network than cosine similarity loss function does.  

Moreover, the qualitative and quantitative evaluation of 
ablation experiments on hyperspectral binary change detection  

TABLE VII 
THE QUANTITATIVE COMPARISON OF HYPERNET WITH 

AND WITHOUT PROPOSED FOCAL COSINE LOSS ON THREE 

HYPERSEPCTRAL BINARY CHANGE DETECTION DATASETS 

Dataset Method OA Kappa F1 
Precisio

n 
Recall 

Hermist
on 

Base  0.9140  0.7427  0.7969  0.8530  0.7489  
Base + SSA 0.9197  0.7579  0.8083  0.8751  0.7516  
HyperNet 0.9206 0.7613 0.8112 0.8740 0.7569 

Bay 
Base  0.8605  0.7211  0.8649  0.8964  0.8355  
Base + SSA 0.9075  0.8144  0.9123  0.9234  0.9016  
HyperNet 0.9079  0.8152  0.9129  0.9224  0.9037  

Barbara 
Base  0.8906  0.7730  0.8647  0.8441  0.8867  
Base + SSA 0.9155  0.8234  0.8934  0.8869  0.9001  
HyperNet 0.9114 0.8148 0.8880 0.8836 0.8925 

B
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y

p
erN

et 

   
 (a) (b) (c) 

 
Fig. 17 The comparison of binary change detection maps of 
ablation experiments. (a) Hermiston dataset, (b) Bay dataset, (c) 
Santa Barbara dataset. 
 
have been implemented on another three datasets. As presented 
in TABLE VII, with the spatial-spectral attention module, 
“Base + SSA” gain higher OA, Kappa, F1 score, Precision, and 
recall rate than “Base” does for all three datasets. And it is 
validated that less false alarm in red and less missing change in 
green can be found in the detection maps of “Base + SSA” 
(shown in the second row of Fig. 17) than that of “Base” (shown 
in the first row of Fig. 17). Besides, HyperNet with cosine loss 
function gains better OA, Kappa, F1 score, and recall rate than 
“Base + SSA” does for Hermiston and Bay datasets. However, 
HyperNet with cosine loss function gains better result on 
Barbara dataset than HyperNet does, where a little bit more 
false alarm in red can be found in the result of HyperNet 
(presented in third row of Fig. 17). The reason may be the hard-
positive samples are in a low percentage and the focal cosine 

TP TN Uncertain FP FN
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loss function plays a less important role compared with the case 
of Hermiston and Bay datasets, since the “Base” gains higher 
comprehensive Kappa as 0.7730 for Barbara dataset than for the 
Hermiston as 0.7427 and Bay as 0.7211.  

Overall, HyperNet is capable of obtaining better change 
detection results, where the spatial-spectral attention module 
makes a difference in fully exploitation of the spatial 
relationship and the discriminative spectral features, and the 
focal cosine plays an important role in amplifying the attention 
on area with complex spectral difference. 

V. CONCLUSIONS 

In this research, we have attempted to put forward a self-
supervised spatial-spectral understanding network for 
hyperspectral change detection. HyperNet employs a self-
supervised learning mode and accomplishes multi-temporal 
spatial and spectral feature comparison in fully convolutional 
way for pixel-wise feature representation learning. The 
designed spatial attention branch focuses on the spatial 
correlation from 2D imaging space, while the spectral attention 
branch concentrates on the discriminative spectral features for 
various ground surface objects. And a novel similarity loss 
function named focal cosine is created for better adjustment of 
the imbalanced easy and hard positive samples in SSL training. 
The performance of extensive experiments on six hyperspectral 
datasets demonstrate the effectiveness and generalization of 
proposed HyperNet on both HACD and HBCD tasks. In 
addition, it is proved that the designed spatial-spectral attention 
branch and focal cosine loss function are capable of detecting 
more anomalous changes for HACD, reducing the false 
detection and improve the detection rate for HBCD.  
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