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Abstract—Mining structural priors in data is a widely recog-
nized technique for hyperspectral image (HSI) denoising tasks,
whose typical ways include model-based methods and data-based
methods. The model-based methods have good generalization
ability, while the runtime cannot meet the fast processing
requirements of the practical situations due to the large size
of an HSI data X ∈ RMN×B . For the data-based methods, they
perform very fast on new test data once they have been trained.
However, their generalization ability is always insufficient. In this
paper, we propose a fast model-based HSI denoising approach.
Specifically, we propose a novel regularizer named Represen-
tative Coefficient Total Variation (RCTV) to simultaneously
characterize the low rank and local smooth properties. The
RCTV regularizer is proposed based on the observation that the
representative coefficient matrix U ∈ RMN×R(R� B) obtained
by orthogonally transforming the original HSI X can inherit the
strong local-smooth prior of X. Since R/B is very small, the
HSI denoising model based on the RCTV regularizer has lower
time complexity. Additionally, we find that the representative
coefficient matrix U is robust to noise, and thus the RCTV
regularizer can somewhat promote the robustness of the HSI
denoising model. Extensive experiments on mixed noise removal
demonstrate the superiority of the proposed method both in
denoising performance and denoising speed compared with other
state-of-the-art methods. Remarkably, the denoising speed of our
proposed method outperforms all the model-based techniques
and is comparable with the deep learning-based approaches.

Index Terms—Representative Coefficient Total Variation
(RCTV), Hyperspectral image denoising, fast mixed noise re-
moval

I. INTRODUCTION

Hyperspectral image (HSI) data are acquired by high spec-
tral resolution sensors, and consist of hundreds of contiguous
narrow spectral band images from ultraviolet to infrared wave-
lengths for the same object [1]. Since HSI contains abundant
spatial and spectral information, it is thus widely used in vari-
ous applications, such as object detection [2], super-resolution
[3], unmixing [4], mineral exploration [5] and classification
[6]–[8]. However, due to the sensor sensitivity, calibration
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error, physical mechanism, and weather interference, HSI is
unavoidably contaminated by various kinds of noise, such as
Gaussian noise, stripe noise, deadline noise, impulse noise, and
so on [9]–[12]. These noise severely degrades the quality of the
imagery and limits the performance of the subsequent process-
ing. Therefore, HSI denoising is an important pre-processing
step to improve image quality for further downstream tasks.

The current HSI denoising methods can be roughly divided
into two categories, namely model-based methods and data-
based methods. Data-based methods mainly learn a supervised
deep neural network from carefully collected noisy-clean HSI
pairs, and can be tested quickly. Although the data-based
methods perform fast on the test data, they incline to be
with poor generalization capability in complex test scenarios
differing from their training cases, mainly attributed to their
strong over-fitting ability to training data [13]–[15]. On the
contrary, the unsupervised model-based methods are based
on statistical prior modeling in HSI, and thus possess good
performance in generalization. However, most of the model-
based methods need a relatively long time to implement
[11], [14], [16], making it challenging to meet the practical
demand in HSI denoising. Therefore, it should be a significant
issue for model-based HSI denoising research to accelerate
their implementation efficiency on test data like deep learning
methods, while maintain their general denoising performance
simultaneously. This paper focuses on this goal and attempt
to design a fast model-based HSI denoising method.

It is known that almost all model-based HSI denoising meth-
ods, such as LRTV [11], LLRT [16], LRTDTV [12], LRMR
[17], and CTV-RPCA [18], are built by mining the prior of
the original HSI data X ∈ RM×N×B , where M,N and B
denote the spatial height, the spatial width, and the number
of bands, respectively. Among these priors, low-rank (L) prior
along the spectral dimension is the most indispensable one,
which usually needs singular value decomposition (SVD) to
solve related low-rank optimization problems [19]. Besides,
HSI data also possesses the local smoothness (LS) and non-
local similarity (NLS) priors in the spatial dimensions [11],
[16]. Generally, the LS prior is encoded by the Total Variation
(TV) regularization [20], and the related TV minimization
problem is usually solved by the Fast Fourier Transform
[21], [22] (FFT). The NLS prior requires Similarity Block
Search (SBS) step to get many groups, and then conducts
an SVD operator on each group. The specific time com-
plexity of the aforementioned L, LS and NLS priors are
given in Table I. Since O(M2N2Bn2/r4) is much larger
than O(MNB log(MB)) and O(MNB2) is approximately

ar
X

iv
:2

21
1.

01
82

5v
1 

 [
cs

.C
V

] 
 3

 N
ov

 2
02

2



2

TABLE I
THE TIME COMPLEXITY OF ABOVE MENTIONED PRIORS.

Prior Term Subject Algorithm Time Complexity

L X ∈ RM×N×B SVD O(MNB2)

LS X ∈ RM×N×B FFT O(MNB log(MN))

NLS X ∈ RM×N×B SBSa O(M2N2Bn2/r4)

SVD O(KB2pn2)

LS U ∈ RMN×R FFT O(MNR log(MN))

aSpecifically, we need to divide the HSI data to obtain lots of patches with
the size of n× n×B and then search for similar patches to aggregate them
into K groups, each group containing p patches. Assuming that the stride of
the division is r, then r ≤ n is satisfied, we can get MN/r2 patches.

TABLE II
THE TIME COMPLEXITY OF SOME CLASSICAL MODELS AND THEIR

RUNNING TIMES ON DATA WITH A SIZE OF 512× 512× 31.

Models Prior Terms Time Complexity Time(s)

LLRT NLS, L of X O(M2N2Bn2/r4 +Kpn2B2) 1593
NGmeet NLS, L of U O(M2N2Rn2/r4 + (Kpn2 +B)R2) 195.6
LRTVa LS, L of X O(MNB2 + TMNB) 270.6
CTV LS, L of X O(MNB log(MN) +MNB2) 67.6
RCTV LS, L of U O(MNR log(MN) +R2B) 11.2

aSince LRTV uses an iterative gradient descent algorithm to solve the TV
problem, the time complexity of TV subproblem is related to the number of
iteration steps T .

Original: (PSNR, Time) Nosiy: (13.62, 0) LLRT: (19.59, 1593) NGmeet: (25.44, 195.6)

LRTV: (38.58, 271.2) CTV: (37.82, 67.7) GRN: (39.54, 10.98) RCTV: (40.40, 11.1)

Fig. 1. The restoration result of models in Table II on one data in the ICVL
dataset.

equal to O(Kpn2B2), the NLS prior has the highest time
complexity. Besides, it can be observed that all the prior terms
have a positive correlation with the size of HSI, the SVD
computing is very time-consuming, and the TV prior with
FFT is relatively efficient. For most advanced/classic model-
based models, such as LRTV [11], LRTDTV [12], and E3DTV
[23], they often utilize multiple priors on the original HSI data
simultaneously to obtain better visual performance, making
their execution speeds very slow since the original data size is
quite large, especially on the HSIs with a large band number
B, which is often encountered in real applications.

Is it possible that the original data has a factor with a smaller
size that inherits the prior information of X? If this is true,
we can significantly reduce denoising time while guaranteeing
denoising performance. Inspired by this motivation, we turn
attention to low-rank matrix factorization (LRMF). For an HSI
data X ∈ RM×N×B with unfolded matrix X ∈ RMN×B along
the spectral dimension, suppose the rank of X is R (it gener-

ally holds that R� B), and then we have X = UVT, where
U ∈ RMN×R, and V ∈ RB×R are called the abundance map
and the end-member matrix [4], respectively. Mathematically,
an abundance map U describes the representative coefficients
of a row vector in X for a given basis matrix V. Therefore,
U can also be called the representative coefficient matrix.
Such factorization naturally reflects the spectral low-rankness
of HSI data by controlling the rank number R, which also has
the benefit that the optimization of the LRMF-based model
does not need large-scale SVD computation. Further, we first
prove in Theorem 1 that U can inherit the spatial structure
of X. Thus, it is naturally hopeful to build a model with low
time complexity and high restoration performance based on
priors of U. In addition, we find interestingly that the images
corresponding to the intrinsic representative coefficient matrix
U can better maintain the structure of the original image
than the noisy image, which means that the representative
coefficient matrix has certain robustness to noise and thus
can hopefully obtain better denoising performance. Since LS
prior has lower time complexity than NLS prior, we propose
RCTV regularization based on LS prior of U, and its time
complexity is also listed in Table I. As can be seen from Table
I, compared to using the LS prior of the original data X, the
time complexity of using the LS prior of U can be greatly
reduced.

Low-complexity regularizers tend to lead to low-complexity
models. To better illustrate this, we list the time complexity
of some classical models in Table II 1. Table II shows that
the time complexity of U-based models is much lower than
that of X-based models. For example, by comparing the time
complexity of the LLRT [16] and NGmeet [24] methods based
on the NLS prior, we can find that placing prior on U can
reduce the time complexity. Also, by comparing LRTV [11],
CTV [18], and RCTV approaches, we can also obtain the same
conclusion. Additionally, by comparing NGmeet and RCTV,
both of which place prior on U but differs in that NGmeet
utilizes the NLS and L priors while our RCTV uses the LS
and L priors, we can see that the time complexity of RCTV
is significantly less than the NGmeet. Except for the low time
complexity, our RCTV can also obtain a satisfactory denoising
performance. Fig. 1 illustrates the visual denoising effect of
all competing methods in Table II and one deep learning-
based method on the complex noise case. From Fig. 1, it
can be easily observed that our proposed RCTV achieves a
relatively better denoising performance, and has the fastest
execution time among the model-based methods, and even
comparable with the deep learning-based approach (i.e., GRN
[15]). Meanwhile, we also find that LLRT and NGmeet based
on NLS prior do not attain well denoising performance on the
complex noise case, which is why we choose LS prior for
complex noise removal.

In summary, this paper makes the following contributions:
Firstly, we theoretically prove that when the end-member

matrix V is orthogonal, the representative coefficient matrix
U can finely inherit the spatial prior information of X.

1Since each model contains some matrix multiplication operations with time
complexityO(MNB), for the convenience of comparing the time complexity
of regularizers, O(MNB) is omitted in Table II.
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Further, the low-rank property of the X can be maintained
by controlling the column number R of U. Therefore, the
U-based regularizer can not only greatly reduce the time
complexity of its corresponding HSI denoising model, but it
can fully exploit HSI’s spectral and spatial priors.

Secondly, based on the phenomenon that the representative
coefficient matrix U is intrinsically robust to noise pertur-
bation and has LS prior, we propose an RCTV regularizer.
Furthermore, we use the RCTV regularization to build a model
suitable for complex noise removal and then design a fast
algorithm to solve this model via the FFT and the orthogonal
transformation.

Thirdly, comprehensive experimental results substantiate
the superiority of the proposed RCTV method beyond the
state-of-the-art HSI denoising methods both on the denoising
performance and execution time. Specifically, our proposed
approach can obtain the best denoising results, and its running
time is the shortest among all the model-based methods, and
even comparable with the deep learning-based methods.

The rest of this paper is organized as follows: Section II
gives some related works. In Section III, we provide some
notations and preliminaries. Section IV presents the new
regularization term named RCTV. Section V introduces the
proposed denoising model and its optimization algorithm.
Experimental results are shown in Section VI. Finally, con-
clusions are drawn in Section VII.

II. RELATED WORK

In this section, we briefly review the existing model-based
methods and some data-based methods.

A. Model-Based HSI denoising methods

Model-based methods are based on statistical prior model-
ing. Next, we will introduce the three most commonly utilized
priors.

1) HSI Denoising with Spectral Correlation Prior: The
spectral correlation prior refers to the fact that HSIs should
lie in a low-dimensional spectral subspace since the images
in adjacent bands are usually collected with similar sensor
parameter settings. Therefore, the spectral correlation prior
converts into the low-rank prior of HSI. Tools for character-
izing low-rank priors can be divided into two big categories,
namely matrix/tensor nuclear norm and low-rank matrix/tensor
factorization. Nuclear norm as the tightest convex relaxation of
matrix rank has good theoretical properties, therefore, RPCA
[19] gives the exact recovery theorem for separating low-rank
and sparse components from contaminated data. Since nuclear
norm is convex relaxations of matrix rank, which tends not to
fully characterize low rank prior of matrices. Besides, it will
cost much time to solve the nuclear norm minimization prob-
lem via SVD operator when the data size is large. Therefore,
many works focus on pre-specifying the rank by the low-rank
matrix factorization to better characterize the low-rank prior
of the matrix [25]–[27]. Although these LRMF-based models
are faster, such as HyRes [27], the recovery performance of
these methods can be further improved as only the L prior
of the data is used. In recent years, there are also some

tensor-based methods to characterize L prior, such as TRPCA
[28], [29], CP/Tucker/Tensor-Train decomposition [30]–[32].
The low rank tensor decomposition is often extremely time-
consuming due to the large number of algebraic operators
introduced in it.

2) HSI Denoising with Non-local Similarity Prior: The
non-local spatial similarity prior refers to the fact that there
always exist similar patterns in image spatial dimensions, thus
this prior is often integrated into low-rank matrix/tensor ap-
proximation frameworks to remove Gaussian noise [16], [33]–
[37]. Typical methods using such priors are KBR [37], LLRT
[16], BM4D [34], and NGmeet [38]. Since the time complexity
of the SBS step is very high, which can be seen in Table I,
and SBS is susceptible to sparse noise interference, resulting in
inaccurate similar groups and inaccurate estimation of noise
variance. Therefore, this kind of method is not suitable for
large-scale data and mixed noise removal.

3) HSI Denoising with Local Smoothness Prior: The local
smoothness prior is based on the fact that similar objects are
often distributed in a local area with high probability. Besides,
the adjacent bands of images are usually collected with similar
sensor parameter settings, which results in similar values. Such
local smoothness prior can be encoded by using TV regular-
ization on the spatial and spectral domain of the HSI [12],
[20]. Additionally, more advanced TV methods are proposed
to characterize this prior [18], [23], [39], [40]. By integrating
TV regularization into a low-rank matrix/tensor factorization
framework, some classic works have been proposed and have
achieved excellent results in removing mixed noise, such as
LRTV [11], LRTDTV [12], LRTDGS [41]. In these models,
the TV regularization is applied to each slice X(:, :, i) for HSI
data. Since the spectral band number B of HSI is too large,
the time complexity of utilizing this prior will also cost much
time according to analysis from Table I.

B. HSI Denoising via Deep Learning

Unlike model-based methods, data-based methods directly
learn a denoising mapping function from a large amount of
data. Utilizing the powerful image feature extraction capability
of deep network, some methods were proposed to learn a
non-linear end-to-end mapping between the noisy and clean
HSIs. The classical deep learning methods for HSI denoising
includes HSICNN [13], and HSIDeNet [14]. Later, some
methods based on network structure design were proposed
one after another. For example, 3D-ADNet [42] applies 3D
convolution instead of 2D convolution together with self-
attention to extract HSI features. QRNN3D [43] adopts 3D
convolution, quasi-recurrent pooling function to characterize
the structural spatio-spectral correlation and global correlation
along the spectrum dimension. [44] combines the matrix
factorization method with CNN, where the CNN is a solver
of the corresponding sub-problem. GRN-net [15] uses two
reasoning modules to carefully extract both global and local
spatial-spectral features for mixed noise removal. Further, to
tackle the physical interpretability issue of the deep neural
network (DNN), SMDS-Net [45] and T3SC [46] propose
a model guided spectral-spatial network by unfolding the
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iterative algorithm to solve the sparse model. While these
networks can achieve excellent denoising performance for a
given noise scale with a short test time, the test performance
of these networks is dramatically affected by the training data.
If the training data does not contain a certain type of noise
distribution, the prediction accuracy of the learned network
under this type of noise will drop significantly. In real life,
it is impossible for us to know all the noise distributions in
advance, and it is impossible to construct a large number of
clean noise sample pairs. In a word, the generality of data-
based methods is not sufficient.

To minimize the denoising time while maintaining the
generalization of the model, mining prior of the representative
coefficient matrix is thus a reasonable choice. Compared with
mining the prior of original HSI data, the studies about mining
the prior of the reprensentative coefficient is relatively rare for
HSI denoising task. In fact, mining priors for representative
coefficient matrices can be traced back to HSI unmixing task
[4], [47]. In recent years, some fast algorithms using priors
of the representative coefficient matrix have attracted a lot of
attention, such as E3DTV [23], LRTFDFR [48], NGmeet [24],
[38] and many others [49], [50]. In particular, NGmeet exploits
the non-local similarity of the representative coefficient matrix
to obtain the best performance on gaussian noise removal and
greatly reduce the runtime for HSI denoising2.

III. NOTATIONS AND PRELIMINARIES

Throughout this paper, we denote scalars, vectors, matrices
and tensors in light, bold lower case letters, bold upper case
letters and upper cursive letters, respectively. For an N -order
tensor X ∈ RI1×I2×···×IN , its mode-n unfolding matrix is
denoted as X(n) := unfoldn(X ) ∈ RIn×(I1···In−1In+1···IN ),
and foldn(X(n)) = X where foldn is the inverse of unfolding
operator. The mode-n product of a tensor X ∈ RI1×I2×···×IN

and a matrix A ∈ RJn×In is denoted as Y := X ×n A,
where Y ∈ RI1×···×In−1×Jn×In+1×···×IN . The inner product
of two matrices X,Y of the same size is defined as 〈X,Y〉 :=∑
i,j xi,j .yi,j , where xi,j is (i, j)-th element of X. Then the

corresponding Frobenius norm and `1 norm are defined as
‖X‖F :=

√
〈X,X〉 and ‖X‖1 :=

∑
i,j |Xi,j |, respectively.

An HSI data with B bands can be viewed as a three-
dimensional tensor X ∈ RM×N×B . It is also represented as a
Casorati matrix X ∈ RMN×B equipping well low-rankness
(often rank R � B), whose columns comprise vectorized
bands of the HSI. Besides, the tube X (i, j, :) is also equal
to the row X(k, :), where k = (j − 1) ∗ w + i. The total
variation (TV) that effectively encodes the local smoothness
prior needs to be introduced. For a gray-level image X of size
M ×N , its anisotropic TV norm [21] is defined as:

‖X‖TV :=

M−1∑
i=1

N−1∑
j=1

{|xi,j − xi+1,j |+ |xi,j − xi,j+1|}

+

M−1∑
i=1

|xi,N − xi+1,N |+
N−1∑
j=1

|xM,j − xM,j+1|.

(1)

2The representative coefficient matrix is also called as reduced image in
NGmeet [24].

It also can be written as

‖X‖TV := ‖DhX‖1 + ‖DvX‖1, (2)

where Dh,Dw denote the first-order forward finite-difference
operator among the horizontal and vertical direction.

IV. REPRESENTATIVE COEFFICIENT TV REGULARIZATION

A. Motivations

For an observed noisy HSI Y ∈ RMN×B contaminated
by mixed noise, such as Gaussian white noise, sparse noise,
stripes noise, deadlines, and missing pixels [17], [51], [52], it
can be nearly formalized as an additive hybrid system

Y = X + S + E, (3)

where X, S and E are the clean HSI, sparse corruptions and
other system Gaussian noise, respectively. HSI denoising task
aims to estimate the clean HSI from the noisy HSI.

From the perspective of the linear spectral mixing model,
each spectral signature (i.e., the row of X) can be represented
by a linear combination of several end-member basis [4], [53].
Considering the existing strong correlation between HSI’s
spectral bands, i.e., spectral low-rankness, it’s reasonable to
use LRMF to model the HSI as X = UVT, where U ∈
RMN×R(R � B) is called the abundance map or represen-
tative coefficient basis, and V ∈ RB×R is called the end-
member matrix or “dictionary”. Then, the noise degradation
model can be formulated as

Y = UVT + S + E. (4)

Except for the low-rank prior in spectral, to further improve
the denoising performance in visual, most existing works adopt
some other spatial priors of the original HSI data, such as the
LS prior [11], [12] and NLS prior [16], [38]. As we claimed
before, the direct prior computing on original large-sized HSI
leads to the bottleneck of execution speed. As an alternative,
it is stated that the spatial information of original large-sized
X can be reflected on small-sized U to some extent through
the following Theorem 1.

Theorem 1: For a rank-R matrix X ∈ RMN×B that has the
factorization X = UVT with orthogonal matrix V ∈ RB×R,
its representative coefficient matrix can be obtained by U =
XV, and we have

a) If the two row vectors X(i, :) and X(j, :) of original
data X are the same, then their corresponding coefficient
vectors U(i, :) and U(j, :) is the same.

b) The distance and angle between any two-row vectors of
X are the same as those of the corresponding two-row
vectors of U.

The proof of Theorem 1 is placed in Appendix A. It demon-
strates the following two things: 1) The representative coef-
ficient of X under V is unique, and the same row vectors
in X must have the same representative coefficients; 2) The
row spaces of the original data matrix X and the representa-
tive coefficient matrix U have close similarities in terms of
distance, angle and equivalence property, which implies that
the representative coefficient matrix will not cause substantial
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information loss and can well inherit the spatial information
from X. Therefore, it is encouraged to explore the spatial prior
on the small-sized U instead of the big-sized X.

B. RCTV Regularization

In this subsection, we focus on modeling the LS prior of U
since such prior is common for images and meanwhile very
convenient in computing.

To illustrate the existing LS priors of U, in Fig. 2, we take
a real HSI data DC mall X ∈ R200×200×160 as an example.
We first perform the LRMF operator on its unfolded matrix
X(3) = UVT, which is equal as X = U ×3 V, where
U = fold3(U). Then we show some spatial images of U
and the spectral curve in V in Fig. 2. Since DC mall Data
has a strong correlation among spectral dimension, we only
need a very small number of end-members and corresponding
representative coefficients to retain most of the information of
the original data. As a result, the number of end-members R is
set as 6. Next, we show 6 slices of the representative coefficient
tensor U in turn, and perform the difference operation on them.
We can clearly see that the difference map of each slice is
very sparse, which verifies that the representative coefficient
also has strong local smoothness.

To encode the local smoothness in the slices of representa-
tive coefficient tensor U , we impose the TV seminorm [20] on
each slice of U and add up them together to propose the Rep-
resentative Coefficient Total Variation (RCTV) regularization.
Mathematically, its definition is given below.

Definition 1 (RCTV): For a rank-R matrix X ∈ RMN×B

that has the low-rank factorization X = UVT with orthogonal
matrix V ∈ RB×R, we define its RCTV norm as

‖X‖RCTV :=

R∑
i=1

‖U(:, :, i)‖TV (5)

where U = X ×3 V. To simplify the notation, let ∇1(U) =
[DhU(:, :, 1), · · · ,DhU(:, :, R)] and ∇2(U) = [DwU(:, :
, 1), · · · ,DwU(:, :, R)], we have

‖X‖RCTV := ‖∇1(U)‖1 + ‖∇2(U)‖1. (6)

The RCTV regularization has several benefits behind. Com-
pared with conventional TV regularization defined on original
data X, the RCTV regularization defined on U can not only
maintain the low-rankness and local smoothness prior of HSI,
but also greatly reduce computational complexity. Besides,
there is an interesting finding that the representative coefficient
U is robust to noise disturbance, indicating the RCTV has
huge potential in HSI denoising tasks.

The robustness of the representative coefficient matrix U
comes from the low-rank decomposition. The effects of low-
rank matrix factorization and singular value truncation are
similar. PCA/SVD can remove noise to a certain extent and
obtain principal components [54]–[56]. Therefore, U has been
denoised to some extent compared to the original noisy data,
and the noise contained in U is lighter than the noisy data Y.
To better illustrate this, we selected four images of clean data,
noisy data, and representative coefficient matrix for display
in Fig. 3. Compared with the original images (i.e., Fig. 3(a)),

we can see that the structure in the noisy images (i.e., Fig.
3(b)) have been severely damaged due to the interference of
noise, but the images of representative coefficient (i.e., Fig.
3(c)) can still clearly retain the structural information of the
original data. Such robustness of the representative coefficient
matrix is also analyzed in E3DTV regularization [23].

V. HSI MIXED DENOSING VIA RCTV REGULARIZATION

A. Proposed Model
In this section, we propose our denoising model based on

modeling the noise. The noise structures in practical HSIs
are very complex. There are some works about modeling the
noise distributions, such as a mixture of Gaussian (MoG) [57],
[58], and mixture of Laplacian [25], [59]. Considering that
the noise structures in practical HSIs can be roughly divided
into two types. One type is sparse noise, such as stripes
noise, deadlines, and missing pixels [12], and the other type is
Gaussian noise. Here, we simply use `1-norm and `2-norm to
characterize the sparse and Gaussian noise, respectively, which
is similar to the modeling mechanism in LRTDTV [12], and
LRTFDFR [48]. According to the definition of RCTV with
Eq. (6), we propose the denoising model based on RCTV
regularization as follows:

min
U,V,E,S

2∑
i=1

τi‖∇i(U)‖1 + β‖E‖2F + λ‖S‖1,

s.t. Y = UVT + E + S,VTV = I,

(7)

where τi, β, λ are trade-off parameters to balance the weight
of each term in the objective.

It is worth noting that the proposed RCTV regularization is
robust to noise to some extent and can fully capture the spatial
information of representative coefficient matrix U. Thus this
model is expected to have a strong ability for mixed noise
removal. Since the size of U is much lower than the original
HSI data X, the time complexity of this model is extremely
low, so we can expect this model to bring robust and fast
denoising results for mixed noise removal.

B. Optimization Algorithm
By introducing the auxiliary variables G1,G2, we rewrite

model (7) as the following equivalent formulation:

min
U,V,E,S

2∑
i=1

τi‖Gi‖1 + β‖E‖2F + λ‖S‖1,

s.t. ∇i(U) = Gi, i = 1, 2,

Y = UVT + E + S,VTV = I.

(8)

Then we use the well-known alternating direction method
of multipliers (ADMM) to derive an efficient algorithm for
solving model (8). The augmented Lagrangian function of
model (8) is:

L(U,V,E,S, {G}2i=1, {Γi}3i=1) :=

2∑
i=1

τi‖Gi‖1

+
µ

2

2∑
i=1

‖∇i(U)−Gi +
Γi
µ
‖2F + β‖E‖2F + λ‖S‖1

+
µ

2
‖Y −UVT −E− S +

Γ3

µ
‖2F ,

(9)
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Fig. 2. Illustration of the local smoothness prior for the representative coefficient matrix. Taking LRMF operator on clean data along spectral dimension, we
have X = U ×3 VT, where U ∈ RM×N×R and V ∈ RB×R are the representative coefficient matrix and the end-member matrix, respectively. Here, we
set R = 6 and then show the images of these six slices/frames of U and its difference maps.

(a) Clean tensor and its slices (b) Noisy tensor and its slices (c) Representative Basis tensor and its slices(a) Clean Data and its four images (b) Noisy Data and its four images (c) Representative Coefficient  and its four images

Fig. 3. Here the noisy HSI is obtained by adding the Gaussian noise N (0, 0.12) to each band of the clean HSI. The representative coefficient matrix is
obtained by performing LRMF on the noisy HSI.

where µ is the penalty parameter, {Γi}3i=1 are the Lagrange
multipliers. We then discuss how to solve its sub-problems for
each involved variable.

Update Gi, (i = 1, 2). Fixing other variables except Gi in
Eq. (9), we obtain the following sub-problem:

argmin
Gi

τi‖Gi‖1 +
µ

2
‖∇i(U)−Gi +

Γi
µ
‖2F . (10)

Utilizing the soft threshold operator S defined by [60], we
have

Gi = Sτi/µ (∇i(U) + Γi/µ) . (11)

Update V. Fixing other variables except V, we have

max
VTV=I

〈
(Y −E− S + Γ3/µ)

TU,V
〉
. (12)

According to the Theorem 1 in [23], we can get the solution
of Eq. (12) as follows:{

[B,D,C] = svd((Y −E− S + Γ3/µ)
TU),

V = BCT.
(13)

Update U. Deriving Eq. (9) with respect to U, we can get
the following linear system:(

µI + µ

2∑
i=1

∇T
i∇i

)
(U) = µ(Y −E− S + Γ3/µ)V

+

2∑
i=1

∇T
i (µGi − Γi) .

(14)

where ∇T
i (·) indicates the ‘transposition’ operator of ∇i(·)3.

Taking the difference operation ∇i(U) as the convolution to
a difference filter Di ⊗ fold(U), where Di is the correlated
difference filter4, we can readily employ fast Fourier trans-
form to efficiently solve Eq. (14). Specifically, by performing
Fourier transform on both sides of the equation and adopting
the convolution theorem, the closed-form solution to U can
be easily deduced as [22] :

H =

2∑
i=1

F (Di)
∗�F (fold (µGi)− Γi)) ,

Tx = |F(D1)|2 + F(D2)|2,

X = F−1

(
F (fold(µ(Y −E− S) + Γ3)) + H

µ1 + µTx

)
,

(15)

where 1 represents the tensor with all elements as 1, � is the
element-wise multiplication, F(·) is the Fourier transform, and
|·|2 is the element-wise square operation.

Update E. Extracting all items containing E in Eq. (9), we
can get:

E = (µ(Y −UVT − S) + Γ3)/(µ+ 2β). (16)

3Since ∇i(·) is a linear operator on U, there exists a matrix Ai which
makes the operation Ai · vec(U) equivalent to ∇i(U). Then, ∇T

i (·) means
the operator equivalent to the transposed matrix AT

i .
4For example, [1,−1] and [1;−1] for the horizontal and vertical difference

filters, respectively.
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Update S. Extracting all items containing S in Eq. (9), we
can get:

S = Sλ/µ(Y −UVT −E + Γ3/µ). (17)

Update multipliers Γi, (i = 1, 2, 3). Based on the general
ADMM principle, the multipliers are further updated by the
following equations:

Γi = Γi + µ (∇i(U)−Gi) , i = 1, 2,

Γ3 = Γ3 + µ
(
Y −UVT −E− S

)
,

µ = µρ,

(18)

where ρ is a constant value greater than 1.
Summarizing the aforementioned descriptions, we can get

the following Algorithm 1.

Algorithm 1 RCTV Solver.
Input: HSI data Y ∈ RMN×B , the hyper-parameter τ = 0.01, λ

and rank R, the parameters in ADMM framework are set as:
µ = 1e− 3, ρ = 1.25, and ε = 10−6.

Initialization: Initial U = URΣR,V = VR, where UΣV is the
SVD operation of Y and UR,ΣR,VR are the first R vectors.

1: while not converge do
2: Update the variables Gi, V, U, E and S by Eq. (11), (13),

(15), (16) and (17).
3: Update Γi, (i = 1, 2, 3) by Eq. (18), and µ = ρµ.
4: Check the convergence conditions

‖Y −UVT −E− S‖2F/‖Y‖2F ≤ ε,
‖∇iU−Gi‖2F/‖Y‖2F ≤ ε, i = 1, 2.

5: end while
Output: Recovered Data fold3(UVT) ∈ RM×N×B .

C. Computational Complexity Analysis

As shown in Algorithm 1, the computational cost of each
iteration consists of updating U via cheap FFT, updating V
via small-scale SVD computation, updating E and S via soft
threshold operation, and some matrix multiplications. We have
known that the time complexity of the soft threshold operator
is O(MNB), the time complexity of solving V is O(BR2),
and the time complexity of solving U is O(MNR log(MN))
from Table I, so the time complexity of Algorithm 1 is
O(MNB + BR2 + RMN log(MN)), which is also given
in Table II.

Different from modeling on the original HSI data X, we
can avoid large-scale SVD calculation and only need to solve
R TV sub-problems by adding TV regularization to U. Since
R/B is quite small (usually between 0.05∼0.15), the time
complexity of Algorithm 1 based on RCTV regularization thus
becomes extremely low.

VI. EXPERIMENTS

To demonstrate the effectiveness of our proposed algorithm,
we compare our denoising results with 14 state-of-art de-
noising methods on both synthetic and real HSI data. These
methods can be divided into four categories. Specifically, for
models based on pure L prior, we choose WNNM-RPCA [61]5

5The WNNM model was first proposed in [62]. Here we use the RPCA
version of WNNM, specifically, replacing the nuclear norm in RPCA with
the weight nuclear norm.

Fig. 4. Ten test images in ICVL dataset.

Fig. 5. Ten test images in CAVE dataset.

based on weighted nuclear norm minimization, LRMR [17]
based on patch denoising, and TDL [63] based on dictionary
learning. For models based on NLS prior, we choose KBR
[37], LLRT [16] based on modeling nonlocal similarity on
original HSI data, NGmeet [38] based on modeling nonlocal
similarity on coefficient matrix. For models based on joint
L and LS priors, we choose some robust denoising methods
for complex noise removal, such as LRTV [11] and LRTDTV
[12], E3DTV [23], CTV-RPCA [18], LRTFDFR [48]. For the
models based on deep learning (DL), we choose the afore-
mentioned three deep learning methods, i.e., HSI-DeNet [14],
HSICNN [13], and GRN-net [15]. All relevant parameters
in these competing methods are fine-tuned by their given
default settings or by following the rules in corresponding
papers to guarantee their possibly optimal performance. Four
quantitative quality indices are employed: MPSNR, MSSIM,
ERGAS and MSAM, where MPSNR and MSSIM are the
mean value of PSNR and SSIM on each band. PSNR and
SSIM are two conventional spatial-based metrics for a single
image, while ERGAS and MSAM are spectral-based evalua-
tion measures. The larger MPSNR and MSSIM are, and the
smaller ERGAS and MSAM are, the better quality the restored
images become. Before the experiment, the gray values of the
data are re-scaled to [0,1] via max-min formula band by band.
All the experiments are conducted on a PC with Intel Core
i5-10600KF CPU@4.10GHz, NVIDIA RTX 3080 GPU, and
32-GB memory.

A. Synthetic Experiments
This experiment aims to evaluate the performance of the

proposed model based on RCTV regularization with other
competing methods quantitatively. For a full comparison, in
this section, we select two clean multispectral image (MSI)
datasets, i.e., ICVL dataset 6, and CAVE dataset 7, and one
HSI data DC mall for comparative experiments.

6It is available at http://icvl.cs.bgu.ac.il/hyperspectral/
7https://www.cs.columbia.edu/CAVE/databases/multispectral/

http://icvl.cs.bgu.ac.il/hyperspectral/
https://www.cs.columbia.edu/CAVE/databases/multispectral/


8

Specifically, the ICVL dataset contains 201 images, each of
which is with a size of 1392×1300×31. Since we choose some
deep learning models for comparison, to be fair, we need to
retrain these models. Here, we select 30 images with a size of
512×512×31 as training data and train each model according
to the original network settings. We choose ten images with
a size of 512× 512× 31 as test data to evaluate all methods,
which are shown in Fig. 4. The CAVE dataset contains 32
images, each of which is with a size of 512 × 512 × 31. We
also choose ten images as test data to evaluate all methods,
which are shown in Fig. 5. The pure DC mall is a common
HSI data with a size of 200 × 200 × 160, which is used in
many works [17], [23].

Since real HSIs are always polluted by complex noise, such
as Gaussian noise, sparse noise (stripe, deadline, or impulse
noise), or a mixture of them, thus we add six kinds of complex
noise into the clean images to simulate these real noise cases,
which are shown as follows:

(a) The i.i.d Gaussian noises with standard variance σ = 0.1
are added to each band of MSI data in the ICVL, the
CAVE dataset and the DC mall data.

(b) First add the same Gaussian noise as in case (a), then the
deadlines are added to some bands. For the ICVL and
CAVE datasets, the deadlines are added from band 11 to
20, with the number of stripes randomly selected from 5
to 55, and the width of each stripe is randomly generated
from 1 to 5. For the DC mall Data, the deadlines are
added from band 91 to band 130, with the number of
stripes randomly selected from 3 to 10, and the width
of each stripe is randomly generated from 1 to 3.

(c) A mixture of i.i.d Gaussian noise with standard variance
σ = 0.075 and salt and pepper noise with a proportion
of s = 0.1 are added to each band of the MSI data in
ICVL, CAVE dataset, and DC mall data.

(d) First add the same noise as in case (c), then add
additional deadlines as in case (b).

(e) A mixture of Gaussian and salt and pepper noise are
added to different bands with different degrees. Here,
the standard variance of Gaussian noise and percentage
of salt and pepper noise are randomly selected from the
interval [0.05,0.15]. Additionally, we also add deadlines
as case (b) does.

(f) First add the same noise as in case (e), then add stripe
noise to some bands. Specifically, for the MSI data in
ICVL/CAVE dataset, the stripes are added from band 21
to band 30, with the number of stripes being randomly
selected from 50 to 100. For DC mall, the stripes are
added from band 141 to band 160, with the number of
stripes being randomly selected from 20 to 40.

1) Denoising Results for MSI data: We show the results of
all competing methods on two MSI datasets.

The quantitative results are given in Tables III and IV, where
each value is the average of ten test images. First of all,
we find that the performances of RCTV are relatively worse
than that of LLRT and NGmeet in case (a) and case (b). The
reason behind this is that NLS prior is very effective to remove
Gaussian noise, and we have known that NGmeet and LLRT
are two leading models for Gaussian noise removal. Although

our method is inferior to NGmeet in removing Gaussian noise,
it still achieves the best results among all the state-of-the-art
methods based on LS prior. However, stripes, deadlines, and
impulse noises are often encountered in practical situations,
so we further conduct denoising experiments for complex
noise from case (c) to case (f). We can easily find that
when the noise becomes complex, the performance of these
models based on NLS prior begin to drop significantly due
to the inaccuracy of finding similar blocks, while our RCTV
model can still maintain stable and great denoising perfor-
mance. Specifically, the evaluation metrics of RCTV are much
higher than other state-of-the-art methods, such as LRTDTV,
LRTFDFR, E3DTV. These methods have been verified to be
very effective in dealing with complex noise. In addition, we
also noticed that although the deep learning-based methods
did not achieve the best performance, considering its testing
time and denoising performance, deep learning methods still
release great potential in the HSI denoising task.

From the above analysis, we have already known that our
RCTV model can get the best denoising performance in most
noise situations. As we explained earlier, mining the priors of
the representative coefficient instead of the original data can
also significantly reduce the runtime. From the last row of
Table III and Table IV, we can observe that the runtime of
our RCTV model is the lowest among all models based on
L and LS priors, which means that the U-based model can
indeed greatly reduce the running time. Further, we compare
the denoising time of our RCTV with that of the models based
on pure L prior. Generally, models based on pure L prior have
a short denoising time, but the denoising performance is worse
than models based on multiple priors. However, we can find
that the time of our proposed RCTV is lower than that of the
models based on L prior, such as TDL [63] and LRMR [17].
Therefore, our RCTV can greatly reduce denoising time while
obtaining better performance. Surprisingly, the runtime of our
RCTV model is even comparable with the test time of the
deep learning methods.

Furthermore, we select two images to show some false
color images of all competing methods. Specifically, we not
only show the restored images of different methods, but
also provide spectral signature curves obtained by different
denoising methods in Fig. 6-Fig. 9. The reason behind this is
that the spectral signature curves are very important for the
HSI denoising task. Each point in the spatial space represents
a type of substance, and each type of substance has a specific
spectral signature, which reflects the physical properties of
this type of material. Therefore, HSI denoising is not only to
remove the noise more fully on a single image, but also to
fully maintain the spectral curves of the substances. Aiming
at a better visual comparison, we mark the same subregion
of each subfigure in Fig. 6, and Fig. 8 and then enlarge
it 2.5 times. Several observations can be easily made from
these figures. Firstly, all the compared methods can somewhat
remove such mixed noises. Secondly, the proposed RCTV
method outperforms all the compared methods. Precisely,
RCTV can effectively remove the impulse and stripe noises
while retaining the spatial texture of the original HSI, and
obtaining better image color fidelity. Additionally, RCTV can
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TABLE III
QUANTITATIVE COMPARISON OF ALL COMPETING METHODS UNDER DIFFERENT LEVELS OF NOISES IN TEN TESTING ICVL IMAGES. THE BEST AND

SECOND RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY.

Noise
Types Metric Noisy

L L & NLS DL L& LS
WNNM

LRMR TDL KBR LLRT
NG- HSI- HSI- GRN

LRTV
LRTD

E3DTV
CTV- LRTF- RCTV

-RPCA Meet CNN DeNet -Net -TV RPCA DFR

Case
(a)

MSPNR 20.00 31.84 32.56 38.81 40.62 40.89 41.75 41.12 40.91 41.28 35.43 36.61 37.42 35.42 37.62 38.37
MSSIM 0.465 0.926 0.895 0.968 0.975 0.976 0.980 0.977 0.975 0.979 0.935 0.956 0.961 0.942 0.962 0.963
ERGAS 410.1 115.2 128.7 44.92 39.42 38.56 31.86 35.68 36.63 33.36 72.15 62.75 63.85 74.19 48.28 45.99
MSAM 0.693 0.270 0.299 0.082 0.068 0.061 0.056 0.065 0.067 0.062 0.473 0.217 0.112 0.122 0.114 0.075

Case
(b)

MSPNR 19.73 31.77 32.32 37.71 39.76 39.87 40.79 40.37 39.91 40.57 34.45 35.69 36.43 35.26 37.17 37.77
MSSIM 0.454 0.926 0.894 0.962 0.968 0.970 0.977 0.968 0.955 0.975 0.924 0.950 0.955 0.942 0.960 0.961
ERGAS 422.3 115.7 131.0 156.9 747.9 45.9 39.7 46.5 42.6 36.6 85.7 69.9 69.4 75.2 50.6 49.7
MSAM 0.704 0.225 0.263 0.089 0.077 0.076 0.075 0.082 0.079 0.077 0.439 0.197 0.103 0.105 0.105 0.081

Case
(c)

MSPNR 12.16 31.04 31.41 23.95 21.85 22.97 23.01 35.12 34.96 37.05 34.84 36.80 37.63 35.84 36.56 37.87
MSSIM 0.162 0.902 0.873 0.720 0.586 0.632 0.655 0.896 0.892 0.948 0.940 0.951 0.962 0.947 0.950 0.961
ERGAS 1029 114.3 111.3 281.4 420.3 328.6 306.7 128.5 132.4 62.6 143.9 61.2 59.2 69.4 65.6 52.3
MSAM 0.815 0.194 0.158 0.164 0.263 0.282 0.267 0.111 0.112 0.097 0.191 0.115 0.119 0.134 0.155 0.083

Case
(d)

MSPNR 12.12 30.82 31.11 23.25 21.55 22.24 22.47 34.82 34.59 36.75 34.64 36.50 37.33 35.58 36.12 37.49
MSSIM 0.158 0.901 0.872 0.718 0.585 0.630 0.641 0.893 0.890 0.946 0.939 0.949 0.960 0.945 0.948 0.959
ERGAS 1031 118.7 115.6 297.3 440.2 341.3 395.2 134.2 138.7 65.1 148.6 63.8 61.8 72.4 69.7 55.5
MSAM 0.822 0.211 0.176 0.188 0.282 0.304 0.291 0.127 0.129 0.112 0.216 0.142 0.132 0.152 0.182 0.107

Case
(e)

MSPNR 13.56 30.42 30.34 24.93 22.25 24.48 24.76 34.53 34.37 36.62 34.51 36.28 36.59 35.52 35.88 36.93
MSSIM 0.201 0.881 0.838 0.704 0.594 0.642 0.657 0.904 0.901 0.938 0.934 0.939 0.948 0.932 0.935 0.946
ERGAS 883.1 129.6 144.3 287.0 334.5 319.2 297.0 135.2 138.9 74.2 138.3 70.7 69.1 76.8 73.4 66.9
MSAM 0.783 0.247 0.202 0.236 0.289 0.276 0.261 0.147 0.142 0.124 0.199 0.131 0.140 0.157 0.161 0.129

Case
(f)

MSPNR 13.15 30.01 30.12 24.90 22.15 24.19 24.33 34.29 34.31 36.52 33.32 36.03 36.44 35.14 35.55 36.76
MSSIM 0.197 0.869 0.831 0.686 0.617 0.648 0.653 0.902 0.901 0.935 0.911 0.934 0.944 0.926 0.929 0.946
ERGAS 888.2 135.7 141.6 283.7 344.6 331.4 318.6 138.9 137.6 76.8 142.5 73.3 70.0 78.9 72.5 67.3
MSAM 0.788 0.256 0.212 0.248 0.313 0.295 0.289 0.163 0.168 0.135 0.218 0.141 0.152 0.171 0.176 0.138

Mean Times(s) 14.1 42.9 59.8 1632.5 1547.7 207.3 11.4 11.2 10.98 251.6 195.3 63.5 116.2 130.3 11.7

TABLE IV
QUANTITATIVE COMPARISON OF ALL COMPETING METHODS UNDER DIFFERENT LEVELS OF NOISES IN TEN TESTING CAVE IMAGES. THE BEST AND

SECOND RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY.

Noise
Types Metric Noisy

L L & NLS DL L& LS
WNNM

LRMR TDL KBR LLRT
NG- HSI- HSI- GRN

LRTV
LRTD

E3DTV
CTV- LRTF- RCTV

-RPCA Meet CNN DeNet -Net -TV RPCA DFR

Case
(a)

MSPNR 20.00 29.28 31.43 38.92 40.92 41.89 41.49 40.76 40.89 41.15 33.31 36.10 37.47 33.89 35.72 37.70
MSSIM 0.417 0.849 0.867 0.970 0.976 0.986 0.985 0.978 0.979 0.981 0.931 0.952 0.964 0.943 0.956 0.962
ERGAS 545.2 176.1 142.5 60.7 52.4 43.7 47.8 58.9 57.5 53.6 121.6 101.8 80.1 113.6 111.8 72.2
MSAM 0.836 0.536 0.409 0.115 0.091 0.082 0.074 0.106 0.108 0.095 0.332 0.305 0.251 0.257 0.281 0.119

Case
(b)

MSPNR 19.87 29.22 31.16 37.85 40.01 40.84 40.50 40.07 39.89 40.45 32.27 35.08 36.37 33.74 35.27 37.17
MSSIM 0.412 0.849 0.865 0.962 0.972 0.982 0.981 0.973 0.972 0.976 0.928 0.947 0.958 0.939 0.953 0.956
ERGAS 551.8 176.6 144.9 176.0 61.3 51.1 55.9 61.8 63.6 57.0 135.8 109.3 85.8 114.6 114.1 76.0
MSAM 0.841 0.552 0.412 0.116 0.093 0.085 0.075 0.108 0.110 0.097 0.332 0.333 0.269 0.270 0.302 0.127

Case
(c)

MSPNR 11.83 28.59 29.03 22.23 22.28 22.57 22.80 34.64 34.89 36.58 34.08 36.21 37.43 34.19 35.66 37.46
MSSIM 0.147 0.832 0.841 0.547 0.548 0.552 0.554 0.915 0.918 0.940 0.926 0.948 0.956 0.928 0.938 0.957
ERGAS 1428 220.9 206.7 458.6 456.7 449.2 442.4 187.4 184.5 100.2 153.2 95.4 81.3 108.5 114.8 80.6
MSAM 0.960 0.316 0.304 0.368 0.382 0.348 0.316 0.308 0.314 0.232 0.316 0.262 0.198 0.184 0.162 0.131

Case
(d)

MSPNR 11.85 28.34 28.72 21.88 22.02 22.19 22.44 34.46 34.57 36.34 33.82 35.97 37.06 33.87 35.22 37.10
MSSIM 0.143 0.831 0.839 0.546 0.546 0.550 0.552 0.911 0.914 0.938 0.921 0.944 0.954 0.923 0.931 0.955
ERGAS 1420 224.3 210.2 462.3 461.2 454.6 451.4 193.8 192.9 104.5 159.3 99.3 85.8 112.6 119.3 84.6
MSAM 0.962 0.332 0.326 0.387 0.395 0.364 0.342 0.332 0.346 0.248 0.343 0.289 0.216 0.212 0.196 0.158

Case
(e)

MSPNR 13.33 27.36 28.23 23.18 22.92 23.45 23.84 33.77 33.96 35.21 33.23 34.69 35.81 33.48 33.40 35.54
MSSIM 0.177 0.792 0.798 0.556 0.547 0.568 0.572 0.908 0.911 0.928 0.900 0.925 0.941 0.914 0.912 0.937
ERGAS 1208 252.1 240.2 422.6 437.2 412.6 403.2 132.2 136.4 103.4 142.3 112.3 96.5 116.8 137.8 94.8
MSAM 0.916 0.346 0.338 0.373 0.389 0.372 0.368 0.316 0.311 0.231 0.299 0.276 0.278 0.257 0.328 0.164

Case
(f)

MSPNR 13.21 26.93 28.11 23.06 22.87 23.18 23.45 33.63 33.82 35.12 33.12 34.46 35.53 33.20 33.15 35.31
MSSIM 0.173 0.784 0.747 0.594 0.589 0.605 0.611 0.907 0.909 0.927 0.898 0.923 0.938 0.911 0.907 0.934
ERGAS 1223 263.2 254.4 425.6 441.8 418.6 422.1 135.6 138.1 104.2 145.6 114.8 97.9 122.4 145.1 96.5
MSAM 0.926 0.365 0.352 0.391 0.401 0.383 0.382 0.323 0.321 0.239 0.306 0.292 0.281 0.266 0.347 0.169

Mean Times(s) 13.9 40.5 46.2 1586 1111 197.1 10.95 11.12 10.72 201.8 250.6 44.9 80.5 149.3 16.5
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(a) Original (b) Noisy (c) LRMR (d) Ngmeet (f) GRN-net

(g) LRTV (h) LRTDTV (i) E3DTV (j) CTV (l) RCTV

(e) HSI-CNN  

(k) LRTFDFR

Fig. 6. Recovered images of all competing methods with bands 23-13-4 as R-G-B. (a) The simulated ICVL image. (b) The noisy images under case (f). (c-h)
The recovered images obtained by all the competing methods, with a demarcated zoomed in 2.5 times for easy observation.

(a) Noisy (b) LRMR (d) HSI-CNN (e) GRN-net (f) LRTV

(g) LRTDTV (h) E3DTV (i) CTV (k) RCTV
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Fig. 7. The spectral signatures of point (200, 300) in this ICVL dataset under case (f) before and after denoising by different methods from top to bottom,
respectively.
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Fig. 8. Recovered images of all competing methods with bands 23-13-4 as R-G-B. (a) The simulated CAVE image. (b) The noisy images under case (f).
(c-h) The recovered images obtained by all the competing methods, with a demarcated zoomed in 2.5 times for easy observation.
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Fig. 9. The spectral signatures of point (200, 200) in this CAVE dataset under case (f) before and after denoising by different methods from top to bottom,
respectively.
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better maintain the spectral signature curve of the substance. In
Fig. 7 and Fig. 9, we can clearly see that the spectral signature
curve of RCTV is the closest to the groundtruth.

Therefore, based on the above analysis, it is not difficult to
conclude that RCTV can not only greatly reduce the running
time of denoising, but also achieve the best performance in
the complex noise case.

2) Denoising Results for HSI Data: The previous subsec-
tion shows the denoising results of our method on MSI data.
In this chapter, we directly conduct simulation experiments
on HSI data. Compared with MSI, the band number of HSI is
larger and thus the low-rankness of HSI is stronger. All model-
based methods explicitly exploit L prior, so model-based
methods perform relatively better than data-based methods.
Since our method is based on mining the L and LS prior, the
restoration performance of our RCTV will be more prominent
on this HSI data.

The quantitative comparison, the visual restored image of
all competing methods, and the restored signature curves are
provided in Table V, Fig. 10 and Fig. 11, respectively. From
these tables and figures, we can easily observe similar results
to MSI experiments. In addition, with the enhancement of the
low-rankness of HSI data, the evaluation metrics obtained by
some traditional methods such as LRTDTV and E3DTV on
complex noise will be better than the denoising performance
of deep learning-based approaches. Indeed, the performance
of our method can also be further enhanced.

B. Real HSI Denoising

Two real-world HSI data sets used in [12], [23] are used
in our experiments, i.e., the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) Urban data set with size
307 × 307 × 210, and the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) Terrian data set with size
300 × 300 × 210. For these two data sets, some bands are
seriously polluted by the atmosphere and water and corrupted
by complex noises (e.g., deadline, stripe, sparse and Gaussian
noise), thus it is a big challenge to remove the noise.

In this experiment, the competing methods include WNNM
[61], [62], LRMR [17], NGmeet [38], LRTV [11], LRTDTV
[12], E3DTV [23], CTV-RPCA [18], LRTFDFR [48], and two
deep learning methods (i.e., HSICNN [13], GRN-net [15]).

Since these are real HSI data, we cannot get the noiseless
image and get evaluation metrics to judge the effect of com-
peting methods. To make the comparison more comprehensive
and reliable, we select images with a moderate degree of
pollution, and show the denoised image and the column mean
curve of the denoised image to assist in judging the denoising
effect of the competing methods. We choose moderately
polluted images for presentation because results based on
heavily polluted images are often unconvincing. The reason
for choosing to display the column mean curve of the repaired
image is that the visual observation is often biased, and we
can better measure the quality of the repair result based on
the intrinsic properties of the image, such as local smoothness.
Since the image has local smoothness, we can calculate the
mean value of each column of the image and get the column

mean curve, then the column mean curve should also have a
certain degree of smoothness. In addition, for the case where
the noise level is not extremely serious, the column mean
curves of noisy image and denoised image should be relatively
close.

For a fair comparison, we provide the denoised images and
column mean curves of all competing methods for Terrian
data at band 139 in Fig. 12-13, and Urban data at band
104 in Fig. 14-15. From these figures, we can observe that
all competing methods can remove the mixed noise to some
extent. But for stripe noise, only our method and two deep
learning methods can remove the noise better. Compared with
the column mean curve of all methods, only our method
can better maintain the trend of the column mean curve of
the original image. Therefore our method achieves the best
denoising performance. In addition, we also list the runtime
of all competing methods. As can be seen from Fig. 12 and
Fig. 14, the runtime of our proposed RCTV model is second
fastest compared with all the competing methods, and almost
comparable with the test time of the deep learning-based
methods.

C. Discussion

1) Parameter Analysis: There are four parameters in RCTV
model that need to be given in advance, i.e., the trade-off
parameters R, τ , β and λ.

The rank R mainly characterizes the spectral global cor-
relation of HSIs. According to the analysis in Table II, we
have known that the time complexity of RCTV is related
to R. Therefore, we provide the sensitivity analysis of the
rank R and runtime of RCTV under different R of Fig.
16. From the left sub-figure in Fig. 16, it can be seen that
the proposed RCTV exhibits stable and superior performance
within a certain range of rank under case (b) and case (c)
on DC mall data. From the right sub-figure of Fig. 16, it is
easily seen that the runtime is nearly positively correlated with
R, which is consistent with the time comparison reported in
Table II. To balance the good denoising result and denoising
time, the rank of all the simulation experiments in this paper
is selected from 6 to 10. As for real HSI data, the rank is
estimated by the well-known HySime algorithm [64].

At first glance, the objective function in model (8) contains
three parameters, i.e., τ , β and λ. In fact, there is a certain
proportional relationship between the three parameters. Using
this relationship, we only need to fine-tune two parameters, or
even one parameter to achieve a good denoising performance.
Specifically, for the case where most noises obey Gaussian
distribution, we can ignore the `1 norm designed for the sparse
noise. Then we can simply set β = 1 and fine-tune τ . For the
case where most noises obey laplacian distribution or mixed
distribution, we can simply set λ = 1, set β as a big value,
and then fine-tune τ . Therefore, the performance of the RCTV
model (8) is sensitive to τ , and is robust to β and λ. To be more
intuitive, we provide sensitivity analysis on the simulated DC
mall data under Case (b) and (c) in Fig. 17 since they represent
the Gaussian noise case and the mixed noise case, respectively.
As observed, the performance of the proposed RCTV is robust
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(a) Original (b) Noisy (c) LRTV (d) CTV (e) LRTDTV (f) GRN-net (g) E3DTV (h) RCTV
Fig. 10. Recovered images of all competing methods with bands 6-105-155 as R-G-B. (a) The simulated DC mall image. (b) The noisy images under case
(c) and (e) from top to bottom. (c-h) The recovered images by all the competing methods, with a demarcated zoomed in 2.5 times for easy observation.
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Fig. 11. The spectral signatures of point (100, 100) in DC mall dataset under case (c) and point (120, 120) in DC mall dataset under case (e) before and
after denoising by different methods from top to bottom, respectively.

TABLE V
QUANTITATIVE COMPARISON OF ALL COMPETING METHODS UNDER DIFFERENT LEVELS OF NOISES IN THE DC MALL DATASET. THE BEST AND SECOND

RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE, RESPECTIVELY.

Noise
Types Metric Noisy

L L & NLS DL L& LS
WNNM

LRMR TDL KBR LLRT
NG- HSI- HSI- GRN

LRTV
LRTD

E3DTV
CTV- LRTF- RCTV

-RPCA Meet CNN DeNet -Net -TV RPCA DFR

Case
(a)

MPSNR 20.00 33.00 33.77 35.53 35.61 36.42 37.98 36.28 36.15 36.96 35.16 35.23 36.56 35.31 36.88 37.21
MSSIM 0.515 0.957 0.958 0.971 0.972 0.978 0.983 0.967 0.965 0.978 0.964 0.964 0.976 0.971 0.978 0.979
ERGAS 375.9 83.4 74.33 60.37 62.88 59.94 45.24 59.43 58.37 51.46 62.98 61.83 55.74 63.75 52.86 49.90
MSAM 0.475 0.110 0.102 0.079 0.066 0.070 0.059 0.071 0.069 0.066 0.093 0.081 0.075 0.077 0.065 0.069

Case
(b)

MPSNR 19.87 32.93 33.55 34.51 34.82 35.47 37.06 35.58 35.17 36.58 34.18 34.33 35.57 35.15 36.46 36.65
MSSIM 0.509 0.957 0.957 0.965 0.966 0.972 0.980 0.958 0.945 0.976 0.953 0.958 0.970 0.971 0.976 0.977
ERGAS 381.1 83.92 76.63 75.52 71.38 67.21 52.93 62.24 64.28 54.68 76.38 68.90 61.19 64.76 55.19 53.58
MSAM 0.481 0.110 0.101 0.085 0.077 0.076 0.066 0.075 0.073 0.068 0.092 0.083 0.080 0.078 0.066 0.076

Case
(c)

MPSNR 12.38 33.49 32.77 23.73 25.34 25.48 26.46 32.62 32.87 34.89 34.46 35.41 36.35 35.49 35.62 37.02
MSSIM 0.221 0.963 0.960 0.801 0.830 0.832 0.846 0.956 0.958 0.962 0.956 0.967 0.975 0.970 0.969 0.978
ERGAS 925.1 80.39 86.41 246.7 168.3 174.8 161.6 77.3 74.5 65.8 97.59 63.98 58.49 61.86 61.14 51.01
MSAM 0.733 0.131 0.092 0.189 0.183 0.181 0.174 0.092 0.095 0.075 0.131 0.082 0.075 0.081 0.080 0.069

Case
(d)

MPSNR 12.37 33.4 32.61 23.8 25.12 25.36 26.02 32.18 32.53 34.68 34.33 35.23 36.08 35.62 35.65 36.85
MSSIM 0.219 0.963 0.957 0.800 0.822 0.825 0.843 0.953 0.954 0.962 0.955 0.966 0.973 0.971 0.969 0.978
ERGAS 926.3 80.39 96.41 246.7 172.1 176.2 162.4 80.4 78.6 63.2 97.59 63.98 58.49 61.36 62.97 52.84
MSAM 0.736 0.132 0.094 0.190 0.188 0.185 0.174 0.094 0.097 0.077 0.134 0.084 0.080 0.082 0.083 0.072

Case
(e)

MPSNR 13.73 32.72 32.83 25.64 26.84 26.42 27.34 33.52 33.36 34.54 33.37 34.25 35.42 34.47 34.49 35.97
MSSIM 0.277 0.955 0.956 0.842 0.857 0.852 0.868 0.956 0.958 0.962 0.946 0.958 0.969 0.962 0.964 0.972
ERGAS 805.9 85.48 83.4 203.7 184.3 189.4 172.6 75.6 74.8 63.82 99.25 70.4 62.27 69.46 68.43 59.15
MSAM 0.688 0.137 0.103 0.178 0.163 0.166 0.161 0.097 0.096 0.082 0.129 0.089 0.084 0.091 0.100 0.081

Case
(f)

MPSNR 13.53 32.76 33.82 25.56 26.66 26.26 27.18 33.48 33.25 34.56 33.43 34.34 35.23 34.50 34.57 35.64
MSSIM 0.266 0.956 0.965 0.838 0.853 0.848 0.864 0.964 0.964 0.967 0.944 0.957 0.967 0.963 0.963 0.971
ERGAS 817.9 85.78 108.2 208.5 186.5 191.4 174.8 115.6 114.2 68.4 105.8 71.16 63.58 68.42 68.61 59.65
MSAM 0.698 0.148 0.121 0.181 0.166 0.171 0.163 0.137 0.132 0.124 0.136 0.112 0.109 0.104 0.116 0.095

Mean Times(s) 9.10 22.42 12.83 1721 1546 34.23 2.75 2.74 2.61 76.25 114.2 38.56 58.81 38.92 5.82
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Noisy: Time WNNM: 38.99s LRMR: 56.21s HSI-CNN: 9.53s GRN-net: 9.26s

LRTV:282.7s LRTDTV: 339.5s E3DTV: 159.5s CTV: 263.1s LRTFDFR: 97.2s RCTV: 18.06s

NGmeet: 81.38s

Fig. 12. Recovered images of all competing methods at band 139 of Terrian data.
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Fig. 13. The vertical mean profiles of all competing methods at band 104 of Terrian data.

LRTV:308.7s LRTDTV: 383.8s E3DTV: 167.5s LRTFDFR: 106.2s RCTV: 18.98s

Noisy: Time WNNM: 39.64s LRMR: 64.78s HSI-CNN: 9.54s GRN-net: 9.32sNGmeet: 82.25s 

CTV: 276.3s
Fig. 14. Recovered images of all the competing methods at band 104 of Urban data.

to the parameters λ and β, and we can set λ or β with a large
value. While it is sensitive to the parameter τ , we need to fine-
tune τ to get a good performance. Specifically, for Gaussian
noise removal, i.e. cases (a) and (b), we fix β = 1, λ = 100,
and then finely choose τ from the set [0, 2]. For mixed noise
removal, i.e, cases (c)-(f), we fix λ = 1, β = 50, and then
finely choose τ from the set [0, 2].

2) Convergence Analysis: Since the RCTV model (8) is
proposed based on LRMF, and LRMF is a non-convex frame-
work, it is difficult to give a convergence theorem guar-

antee via the ADMM framework. Instead, we numerically
demonstrate the convergence. Fig. 18 presents the MPSNR
and MSSIM values versus the iteration number of the RCTV
solver. It can be observed that, as the number of iterations
increases to a relatively large value, the relative changes of
MPSNR and MSSIM converge to zero. This clearly illustrates
the strong convergence of the proposed ADMM algorithm to
solve the RCTV model, which further encourages us to utilize
it for more practical applications.
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Fig. 15. The vertical mean profiles of the all competing methods at band 104 of Urban data.
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Fig. 16. Sensitivity analysis of the rank R under case (b) and case (c) on
DC mall data.
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Fig. 17. Sensitivity analysis of the parameters τ and λ under Case (b), and
sensitivity analysis of the parameters τ and β under Case (c).
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Fig. 18. MPSNR and MSSIM value versus the iteration number of RCTV
slover.

VII. CONCLUSION

In this paper, we propose a simple, efficient and fast method
for HSI mixed noise removal. Through our analysis, it is
pointed out that the spatial information of the HSI can be
transferred to its representative coefficients. By encoding the
local smoothness of representative coefficients, we provide a
new regularizer named RCTV that can simultaneously encode
the global correlation and local smoothness of HSI. Since the
band number of the representative coefficients matrix is far
less than the band number of HSI data and the representative
coefficients matrix is somewhat robust to noise, the model
based on RCTV can not only greatly reduce the runtime of HSI
denoising, but also further improve the performance. A series
of simulated and real data experiments have been conducted to
demonstrate the superior performance of the proposed method
over some popular methods in terms of both the evaluation
metrics and denoising runtime.

In the future, we will focus more on mining the prior
of representative coefficient matrices, solving the problem of
parameter selection and recoverable theory. For mining the
prior of representative coefficient matrices, we can utilize the
deep neural network (DNN) to learn the prior of representative
coefficient matrices from big data or propose other regulariza-
tion terms to further improve performance and reduce runtime.
Additionally, we will make more attempts to build recoverable
theory and solve the parameter selection problem.
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APPENDIX

In this section, we give the proof of Theorem 1.
Proof 1: Write the SVD of X ∈ RMN×B of rank R as

X = ÛΣV̂T =

B∑
k=1

σkukvk
T, (19)

where σk, (k = 1, · · · , R) are the positive singular values and
σR+1, · · · , σB are zero since the rank of X is R, and Û =
[u1, · · · ,uB], V̂ = [v1, · · · ,vB] are the matrices of left- and
right-singular vectors. Combine Û and Σ into one, still record
as Û. Since only the first R singular values are non-zero, we
can decompose Û and V̂ into two matrices, i.e., Û = [U, Ũ]
and Û = [V, Ṽ], where U and V are the matrices of first R
vectors in Û and V̂, respectively, Ũ = 0, and Ṽ is the matrix
of remained B−R vectors in V̂. Thus we have X = ÛV̂T =
UVT, and Ũ = XṼ = 0. Denote Xi and Ui as the ith row
vectors of X and U (i = 1, 2, · · · ,MN ), respectively.

Proof of (a) Suppose X(i, :), X(j, :) are two identical
vectors, and have different representative coefficient vectors
under V, set as α and β respectively. Then we have

0 = X(i, :)−X(j, :) = (α− β)V. (20)

Since V is orthogonal matrix, we have α = β.
Proof of (b) For any 1 ≤ i, j ≤MN , we have

XiX
T
j = ÛiV̂

TV̂Ûj = UiU
T
j ,

‖Ui‖2 = ‖Ûi‖2 = ‖XiV̂‖2 = ‖Xi‖2.
(21)

Therefore,

UiU
T
j

‖Ui‖22‖Uj‖22
=

XiX
T
j

‖Xi‖22‖Xj‖22
(22)

which means Angle(Ui,Uj) = Angle(Xi,Xj). Beside,

Dist(Ui,Uj) =
√

(Ui −Uj)(Ui −Uj)T

=
√
‖Ui‖22 − 2Ui(Uj)T + ‖Uj‖22

=
√
(Xi −Xj)(Xi −Xj)T = Dist(Xi,Xj).

(23)

This completes the proof.
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