
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023 4200718

Per-Pixel Uncertainty Quantification and Reporting
for Satellite-Derived Chlorophyll-a Estimates

via Mixture Density Networks
Arun M. Saranathan , Member, IEEE, Brandon Smith, Member, IEEE,

and Nima Pahlevan , Senior Member, IEEE

Abstract— Mixture density networks (MDNs) have emerged
as a powerful tool for estimating water-quality indicators, such
as chlorophyll-a (Chla) from multispectral imagery. This study
validates the use of an uncertainty metric calculated directly
from Chla estimates of the MDNs. We consider multispectral
remote sensing reflectance spectra (Rrs) for three satellite sensors
commonly used in aquatic remote sensing, namely, the ocean and
land colour instrument (OLCI), multispectral instrument (MSI),
and operational land imager (OLI). First, a study on a labeled
database of colocated in situ Chla and Rrs measurements clearly
illustrates that the suggested uncertainty metric accurately
captures the reduced confidence associated with test data, which
is drawn for a different distribution than the training data.
This change in distribution maybe due to: 1) random noise;
2) uncertainties in the atmospheric correction; and 3) novel
(unseen) data. The experiments on the labeled in situ dataset
show that the estimated uncertainty has a correlation with
the expected predictive error and can be used as a bound on
the predictive error for most samples. To illustrate the ability
of the MDNs in generating consistent products from multiple
sensors, per-pixel uncertainty maps for three near-coincident
images of OLCI, MSI, and OLI are produced. The study
also examines temporal trends in OLCI-derived Chla and the
associated uncertainties at selected locations over a calendar
year. Future work will include uncertainty estimation from MDNs
with a multiparameter retrieval capability for hyperspectral and
multispectral imagery.

Index Terms— Aquatic remote sensing, chlorophyll-a (Chla),
inland and coastal waters, Landsat-8, machine learning (ML),
Sentinel-2, Sentinel-3, uncertainty.

I. INTRODUCTION

FRESHWATER and coastal estuaries play a significant
role in various aspects of human lives from furnishing

drinking water to providing ecosystem services essential to
human health and the economy. As such, it is critical to study
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and monitor the health of these ecosystems. One important
aspect in tracking the health of these ecosystems is to assess
the amount of phytoplankton present in the water column; too
little plant biomass may lead to their collapse, while excessive
plant life may be detrimental to other wildlife [1], human
health [2], and the ecosystem. In general, chlorophyll-a (Chla)
(the active agent for oxygenic photosynthesis presents in all
phytoplankton types) serves as a proxy for biomass in the
water column [3], [4], [5], [6].

Historically, estimates of near-surface concentrations of
Chla from optical remote sensing data have been used to
monitor the health of a variety of aquatic ecosystems [5],
[7], [8], [9]. Image datasets from Landsat-8’s moderate-
resolution operational land imager (OLI) [10], [11], [12], the
multispectral instrument (MSI) aboard Sentinel-2 [13], [14],
and the ocean and land colour instrument (OLCI) carried on
Sentinel-3 [15] have been harnessed for monitoring Chla in
various water bodies. The optical remote sensing literature
records various attempts and approaches to estimate Chla
from radiometric observations. Initial techniques designed for
instruments like OLI, which do not support measurements in
the red-edge (RE) spectral region, primarily focused on the
use of specific ocean-color band ratios (generally a blue–green
ratio) [16], [17], [18]. While such approaches have been
successful for open-ocean waters, for more optically complex
scenarios, such as lakes and rivers, they exhibit significant
performance degradation [19], [20], [21]. For satellite
instruments equipped with the RE band, models leveraging
bands in the red-NIR regions have been shown to perform
reasonably well in eutrophic waters with limited accuracy in
ecosystems with Chla < 8 mg m−3 [22], [23], [24]. Another
popular avenue has been to leverage various machine learning
(ML) algorithms, such as support vector machines [25], [26],
XGB-tree algorithms [27], and different neural network-based
approaches [28], [29], [30], [31], [32], [33].

While classical ML approaches are capable of modeling
complex relationships between input data and target vari-
ables [34], [35], they are designed to predict a specific
variable of interest, such as Chla, i.e., they are designed
to make a single prediction. In addition, such models also
assume that the distribution of the target variable is unimodal.
This assumption might be problematic when one is modeling
inverse problems, such as Chla retrievals, which are expected
to be multimodal (due to the nonunique relationship between
the input and the target variables) [36]. Recently, it has
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been proposed to instead utilize a neural network variant,
the mixture density network (MDN), which models the target
variable as a distribution, in particular, a mixture of Gaussians
conditioned on the input variable [37], [38]. This formulation
accounts for the possibility that the distribution of the target
variable is multimodal and has outperformed existing retrieval
techniques across a variety of different water types [37], [38].

Most of the commonly used ML models in the aquatic
remote sensing literature leverage labeled training datasets to
uncover the complex relationships between radiometric data
and biogeochemical variables. The ability of the models to
accurately predict the target variable is highly data-dependent,
and often, the predictions of these models are only appropriate
if the test samples are drawn from the same distribution as
the training samples.1 Previous work has shown that basing
real-world decisions solely on the predictions of such models
without analyzing the uncertainty/confidence associated with
the predictions may mislead product end-users [39], [40], [41].
Uncertainty analysis in ML attempts to capture the similarity
of a given test sample to the training data distribution; this
will provide the end-user important information on the validity
of the ML model prediction for a specific sample. This
uncertainty is distinct from the uncertainty already present
in the optical measurements under consideration for such
applications (see [42] and the references therein for details).
Mélin et al. [43] have previously showed that the uncertainties
associated with satellite remote sensing products are higher
than the uncertainty associated with products from in situ
measurements. Brewin et al. [44] provide an initial attempt to
measure the uncertainty in the ranking/performance of a large
suite of methods using statistics on the model performance.
McKinna et al. [45] proposed a method to track the effects of
radiometric uncertainties on the performance of ML models.
Many of these papers note that the radiometric uncertainty
affects the quality of the predicted products, but they do
not track the inherent uncertainty associated with the ML
model prediction, which is also relevant and should be
determined.

The uncertainty associated with the prediction of an ML
model can be broadly classified into two main categories,
namely, aleatoric and epistemic uncertainty [46], [47].
Aleatoric (random) uncertainty is the uncertainty induced in
the prediction due to the noise inherently present in the training
data. Epistemic (knowledge-based) uncertainty refers to the
ignorance of the model on a given data point. Various factors
may affect the presence of epistemic uncertainty, such as: 1) a
lack of sufficient training samples resembling the test sample;
2) inadequate model capacity (e.g., using a linear model to
model a nonlinear relationship); and 3) the multimodality of
the target variable distribution. Unlike aleatoric uncertainty,
which is caused by the randomness in the data acquisition
process, the epistemic uncertainty can be reduced by providing
additional data while training the ML models or increasing
the model’s complexity and so on. For ML applications, the

1Section I in the Supplementary Material provides some insight into why
uncertainty exists for predictions made by an ML model for unknown data
using a toy problem.

uncertainty in the prediction is modeled in a probabilistic
manner, i.e., using Bayesian approximations (since exact
Bayesian inference is intractable) of the model [46]. The
literature provides a variety of techniques for performing the
Bayesian approximation ranging from Markov chain Monte
Carlo simulations [48], variational inference [49], Monte Carlo
dropout [50], and Laplacian approximations [51], among
others (see [46] and references therein for a complete review
of uncertainty estimation techniques for neural-network-based
ML models). In the aquatic remote sensing/ocean-color
literature, another uncertainty estimation approach cited in
Mélin et al. [42] is to build a supplementary inverse network
to reconstruct the original Rrs from the model output. The
samples with high reconstruction error are considered “out-of-
scope.” While these approaches appear to provide notions of
uncertainty and (in some cases) include significant theoretical
analysis, they require both modification and retraining of the
deep learning models to accommodate them. The training of
these models is both much more challenging (due to increased
complexity) and computationally expensive.

Here, we will leverage MDN’s inherent ability to estimate
the probability distributions associated with a target variable.
These distributions can be directly used to approximate
the uncertainty without retraining or modifying the model.
Choi et al. [40] proposed an MDN-specific uncertainty tech-
nique, wherein the uncertainty associated with a prediction
of the MDN is shown to be the variance of a mixture of
Gaussians estimated by the MDN. The authors further show
that the variance (and, in turn, the uncertainty) can be easily
decomposed into aleatoric and epistemic components. While
this approach [40] appears to provide a quick and efficient way
to estimate the uncertainty associated with an MDN prediction,
it is essential to verify that uncertainties estimated in this
way are reasonable and consistent for the issues commonly
affecting aquatic remote sensing data. The consistency and
reasonability of the estimated metric are verified for some of
the well-known distortion processes affecting satellite remote
sensing data, namely: 1) highly noisy data; 2) novel (unseen)
data samples different from the training data; and 3) structured
distortions, due to uncertainties in the atmospheric correction,
on the predictions of the MDN models. In addition, we
will perform experiments that: 1) verify the link between
estimated uncertainties and predictive error and 2) demonstrate
that the estimated uncertainty metrics can be interpreted
as a physical bound on prediction errors. For practical
purposes, the proposed uncertainty metric will be used to:
1) create uncertainty maps for near-simultaneous acquisitions
of OLCI, MSI, and OLI to showcase the generation of
consistent multimission uncertainty products and 2) evaluate
temporal variability in OLCI-derived Chla predictions and the
associated uncertainties for selected locations.

With this content information, the rest of this article is
organized as follows. Section II will describe the different
radiometric datasets used for analysis in this study. Section III
will describe the various ML tools and methods used for the
estimation of Chla, the associated uncertainty metric (σUNC),
and the design of the various experiments on the in situ dataset
used to validate the MDN uncertainty metric for Rrs data.
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Section IV contains the results of these validation experiments.
Section V illustrates some possible practical applications of
the uncertainty metric both on labeled and satellite data.
Section VI will describe a set of observations based on
the experiments in Sections IV and V. Finally, Section VII
will provide the conclusions and describe avenues for future
research.

II. DATASETS

In this article, two datasets were primarily used: 1) an in situ
radiometric dataset that was used for model development
and testing of the proposed uncertainty metric and 1)
satellite images used to qualitatively examine the realism and
practicality of the MDN-generated uncertainty products.

A. Training/Testing Dataset

The primary dataset for testing the proposed uncertainty
metric comprises colocated measurements of hyperspectral Rrs

spectra and Chla, which have been previously used for the
training and testing of the MDN-based models. The primary
radiometric quantity used in this study is the remote sensing
reflectance (Rrs [sr−1]), which is defined as the ratio of the
water leaving radiance (Lw(λ)) to the downwelling irradiance
just above the water (Ed(λ)) at each wavelength [52], i.e.,

Rrs(λ) = Lw(λ)

Ed(λ)
. (1)

The spectral dependency (λ) is discarded hereafter. This
hyperspectral data is resampled according to the relative
spectral response functions of the satellite instruments of
interest i.e., OLCI, MSI, and OLI to gauge the performance
of the MDN model for different spectral configurations. While
the in situ data simulate near-ideal conditions in terms of mea-
surement techniques and environments, these measurements
are not void of uncertainties due to random/systematic noise
in field instrument measurements, operation errors, nonideal
environmental conditions, and inaccuracies in laboratory-
based Chla measurements. Nonetheless, it is noted that the
uncertainty/randomness associated with the dataset is expected
to be lower than the uncertainties associated with satellite-
derived Rrs [37], [38]. The samples in this dataset have been
collected from various inland and near-shore coastal waters,
such as lakes, bays, estuaries, coast lines, and rivers from
around the world, covering a wide range of trophic states (TSs)
and geographic locations [37]. As such, the dataset contains
samples with Chla values ranging from 0.1 to 1000 mg m−3,
and the distribution of Chla for the samples corresponding to
the satellite instruments is shown in Fig. 1.

B. Multispectral Satellite Datasets

In addition to the in situ dataset, the proposed uncertainty
metric is also tested on Chla predictions made on selected
satellite images. The most interesting aspect of these datasets
is that, for each geographic location considered in this
study (see Section V-B), we have near-simultaneous image
acquisitions from all three sensors namely, OLCI, MSI, and
OLI. These areas are two major estuaries (San Francisco

Bay and Chesapeake Bay) and one hypereutrophic lake
(Upper Klamath Lake). The images are processed using the
Atmospheric Correction for OLI “lite” (ACOLITE) [53]. The
San Francisco Bay images were acquired on March 16, 2019,
with OLCI and OLI measurements occurring within minutes
of each other, while the MSI image was acquired 30 min
later. The three Chesapeake Bay images were acquired by the
three instruments in a 15-min window on November 7, 2016.
The final location of interest is the Upper Klamath Lake on
July 29, 2019, when Sentinel-3, Sentinel-2, and Landsat-8
imagery were acquired in a 20-min window. We also evaluated
the temporal variability seen in the MDN predictions and
uncertainties for a selected location in San Francisco Bay over
the calendar year 2019.

III. METHODS

A. Mixture Density Networks

Classical ML algorithms attempt to solve a forward
problem, wherein they predict/estimate the value of a specific
variable (referred to in learning as the target/dependent
variable) given the causal factors that produced them (referred
to as independent variables). As such, these forward problems
have a unique solution since a set of causal factors will always
produce the same observable target value. With the addition
of noise to the data and the model, we will have a target
value (conditioned on the independent variable) drawn from
a distribution with a single dominant value or mode (i.e.,
a unimodal distribution). The inverse problem of retrieving the
inherent optical properties (IOPs) of the water column [37]
or concentrations of water constituents (such as Chla) from
derived (or observed) quantities, such as Rrs, violates this
assumption; thus, the mapping from the input space to output
space (e.g., Rrs → Chla) may be nonunique. In any scenario,
wherein the mapping between input and the target variables
is many-to-one (i.e., the problem has multiple solutions), the
target distribution is multimodal.

MDNs [54] are a class of neural network algorithms that
were designed to accommodate the solution of these inverse
problems [36], [55]. The main difference is that this class
of models attempts to predict the full target distribution in
lieu of a point target value. Furthermore, to accommodate the
possibility of multimodal solutions, MDNs model the target
distribution by using a Gaussian mixture model (GMM) and
predict the parameters of the GMM. A GMM can be simply
defined as

p(y|θ) =
k∑

j=1

π j N
(

y|μ j , � j
)

s.t. π j > 0 ∀ j ;
k∑

j=1

π j = 1 (2)

where θ = {π j , μ j , σ j}K
j=1 are the parameters corresponding

to the GMM, namely, the mixture probability (π j ), the mixture
mean (μ j ), and the mixture variance (σ j ) corresponding
to each Gaussian component. Once the MDN predicts the
components of the GMM as described above, the final
model estimate is extracted from the probability distribution
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Fig. 1. Distribution and modes of Chla for the in situ data for which colocated hyperspectral Rrs spectra are available for (a) OLCI, (b) MSI, and (c) OLI.
The spectral range for each dataset varies, and so does the number of samples for each sensor.

described above. One method for extracting a point estimate
from the MDN output is to take the mean of the dominant
distribution in the MDN output, i.e., the mean of the
Gaussian component, which represents the area of the highest
probability mass. The overall scheme for extracting Chla
predictions from Rrs is shown in Fig. 2.

In this study, we use MDNs based on the architecture and
the hyperparameters described in previous publications [37],
[38]. Similar to these publications, we train a separate model
for each of the sensor configurations under consideration.
Each MDN model is designed to take Rrs as the input and
generates a Chla estimate. The model for each sensor has five
hidden layers with 100 nodes in each layer (the number of
nodes in the input layer is sensor specific), the number of
components in the GMM is set to 5, and the learning rate
and L2 normalization rate (a regularization term with model
weights squared) of the network are set to 0.001. In addition,
prior to the application of the data to the MDNs, both
Rrs data and Chla data are preprocessed using intraquartile
range (IQR) scaling and log scaling, respectively. Finally,
both variables are scaled using Minmax scaling (to be in the
range [−1, 1]). The models were implemented using Python’s
Tensorflow [56] distribution and trained for 250 epochs with
a batch size of 128. In the default configuration, all the
available labeled data for the specific sensor configuration
are used for training the MDN models (note that, unless
explicitly stated otherwise, this default configuration is used
in all experiments/applications throughout this article). The
final estimate of Chla is considered to be the mean of the
component with the largest weight (postinversion of scaling
mentioned above). The MDNs are trained to minimize the
negative log-likelihood for the training samples. The prediction
error, given the true value (y) and the predicted value (ŷ),
is measured using the mean squared log error (MSLE) as

MSLE = 1

N

N∑
i=1

(log(yi + 1) − log(ŷi + 1))2. (3)

MSLE has been chosen as the measure for predictive error in
this study; compared to classical metrics, MSLE is a relative
measure, which is based on the ratio of the actual and predicted

values, and is also not overly affected by the magnitude of the
error. This metric is also more robust to outliers compared to
classical metrics.2

The one difference relative to prior publications is that,
at this stage, we consider a single MDN model as opposed
to ensembles—this is done to first verify that the uncertainty
metric is reasonable for a single model before extending it
to ensembles. For more information on the MDN, its training
and performance relative to other Chla estimators readers are
referred to the prior publications, such as [37] and [38].

B. Uncertainty Estimation for MDNs

Since MDNs predict the probability distribution of the target
variable using a GMM, the probability distribution can be
leveraged to estimate the uncertainty [40]. If the output of
the MDN for the i th sample yi is a GMM, as shown in (2),
the mean of the distribution can be estimated as

�(yi) =
k∑

j=1

π jμ j (4)

while the variance for this distribution can be estimated as

� = �k∈π (��) +�k∈π (��)

=
k∑

j=1

π j (x)� j
(
x j

)

+
k∑

j=1

π j(x)

∣∣∣∣
∣∣∣∣μ j (x) −

K∑
k=1

πk(x)μk(x)

∣∣∣∣
∣∣∣∣
2

. (5)

In the above equation,�k∈π (��) corresponds to the average
variance among the components of the mixture of Gaussian
estimated by the MDN, while the second term �k∈π (��) is
the contribution of the dispersion of the means in the predicted
distribution. Furthermore, Choi et al. [40] point out that the
first term can be interpreted as the random uncertainty present
in the Gaussian components [or aleatoric uncertainty (σ 2

ALT)],
while the second term corresponds to the multimodality

2While MSLE is the primary metric used in this article, Appendix B shows
that the use of other error metrics reveals similar trends.
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Fig. 2. Schematic representation of the main components involved in Chla and σUNC estimation from Rrs data using MDNs.

present in the distribution, which would correspond to
the fixed or knowledge-based uncertainty [or epistemic
uncertainty (σ 2

EPS)].
Based on this, we can rewrite (5) as

� = σ 2
ALT + σ 2

E P S

=
k∑

j=1

π j(x)� j
(
x j

)
︸ ︷︷ ︸

ALT

+
k∑

j=1

π j (x)

∣∣∣∣
∣∣∣∣μ j (x) −

K∑
k=1

πk(x)μk(x)

∣∣∣∣
∣∣∣∣
2

︸ ︷︷ ︸
EPS

. (6)

The total uncertainty associated with the MDN prediction is
the sum of the aleatoric and epistemic uncertainty

σUNC = σALT + σEPS. (7)

While the estimated uncertainty metric gives a user a measure
of confidence in the models’ prediction, this uncertainty metric
is slightly different than the uncertainty metric associated with
the physical measurements as the uncertainty does not depend
on the properties of the measuring devices; as such, it is hard
to assign a physical interpretation (for example, in terms of
the units of the measured quantity) to the uncertainty. Rather,
this notion of uncertainty depends more on the properties of
the algorithm, such as hyperparameters of the algorithm, the
algorithm complexity, and the dataset (e.g., the training data
distribution). Therefore, this metric is only used as a measure
of model-specific uncertainty rather than physical uncertainty.

To illustrate the ability of the MDNs in capturing
the uncertainty associated with their predictions, we show
the distributions estimated by the MDN for two in situ
samples representing two extreme scenarios for the uncertainty
estimation task. The first spectral sample [see Fig. 3(a)]
shows an OLCI-like Rrs spectrum representing oligotrophic
waters, for which the model has high confidence or low
uncertainty in its prediction of Chla. Note that all the
estimated Gaussian components are quite sharp (i.e., have
low variance). Furthermore, the means are very close, and the
combined distribution will be close to unimodal. On the other

Fig. 3. Illustration of the differences in the distribution estimated by the MDN
for (a) Rrs representing clear waters with low uncertainty and (b) Rrs sample
with high uncertainty. The samples tested correspond to OLCI-like Rrs.

hand, for the high uncertainty/low confidence sample [see
Fig. 3(b)], which, from the elevated NIR reflectance, appears
to represent surface scums, the estimated MDN distribution is
highly multimodal, i.e., the combined distribution will have
many well-separated peaks. Also, the Gaussian distributions
are significantly more spread [especially, the blue and red
components in Fig. 3(b)]. The high uncertainty seen for this
sample may be caused by various reasons, the presence of
additional noise/distortion in this specific sample (for example,
due to human error), or the model may be unable to confidently
fit the specific data-sample due to the lack of sufficient similar
data-samples in the training set. The main takeaway is that
model lacks sufficient confidence to make a specific guess for
this sample and rather predicts it to be something in a very
large range.

C. Design of Experiments to Validate the Uncertainty Metric

This section describes the set of experiments designed to
ensure/verify that the MDN-specific uncertainty metric is valid
for Chla predictions. It is essential to demonstrate that the
σUNC metric accurately captures the uncertainty induced by
the common distortion process seen in satellite data, such as
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noise, atmospheric effects, and novel test data. The various
experiments in this study are described in the following.

1) Effect of Noise in the Test Dataset: The simplest
disruption scenario is when the data are affected by random
(Gaussian) noise. This experiment will provide key insights
into how the model performs on test data that are like the
training data except for the presence of noise. This is to verify
that the uncertainty associated with predictions on noisy data
is higher than the uncertainty associated with predictions on
data with little to no noise. For this test, we used the trained
default models described in Section III-A for each sensor.
Furthermore, to reduce uncertainty caused by the presence
of new/previously unseen samples, we simply test σUNC

associated with predictions of the training samples themselves,
with additional noise injected into the samples incrementally.
In each trial, increasing amounts of (Gaussian) white noise
(typified by noise drawn from a normal distribution with higher
variance) was added to all the Rrs samples in the training data.
Then, predictions are made using the pretrained sensor-specific
MDNs on the “noisy” data. Finally, the aleatoric and epistemic
uncertainties associated with each prediction are estimated.
Since tracking the uncertainty or retrieval errors on individual
samples would only provide anecdotal evidence, which has no
statistical basis, we choose the mean of the uncertainty metric
�(σUNC) and error [see (3)] over all the “noisy” samples.

2) Effect of Unseen/Novel Data on Uncertainty Estimation:
Since ML algorithms attempt to leverage labeled samples to
learn the relationship between the input data and the target
variables, the performance of such models is highly dependent
on the training data to which these models are exposed.
Therefore, the model’s performance should be “uncertain”
when exposed to novel data that are significantly different
from the training data. In our interpretation, a test sample
can be considered significantly different if it lies outside the
convex hull of the training data and, therefore, appears to
not share support with the training data. To design a test for
this scenario, we calculated the first few principal components
(PCs) of the in situ dataset (see Section II-A) [57], [58] to be
able to visualize the data in 2-D space. To eliminate extreme
effects, outliers that are very far away from the bulk of the
dataset are eliminated. These labeled datasets are then split
into two portions based on their position in the PC plot. One
dataset referred to as the training dataset (Ntr = 2456) is
shown in blue on the left column plots of Fig. 6. The other
dataset is the test dataset (Nte = 992 samples) shown in
orange on the left column plots of Fig. 6. We trained the MDN
models for each sensor according to the procedure described
in Section III-A, except only that the samples in the training
dataset (as shown on the left-hand side of Fig. 6) were used
for training. Finally, prediction errors (MSLE) and uncertainty
(σUNC) based on the MDN prediction were estimated for
samples in both the training and test datasets for each sensor.

3) Effect of Structured Distortions/Artifacts: Another well-
known disruption factor in aquatic remote sensing is
the presence of systematic noise from uncertainties in
the atmospheric correction or instrument miscalibration, the
former of which is more pronounced for modern satellite
sensors [59]. These distortions are caused by inaccurate

Fig. 4. (a) Base distortion profile for an OLCI spectrum. (b) Estimated-based
distortion for a sample OLCI-like Rrs. (c) Effect of the randomizing with a
random multiplier. (d) Comparison of the original and distorted spectra.

compensation for aerosol and sky-glint contributions [60].
In general, satellite-derived Rrs products over freshwater and
coastal estuaries are known to carry larger distortions in the
blue bands that decay toward the red and NIR bands [53],
[60], [61], [62], [63], [64], [65]. To simulate these effects,
we assumed a base distortion shape representing positively
correlated systematic noise shown for OLCI in Fig. 4(a)
where the distortion in the shorter wavelengths is higher and
diminishes toward the longer wavelengths (the same shape was
subsampled to the spectral resolution of the other sensors).
The value at each spectral band indicates the percentage of
the true Rrs that is added back to the specific spectral band
distortion. Fig. 4(b) shows the base distortion for a specific
OLCI-like Rrs. To accommodate the randomness inherent to
these processes, the base distortion is further multiplied with a
random multiplier drawn from a uniform distribution over the
interval [α, 1] of width 1−α where 0 ≤ α < 1. The multiplier
affects the magnitude of distortion. Choosing a small value of
α would mean that the multiplier for the distortion is drawn
from a large range, where only a few samples suffer from
a high distortion (i.e., have a multiplier close to 1). On the
other hand, choosing a large α would mean that the multiplier
is drawn from a narrow range of large values; therefore, all
samples will have a distortion multiplier close to 1. Fig. 4(c)
shows some of the possible distortions for α = 0.2. From
the possible distortions, one is chosen at random, such a
random selection is shown in bold Fig. 4(c), and added to the
original Rrs. This specific distortion adds about 0.0066 [sr−1]
to Rrs (412 nm) and decays down to 0.0019 [sr−1] at 778 nm.
Fig. 4(d) shows the comparison between the original (blue)
and the distorted Rrs (black) spectrum. For the other sensors,
the base distortion shape shown in Fig. 4(a) is sampled
at the spectral resolution of the specific sensor and added
using the same process as the one described above for OLCI.
The performance of the default (described in Section III-A)
MDN models in terms of uncertainty estimation is tested
across a variety of values of α for each sensor configuration.

4) Verifying Correlation Between Predictive Error and
Uncertainty: While the experiments described above
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investigate the effect of noise/distortions in the data on
the uncertainty involved in the MDN predictions, it is also
important to investigate the relationship (if any) between
the error and uncertainty of the MDN Chla predictions.
To investigate this, we first split the labeled samples (using
their measured Chla) into various bins (of 1 mg m−3 width).
The number of samples in each bin is shown in Fig. 8(a).
Since both σUNC and MSLE appear to be drawn from random
processes, an averaging scheme is applied to clarify trends:
therefore, in this experiment, we focus on the averages for
the samples in a bin with a narrow range of Chla (i.e.,
1 mg m−3). In particular, we focus on the 50 consecutive bins
with Chla ranging from 0 to 50 mg m−3, as each of these
bins has an adequate number of labeled samples, which can
be used for analysis. The samples/bins used in this experiment
are highlighted in red in Fig. 8(a). In this experiment too,
the default MDNs (described in Section III-A) are used for
analysis.

5) Estimated Uncertainty as Bounds on Predictive Error: In
general, the uncertainty metric encapsulating the ML models’
confidence in its prediction does not appear to have a physical
basis but rather appears to be based on factors such as
training data distribution and specific model properties. This
experiment attempts to investigate if there is any reason to
believe that the estimated uncertainty metric also has some
physical relevance and if it can be used as an error bound
on the predictions (i.e., we will check if the true value is
consistently a member of the set of the interval centered on
the predicted value and bounded by the estimated uncertainty).
For an uncertainty analysis, a prediction ŷ is said to have an
uncertainty σUNC, with a coverage factor of k if, for the true
value of for that sample (referred to here as y), we can say that
the following condition is applicable to a specific percentage
of the samples [42]: ŷ − kσUNC ≤ y ≤ ŷ + kσUNC [N.B.: in
our experiments, these tests were performed on the scaled Chla
predictions]. The confidence level associated with a model at
a specific coverage factor can be measured as the percentage
of samples for which the above condition holds true. In this
experiment, we consider the confidence level associated with
the default MDNs (as described in Section III-A) predictions
for different values of k ∈ {0.5, 1, 2} for the three OLCI,
MSI, and OLI band settings.

6) Investigating the Effects of “Noisy” Training Data on the
Uncertainties Estimated by MDNs: This experiment attempts
to verify that the effect of the noise in the training data on the
uncertainty estimated by the MDN models. It is reasonable
to expect the uncertainty for models trained on noisy data
to be higher. We created two suites of MDN models trained
on slightly different datasets to test this hypothesis. First, the
samples from the labeled dataset described in Section III-A
were divided using a 70:30 split into a training set and a
test set. Note that, for brevity, we only run this experiment
for OLCI-simulated Rrs. Second, a suite of nine models was
trained on the training dataset mentioned above; this suite is
referred to as the “orig_train” models. Finally, another suite
of nine models was trained on a noisy version of the training
data (adding white noise drawn from a Gaussian distribution
(σ = 2.5 e−3). This suite is referred to as the “noisy_train.”

Fig. 5. Comparison of �(σALT) and �(σEPS) to the MSLE for MDNs
trained on (a) OLCI-like, (b) MSI-like, and (c) OLI-like spectra at different
noise levels.

Fig. 6. Effect of novel data on the estimated total uncertainty. The left-hand
side plot shows the PC visualization of the data for the specific sensor (e.g.,
OLCI in the top row); training samples are in blue, and test samples are shown
in orange. The right-hand side scatter plot is colored according to the estimated
σUNC as shown in the color bar for the three spectral band configurations
(a) OLCI, (b) MSI, and (c) OLI. (To improve the visualization in the PC-space,
we eliminate data points that are very far away from the bulk of the data cloud.
This outlier elimination is only done to improve visualization, which reduced
the number of labeled samples to 3448. Note that the visualizations from the
three sensors are very similar because they are essentially approximations of
the same optical dataset.)

Both sets of models were tested in terms of prediction error
and uncertainty on the common test dataset.

IV. RESULTS

This section contains the results for the various validation
experiments described in Section III-C.

A. Experiment-I: Effect of Noise in the Test Dataset

The comparison of �(σALT) and �(σEPS) to MSLE for
the various spectral band settings (corresponding to the three
satellite sensors) is shown in Fig. 5. Note that there appears
to be a clear correlation between �(σALT), �(σEPS), and
MSLE for the MDN models of all three sensors. They
increase linearly up to a point (in this case, up to a Gaussian
noise with σ = 0.001), beyond which both exponentially
increase. It should be noted that, while the trends for error
and uncertainty are similar, the scales and rates of change are
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TABLE I

COMMON ABBREVIATIONS AND NOTATIONS USED

TABLE II

MEAN ESTIMATED UNCERTAINTIES FOR KNOWN AND NOVEL

RRS SPECTRA RESAMPLED TO VARIOUS SENSORS

not the same, indicating that �(σUNC) is not a substitute for
the error. Based on this experiment, we infer that, when there
is noise present in the test dataset, the uncertainty metric is
able to accurately respond to the presence of such a distortion,
and furthermore, the mean uncertainty appears to be correlated
with the mean predictive error.

B. Experiment-II: Effect of Unseen/Novel Data

The left-hand side column of Fig. 6 shows a scatterplot
visualization of the training and test datasets. The right-hand
side plot in Fig. 6 shows the same PC visualization of the
data but with each sample colored according to the value of
σUNC associated with the MDN predictions. Based on these
scatterplots, it is clear that σUNC for samples in the training
set is significantly lower than that for the samples in the
test set. The metrics reported in Table II point to the MSLE
and mean uncertainty being significantly higher on the novel
samples in the test set for all three spectral configurations.
Another interesting observation is that the uncertainty is lower
for novel samples closer to the training set, while, toward the
edges (which are farther away), there are higher uncertainties,
indicating that as the difference of a sample from the training
dataset increases, so does the uncertainty.

C. Experiment-III: Effect of Structured Distortions/Artifacts

Fig. 7 shows the effect of changing the value of α on
the mean predictive error (MSLE) and uncertainty (�(σUNC))

Fig. 7. Effect of the systematic noise due to spectrally dependent uncertainties
from atmospheric correction (of the type shown in Fig. 4) in terms �(σUNC)
and MSLE for the different band settings (a) OLCI, (b) MSI, and (c) OLI.

Fig. 8. Correlations between uncertainty estimate (�(σUNC)) and mean
predictive errors denoted by MSLE. (a) Samples in the in situ database are
partitioned into bins of width 1 [mg m−3]. Plots correspond to the relationship
between MSLE and �(σUNC) in the selected bins for models trained for
(b) OLCI, (c) MSI, and (d) OLI spectral resolutions.

Fig. 9. (a) Mean estimated uncertainty and (b) mean predictive error for the
models trained on training sets with different noise levels.

for all the three sensors. Note that, for all three sensors, the
presence of some noise or distortion leads to an increase in
both the error and uncertainty. In this case too, the mean
error and uncertainty appear to be correlated for all three
sensors. Furthermore, the magnitude of error and uncertainty
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Fig. 10. Comparing the performance of the MDN models in terms of MSLE and �(σUNC) based on TSs for (a) OLCI, (b) MSI, and (c) OLI.

TABLE III

CONFIDENCE ASSOCIATED WITH THE ESTIMATED UNCERTAINTIES

FOR DIFFERENT COVERAGE FACTORS

also seems dependent on the multiplier α (as mentioned earlier,
a larger α corresponds to generally increased distortion).
Similarly, the uncertainty metric accurately captures the
presence of confounding factors, such as uncertainties in the
atmospheric correction with an increased uncertainty.

D. Experiment-IV: Verifying Correlation Between
Uncertainty and Predictive Errors

In this experiment, we investigate the relationship between
MSLE and �(σUNC) within narrow bins, as shown in
Fig. 8(b)–(d). Each point in these subplots represents the value
of MSLE and �(σUNC) for a single bin. Note that there is
almost a linear relationship between the two quantities, with
the line of best fit between the two terms shown in red in
each subfigure. While this observation appears to be generally
true, it should be noted that there are specific samples that
show high �(σUNC) for low MSLE, while a few samples also
indicate low MSLE for high �(σUNC). This indicates that,
while there is a general correlation between the two terms,
they are not direct analogs of each other. The figures also
show the correlation between σUNC and MSLE in terms of the
R2-correlation coefficient.

E. Experiment-V: Estimated Uncertainty as Bounds on
Predictive Error

The confidence levels associated with different values
of k for all three sensors are shown in Table III. For
both MSI and OLCI, for about ∼90% of the samples, the
uncertainty provides a reasonable bound on the error even
for a coverage factor of k = 0.5. Based on the sensor and
the application, an appropriate coverage factor can be chosen
for each application (unless explicitly mentioned, the coverage
factor chosen in this article is always k = 1). While these
experiments indicate that the uncertainty metric has some

Fig. 11. Estimated Chla [mg m−3] and σUNC maps produced via MDNs
for near-concurrent images of OLCI, MSI, and OLI onboard Sentinel-3B,
Sentinel-2B, and Landsat-8, respectively, acquired on March 16, 2019. The
images were processed to Rrs using ACOLITE. Also marked in the OLCI
σUNC map are the stations “SFB1” [122.396◦ W, 37.846◦ N], “SFB2”
[122.399◦ W, 37.847◦ N], “SFB3” [122.403◦ W, 38.043◦ N], and “SFB4”
[122.944◦ W, 37.658◦ N] that are used for further analyses.

relations to the physical uncertainty metrics estimated for other
measurement instruments, it is still not completely clear if this
will be true for all test samples. To enable the use of these
metrics as a physical uncertainty, we need to identify a method
to estimate the confidence level with satellite data.

F. Experiment-VI: Investigating the Effects of “Noisy”
Training Data on the Uncertainties Estimated by the MDNs

Both suites of models are tested on the (noiseless) test set
in terms of the total estimated uncertainty and the prediction
error, as shown in Fig. 9. From this plot, the uncertainty
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Fig. 12. Similar to Fig. 11 but over the Chesapeake Bay acquired on
November 7, 2016. Also marked in the OLCI σUNC map are the stations
“CB1” [76.095◦ W, 38.067◦ N], “CB2” [76.423◦ W, 38.582◦ N], “CB3”
[76.620◦ W, 38.201◦ N], and “CB4” [76.522◦ W, 38.382◦ N] that are used
for further analyses.

for models trained on noisy data is significantly higher than
those trained on low-noise data. This clearly highlights the
relationship between the uncertainty estimated by the MDN
and the training data. This behavior is also aligns with our
expectations that the predictive error and uncertainty increase
when the models are trained on noisy data. For all these
applications in this section, we use the default MDN models
(as described in Section III-A).

V. PRACTICAL APPLICATIONS

Here, we describe practical applications of MDN-based
uncertainties associated with Chla prediction. The first
practical application is the identification of the range of Chla
for which the MDN technique can be applied with high
confidence. Other applications include evaluating MDN Chla
products and the spatial distribution of uncertainties from near-
concurrent images of Sentinel-3/OLCI, Sentinel-2/MSI, and
Landsat-8/OLI and analyzing time-series of Chla and their
uncertainties for select locations.

A. Application 1: Range-Specific Uncertainty Estimates

We aim at identifying the factors that are responsible for
the behavior of the MDN models and specifying appropriate
steps/strategies for improving the model performance. To
perform this analysis, the entire in situ dataset of available
labeled samples was split into seven nonoverlapping TSs [66]
based on their Chla value. �(σUNC) and MSLE were then
estimated for samples corresponding to each TS. The details of

Fig. 13. Similar to Fig. 11 but over the Upper Klamath Lake on July 29,
2019. Also marked in the OLCI σUNC map are the stations “UKL1”
[121.972◦ W, 42.419◦ N], “UKL2” [121.848◦ W, 42.372◦ N], “UKL3”
[122.007◦ W, 42.452◦ N], and “UKL4” [121.973◦ W, 42.527◦ N] that are
used for further analyses.

the various trophic ranges and the performance of the various
MDN models for different sensors across all these TSs are
shown in Fig. 10. This figure indicates that, for OLCI and
MSI band configurations, the trends for �(σUNC) and MSLE
are inversely proportional to the number of samples available
in a specific range. Based on this analysis it is clear that,
for the OLCI- and MSI-like spectra, the models perform best
in terms of both �(σUNC) and MSLE for a Chla range of
6.4–56 [mg m−3]. This is also the range in which most training
samples are available. For the OLI-like spectra, on the other
hand, the model performs best in the range ≤1[mg m−3].

B. Application 2: Uncertainty Maps and the Spatial Context

The MDN-derived Chla and the associated uncertainty maps
from satellite observations (see Section II-B) are shown in
Figs. 11–13. The left-hand side columns show the predicted
Chla values overlaid on RGB composites, while the right-
hand side columns show the same RGB composites overlaid
with the σUNC. The rows correspond to the three sensors under
consideration. In addition, on the σUNC maps, we have marked
the locations of four select stations considered for further
analysis in the following sections. These locations, namely,
“SFB1-4,” “CB1-4,” and “UKL1-4,” are chosen to represent
a broad spectrum of TSs in each region. The estimated Chla
and σUNC maps of the of San Francisco Bay are shown in
Fig. 11. Similarly, the Chla and σUNC maps for Chesapeake
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Fig. 14. Comparison of satellite-derived Rrs (solid lines) from selected locations marked on maps across San Francisco Bay and the nearby ocean together
with their closest counterparts in our in situ database (dashed lines) for (a) OLCI, (b) MSI, and (c) OLI.

Bay and Upper Klamath Lake are shown in Figs. 12 and 13,
respectively.

There are some interesting observations based on these
satellite maps. The Chla maps in Fig. 11 show that estimates
from all the three sensors range within 5–10 mg m−3, with
both the OLCI and MSI maps, mapping higher Chla values in
the southern part of the bay than in the northern part. While the
OLI map shows similar predictions in terms of the magnitude
of Chla, it seems to show the lower Chla in the southern
bay. The OLCI/MSI maps also show certain localized regions
with very high Chla (around 100 [mg m−3]) as shown for
regions near the “SFB-2” station. It is harder to appreciate such
localized high Chla in the OLI map. In terms of the uncertainty
maps, there is significant agreement between the OLCI and
MSI maps, with most of the pixels inside the San Francisco
Bay and part of the coastal ocean exhibiting low uncertainty.
The uncertainty increases farther away from the coast, which
is reasonable as the training data contains smaller samples
size over the open ocean (see Fig. 1). The OLI uncertainty

maps show significantly higher uncertainty; in addition, the
OLI uncertainty maps do not show the same pattern as
the OLCI and MSI maps. Furthermore, regions/pixels with
comparatively higher estimations of Chla are also in general
more uncertain; it is expected that this behavior is because
the training dataset has far more samples with Chla in
the 0–10-mg m−3 range as opposed to the 10–1000-mg m−3

range.
The MDN-estimated Chla maps for the Chesapeake Bay

(as shown in Fig. 12) are in general agreement in terms of the
global distribution, such as comparatively higher Chla in the
northern part of the bay (e.g., near/around station “CB-2”).
There are, however, some disagreements in the exact value of
Chla as predicted for the three sensors. In terms of uncertainty,
both OLCI and MSI, in general, expect low to intermediate
uncertainties, while the OLI indicates a higher uncertainty.
Similarly, for the Upper Klamath Lake (see Fig. 13), both the
OLCI and MSI maps show Chla around 100 mg m−3 for most
pixels, while the OLI maps show a far lower value. Overall,
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Fig. 15. Same as Fig. 14 but for the Chesapeake Bay.

the OLCI and MSI uncertainty maps also show similar trends,
while the OLI shows much larger uncertainties.

1) Interpretation of Estimated Uncertainties: To understand
the reasons behind the estimated uncertainties, we performed a
basic spectral comparison between the satellite-derived spectra
and the spectra in the labeled in situ database used for
training for the arbitrarily selected locations, which have been
marked in Figs. 11–13. The stations were chosen to consider
spectra from regions with varying levels of uncertainty in
these maps. For each station, we estimated the average
spectra corresponding to a 300 × 300 m spatial patch and
compared them to the spectra in the labeled in situ database
(see Section II-A). For Rrs corresponding to each station,
we identified the spectrum in the in situ database that is
closest based on the Euclidean distance, computed using all the
available bands (see Table IV) for each sensor. The spectrum
for each station is then compared to its closest in situ analog
(see Figs. 14–16). In these figures, each plot window shows

two spectra, namely, the spectrum corresponding to a specific
station from the specific sensor (the colored solid line) and its
closest analog from the appropriate in situ database (the black
dashed lines).

Consider, for example, the spectral comparison for the
stations in San Francisco Bay from the OLCI sensor shown in
Fig. 14(a). “SFB1” and “SFB3” correspond to examples from
inside the Bay and, in general, are from regions with low σUNC,
as shown in Fig. 11. Consequently, the spectra from these
locations also are very similar to their closest counterparts in
the in situ database. Rrs associated with “SFB2,” which is from
highly eutrophic near-shore waters of the southern section of
the bay, has a very high Chla and σUNC, and is quite different
from its closest in situ counterpart in many spectral bands.
“SFB4” situated over the open ocean close to a cloud edge also
shows more pronounced differences between the two spectra.
Similarly, Figs. 15 and 16 show the spectral comparison for
stations in Chesapeake Bay and Upper Klamath Lake.
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Fig. 16. Same as Fig. 14 but for the Upper Klamath Lake.

C. Application 3: Uncertainty Maps and Temporal
Variability

For the final application, as an example, we tracked the
variations in the estimated Chla and uncertainty from OLCI
data for “SFB1” and “SFB3” in San Francisco Bay (see
Fig. 11) over a period of one year (from January 7, 2019).
According to the revisit rate and cloud cover, usable data for
the chosen locations are only available on specific days of
the year. The left-hand side column in Fig. 17 shows the
daily variations, and the right-hand side column illustrates
monthly variations of estimated Chla (shown in red) and
σUNC (shown in blue). Note that, for “SFB1” and “SFB3,”
σUNC is generally low with some high-frequency variations
in the daily reporting. Another interesting observation is that
the left-hand side column shows a clear correlation between
the estimated Chla and σUNC, i.e., spikes in estimated Chla are
also accompanied by spikes in σUNC. In addition, the fact that

average σUNC remains quite low (0.07 − 0.11) for the entire
year indicates that the predictions made for these locations are
reliable.

VI. DISCUSSION

A. Validity of the MDN-Specific Uncertainty Metric

Based on the results of the experiments shown in Section IV,
it is clear that the performance of the MDN models is
highly dependent on the amount of noise in the spectral
data. Experiment-I (in Section IV-A) particularly indicates
that increased noise in the spectral data leads to performance
deterioration consistent with expectations on how the noise
affects the performance of the neural network models [40].
Here, the uncertainty metric shows a corresponding increase,
which would indicate poorer performance to the user.
Furthermore, the mean uncertainty over the entire labeled
dataset seems to be proportional to the mean predictive error.



4200718 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023

Fig. 17. Tracking the temporal changes in the estimated Chla (red) and uncertainty (blue) from OLCI for stations “SFB1” and “SFB3” in San Francisco
Bay (see Fig. 11) over 2019. The left-hand side column shows the changes over all the available days in the year. The right-hand side column shows the
monthly variations.

A similar observation can also be made in the presence of
structural distortions (Experiment-III in Section IV-C). It is
also interesting to note that the amount of uncertainty is
proportional to the average distortion in the data. As the value
of α increases, we note that both �(σUNC) and MSLE increase
slightly (see Fig. 7). This is consistent with the fact that a
smaller α (which corresponds to the distortion multiplier being
drawn from larger intervals) permits much smaller random
multiplicative values and, thus, injects lesser distortion into
Rrs. Taken in concert, these experiments make a strong case
that the estimated uncertainty metric is proportional to the
amount of noise/distortion present in the data. On the other
hand, Experiment-II (see Section IV-B) indicates that the
uncertainty metric is also able to identify novel test samples
that are completely unlike the training samples. In addition,
σUNC also increases as the test samples get farther away from
the training samples, i.e., σUNC for samples at the edge of the
test set (i.e., furthest away from the training set), which is
significantly higher than that for the test samples closer to the
training set.

One important observation across all the experiments has
been that the predictions for the OLI spectral resolution
show significantly higher uncertainty relative to those from
OLCI and MSI spectral band settings. This suggests that
our MDN model is not as robust when Chla predictions
are made from Rrs that lacks critical RE information.
The spectral resolution also affects the correlation between
the predictive error (MSLE) and the estimated uncertainty
(Experiment-IV in Section IV-D). For both OLCI and MSI, the
R2-correlation coefficient between σUNC and MSLE indicates
a high correlation, while the R2-correlation coefficient
for OLI is quite low. Also, the estimated uncertainty

appears to be an upper bound on the predictive error
for most samples (Experiment-V in Section IV-D). Taken
in concert, these observations indicate that the proposed
uncertainty metric captures the uncertainty associated with
the challenging situations encountered when handling satellite-
derived products, which contains higher noise levels relative
to in situ data. We also demonstrated that the proposed
uncertainty metric can be reasonably used as a proxy for the
error for unlabeled test samples.

B. Applications MDN-Specific Uncertainty Metric

Based on the results of Application 1 (see Section V-A),
for both OLCI and MSI, the uncertainty or predictive errors
in a specific range are found to be inversely proportional to
the number of samples in that range (i.e., the performance
(in terms of both �(σUNC) and MSLE) is worst in the
ranges where the training data are sparsest). For OLI, on the
other hand, the model performs poorly across nearly all
the Chla ranges. These observations also indicate that any
advancements in the model performance in a specific range
can be achieved for OLCI and MSI by adding more labeled
data samples in that range.

Application 2 (see Section V-B) also corroborates that OLI
shows significantly higher uncertainty than that from OLCI
and MSI. Furthermore, while the exact values of the Chla
predicted for the data at the three different spectral resolutions
appear numerically different, in terms of uncertainty, the
spatial distributions and magnitudes of maps from OLCI and
MSI are far more similar compared to the OLI, which is
the clear outlier. It is also interesting to note that, for both
San Francisco and the Chesapeake Bay, the OLCI predictions
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TABLE IV

RELEVANT TECHNICAL CHARACTERISTICS OF THE MULTISPECTRAL SENSORS EVALUATED THROUGHOUT THIS STUDY

show generally low uncertainties (≤0.15) for inland and near-
shore coastal waters. High and intermediate uncertainties are
only seen over the open ocean. This seems reasonable as the
in situ training dataset comprises primarily of samples from
inland and near coastal waters. Comparing Rrs from various
regions in the satellite datasets shows that, for low estimated
uncertainties (i.e., σUNC ≤ 0.15), there is a close match
between the spectral shapes of the satellite-derived Rrs and
its closest counterpart in the in situ database. Note that a
close match in spectral shape by itself does not guarantee
a low σUNC value. A known spectrum may have high or
intermediate uncertainty due to the multimodality of the true
target distribution or because there are not enough samples
like the test spectrum in the training set. This indicates that
the model accurately flags predictions for samples unlike the
ones in training as “uncertain.” On the other hand, when there
are clear differences between a satellite-derived Rrs and its
nearest in situ sample in terms of shape, the uncertainty is
significantly higher across the various locations and sensors.

VII. CONCLUSION AND FUTURE WORK

Built upon previous efforts, we analyzed the feasibility of
using techniques previously proposed by Choi et al. [40] to
extend the capability of the MDNs for performing uncertainty
estimation concurrently to the prediction of Chla from
existing multispectral satellite sensors, such as Sentinel-
3/OLCI, Sentinel-2/MSI, and Landsat-8/OLI [37], [38]. The
proposed uncertainty estimation method has the advantage
of not requiring additional processing, modification of the
MDN network architectures, or any retraining of the MDNs.
Based on several experimental validations, the uncertainty
metric captures the uncertainty caused by common disruptions
in satellite-derived radiometric products, such as increased
noise, structural/atmospheric distortions, and unseen/novel
data. Furthermore, our experiments showed that the estimated
uncertainties are not only strongly correlated with the error
associated with predictions on the labeled dataset but also
agree across the three sensors in terms of general trends.
Nevertheless, the less robust uncertainty estimation was
associated with Chla approximations from OLI-like Rrs

spectra due to OLI’s lack of spectral measurements at the
RE band critical for quantifying Chla in inland and coastal
waters. Another simple test on the labeled dataset suggested
that, for most of the labeled data samples, the estimated
uncertainty provides realistic bounds for the MDN model
predictions. The practicality of the proposed uncertainty

metric was further demonstrated for recorded satellite imagery.
We gauged model performance categorically for different
TSs and determined Chla ranges where the model is most
accurate in quantifying uncertainties. Chla uncertainty maps
were further produced from near-simultaneous OLCI, MSI,
and OLI imagery for three different sites with various aquatic
and atmospheric conditions. In general, we found OLCI and
MSI uncertainty maps consistent in terms of magnitude and
relative spatial distribution, whereas corresponding OLI maps
demonstrated much larger uncertainties. Temporal analyses
of produced uncertainties from OLCI at select locations
corroborated the viability of our uncertainty estimation for
practical applications.

Future work will focus on two primary aspects of
uncertainty estimation. The first stream will focus on
extending the analysis on uncertainty estimation to MDN-
based prediction of other biogeochemical variables, such as
the concentration of total suspended solids (TSS) and the
absorption by the colored dissolved organic materials (acdom)
and other IOPs from multispectral or hyperspectral spectra.
The second stream will involve combining the uncertainty
associated with predictions of the MDNs with the uncertainty
associated with other aspects of the data acquisition (e.g.,
uncertainties in Rrs). Such attempts may either focus on
using the uncertainty for each stage of the data acquisition,
processing, and processing pipelines as inputs to the next
stages or modifying the MDN loss functions to include
uncertainty from previous stages.

APPENDIX A
TECHNICAL CHARACTERISTICS OF THE SENSORS USED

FOR THE EVALUATION IN THIS STUDY

Table IV provides the reader with the relevant technical
characteristics of the three sensors considered in this study.

APPENDIX B
COMPARING UNCERTAINTY TO OTHER ERROR METRICS

While the primary metric for predictive error in this article
has been the MLSE, it is important to note that similar
trends/observations can be seen with any predictive error
metric, such as median symmetric accuracy (MdSA), root
mean square error (RMSE), and mean absolute percentage
error (MAPE). Given the standard formulation, wherein the
true Chla values for N samples are represented by y and the
predicted values by ŷ, the various metrics can be defined as
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Fig. 18. Comparison of �(σALT) and �(σEPS) to the different error metrics for MDNs trained on (a) OLCI-like, (b) MSI-like, and (c) OLI-like spectra at
different noise levels.

Fig. 19. Effect of the systematic noise due to spectrally dependent uncertainties from atmospheric correction (of the type shown on Fig. 4) in terms �(σUNC)
and various predictive error metrics for the different band settings (a) OLCI, (b) MSI, and (c) OLI.

follows:
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N∑
i=1

|ŷi − yi |
yi

. (8)

To show the similarity of the trends, we will repeat
Experiment-I (see Section III-C1) and Experiment-III (see
Section III-C2) with all the above metrics. The results for
Experiment-I with the additional metrics are shown in Fig. 18.

Similarly, Fig. 19 shows similar trends for Experiment-III
as well. Note that, despite having very different scales, the
different metrics show the same exact trends and do not in any
way change the conclusions drawn from these experiments.
With that said, note that the RMSE is somewhat noisier than
the log-scaled metrics, perhaps due to its susceptibility to
outliers.
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