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Abstract—Recently, relying on convolutional neural networks
(CNNs), many methods for salient object detection in optical
remote sensing images (ORSI-SOD) are proposed. However, most
methods ignore the huge parameters and computational cost
brought by CNNs, and only a few pay attention to the portability
and mobility. To facilitate practical applications, in this paper,
we propose a novel lightweight network for ORSI-SOD based on
semantic matching and edge alignment, termed SeaNet. Specif-
ically, SeaNet includes a lightweight MobileNet-V2 for feature
extraction, a dynamic semantic matching module (DSMM) for
high-level features, an edge self-alignment module (ESAM) for
low-level features, and a portable decoder for inference. First, the
high-level features are compressed into semantic kernels. Then,
semantic kernels are used to activate salient object locations in
two groups of high-level features through dynamic convolution
operations in DSMM. Meanwhile, in ESAM, cross-scale edge
information extracted from two groups of low-level features is
self-aligned through L2 loss and used for detail enhancement.
Finally, starting from the highest-level features, the decoder infers
salient objects based on the accurate locations and fine details
contained in the outputs of the two modules. Extensive experi-
ments on two public datasets demonstrate that our lightweight
SeaNet not only outperforms most state-of-the-art lightweight
methods but also yields comparable accuracy with state-of-the-
art conventional methods, while having only 2.76M parameters
and running with 1.7G FLOPs for 288×288 inputs. Our code
and results are available at https://github.com/MathLee/SeaNet.

Index Terms—Optical remote sensing image, lightweight
salient object detection, semantic matching, edge alignment.

I. INTRODUCTION

SALIENT object detection (SOD) aims at imitating the hu-
man vision system to quickly locate the objects/areas that

attract the most attention [1]. As an important preprocessing
step, the success of SOD has promoted the development of
many fields, such as image quality assessment [2], [3], object
segmentation [4], [5], and object tracking [6]. Different from
most SOD methods proposed for single image [7], RGB-D/T
image [8], [9], and video [10] photographed in natural scenes,
in this paper, we focus on SOD in optical remote sensing
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Fig. 1. Saliency maps produced by four types of methods and our method on
ORSIs. PA-KRN [12] is an NSI-SOD method, HVPNet [13] is a lightweight
NSI-SOD method, MCCNet [14] is an ORSI-SOD method, and CorrNet [15]
is a lightweight ORSI-SOD method. Please zoom-in for details.

images, or ORSI-SOD for short. Following the technical trend
of SOD in natural scene images (NSI-SOD) [7], we are
committed to addressing ORSI-SOD based on convolutional
neural networks (CNNs) [11].

In the era of deep learning, numerous CNN-based NSI-
SOD methods have been proposed, and the detection accuracy
has been significantly improved. Among these methods, the
classic encoder-decoder structure [16] is the most general and
effective structure, and is often accompanied with ingenious
strategies such as deep supervision [17], gate mechanism [18],
edge assistance [19], [20], progressive architecture [12], etc.
Although NSI-SOD methods cannot directly overcome the
issue of complex scenes of ORSIs (as PA-KRN [12] shown
in the third column of Fig. 1), the strategies contained therein
lay the foundation for CNN-based ORSI-SOD methods. The
specialized methods for ORSI-SOD take into account the
properties of salient objects and scenes in ORSIs. For example,
LVNet [21] and EMFINet [22] take ORSIs with multiple
resolutions as inputs to overcome the problem of variable sizes
of salient objects. MCCNet [14] comprehensively integrates
foreground, background, edge, and global information to deal
with the complex background of ORSIs, producing good
saliency maps as shown in the fifth column of Fig. 1.

However, the above methods may fall into the dilemma of
huge amount of parameters and computational cost, such as
the parameters and FLOPs of PA-KRN and MCCNet listed in
Fig. 1. To address this issue, the lightweight SOD methods
are gradually emerging. Compared with PA-KRN, the pioneer
of lightweight NSI-SOD method HVPNet [13] reduces the
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amount of parameters and computational cost by hundreds
of times. But HVPNet is also stuck by ORSIs, as shown
in the fourth column of Fig. 1. For the lightweight ORSI-
SOD method, as shown in the penultimate column of Fig. 1,
CorrNet [15] significantly reduces the amount of parameters
and achieves good performance, but still consumes a lot of
computational cost.

Driven by the aforementioned observation, in this paper,
we propose a novel semantic matching and edge alignment
based ORSI-SOD method, termed SeaNet, which aims to
be more lightweight than CorrNet, while generating com-
petitive performance. As we all know, the features extracted
by the feature extraction network can be divided into low-
level and high-level features, where the former contains detail
and texture information and the latter contains semantic and
location information. Accordingly, the main idea of SeaNet
is to explore high-level and low-level features with different
strategies in the encoder-decoder structure.

Specifically, we propose a Dynamic Semantic Matching
Module to implement the semantic matching in high-level
features, that is, first compress semantic information and then
match them with the high-level features to perceive the loca-
tion of salient objects. We also propose an Edge Self-Alignment
Module for edge alignment in low-level features, that is, align
cross-scale edge information extracted from low-level features
to correct edge errors and use them to enhance features. For
efficiency, we adopt MobileNet-V2 [23] as the backbone and
the depthwise separable convolution [23], [24] as the basic
convolution component to control the amount of parameters
and computational cost. In this way, our SeaNet has only
2.76M parameters, runs with 1.7G FLOPs, and can generate
accurate saliency maps, as shown in the rightmost column of
Fig. 1. Concretely, compared with state-of-the-art lightweight
methods, our SeaNet is competitive in detection accuracy,
while compared with state-of-the-art conventional methods,
our SeaNet is competitive in computational complexity.

Our main contributions are threefold:
• We explore high-level and low-level features of

MobileNet-V2 with different strategies, and propose a
novel lightweight network for ORSI-SOD based on se-
mantic matching and edge alignment, termed SeaNet,
which has only 2.76M parameters and runs with 1.7G
FLOPs for a 288×288 image.

• We propose a Dynamic Semantic Matching Module for
high-level semantic features. DSMM perceives the loca-
tion of salient objects through dynamic convolutions with
semantic kernels, which not only improves the flexibility
of feature interaction but also effectively reduces the
amount of parameters. Moreover, it performs channel-
wise correlation to activate the channel-wise interaction.

• We propose an Edge Self-Alignment Module for low-level
detail features. ESAM focuses on extracting edge in-
formation for detail enhancement, and aligns cross-scale
edge information through L2 loss to correct edge errors.
Like DSMM, it also introduces channel-wise correlation.

We arrange the remainder of this paper as follows. In Sec. II,
we review the CNN-based SOD methods for NSIs and ORSIs.
In Sec. III, we elaborate our SeaNet. In Sec. IV, we present

comprehensive experimental results. In Sec. V, we give the
conclusion.

II. RELATED WORK

A. CNN-based Salient Object Detection in NSIs

Salient object detection in natural scene images [7] has
achieve remarkable success, especially CNN-based meth-
ods. In [17], Hou et al. creatively introduced the pioneer
deep supervision into NSI-SOD, which significantly enhances
the representation of multi-scale features for salient objects.
This method effectively improves the detection accuracy and
has a profound impact on subsequent CNN-based methods.
Hu et al. [25] and Deng et al. [26] focused on the recurrent
mechanism. The former first concatenates multi-level features,
and then combines them with features from different lev-
els. The latter alternatively uses the low-level features and
high-level features. Besides, some researchers were interested
in edge/boundary information. Feng et al. [27] proposed
a boundary-enhanced loss to improve the completeness of
object boundaries, and combined it with deep supervision.
Qin et al. [28] proposed a hybrid loss, which integrates BCE,
SSIM and IoU losses, to segment salient object with fine
structures and clear boundaries. Zhao et al. [19] modeled the
explicit edge through edge supervision to preserve the salient
object boundaries. Zhou et al. [20] proposed the saliency
to contour and contour to saliency strategy for fast saliency
detection. Lee et al. [29] proposed an attention guided tracing
module to highlight salient objects with explicit edges.

In addition to the above classic strategies, Pang et al. [30]
enhanced the interaction of multi-scale features for NSI-SOD.
Chen et al. [31] considered the low-level, high-level and global
information to improve the completeness of saliency map.
Xu et al. [12] utilized the global localization and local segmen-
tation policy in the knowledge review network to avoid salient
information dilution. In [32], Li et al. captured both the multi-
receptive-field information of features and the complementary
information of cross-level features. Qiu et al. [33] extended the
atrous spatial pyramid pooling, and embedded the channel and
spatial attention into it to explore information dependencies in
space and channel.

Although the above CNN-based methods achieve excellent
performance in NSI-SOD, they cannot effectively handle the
unique properties of ORSIs and often generate unsatisfactory
saliency maps. Furthermore, they usually focus on accu-
racy and ignore computational complexity. Nonetheless, their
strategies inspire our approach, such the classic deep supervi-
sion, edge assistance, and differential feature processing.

B. CNN-based Salient Object Detection in ORSIs

Salient object detection in optical remote sensing images is
a rising star in SOD community, and recently numerous CNN-
based methods are proposed. As a pioneer, Li et al. [21] pro-
posed the first CNN-based ORSI-SOD method, named LVNet,
in which a two-stream pyramid module cooperates with an
encoder-decoder module with nested connections to perceive
salient objects of different sizes. Moreover, Li et al. [34]
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explored the interactions of cross-level features for ORSI-
SOD. In [35], Huang et al. first roughly located salient objects
in the semantic guided decoder, and then refined the coarse
saliency map in a top-down manner. Cong et al. [36] designed
the relational reasoning encoder for high-level features, and
inferred salient objects in a multiscale attention decoder.
Li et al. [37] adopted two groups of adjacent features to
assist the current features, capturing contextual information
to overcome challenging ORSI scenarios.

Similar to NSI-SOD, some researchers introduced
edge/boundary information into ORSI-SOD. Zhang et al. [38]
constructed a multi-task structure to predict edge map
and saliency map simultaneously. Tu et al. [39] and
Zhou et al. [22], following [19], extracted boundary
information based on low-level and high-level features to
preserve boundaries of salient objects in two decoders.
Li et al. [14] integrated edge with foreground, background,
and global information, and took full account of the
complementarity between these information to adapt to
ORSIs.

The above specialized methods for ORSI-SOD achieve
satisfactory performance. However, they usually come with
a large number of parameters and heavy computational cost,
which are unfriendly to aerospace equipments and prevent
practical applications. To this end, we propose SeaNet based
on MobileNet-V2 [23] and two lightweight but effective
modules, which are friendly to mobile devices while achieving
competitive performance.

C. Lightweight Salient Object Detection

Lightweight SOD is a newly emerging task, and is first
explored in NSI-SOD. Gao et al. [40] proposed a flexible
self-adaptive convolutional layer with strong multi-scale rep-
resentation abilities and constructed an extremely lightweight
network (i.e., CSNet) for NSI-SOD. Liu et al. [13] proposed a
hierarchical visual perception (HVP) module based on dense
connections, and built a lightweight HVPNet on HVP modules
and residual attention to effectively learn multi-scale contexts.
Meanwhile, Liu et al. [41] proposed a stereoscopically at-
tentive multi-scale (SAM) module, and built a lightweight
SAMNet for multi-level and multi-scale learning. To sum
up, the above three works focus on learning effective multi-
level and multi-scale information for SOD, and build strong
feature extraction backbones to achieve lightweight NSI-SOD.
However, they do not further process and enhance the extracted
features at different levels, and directly infer salient objects
based on these features. Moreover, they deal with NSIs rather
than ORSIs, lacking pertinence. Therefore, in this paper, we
focus on making good use of features at different levels of
existing feature extraction backbones and developing specific
lightweight and effective modules for ORSI features, enabling
more effective dedicated ORSI-SOD solution.

For ORSI-SOD, Li et al. [15] proposed the first lightweight
method, i.e., CorrNet. They lightened the vanilla VGG-16 [42]
for efficient feature extraction, and adopted the coarse-to-
fine strategy to detect salient objects in ORSIs with dense
lightweight refinement blocks. The parameters of CorrNet

were greatly reduced to only 4.09M, but its computational
cost was still very large, with 21.1G FLOPs. For RGB-D
SOD, Wu et al. [43] proposed the first lightweight method,
i.e., MobileSal, which is based on MobileNet-V2 [23].

Inspired by [43], in SeaNet, we adopt MobileNet-V2 as the
backbone to overcome the issue of large computational cost
of the existing lightweight ORSI-SOD method, i.e., CorrNet.
Moreover, to reduce the amount of parameters, we propose
two lightweight and effective modules, i.e., DSMM and
ESAM. DSMM extends dynamic convolution [44] to dynamic
depthwise convolution, and ESAM corrects cross-scale edge
features in a self-alignment way.

III. PROPOSED METHOD

In this section, we elaborate the proposed lightweight
SeaNet. In Sec. III-A, we introduce the network overview of
proposed SeaNet. In Sec. III-B and Sec. III-C, we elaborate
two lightweight modules, i.e., DSMM and ESAM, respec-
tively. In Sec. III-D, we depict the decoder and loss function.

A. Network Overview

As shown in Fig. 2, the proposed lightweight SeaNet is
based on the encoder-decoder structure commonly used in
SOD [8], [9], [47], [48]. SeaNet includes an encoder, a Seman-
tic Knowledge Compression (SKC) unit, a Dynamic Semantic
Matching Module (DSMM), an Edge Self-Alignment Module
(ESAM), and a lightweight decoder. It first performs semantic
matching for location activation of salient objects, and then
performs edge alignment for detail enhancement.

The input size of our SeaNet is 3×288×288. For the encoder
of our SeaNet, we adapt the lightweight MobileNet-V2 [23],
that is, we keep the first seventeen inverted residual bottlenecks
and truncate the last three layers, i.e., two convolution layers
and one average pooling layer. We divide MobileNet-V2 into
five blocks based on the first, third, sixth, thirteenth and last
bottlenecks, denoted as Et (t = 1, 2, 3, 4, 5). The output five-
level features are denoted as f te ∈ Rct×ht×wt , where ht and wt
are 288

2t , and ct ∈ {16, 24, 32, 96, 320}. We explore the gener-
ated high-level and low-level features with different strategies
for ORSI-SOD. For the high-level features, we first compress
the highest-level features f5

e into two semantic kernels, i.e., k3

and k4, in the Semantic Knowledge Compression (SKC)
unit, and then use them as kernels for dynamic depthwise
convolutions [24], [44] to respectively convolve with two
groups of high-level features, i.e., f3

e and f4
e , in DSMM. In

addition to the above spatial semantic matching, we enhance
the channel interaction via channel-wise correlation [45], [46],
generating fdsmm. Meanwhile, for the low-level features,
we obtain edge information through the pooling-subtraction
operation [27], and correct edge errors in a self-alignment way.
Then, we adopt the corrected edge features to perform feature
enhancement in Edge-based Enhancement Units (EEUs) of
ESAM, and also perform channel-wise correlation, generating
fesam. The decoder of our SeaNet is comprised of three
lightweight blocks denoted as D1-2, D3-4, and D5. Using f5

e ,
fdsmm, and fesam, we highlight salient objects in a progressive
manner for better resolution recovery. We also introduce the
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Fig. 2. Pipeline of the proposed lightweight SeaNet, which follows the encoder-decoder architecture. First, MobileNet-V2 [23] extracts basic feature embeddings
from the input, resulting in five-level features. Next, we get two semantic kernels in the Semantic Knowledge Compression (SKC) unit. Semantic kernels are
used to convolve with high-level features in the Dynamic Semantic Matching Module (DSMM) for location activation of salient objects. Then, we perform the
channel-wise correlation [45], [46] in DSMM. Meanwhile, in the Edge Self-Alignment Module (ESAM), we adopt Edge-based Enhancement Units (EEUs)
to extract edge features from low-level features for detail enhancement, and align edge features via Lmse loss (i.e., L2 loss). Channel-wise correlation is
also added to ESAM. Finally, we infer salient objects in the decoder based on the highest-level features and the outputs of DSMM and ESAM, and obtain
the output saliency map S1.

saliency inference head (SalHead) after each decoder block
for deep supervision [17] and final saliency map generation.

B. Dynamic Semantic Matching Module

High-level features contain affluent semantic information,
which is beneficial for salient object localization. Here, we
propose DSMM to effectively activate salient regions using
high-level features with limited parameters and computational
cost. Inspired by the dynamic convolution [44], we generate
convolution kernels with existing features rather than parame-
ter initialization to reduce the amount of parameters. Further-
more, we extend the dynamic convolution with the depthwise
separable convolution (DSconv) [24], and propose the dynamic
depthwise convolution (DDconv) to simultaneously reduce the
computational cost. DDconv plays an important role in the spa-
tial semantic matching of our DSMM. However, considering
only spatial interactions is not sufficient, we therefore further
introduce channel interactions into DSMM to enhance channel
dependencies through the channel-wise correlation [45], [46].

We show the detailed structure of DSMM in the middle part
of Fig. 2. Our DSMM can be divided into two parts, i.e., the
spatial semantic matching and the channel-wise correlation. In
the following, we present DSMM based on these two parts.
Since the SKC unit generates semantic kernels for DSMM,
we first describe this unit in detail.

1) SKC Unit. As shown in the right part of Fig. 2, the SKC
unit compresses the semantic information of f5

e directly but

effectively. Since the SKC unit generates semantic kernels for
f3
e and f4

e that are the inputs of DSMM, we first compress
the channel number of f5

e by two parallel DSconv layers to
fit that of f3

e and f4
e , and then compress the resolution to

a suitable size through two parallel adaptive average pooling
layers, generating two semantic kernels k3∈R32×5×5 and k4∈
R96×5×5. We formulate the SKC unit as follows:

kt = AP(DSconv(f5
e )), t = 3, 4, (1)

where DSconv(·) is the 3×3 DSconv layer, and AP(·) is the
adaptive average pooling layer.

2) Spatial Semantic Matching. We adopt k3 and k4 contain-
ing global information as the kernel of dynamic convolution
layers [44] to reduce the amount of parameters. However, the
computational cost of traditional dynamic convolution layer
is the same as that of regular convolution layer. Inspired by
DSconv [24], we update dynamic convolution to DDconv,
which performs dynamic convolution in a depthwise manner,
i.e., the group of dynamic convolution is set to the channel
number of input features. Moreover, we introduce the dilation
mechanism [49] into DDconv, and use multiple dilated recep-
tive fields to sufficiently perceive salient objects for accurate
localization, which is effective for overcoming the scenes of
multiple objects and objects with variable sizes in ORSIs.

As shown in DSMM of Fig. 2, we respectively employ
three dilated DDconv layers with dilation rates {1, 2, 3} on
f3
e and f4

e . In fact, DDconv is a parameter-free seman-
tic matching process, which breaks the constraints of the
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⊕

⊚
Channel-wise Correlation

M

Fig. 3. Illustration of the Channel-wise Correlation.

trained parameters and improves the flexibility of the module
and even the network. Different from DSconv that executes
depthwise convolution and pointwise convolution sequentially,
we integrate the output features of three dilated DDconvs
through element-wise summation, and then perform pointwise
convolution to fuse the multi-perception features. This not only
further reduces the amount of parameters, but also facilitates
the interaction of features generated with different receptive
fields. We formulate the spatial semantic matching as follows:

f tsm = Pconv(

3∑
i=1

DDconv(f te ;kt, ri)), t = 3, 4, (2)

where f tsm∈Rct×ht×wt denotes the output features of semantic
matching, DDconv(·;kt, ri) is the DDconv layer with dy-
namic kernel kt and dilation rate ri ∈ {1, 2, 3},

∑
is the

element-wise summation of multiple features, and Pconv(·)
is the pointwise convolution layer.

3) Channel-wise Correlation. In addition to the spatial
interactions, we perform the channel-wise correlation extended
from spatial co-attention [45], [46] in DSMM. We first align
f3
sm and f4

sm in channel and resolution via a DSconv layer
and an upsampling operation to obtain the input features of
channel-wise correlation, i.e., {f̂3

sm, f̂
4
sm} ∈Rc4×h3×w3 . Then,

we define the channel-wise correlation, denoted by CCorr(·),
as follows:

fdsmm = CCorr(f̂3
sm, f̂

4
sm), (3)

where fdsmm ∈ R(2×c4)×h3×w3 denotes the output features of
DSMM.

We depict the structure of channel-wise correlation in Fig. 3,
where we simplify the input features to {f1,f2}∈RC×H×W
for brevity. First, we reshape the size of f1 and f2, and obtain
the flattened f̂1 ∈ RHW×C and f̂2 ∈ RC×HW . Then, we
multiply f̂1 by a trainable matrix Wm ∈ RC×C using matrix
multiplication to adaptively learn feature transformations. The
channel-wise affinity matrix A∈RC×C of f̂1 and f̂2 can be
calculated through matrix multiplication as follows:

A = f̂2 ~ (f̂1 ~Wm), (4)

where ~ is the matrix multiplication. In this way, we model
feature dependencies along the channel.

Then, we adopt the row-wise and column-wise softmax
functions to normalize the affinity matrix respectively, and

transfer the established channel dependencies to f̂1 and f̂2.
Besides, we introduce the short connection and a 3×3 DSconv
layer to integrate the original spatially enhanced features
(i.e., f1 and f2) and the above channel-enhanced features.
We formulate the above process as follows:

f1
sc = DSconv

(
(Mr(A)~ f̂>1 )⊕ f1

)
, (5)

f2
sc = DSconv

(
((Mc(A))> ~ f̂2)⊕ f2

)
, (6)

where {f1
sc,f

2
sc} ∈ RC×H×W are features of spatial and

channel enhancement, Mr(·) and Mc(·) are the row-wise and
column-wise softmax functions, respectively, > is the matrix
transpose operation, and ⊕ is the element-wise summation.
Notably, we omit feature size transformation for brevity.
Finally, we concatenate f1

sc and f2
sc to produce the output fea-

tures of channel-wise correlation fccorr ∈ R2C×H×W , i.e., the
output features of DSMM fdsmm.

In summary, our DSMM is implemented in a lightweight
manner with limited parameters and computational cost. And
we fully consider spatial interactions and channel interactions
in DSMM, providing comprehensive and accurate localization
of salient objects, which is conducive to conquering the
challenging scenes of ORSIs.

C. Edge Self-Alignment Module

Low-level features contain rich texture and object detail
information, which is conducive to delineating the fine struc-
ture of salient objects. We propose ESAM to effectively and
efficiently explore edge information for detail enhancement
to preserve the complex shapes of salient objects in ORSIs.
Different from some edge-based ORSI-SOD methods [14],
[22], [38], [39], our ESAM is lightweight, and extracts edge
information without using edge supervision, which is more
convenient. Like DSMM, ESAM also fully considers the
spatial interaction and channel interaction of features. As
illustrated in the left part of Fig. 2, ESAM consists of two
Edge-based Enhancement Units (EEUs) and one channel-wise
correlation. We describe them in turn.

1) Edge-based Enhancement Unit with Self-Alignment. The
input features of ESAM are f1

e and f2
e . We align them

via DSconv layer and upsampling operation, and obtain
{f̂1

e , f̂
2
e }∈Rc2×h1×w1 , which are the input features of EEUs.

We adopt the pooling-subtraction operation [27] to extract two
groups of edge features {f̂1

edge, f̂
2
edge} ∈ Rc2×h1×w1 from f̂1

e

and f̂2
e respectively as follows:

f tedge = f̂ te 	AP(f̂ te), t = 1, 2, (7)

where 	 is the element-wise subtraction. f tedge is then used
to delineate edge regions in f̂ te . However, since there is no
edge supervision, the obtained edge information is inevitably
vulnerable to errors. Attacking this problem, we propose a
novel self-alignment mechanism based on the mean squared
error loss (i.e., L2 or Lmse loss), and apply it to edge features,
as shown in ESAM of Fig. 2. In this way, we can adaptively
correct edge errors between f̂1

edge and f̂2
edge during the training

phase, and obtain accurate and consistent edge information.
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TABLE I
DETAILED STRUCTURE AND PARAMETERS OF THREE DECODER BLOCKS.
(3× 3, 320, 192) DENOTES THAT THE KERNEL SIZE OF DSCONV IS 3× 3,

THE INPUT CHANNEL NUMBER IS 320, AND THE OUTPUT CHANNEL
NUMBER IS 192.

Aspects D5 D3-4 D1-2

Input size [320× 9× 9] [384× 36× 36] [96× 144× 144]

DSconv (3× 3, 320, 320) (3× 3, 384, 192) (3× 3, 96, 48)

DSconv (3× 3, 320, 320) (3× 3, 192, 192) (3× 3, 48, 48)

Upsampling 4× 4× 2×
DSconv (3× 3, 320, 192) (3× 3, 192, 48) (3× 3, 48, 48)

Output size [192× 36× 36] [48× 144× 144] [48× 288× 288]

Based on the corrected edge information, we perform the
edge enhancement on f̂ te and obtain the output features of
EEU, denoted as f teeu∈Rc2×h1×w1 , as follows:

f teeu = convs1×1(f
t
edge)⊗ f̂ te ⊕ f̂ te , t = 1, 2, (8)

where convs1×1(·) is the 1× 1 convolution layer with sigmoid
activation function, and ⊗ is the element-wise multiplication.

2) Channel-wise Correlation. EEUs focus on feature en-
hancement at the spatial level, and we enhance the channel
interaction of their outputs f1

eeu and f2
eeu using channel-wise

correlation as follows:

fesam = CCorr(f1
eeu,f

2
eeu), (9)

where fesam∈R(2×c2)×h1×w1 is the output features of ESAM.
In this way, ESAM saves a large amount of parameters

and computational cost, while providing powerful support for
accurately highlighting the complex geometry and topology of
salient objects in ORSIs.

D. Decoder and Loss Function

1) Decoder. Based on the locations and details of salient
objects provided by the above two modules, we design a
lightweight decoder to produce saliency maps. As shown at
the bottom of Fig. 2, our lightweight decoder consists of three
blocks, i.e., D1-2, D3-4, and D5. Each decoder block in turn
contains two DSconv layers, an upsampling operation, and
another DSconv layer. Their detailed parameters are reported
in Tab. I. In particular, we arrange SalHeads after these three
decoder blocks to generate three saliency maps of different
resolutions, i.e., S3 ∈ [0, 1]1×36×36, S2 ∈ [0, 1]1×144×144, and
S1 ∈ [0, 1]1×288×288, where the first two are used for deep
supervision and the last one is the final output of our SeaNet.
SalHead is comprised of a dropout layer [51] and a 1 × 1
convolution layer.

2) Loss Function. We impose the binary cross-entropy
(BCE) loss and intersection-over-union (IoU) loss to jointly
train our SeaNet. Therefore, our total loss consists of two
parts, i.e., the saliency loss and the edge alignment loss.
Moreover, we introduce a loss weight to treat these two losses

differently for better training. The total loss function Ltotal

can be formulated as follows:

Ltotal =

3∑
i=1

(Libce + Liiou) + λ · Lmse(P(f1
edge),P(f

2
edge)),

(10)
where Libce and Liiou are BCE loss and IoU loss, respectively,
which supervise Si by the ground truth (GT); λ is the loss
weight and set to 0.5; Lmse(·) is the mean squared error loss;
and P(·) is the parametric rectified linear unit [52].

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets. We conduct experiments on the ORSSD [21]
and EORSSD [38] datasets. The ORSSD dataset has 800
ORSIs and corresponding pixel-level annotations. It is divided
into two parts, i.e., the training set (600 images) and the test
set (200 images). The EORSSD dataset adds 1200 ORSIs to
the ORSSD dataset, resulting in 2000 ORSIs. This dataset is
also divided into two parts, i.e., 1400 images in the training
set and 600 images in the test set.

2) Evaluation Metrics. We adopt quantitative evaluation
metrics and computational complexity metrics to evaluate our
method and all compared methods from two aspects.

Quantitative evaluation metrics include S-measure (Sα, α =
0.5) [53], F-measure (Fβ , β2 = 0.3) [54], E-measure (Eξ) [55],
and mean absolute error (M). The first three are the higher
the better, and the last one is the opposite. We report the
maximum, mean, and adaptive F-measure and E-measure.

Computational complexity metrics include the inference
speed measured in frames per second (fps), the parameter
amount (#Param) measured in million (M), and the number
of floating point operations (FLOPs) measured in giga (G).
The first one is the higher the better, and the last two are the
opposite. The inference speed is reported with a batch size of
1 and no I/O time.

3) Training Protocol. We conduct experiments based on the
PyTorch [56] on a computer with an NVIDIA Titan X GPU
(12GB memory). We list the training details and parameters
as follows: the input size is 288×288, the data augmentation
strategy includes flipping and rotation, the network optimizer
is Adam [57], the batch size is 8, the base learning rate is
1e−4, the learning rate decays to 1/10 every 30 epochs, and
the training epoch is 50. Besides, we initialize MobileNet-
V2 with the pre-trained parameters, and initialize the newly
added layers of two modules and decoder with the “Kaiming”
method [52]. Notably, for each dataset, we train on its own
training set and test on its own test set, as in [15], [22], [38].

B. Performance Analysis

We compare our SeaNet with 17 state-of-the-art conven-
tional SOD methods, including 11 conventional NSI-SOD
methods (i.e., DSS [17], RADF [25], R3Net [26], Pool-
Net [50], EGNet [19], GCPA [31], MINet [30], ITSD [20],
GateNet [18], SUCA [32], and PA-KRN [12]), and 6 conven-
tional ORSI-SOD methods (i.e., LVNet [21], DAFNet [38],
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TABLE II
QUANTITATIVE AND COMPUTATIONAL COMPLEXITY COMPARISONS WITH STATE-OF-THE-ART NSI-SOD METHODS, ORSI-SOD METHODS, AND

LIGHTWEIGHT METHODS ON EORSSD AND ORSSD DATASETS. ↑ INDICATES THAT THE HIGHER THE BETTER, WHILE ↓ IS THE OPPOSITE. THE TOP
THREE RESULTS ARE MARKED IN RED, BLUE AND GREEN, RESPECTIVELY.

Methods Type
Input Speed #Param FLOPs EORSSD [38] ORSSD [21]

size (fps)↑ (M)↓ (G)↓ Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓ Sα ↑ Fmax
β ↑ Fmean

β ↑ F adp
β ↑ Emax

ξ ↑ Emean
ξ ↑ Eadp

ξ ↑ M ↓

DSS17 [17] CN 400×300 8 62.23 114.6 .7868 .6849 .5801 .4597 .9186 .7631 .6933 .0186 .8262 .7467 .6962 .6206 .8860 .8362 .8085 .0363

RADF18 [25] CN 400×400 7 62.54 214.2 .8179 .7446 .6582 .4933 .9140 .8567 .7162 .0168 .8259 .7619 .6856 .5730 .9130 .8298 .7678 .0382

R3Net18 [26] CN 300×300 2 56.16 47.5 .8184 .7498 .6302 .4165 .9483 .8294 .6462 .0171 .8141 .7456 .7383 .7379 .8913 .8681 .8887 .0399

PoolNet19 [50] CN 400×300 25 53.63 123.4 .8207 .7545 .6406 .4611 .9292 .8193 .6836 .0210 .8403 .7706 .6999 .6166 .9343 .8650 .8124 .0358

EGNet19 [19] CN ∼380×320 9 108.07 291.9 .8601 .7880 .6967 .5379 .9570 .8775 .7566 .0110 .8721 .8332 .7500 .6452 .9731 .9013 .8226 .0216

GCPA20 [31] CN 320×320 23 67.06 54.3 .8869 .8347 .7905 .6723 .9524 .9167 .8647 .0102 .9026 .8687 .8433 .7861 .9509 .9341 .9205 .0168

MINet20 [30] CN 320×320 12 47.56 146.3 .9040 .8344 .8174 .7705 .9442 .9346 .9243 .0093 .9040 .8761 .8574 .8251 .9545 .9454 .9423 .0144

ITSD20 [20] CN 288×288 16 17.08 54.5 .9050 .8523 .8221 .7421 .9556 .9407 .9103 .0106 .9050 .8735 .8502 .8068 .9601 .9482 .9335 .0165

GateNet20 [18] CN 384×384 25 100.02 108.3 .9114 .8566 .8228 .7109 .9610 .9385 .8909 .0095 .9186 .8871 .8679 .8229 .9664 .9538 .9428 .0137

SUCA21 [32] CN 256×256 24 117.71 56.4 .8988 .8229 .7949 .7260 .9520 .9277 .9082 .0097 .8989 .8484 .8237 .7748 .9584 .9400 .9194 .0145

PA-KRN21 [12] CN 600×600 16 141.06 617.7 .9192 .8639 .8358 .7993 .9616 .9536 .9416 .0104 .9239 .8890 .8727 .8548 .9680 .9620 .9579 .0139

LVNet19 [21] CR 128×128 1.4 - - .8630 .7794 .7328 .6284 .9254 .8801 .8445 .0146 .8815 .8263 .7995 .7506 .9456 .9259 .9195 .0207

DAFNet21 [38] CR 128×128 26 29.35 68.5 .9166 .8614 .7845 .6427 .9861 .9291 .8446 .0060 .9191 .8928 .8511 .7876 .9771 .9539 .9360 .0113

SARNet21 [35] CR 336×336 47 25.91 129.7 .9240 .8719 .8541 .8304 .9620 .9555 .9536 .0099 .9134 .8850 .8619 .8512 .9557 .9477 .9464 .0187

MJRBM22 [39] CR 352×352 32 43.54 95.7 .9197 .8656 .8239 .7066 .9646 .9350 .8897 .0099 .9204 .8842 .8566 .8022 .9623 .9415 .9328 .0163

EMFINet22 [22] CR 256×256 25 107.26 480.9 .9290 .8720 .8486 .7984 .9711 .9604 .9501 .0084 .9366 .9002 .8856 .8617 .9737 .9671 .9663 .0109

MCCNet22 [14] CR 256×256 95 67.65 112.8 .9327 .8904 .8604 .8137 .9755 .9685 .9538 .0066 .9437 .9155 .9054 .8957 .9800 .9758 .9735 .0087

CSNet20 [40] LN 224×224 38 0.14 0.7 .8364 .8341 .7656 .6319 .9535 .8929 .8339 .0169 .8910 .8790 .8285 .7615 .9628 .9171 .9068 .0186

SAMNet21 [41] LN 336×336 44 1.33 0.5 .8622 .7813 .7214 .6114 .9421 .8700 .8284 .0132 .8761 .8137 .7531 .6843 .9478 .8818 .8656 .0217

HVPNet21 [13] LN 336×336 26 1.23 1.1 .8734 .8036 .7377 .6202 .9482 .8721 .8270 .0110 .8610 .7938 .7396 .6726 .9320 .8717 .8471 .0225

CorrNet22 [15] LR 256×256 100 4.09 21.1 .9289 .8778 .8620 .8311 .9696 .9646 .9593 .0083 .9380 .9129 .9002 .8875 .9790 .9746 .9721 .0098

SeaNet (Ours) LR 288×288 96 2.76 1.7 .9208 .8649 .8519 .8304 .9710 .9651 .9602 .0073 .9260 .8942 .8772 .8625 .9767 .9722 .9670 .0105

CN: CNN-based NSI-SOD method, CR: CNN-based ORSI-SOD method, LN: lightweight NSI-SOD method, LR: lightweight ORSI-SOD method.

SARNet [35], MJRBM [39], EMFINet [22], and MCC-
Net [14]). In addition, we also compare our lightweight SeaNet
with 4 state-of-the-art lightweight SOD methods, including
3 lightweight NSI-SOD methods (i.e., CSNet [40], SAM-
Net [41], and HVPNet [13]), and the lightweight ORSI-
SOD method CorrNet [15]. The above NSI-SOD methods
are retrained on the same ORSI-SOD datasets as our SeaNet
with default parameter settings to generate saliency maps. We
obtain saliency maps for other methods from authors or public
source codes.

1) Comparison with Conventional SOD Methods. The top
of Tab. II shows the quantitative evaluation and computational
complexity evaluation results of our SeaNet and conventional
SOD methods for NSIs and ORSIs. Compared with con-
ventional NSI-SOD methods, our SeaNet achieves the best
performance in terms of both accuracy and computational
complexity. For example, compared with the best perform-
ing NSI-SOD solution PA-KRN [12], SeaNet has significant
advantages on M, e.g., 0.0073 v.s. 0.0104 on the EORSSD
dataset and 0.0139 v.s. 0.0105 on the ORSSD dataset, and
has 6× faster inference speed, 51.1× fewer parameters, and
363.3× fewer FLOPs than it. This shows the advantages of
specialized methods, even our lightweight specialized method
can outperform conventional NSI-SOD solutions.

Compared with conventional ORSI-SOD methods, our
SeaNet shows comparable accuracy but with significantly
lower computational complexity. For example, compared with
EMFINet [22], SeaNet achieves similar accuracy, e.g., Emax

ξ :
0.9710 v.s. 0.9711 on the EORSSD dataset and 0.9767 v.s.

0.9737 on the ORSSD dataset, while SeaNet is 3.6× faster in
inference speed, and 24.5× and 282.8× fewer in parameters
and FLOPs, respectively. Compared with the best performing
MCCNet [14], although the accuracy of SeaNet is not dom-
inant, the lower computational complexity of SeaNet is still
outstanding.

2) Comparison with Lightweight SOD Methods. At the bot-
tom of Tab. II, we report the comparison results of our SeaNet
with four lightweight SOD methods for NSIs and ORSIs.
Compared with lightweight NSI-SOD methods, SeaNet has
no advantages in parameters and FLOPs, but has obvious
advantages in inference speed. This means that our lightweight
SeaNet has room for improvement. On the other hand, the
accuracy advantage of SeaNet is obvious, e.g., SeaNet out-
performs them by 3.50%∼8.44% in Sα, 4.87%∼13.76% in
Fmean
β , 5.51%∼10.05% in Emean

ξ , and 0.0037∼0.0120 in M
on two datasets.

The original intention of our SeaNet is to reduce the
amount of parameters and FLOPs of existing lightweight
ORSI-SOD method CorrNet [15], especially the latter one.
The results in Tab. II show that SeaNet achieves this goal
without significantly reducing accuracy. Specifically, in terms
of computational complexity, SeaNet has 1.3× fewer pa-
rameters and 12.4× fewer FLOPs than CorrNet, and has a
comparable inference speed. In terms of accuracy, SeaNet
shows a slightly lower Eadp

ξ (0.9670 v.s. 0.9721) than CorrNet
on the ORSSD dataset, while achieves a slightly higher M
(0.0073 v.s. 0.0083) on the EORSSD dataset.

Overall, SeaNet achieves one first place, two second places,
and five third places in quantitative evaluation metrics with
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ORSI GT Ours CorrNet MCCNet MJRBM LVNet PA-KRN ITSD HVPNet SAMNet CSNet
Fig. 4. Qualitative comparisons with four types of methods, including nine representative state-of-the-art methods.

much more desirable computational complexity, striking a
balance between effectiveness and efficiency. This means that
SeaNet is a promising method that can be applied in practical
applications.

3) Qualitative Comparison. Here, we show the qualitative
comparison of our SeaNet and four types of methods, in-
cluding nine representative state-of-the-art methods, on four
unique and challenging ORSI scenes in Fig. 4. The first scene
contains multiple objects or even multiple tiny objects, as
shown in the first three cases of Fig. 4. We can observe that the
saliency maps of our SeaNet are similar to those of specialized
ORSI-SOD methods, such as CorrNet and MCCNet, which
accurately highlight all salient objects, and are much better
than those of conventional and lightweight NSI-SOD methods.
This is attributed to the multi-scale semantic matching of
DSMM. The second scene contains a big object, such as the
4th to 6th cases of Fig. 4. Most methods can locate the big
object, but cannot highlight them completely, while our SeaNet
can highlight the entire big object with complete edges. This is
attributed to the edge-based detail enhancement of ESAM. The
third scene contains chaotic background, such as the 7th and
8th cases of Fig. 4. Our SeaNet can successfully find salient
objects in complex backgrounds, while the three lightweight
methods either miss objects (HVPNet and SAMNet) or in-
troduce background regions (CSNet). The last scene contains
objects with complex geometric shapes, such as the last two
cases of Fig. 4. Thanks to the cooperation between DSMM and
ESAM, our SeaNet has obvious advantages compared to the
nine methods, that is, it can not only overcome the interference
of the small object, but also precisely locate three islands with
fine details. Overall, our SeaNet can catch up with specialized
ORSI-SOD methods and outperform NSI-SOD methods.

TABLE III
ABLATION RESULTS OF EVALUATING THE CONTRIBUTION OF TWO

LIGHTWEIGHT MODULES. THE BEST ONE IN EACH COLUMN IS BOLD.

Models
#Param FLOPs EORSSD [38]

(M)↓ (G)↓ Sα ↑ Fmean
β ↑ Emean

ξ ↑ M ↓

SeaNet (Ours) 2.76 1.66 0.9208 0.8519 0.9651 0.0073
w/o DSMM 2.75 -0.01 1.56 -0.10 0.9158 0.8440 0.9580 0.0093

w/o ESAM 2.70 -0.06 1.59 -0.07 0.9180 0.8404 0.9588 0.0084

C. Ablation Studies

To evaluate the effectiveness of each component of our
SeaNet, we conduct exhaustive ablation studies on the
EORSSD dataset. Specifically, we analyze 1) the contribution
of two lightweight modules, 2) the effectiveness of each com-
ponent of ESAM, and 3) the effectiveness of each component
of DSMM. The parameter settings and datasets for each variant
are the same as in Sec. IV-A.

1) Contribution of two lightweight modules. To analyze
the contribution of two lightweight modules, we provide two
variants: 1) removing DSMM and SKC (i.e., w/o DSMM)
and 2) removing ESAM (i.e., w/o ESAM). We report the
quantitative results and computational complexity in Tab. III.

We observe that our two modules are lightweight, i.e., the
combination of DSMM and SKC have 0.01M parameters and
0.10G FLOPs, and ESAM has 0.06M parameters and 0.07G
FLOPs. Since DSMM can determine the location of salient
objects, w/o DSMM reduces the accuracy of object localiza-
tion, resulting in a drastic drop in pixel-level evaluation metric,
i.e., M: 0.0073→0.0093. w/o EASM only affects the details
of salient objects, so the performance degradation is generally
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TABLE IV
ABLATION RESULTS OF EMBEDDING THE TWO LIGHTWEIGHT MODULES

INTO HVPNET AND SAMNET.

Models
#Param FLOPs EORSSD [38]

(M)↓ (G)↓ Sα ↑ Fmean
β ↑ Emean

ξ ↑ M ↓

SeaNet (Ours) 2.76 1.7 0.9208 0.8519 0.9651 0.0073

SAMNet 1.33 0.5 0.8622 0.7214 0.8700 0.0132

SeaNet-SAM 1.51 1.4 0.9173 0.8507 0.9631 0.0074

HVPNet 1.23 1.1 0.8734 0.7377 0.8721 0.0110

SeaNet-HVP 1.48 1.8 0.9202 0.8486 0.9646 0.0069

less severe than that of w/o DSMM, e.g., M: 0.0073→0.0084
and Emean

ξ : 0.9651→0.9588. The cooperation of these two
lightweight modules and MobileNet-V2 enables our SeaNet
to achieve good performance without many parameters and
computational cost.

In particular, to further illustrate the effectiveness, flexibility,
and robustness of these two lightweight modules, we embed
these two lightweight modules and our decoder into the feature
extraction backbones proposed by SAMNet and HVPNet,
forming two variants, named SeaNet-SAM and SeaNet-HVP,
respectively. Notably, our decoder has 0.47M parameters and
0.95G FLOPs. As shown in Tab. IV, SeaNet-SAM is more
lightweight than our original SeaNet. SeaNet-HVP has signif-
icantly fewer parameters and slightly higher FLOPs than our
original SeaNet. Both variants have comparable performance
as our original SeaNet, which shows that these two lightweight
modules can be adapted to different backbones and are robust.
In addition, SeaNet-SAM/SeaNet-HVP has similar number
of parameters as SAMNet/HVPNet, while has higher FLOPs
which are mainly from the decoder. The performance of
SeaNet-SAM/SeaNet-HVP is significantly better than that of
SAMNet/HVPNet, such as leading by more than 10% on
Fmean
β . Notably, the number of parameters and FLOPs of

SeaNet-SAM (1.51M and 1.4G) and HVPNet (1.23M and
1.1G) are comparable, while SeaNet-SAM outperforms HVP-
Net by a large margin. This situation proves that when the
number of parameters and FLOPs of our SeaNet variants
are equivalent or comparable to those of other lightweight
methods, our SeaNet variants still significantly outperform
them.

2) Effectiveness of each component of DSMM. To ana-
lyze the effectiveness of each component of DSMM, we
design three variants of DSMM in Tab. V and embed them
into the network: 1) removing the spatial semantic matching
(i.e., w/o SM), 2) changing dilated DDconvs to regular DD-
convs (i.e., w/o dilation), and 3) removing the channel-wise
correlation of DSMM (i.e., w/o CCorr1).

Based on the quantitative performance at the top of Tab. III,
we observe that each component of DSMM is necessary. As
the key part of DSMM, w/o SM truncates the object local-
ization capability of DSMM, achieving the worst performance
among these three variants, e.g., Emean

ξ : 0.9651→0.9595. w/o
dilation impairs the ability of DSMM to perceive salient
objects of different sizes, resulting a slight performance drop,

TABLE V
ABLATION RESULTS OF EVALUATING THE EFFECTIVENESS OF EACH

COMPONENT OF DSMM AND ESAM. THE BEST ONE IN EACH COLUMN IS
BOLD.

Models
EORSSD [38]

Sα ↑ Fmean
β ↑ Emean

ξ ↑ M ↓

SeaNet (Ours) 0.9208 0.8519 0.9651 0.0073

D
SM

M w/o SM 0.9170 0.8459 0.9595 0.0078

w/o dilation 0.9194 0.8490 0.9626 0.0076

w/o CCorr1 0.9187 0.8471 0.9619 0.0080

E
A

SM

w/o EEU 0.9183 0.8441 0.9597 0.0078

w/o alignment 0.9189 0.8476 0.9617 0.0078

w/o CCorr2 0.9197 0.8494 0.9627 0.0076

e.g., a drop of 0.29% on Fmean
β . w/o CCorr1 only focuses on

the feature interactions at the spatial level, while ignoring that
at the channel level, resulting in incomplete feature interaction
and performance degradation. Therefore, the above analysis
proves that the design of our DSMM is reasonable and
effective.

3) Effectiveness of each component of EASM. To analyze
the effectiveness of each component of EASM, we design
three variants of EASM in Tab. V and embed them into the
network: 1) removing two EEUs (i.e., w/o EEU), 2) removing
the edge alignment (i.e., removing the edge alignment loss in
Eq. 10, named w/o alignment), and 3) removing the channel-
wise correlation of EASM (i.e., w/o CCorr2).

According to the quantitative performance at the bottom of
Tab. III, we observe that each component of EASM contributes
to the final performance. The two EEUs are responsible
for enhancing the edge regions on the features, so w/o
EEU does not achieve satisfactory performance, e.g., Fmean

β :
0.8519→0.8441. The proposed edge alignment is an inter-
esting mechanism that can improve the accuracy of edge
information without increasing parameters and FLOPs. w/o
alignment causes performance degradation on all four metrics.
Like w/o CCorr1, w/o CCorr2 also gives up the channel-
level feature interactions in EASM, which hurts performance.
Combining w/o CCorr1 and w/o CCorr2, we can conclude that
channel-level feature interactions are important to our SeaNet
and cannot be discarded. The above analysis shows that these
components of ESAM are indispensable.

V. CONCLUSION

In this paper, we aim to treat low-level and high-level fea-
tures discriminatively, thereby proposing an efficient solution,
named SeaNet, for lightweight ORSI-SOD. For high-level
features, the lightweight DSMM is proposed to explore object
locations through spatial semantic matching, and takes into
account the channel-level feature interactions. Spatial semantic
matching utilizes dilated DDconvs to perceive multiple salient
objects and objects with variable sizes, resulting in good adap-
tation to complex scenes of ORSIs. For low-level features, the
lightweight ESAM is proposed to enhance the details of salient
objects based on edge information which is corrected in an
innovative self-alignment manner. With the close cooperation
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of the two modules, SeaNet infers salient objects accurately in
the decoder at a fast speed. Performance analysis and ablation
studies demonstrate the effectiveness and efficiency of our
SeaNet compared with state-of-the-art methods.
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