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Abstract—Unmanned aerial vehicles (UAVs) equipped with 
different sensors can provide data with high spatiotemporal 
resolution and have broad application prospects. During the flight 
of the UAV, changes in illumination, exposure time, etc., will cause 
different degrees of radiometric differences between images, 
resulting in a calibration relationship established on a single image 
that cannot be applied to other images; in addition, the vignetting 
effect also significantly changes the brightness distribution inside 
an image, thus posing challenges for radiometric calibration of 
UAV images. In this paper, based on block adjustment (BA), we 
proposed a radiometric block adjustment model under the 
consideration of vignetting and the light-dark differences between 
images. The proposed method requires only a small number of 
calibration blankets, thus reducing the complexity of the 
experiment. The results from two study areas showed that the 
proposed method could compensate for vignetting to a certain 
extent and the radiometric consistency of the two datasets was 
improved from 13.16%~21.82% to 5.47%~12.72%. Validated 
using ground samples, the mean RMSE and MRPE of all five 
bands were 0.053, 21.6%, and 0.037, 20.4% in the two study areas, 
respectively. The total uncertainty was less than 7%. When there 
were obvious light-dark differences between images, such as in the 
visible light bands, our method could significantly improve the 
accuracy of the radiometric calibration. 
 

Index Terms—block adjustment (BA), light-dark differences, 
radiometric calibration, unmanned aerial vehicles (UAVs), 
vignetting 

I. INTRODUCTION 

nmanned aerial vehicles (UAVs) equipped with 
different sensors can provide data with high spatial and 
temporal resolution [1], thus offering great prospects 

for various applications, such as agriculture monitoring [2-4], 
plant phenotyping [5, 6], environmental monitoring [7, 8], 
meteorology [9], and archaeology [10, 11]. The temporal data 
quality of UAVs is usually influenced by the sensor 
characteristics, geometrical alignment, illumination conditions, 
and atmospheric conditions [12]. Consequently, it is necessary 
to use the reflectance rather than the digital number (DN) to 
better characterize the spectral properties of ground objects and 
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their variation through time [13]. Radiometric calibration 
converts the DN value to reflectance, making it possible to 
quantitatively analyze the data from different sensors or times 
[14]. However, vignetting effect and the changes in 
illumination conditions, exposure time, etc., can affect the 
image quality, resulting in differences in the radiometric 
properties within and between images, which poses challenges 
for the radiometric calibration of multiple UAV images. 

There are many radiometric calibration methods for a single 
image. The empirical line method (ELM) is the most commonly 
used method [15-17], which assumes a linear transformation 
between DN value and surface reflectance. However, the 
relationship between DN value and surface reflectance is not 
always linear [18-20]. For example, Lei et al. proposed a 
method called the subband empirical line (SEL), which used the 
power transformation relation of visible light bands and the 
linear transformation relation of the red edge and near-infrared 
(NIR) bands for fitting the calibration model [19]. In addition, 
some other methods can also be used for converting UAV 
images to reflectance maps, such as Xu et al. presented a 
method called the spectral angle constraint method (SACM), 
which added the spectral information as a constraint to ELM for 
improving the calibration precision [21]. Rodriguez et al. 
utilized the parameters from the Micasense RedEdge sensor and 
digital light sensor (DLS) to transform DN to radiance and then 
used the At-Altitude Radiance Ratio (AARR) technique to 
obtain the surface reflectance [22], while Pines et al. found that 
the radiometric calibration accuracy of AARR was not as good 
as ELM when the illumination was relatively consistent or the 
cloud cover was low [23]. 

However, the radiometric calibration methods suitable for a 
single image may become impractical for multiple UAV 
images. Because during the flight of UAV, each image may be 
influenced by the different exposure time, different incident 
angle, different illumination conditions, different turbulence, or 
different signal processing chains [24]. As a result, there may 
be significant light-dark differences between images, making a 
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radiometric calibration model established on one image 
inappropriate for another. With the increase of UAV endurance, 
this problem will become more prominent. To overcome the 
influence of radiometric differences between UAV images, 
some studies have proposed methods using multiple reference 
targets to ensure every image contains at least one reference 
target [18, 25]. But it is not feasible to measure the reflectance 
of every reference target even in a small study area [14]. 
Therefore, new algorithms are needed for the radiometric 
calibration of multiple UAV images. Tu et al. used a sensor-
information-based calibration method to directly generate 
orthomosaiced reflectance images [26], but this method did not 
display consistent results, probably because using only one 
reference target was insufficient to determine the relationship 
between radiance and reflectance. Further, Honkavaara et al. 
developed a radiometric calibration approach based on global 
optimization, which considered the impact of view/illumination 
geometry on the reflectance and illumination variations, and 
results showed that their method could improve the radiometric 
uniformity of the datasets [27]. Commercial software such as 
Pix4D (Pix4D S.A., Lucerne, Switzerland) or Photoscan 
(Agisoft LLC, ST. Petersburg, Russia) either directly generates 
the reflectance orthomosaics [28-30] or firstly generates 
orthomosaics, then uses ELM to radiometrically calibrate 
images [31-33]. Although there are many radiometric 
calibration methods, most of them are difficult to meet the 
requirements of high-precision applications [34]. Therefore, an 
accurate and radiometric calibration method for multiple UAV 
images is still a challenge. 

In addition to the light-dark differences between the images, 
the brightness difference within an image caused by vignetting 
will also affect the observed values of ground objects. 
Vignetting is a phenomenon that refers to the radial fall-off of 
brightness from the image center towards the edges [35] and 
can be corrected by two methods: one is the polynomial fitting 
method [36, 37] which uses polynomial to approximate the 
vignetting; the other is the lookup table (LUT) method which 
establishes LUT by using the integration sphere [38, 39] or 
under homogeneous illumination conditions [40]. However, 
vignetting correction is challenging in practice [38], because 
large integration spheres are expensive, and small ones may not 
provide uniform illumination across the sensor’s field of view 
(FOV) [41]. When using a Lambertian surface, due to the wide-
angle lenses, it is difficult to cover the reference target 
completely within the FOV of sensors while obtaining 
homogenous illumination [42]. In addition, the above 
vignetting correction methods need auxiliary measurement, 
thereby increasing the complexity of experiments and data 
processing. Thus, a simple and practical method for vignetting 
correction would support accurate UAV data processing. 

By using ground control points (GCPs) and tie points (TPs), 
block adjustment (BA) can effectively eliminate geometric 
errors [43] and be often used to correct the geometric errors of 
the optical satellite images [44]. In addition, some studies added 
different constraints to BA to improve the geometric accuracy 
[45]. For instance, based on an equivalent geometric sensor 

model, Cao et al. proposed a BA method with the digital 
elevation model (DEM) as constraints, and the results showed 
that the horizontal and vertical root mean square errors 
(RMSEs) reduced from 17.3 m and 2.6 m to 2.5 m and 1.5 m, 
respectively [46]. BA first uses TPs extracted from the 
overlapping area of the images to establish the error equations 
of the geometric observations and then solves the unknown 
parameters by minimizing the error. In the overlapping area of 
images, not only the geometric information of the ground 
objects but also the radiometric information can be obtained. 
Therefore, some studies have introduced BA into the relative 
radiometric correction of multiple remote sensing images to 
eliminate the radiometric differences between images [47-49]. 
Further, some studies have introduced BA into the absolute 
radiometric calibration of satellite or UAV images. For 
example, Han et al. proposed a BA-based cross-calibration 
method for the images obtained by the panchromatic and 
multispectral sensor (PMS) on the Gaofen-4 satellite, and the 
results showed that the average absolute calibration relative 
errors range from 1.97% to 5.58% [50]. Honkavaara et al. 
proposed a BA-based radiometric calibration method that 
considered the influence of bidirectional reflectance 
distribution function (BRDF), and the results showed that the 
method improved the homogeneity of the datasets from 
12~16% to 4~6% [51]. However, their method used only one 
set of parameters in each band to correct the effects of BRDF, 
which may affect the radiometric calibration accuracy. In 
addition, the position information of pixels in the image is not 
well utilized in the existing radiometric calibration methods 
based on the block adjustment. 

The light-dark differences between images and the vignetting 
pose challenges for the radiometric calibration of multiple UAV 
images. However, based on the idea of BA, the radiometric and 
geometric information extracted from the images’ overlapping 
areas provides an opportunity for the radiometric calibration of 
multiple UAV images. The objective of this paper is to achieve 
the radiometric calibration of multiple UAV images using only 
a small number of calibration blankets, thereby generating 
reflectance mosaics of the entire study area. To do this, we 
propose a radiometric block adjustment method based on the 
BA, which eliminates the light-dark differences between 
images and the vignetting inside images while the radiometric 
calibration. At the same time, we have designed a weight setting 
method to reduce the influence of view geometry and the 
heterogeneity of ground objects on the solution of radiometric 
calibration parameters. The UAV images and ground 
measurement data are introduced in Section II. Section III 
describes the radiometric block adjustment model followed by 
the representation of results in Section IV. Section V discusses 
the optimal number of control points with known reflectance, 
the influence of vignetting correction, uncertainties, and the 
potential of the proposed method. Finally, Section VI 
summarizes the research. 

Page 14 of 26Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

II. DATA 

A. Study Areas 

The study areas located in Hubei Province, China, including 
Luojia Square of Wuhan University (114°21′19.7155″E, 
30°32′15.3710″N) and Taizi Mountain of Jingshan City 
(112°52′18.5581″E, 30°55′24.2693″N), which were hereinafter 
referred to as study area 1 and study area 2, respectively, as 
shown in Fig. 1. Study area 1 mainly included lawns, buildings, 
and roads, and the ground objects of study area 2 had much 
larger variation including forest, water, roads, soil, and 
buildings. Eight 1.2 m × 1.2 m calibration blankets made with 
highly durable woven polyester fabric (the reflectance was 
0.03, 0.06, 0.12, 0.24, 0.36, 0.48, 0.56, and 0.80) were placed 
in the centers of the two study areas. According to the radiation 
characteristics of the ground objects in the two study areas and 
the quality of UAV images, the blankets with reflectance 
between 0.03~0.24 were only used in the next experiments. 

 
Fig. 1. Study areas. (a) Taizi Mountain, (b) Luojia Square and (c) radiometric 
blankets. The dots in the figure are the ground samples. The red and blue dots 
represent the vegetation and road, the brown dots are soil and the purple are 
other ground objects, such as sand. The positions of the calibration blankets are 
marked by black frames. The numbers in the red box in figure (c) are the 
reflectance of the corresponding calibration blankets. 

B. Data Acquisition 

P4 Multispectral (DJI, Shenzhen, China. Hereinafter referred 
to as P4) was used to obtain images from the two study areas. 
P4 integrates 6 COMS sensors including one red-green-blue 
(RGB) sensor for visible light imaging and five monochrome 
sensors for multispectral imaging. The bands of multispectral 
cameras are blue (B, 450 ± 16 nm), green (G, 560 ± 16 nm), red 
(R, 650 ± 16 nm), red edge (RE, 730 ± 16 nm), and NIR (840 ± 

26 nm). The cameras’ FOV is 62.7°, the max image size is 
1600×1300, and the focal length is 5.74 mm. 

DJI GS PRO (DJI, Shenzhen, China) was used to plan the 
flight path, and the settings are shown in TABLE I. The 
exposure mode was set to auto to allow the sensors to gather 
light information and timely adjusted the exposure time. 
Therefore, even if the images came from the same camera, their 
exposure time might be different. In total 606 images for study 
area 1 were collected under clear weather conditions, whereas, 
1566 images were collected for study area 2, but under cloudy 
condition causing obvious radiometric differences between 
images. 
 

TABLE I 
FLIGHT SITTINGS. GSD: GROUND SAMPLING DISTANCE 
Study Area Luojia Square Taizi Mountain 

Date (UTC+8) 2020.12.19 12:33-13:13 2021.06.08 13:47-14:24 
Shooting Mode Hover Hover 

Altitude (m) 50 100 
GSD (cm) 2.56 5.29 

Forward/Side 
overlap (%) 

80/60 80/80 

 
The ASD FieldSpec 4 (ASD Inc., Boulder, CO, USA) 

spectrometer was used to measure the spectra of ground 
samples during the flight mission. Before each measurement, 
the ASD was calibrated using a calibrated white reference. In 
study area 1, each ground sample was measured once, and 5 
spectra were obtained, then the average of the 5 spectra was 
taken as the spectrum of the ground sample. In study area 2, the 
same measurement method as study area 1 was used, but the 
only difference was that each ground sample was measured 
three times. The ASD measurements were then converted to 
spectral reflectance using ViewSpecPro software and exported 
to the text files. Finally, 54 samples were obtained in study area 
1, including 34 vegetation and 20 road samples; 29 samples 
were obtained in study area 2, including 4 vegetation, 6 road, 4 
soil, and 15 other categories of samples. All ground samples 
were used to evaluate the accuracy of the radiometric 
calibration. 

As the spectral response functions (SRFs) of P4 were 
unknown, the Gaussian function, central wavelength, and full 
width at half maxima (FWHM) were used to simulate these 
functions in this paper. Then the spectra of ground samples 
were resampled, and the equation of resampling is given as 
follows: 

 
2 2

1 1

/ ,i S d S d
 

   
       (1) 

where ρλ  is the reflectance at the wavelength λ , 𝑆ఒ  is the 
simulated spectral response at the wavelength λ, [λଵ,  𝜆ଶ] is the 
wavelength range of the ith band of the P4, and 𝜌௜  is the 
equivalent reflectance for the ith band. 

III. METHODOLOGY 

A. Radiometric Block Adjustment Model 

Reflectance is an intrinsic property of ground objects. In 
other words, the reflectance of the same ground object should 
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be equal on all images after radiometric calibration. If there are 
some ground points with known reflectance, all UAV images 
of the study area can be radiometrically calibrated by using the 
information from overlapping areas of images. Before 
introducing the radiometric block adjustment model, we define 
the two key concepts of radiometric control points (RCPs) and 
radiometric tie points (RTPs). RTPs are ground objects with 
multiple geometric and radiometric observations, and RCPs are 
ground objects with known reflectance. 

In this paper, we adopt SEL to describe the relationship 
between DN value and surface reflectance because in visible 
light bands, using power transformation will obtain higher 
fitting accuracy than linear transformation [19]. In addition, 
using the power transformation can avoid the situation where 
the calculated reflectance of the low reflectance regions is 
negative. The SEL model is as follows: 
 ,DN a b   (2) 

 ,aDN b  (3) 

where ρ is the reflectance, a and b are the absolute correction 
coefficients. Equation (2) is suitable for the RE and NIR bands, 
and (3) is suitable for the visible light bands. 

Using one image as the reference (i.e. the reference image), 
radiometric differences between images can be eliminated by 
adjusting the radiation levels of other images to be consistent 
with it. A common and effective way to eliminate radiometric 
differences between images is to assume a linear transformation 
relationship between images [27, 52]. The reference image 
should contain calibration blankets to provide initial values for 
absolute calibration parameters. In addition, the calibration 
blankets should be located in the center of the reference image 
as much as possible to reduce the effect of vignetting on the 
initial values of absolute calibration parameters. After selecting 
the reference image, the relationship between the reflectance 
ρRTP,j  of RTP j in image i and its DN can be described as 

follows: 
 ,( ) ,ij i RTP j iDN a a b b     (4) 

 , ,a
ij i RTP j iDN a b b    (5) 

where DNij is the DN value of RTP j in image i, ai and bi are 
the relative calibration coefficients. Theoretically, (4) and (5) 
realize the unification of absolute and relative radiometric 
calibration. 

Since vignetting is highly correlated with pixel position, it 
can be expressed as a function of pixel position. Based on the 
characteristic that vignetting gradually reduces the brightness 
of the image from the center to the edges, we use the following 
paraboloid model to correct vignetting: 

 2 2
0 1 2 0 1 2( , ) + , , , 0,V u v p p u p v p p p    (6) 

where p0, p1 and p2 are the paraboloid parameters, (u,v) is the 
pixel coordinate system established with the image center as the 
origin, and V(u,v) is the vignetting correction factor at (u,v). 
Because of the imperfect manufacturing process, the brightness 
center is usually inconsistent with the image center [38]. Taking 
this into account, precise compensation of the vignetting effect 
can be achieved by moving it from the image center to the 

brightness center, assuming that the shape of the paraboloid 
remains constant. Then (6) becomes 

2 2
0 1 0 2 0

2 2 2 2
1 2 1 0 2 0 1 0 2 0 0

2 2
1 2 3 4 5

( , ) ( ) ( )

2 2

,

V u v p p u u p v v

p u p v p u u p v v p u p v p

p u p v p u p v p

    

      

    

 (7) 

where 

 
3 1 0

4 2 0

2 2
5 1 0 2 0 0

= 2 ,

= 2 ,

,

p p u

p p v

p p u p v p





  

 (8) 

where (u0,v0) is the translation parameter from the image center 
to the brightness center. The proposed method has some noise 
immunity, and the dark current can be regarded as noise to some 
extent, so we did not perform the dark current correction when 
processing the data. However, the parameter p5  has a very 
significant influence on the solution of the model. To ensure the 
rationality of the solutions of radiometric calibration 
parameters, the value of the parameter p5 must be limited. At 
the vignetting center, if the dark current is DC, the DN value is 
DN0, the vignetting correction parameter is p5, then we have 

 0 5 0 .DN p DN DC    (9) 

So, the value of p5 is 
 5 01 / .p DC DN   (10) 

The dark current generally is small and in this paper, we 
assume that the maximum value of dark current will not exceed 
10% of the maximum DN value (e.g. the maximum value of a 
16-bit image is 65535). To estimate the value of p5, the average 

DN of the image center in a 99 × 99 window is used instead of 

DN0. For every image, p5 has an estimation value and then the 

70th percentile of all estimation values, p5,70, will be set as the 

low limitation of p5, i.e. 

 5 5,70 .p p  (11) 

Finally, we can describe the relationship between the DN 
value of RTP j in image i and its reflectance as: 

2 2
1 2 3 4 5 ,( ) ( ) ,ij i RTP j ip u p v p u p v p DN a a b b        (12) 

2 2
1 2 3 4 5 ,( ) .a

ij i RTP j ip u p v p u p v p DN a b b         (13) 

Since the theoretical derivation of the radiometric block 
adjustment model under the linear transformation and power 
transformation is similar, here only the linear transformation is 
used as an example to derive the model. The error equation of 
RTP j in image i is as follows: 

2 2
, 1 2 3 4 5( ) ( ) , ,ij i RTP j i ij ijv a a b b p u p v p u p v p DN w         

(14) 
where wij is the weight, and vij is the error. Equation (14) is a 
nonlinear equation that is difficult to solve. To facilitate the 
solution, we use Taylor Formula to linearize the error equation 
as follows: 
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0
,

,

1 2 3 4 5
1 2 3 4 5

+ ,

ij ij ij ij ij
ij ij i i RTP j

i i RTP j

ij ij ij ij ij

v v v v v
v v a b a b

a b a b

v v v v v
p p p p p

p p p p p




    
          

    

    
        
    

 

(15) 
where vij

0  is the value obtained by substituting the results of the 
previous iteration of the unknown parameters into (14) and the 
partial derivative are as follows: 

 

,
,

2 2
,

1 2

3 4 5

, , , 1

, , ,

, , .

ij ij ij ij
i RTP j i i

RTP j i

ij ij ij
RTP j ij ij

i

ij ij ij
ij ij ij

v v v v
a a a a

a b b

v v v
a b u DN v DN

a p p

v v v
uDN vDN DN

p p p






   
   

   

  
     

  

  
     

  

 (16) 

RCPs (i.e. calibration blankets) are added as constraints to 
the model. If the true reflectance of RCP k is ρRCP,k  and the 

reflectance calculated in the iterative process is ρRCP,k
' , the error 

equation is as follows: 
 '

, , , , ,RCP k RCP k RCP k RCPv w    (17) 

where wRCP is the weight. For the reference image, its relative 
calibration coefficients are 1 and 0 respectively, so their error 
equations are as follows: 

 
,

,

1,
,

0,

ref a ref ref

ref b ref ref

v a w

v b w

 
  

 (18) 

where aref  and bref  are the calculated values of relative 
calibration coefficients of the reference image, and wref is the 
weight. 

In this paper, the ranges of absolute calibration coefficients a 
and b are limited for ensuring the reasonability of solving the 
equation. If the initial value of a and b calculated by using the 
calibration blankets are aini and bini, and the calculated value are 
acal and bcal, then the error equation of a and b are as follows: 
 , ,a cal ini absv a a w   (19) 

 , ,b cal ini absv b b w   (20) 

where wabs is the weight. 
Generally speaking, although the vignetting center is often 

not consistent with the image center, the two are not too far 
apart, i.e. the (u0,v0) is small. Based on this reason, p3 and p4 are 
limited as follows: 

 
'

3 3

'
4 4

0,
,

0,

p

p

p

v p
w

v p

  


 
 (21) 

where pଷᇱ  and pସᇱ  are iteration results, wp is the weight. 
To improve the efficiency of solving equations, we limit the 

range of some parameters as follows: 

 
, ,, [0,1],

0,

0.

RTP j RCP k

ia

a

  




 (22) 

In summary, we can describe the radiometric block 
adjustment model in the form of matrices as follows: 

 , V Ax L W,  (23) 

where V is the residual vector, A is the design matrix including 
the partial derivative of unknown parameters and the 
coefficients of control equations, x is the vector consisting of 
the increments of the unknown parameters, L is the vector of 
observations, and W is the weight matrix. The x can be solved 
by minimizing the residuals. The solution of unknown 
parameters is an iterative process. When the solution of x is less 
than 10-6 or the iteration is over 500 times, the iteration is 
stopped, and the output is the solution of the unknowns. For 
ease of solving, the DN values are scaled to 0~1 (based on the 
bit-depth of UAV images), while pixel coordinates are scaled 
to -1~1 (based on the image size). 

The unknown parameters of the radiometric block 
adjustment model are listed as follows: 

1) Absolute calibration parameters: a and b, which are 
used to convert DN value to reflectance; 

2) Relatively calibration parameters: ai and bi (i=1, 2,…, 
c, c is the number of images), which are used to 
eliminate the light-dark differences between images. 

3) Vignetting correction parameters: pm (m=1, 2,…,5); 
4) The reflectance of RTP: 𝜌ோ்௉,௝ (j=1, 2,…, N, N is the 

number of RTPs); 
5) The reflectance of RCP: 𝜌ோ஼௉,௞ (k=1, 2,…, K, K is the 

number of RTPs), which is used as constraint condition. 

B. Weight Settings 

The weights are an assessment of the reliability of the 
observations. In generally, RTPs should be homogeneous. 
However, the flight altitude of UAV is usually low, so the 
ground objects will have more details, which increases the 
difficulty of finding uniform ground objects. To reduce the 
effect of ground objects’ non-uniformity on solution results of 
radiometric calibration parameters, we use the purity of the 
ground objects to determine the weights of error equations. The 
purity of RTP j in image i is defined as follows: 
 / ,ij ij ijp avg  (24) 

where σij and avgij are the standard deviation and average of the 
DN values within a window centered on RTP j. And the weight 
of RTP j is calculated by the following equation: 
 1 exp( 3 ),ij ijw p   (25) 

where the constant 3 is used to expand the differences between 
the weights. 

In addition, the reflectance of a ground object will change 
with the changes of view geometry, i.e. BRDF effect. In 
general, reflectance will reach a maximum at the hot-spot, and 
be more stable away from the hot spot. To reduce the influence 
of view geometry, we assign a smaller weight to RTP close to 
the hot-spot and a larger weight to RTP far away from the hot-
spot, and the weight is calculated as follows: 
 2 2 2

, , ,exp( ( ) / (2 )) 1.005,ij v ij s i v iw         (26) 

where θs,i is the solar zenith angle when collected the image i, 
θv,ij is the view zenith angle of the RTP j in image i, and σv,i is 
defined as follows: 

Page 17 of 26 Transactions on Geoscience and Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



6 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 2
, , ,

1
( ) .v i v ij s i

jn
     (27) 

where n is the number of RTPs on image i. Finally, the weight 
of the error equation can be set as follows: 
 1 2 .ij ij ijw w w   (28) 

This weight setting method can reduce the influence of 
heterogeneity of ground objects and the view geometry. The 
reflectance of RCPs and the relative calibration parameters of 
the reference image are also solved as unknowns. In fact, their 
values are known. To ensure the accuracy of their solutions, a 
larger weight should be given to (17) and (18) as follows: 
 , 100.RCP refw w   (29) 

The power function is more complex than the linear function. 
If the absolute calibration parameters of power transformation 
are not limited, there may be no solution or the solution may be 
unreasonable; contrary to this, the linear transformation is 
relatively simple, and this situation will not happen. Therefore, 
we set different values for wabs as follows: 

 
max( ), power transformation

,
0, linear transformationabsw


 


w
 (30) 

where w is the set consisting of the weights of all RTPs. 
In general, the vignetting center is close to the image center. 

However, the solution of parameters p3 and p4 will be affected 
by many factors, such as the BRDF, the types of ground objects, 
etc. To reduce the influence of these factors, we set the weight 
of (21) slightly larger as follows: 
 10max( ).pw  w  (31) 

C. Data Processing 

Firstly, the UAV images were processed by Pix4D. The outputs 
included interior orientation parameters (IOP) of each sensor, 
exterior orientation parameters (EOP) of each image, lenses 
distortion correction parameters, the transformation matrix to 
convert the ground coordinates to pixel coordinates, DSMs and 
orthomosaics. The P4 multispectral images, the coordinates of 
RCPs and their reflectance, and those above-mentioned outputs of 
Pix4D were used as inputs of the radiometric block adjustment. 
Each band was processed separately. Reflectance mosaics were 
then generated using the calibration parameters output from the 
radiometric block adjustment. The rules of generating reflectance 
mosaics were as follows: the reflectance of a ground point in the 
mosaic was the value that had the most nadir geometry [51]. 

As the bridge between images, RTPs play a very important 
role in the radiometric block adjustment. When selecting RTPs, 
the number of them on each image should not be too small, 
otherwise, the redundant observations are not enough to solve 
the optimal radiometric calibration parameters. On the contrary, 
the number of RTPs should not be too many because it will 
make the number of error equations increase sharply and reduce 
the efficiency of solving. In this paper, RTPs were selected 
from the DSM at fixed intervals, as shown in Fig. 2. Ideally, 
there were up to 100 RTPs on a UAV image. The average value 
in a 17×17 window was calculated to take it as the DN value of 
an RTP. In addition, RTPs that appeared less than 3 times were 

removed to avoid too many unknown parameters. 

  
(a) (b) 

Fig. 2. Examples of (a) selection of RTPs from DSM. The parameters uc and vc 
are the intervals determined by the UAV image size and (b) distribution of RTPs 
on a UAV image. The red dots are the selected RTPs. 

D. Performance Assessment 

The performance of the proposed method in this paper was 
evaluated in terms of visual and quantitative perspectives. 
Visual assessment was mainly based on the homogeneity of 
reflectance mosaics. The quantitative assessment included two 
parts: one was the change in the internal uniformity of the 
dataset before and after processing, and the other was to assess 
the radiometric calibration accuracy using ground samples. The 
internal uniformity of the dataset was evaluated using the 
coefficient of variation (CV) and its definition was as follows: 

 ,

,

CV 100 ,RTP j
j

RTP javg


  (32) 

where avgRTP,j and σRTP,j are the average and standard deviation 

of DN of RTP j respectively. The average CV of all RTPs was 
used to represent the internal uniformity of the dataset. The CV 
calculated with DN could reflect the quality of the relative 
calibration to some extent, while the CV using reflectance could 
reflect the quality of the absolute calibration. Thus, except for 
the CV calculated using DN, the CV calculated using 
reflectance was also used for evaluating the internal uniformity 
of the dataset, and they were referred to below as CVDN and 
CVref, respectively. 

Two indicators, RMSE and Mean Relative Percent Error 
(MRPE), were also used to evaluate the calibration accuracy, 
and their definitions were as follows: 

 2
, ,1

1
RMSE ( ) ,

N

cal i ASD iiN
 


   (33) 

 , ,

1
,

1
MRPE |100 |,

N cal i ASD i

i
ASD iN

 



   (34) 

where N is the number of samples, ρcal,i  is the predicted 

reflectance, and ρASD,i is the reflectance of ground samples. 

To better analyze the performance of the proposed method, 
three other methods were used for comparison: (1) Direct 
Mosaic, where mosaics were generated directly using original 
images and then calibrated with SEL; (2) Blending, where the 
orthomosaics were output by PhotoScan and then calibrated 
with SEL; (3) Color Balancing, where the orthomosaics were 
output by Pix4D and the reflectance maps were generated by 
SEL. For convenience, the method proposed in this paper was 
referred as RBA in the following. 
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(a) (b) (c) (d) 

Fig. 3. Color infrared mosaics of study area 1 with NIR, green and blue bands. (a) Direct Mosaic, (b) Blending, (c) Color Balancing, and (d) RBA. 

 

Fig. 4. Calibration accuracy of study area 1. Mean: the average of all bands. 

 
TABLE II 

CV(%) OF STUDY AREA 1 

 
CVDN CVref 

Direct 
Mosaic 

RBA 
Direct 
Mosaic 

RBA 

B 17.9 5.6 25.9 8.2 
G 16.4 5.1 22.5 7.5 
R 16.8 5.9 22.2 8.1 

RE 13.9 4.7 23.0 7.9 
NIR 12.9 5.2 19.5 8.2 

IV. RESULTS 

A. Results of Radiometric Calibration 

Fig. 3 shows the reflectance mosaics of study area 1 
generated by the four methods. Due to the variation in 
illumination, exposure time, etc., there are varying degrees of 
difference in the brightness of the original images, so the 
patches and seamline can be seen in Fig. 3 (a). Blending, Color 
Balancing, and RBA could eliminate the radiometric 
differences and generate mosaics with good visual quality, as 
shown in Fig. 3 (b), (c), and (d). However, the mosaics of 
different methods differ in detail, as shown in the black box in 
Fig. 3, which was related to the method of relative radiometric 
calibration and generating mosaics. 

Fig. 4 is the calibration accuracy of different methods in 
study area 1. In the visible light and NIR bands, RBA obtained 
the best results compared to the other three methods, with 

RMSE and MRPE ranging from 0.027 to 0.071 and 13.4% to 
30.0%, respectively. For the RE band, Direct Mosaic had the 
best accuracy with RMSE and MRPE of 0.070 and 15.3%, 
respectively. On the whole, RBA was the best of all four 
methods, with mean RMSE and MRPE of 0.054 and 21.8%, 
respectively. 

TABLE II is the CV of study area 1. Because the process of 
generating orthomosaics in PhotoScan and Pix4D was 
unknown, the CV of Blending and Color Balancing was not 
calculated. Compared with the Direct Mosaic, the CVDN of 
RBA reduced above 10.5% in visible light bands and about 
8.0% in RE and NIR bands. Similarly, CVref was significantly 
reduced. Among them, the CVref in the blue band had the most 
decrease, about 17.7%, and the NIR band had the least decrease, 
but it also had 11.3%. 

Due to the influence of clouds, the illumination changes in 
study area 2 were severe. In this case, we did not consider the 
effect of BRDF on sensors' observations. Therefore, (25) was 
used instead of (28) to determine the weights of error equations 
established by RTPs. Reflectance mosaics of study area 2 are 
shown in Fig. 5. The color of the upper left part of the mosaics 
generated by all four methods was different from other parts of 
the mosaics because, in the blue band, there was an obvious 
overexposure phenomenon in the raw data in this region. And 
this problem also appeared in the red band. There were obvious 
color differences in Fig. 5 (a), which indicated the original 
images had significant light-dark differences. Blending, Color 
Balancing and RBA improved the uniformity of the reflectance 
mosaics (Fig. 5 (b), (c) and (c)). But in Fig. 5 (b) and (c), the 
color of the mosaic center was different from the around. 
Furthermore, the outermost parts of the images in Fig. 5 (b) and 
(c) were darker than the rest. This phenomenon could also be 
found in Fig. 3 (b) and (c), but was not as pronounced as in Fig. 
5 (b). The reason for this phenomenon may be that the 
vignetting was not fully corrected. Overall, RBA could generate 
the mosaic with the best visual quality among all four methods. 

Fig. 6 shows the calibration accuracy of study area 2. In 
visible light bands, RBA had the best performance, with RMSE 
of 0.031~0.035 and MRPE of 19.6%~27.1%. The results of 
Direct Mosaic and Blending were close and the least accurate 
among all methods, with RMSE and MRPE of 0.064~0.105 and 
46.2%~64.3%, respectively. In the RE band, Blending had the 
best accuracy, with RMSE and MRPE of 0.035 and 16.5%, 
respectively; in the NIR band, the calibration accuracy of Color 
Balancing was the highest, with RMSE and MRPE of 0.044 and 
15.5%, respectively. Similar to the experimental results of study 
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(a) (b) (c) (d) 

Fig. 5. Color infrared mosaics of study area 2 with NIR, green and blue bands. (a) Direct Mosaic, (b) Blending, (c) Color Balancing, and (d) RBA.  
 

 

 
Fig. 6. Calibration accuracy of study area 2. Mean: the average of all bands. 
 

TABLE III 
CV(%) OF STUDY AREA 2 

 
CVDN CVref 

Direct 
Mosaic 

RBA 
Direct 
Mosaic 

RBA 

B 20.4 13.3 37.3 20.5 
G 17.2 12.0 27.5 16.7 
R 22.5 14.4 34.4 19.1 

RE 15.5 9.9 28.2 18.4 
NIR 14.5 10.4 24.7 18.9 

 

area 1, RBA could significantly improve the calibration 
accuracy in visible light bands, but its performance in RE and 
NIR bands was similar to the other three methods. 

TABLE III is the CV of study area 2. RBA significantly 
increased the uniformity between images, and the reduction 
range of CVDN was between 4.1% and 8.1% compared with 
Direct Mosaic. Similarly, the CVref decreased significantly and 
among them, the CVref of the blue band decreased the most, 
reaching 16.7%, while the CVref of the NIR band decreased the 
least, being 5.8%. The results in TABLE II and TABLE III 
showed that the RBA could effectively reduce the radiometric 
differences and improve the uniformity of datasets. 

TABLE IV 
THE RMSE AND MRPE OBTAINED BY USING 4 CALIBRATION 

BLANKETS AND 5-FOLD CROSS-VALIDATION IN STUDY AREA 1 

 
RMSE (×10-2) MRPE (%) 

4 calibration 
blankets 

5-fold cross-
validation 

4 calibration 
blankets 

5-fold cross-
validation 

B 2.69 1.85 23.2 17.7 
G 5.29 2.99 30.0 14.4 
R 3.66 2.35 25.3 15.6 

RE 7.97 6.08 17.4 16.0 
NIR 7.14 6.43 13.4 13.3 

Mean 5.35 3.94 21.8 15.4 

 
TABLE V 

THE RMSE AND MRPE OBTAINED BY USING 4 CALIBRATION 

BLANKETS AND 5-FOLD CROSS-VALIDATION IN STUDY AREA 2 

 
RMSE (×10-2) MRPE (%) 

4 calibration 
blankets 

5-fold cross-
validation 

4 calibration 
blankets 

5-fold cross-
validation 

B 3.18 2.31 27.1 20.8 
G 3.10 2.16 20.8 14.8 
R 3.53 2.94 19.6 17.8 

RE 4.05 3.50 17.9 16.0 
NIR 4.68 4.47 16.4 16.4 

Mean 3.71 3.07 20.4 17.2 

B. Influences of the Number of RCPs on Radiometric Block 
Adjustment 

From a practical point of view, only using the calibration 
blankets is convenient and effortless. However, from the 
perspective of model verification, it is not comprehensive 
enough to use only the calibration blankets as RCPs. One is that 
the number of RCPs is small; and the other is that the calibration 
blankets are placed centrally in the study areas, which means 

the distribution of RCPs is limited in the study area. These two 
factors will influence the error propagation and accumulation 
during the adjustment, thereby affecting the calibration 
accuracy of RBA. For this reason, 5-fold cross-validation was 
used to evaluate the calibration accuracy for comprehensively 
understanding the performance of RBA, and the Direct Mosaic, 
Blending, and Color Balancing were still used as the 
comparison methods. The 5-fold cross-validation divided the 
ground samples into 5 groups on average. Each time, one group 
was used as the validation samples, and the remaining 4 groups 
were used as the modeling samples. Repeated 5 times and used 
the mean RMSE and MRPE as the final validation results. 
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(a) (b) 

  
(c) (d) 

Fig. 7. The results of 5-fold cross-validation. (a) and (b) are the results of study area 1, (c) and (d) are the results of study area 2. Mean: the average of all bands.

Furthermore, to provide good initial values for the absolute 
calibration parameters, calibration blankets were used in each 
modeling process. 

Fig. 7 shows the 5-fold cross-validation results. The results 
of the two study areas showed that RBA had the best calibration 
accuracy in the visible light bands, and the range of RMSE and 
MRPE was 0.019~0.030 and 14.4%~20.8% respectively. In RE 
and NIR bands, RBA had the best calibration accuracy in study 
area 1, with RMSE of 0.061 and 0.064, and MRPE of 16.0% 
and 13.3%; but in study area 2, Color Balancing got the highest 
calibration accuracy (except for the RMSE of the RE band), 
with RMSE and MRPE of 0.028, 13.1%, and 0.034, 12.3%, 
respectively. 

TABLE IV and TABLE V show the results of using only the 
calibration blankets as RCPs and 5-fold cross-validation. In the 
two study areas, except for the MRPE in the NIR band of study 
area 2, the results of 5-fold cross-validation were better than the 
results of using only the calibration blankets as RCPs. The 
RMSE was reduced by 0.006~0.023 in visible light bands, and 
the MRPE was reduced by 1.8%~15.6%, while in RE and NIR 
bands, the ranges of reduced RMSE and MRPE were 
0.002~0.019 and 0.0%~1.9%. These results demonstrated that 
the error propagation and accumulation were effectively 
controlled by adding RCPs. 

V. DISCUSSION 

A. Optimal number of RCPs 

After adding RCPs, the radiometric calibration accuracy of 
RBA could improve prominently. In practice, it is impossible 
to add too many RCPs because it will significantly increase the 
workload. In this part, the ground samples of study area 1 were 
divided into vegetation and non-vegetation, and a pair of such 
samples were added to RBA each time to explore the optimal 
number of RCPs. Considering the distribution of RCPs and the 
error propagation and accumulation, the ground samples 

located in the four corners were selected firstly. Fig. 8 shows 
that RMSE and MRPE decrease with the increasing number of 
RCPs. Adding more RCPs only slightly improves the 
calibration accuracy compared to the result of adding 2 pairs of 
RCPs. The further away from the RCPs, the more pronounced 
the error propagation and accumulation will be. When adding 1 
RCP to each of the 4 corners of the study area, the error 
propagation and accumulation could be effectively controlled 
in the whole range; therefore, the improvement in calibration 
accuracy is relatively limited by adding more RCPs. Thus, 
adding one ground sample in each of the four corners of the 
study area is a reasonable choice that can not only improve the 
calibration accuracy but also control the workload to an 
appropriate level. 

  
Fig. 8. The trends of RMSE and MRPE with adding the vegetation and non-
vegetation ground samples as RCPs. Abscissa represented the number of RCP 
pairs, and 0 represented the situation using only calibration blankets as RCPs. 

B. Influences of Vignetting Correction on Radiometric Block 
Adjustment 

In general, vignetting correction is performed prior to the 
radiometric calibration [53]. However, the RBA proposed in 
this paper corrects the vignetting at the same time as the 
radiometric calibration. For understanding the influences of 
vignetting correction on RBA, another two ways were used to 
process the data: one was that directly used the models 
described by (4) and (5) to calibrate images, and the second was 
that the dark current and vignetting were corrected firstly and 
then the (4) and (5) were used to calibrate images. The dark 
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(a) (b) 

  
(c) (d) 

Fig. 9. Radiometric calibration accuracy of different methods when only the calibration blankets were used as RCPs. (a) and (b) are the results of study area 1, (c) 
and (d) are the results of study area 2. Mean: the average of all bands. 
 

  
(a) (b) 

  
(c) (d) 

Fig. 10. The 5-fold cross-validation results of different methods in study area 1. (a) and (b) are the results of study area 1, (c) and (d) are the results of study area 
2. Mean: the average of all bands.

current and vignetting correction parameters were extracted 
from the XMP information of images, and the detailed 
information could be found in the P4 image processing guide 
(please see: https://www.dji.com/p4-multispectral/downloads). 
These two methods were called RBA_NoVig and RBA_Vig in 
the following. 

Fig. 9 shows results of the two study areas when only using 
calibration blankets as RCPs. In visible light bands, the RMSE 
and MRPE of RBA were the lowest for all six methods (except 
for the RMSE of the B band in study area 2), with RMSE of 

0.027~0.053 and MRPE of 19.6~30.0%; the results of 
RBA_NoVig were better than the results of Direct Mosaic, 
Blending, and Color Balancing, which indicates that the 
RBA_NoVig had a certain ability to correct vignetting. For RE 
and NIR bands, different methods had different performance. 
In study area 1, Direct Mosaic had the best accuracy in the RE 
band, while the RBA had the best accuracy in the NIR band. In 
study area 2, Blending had the lowest RMSE and MRPE of 
0.035 and 16.5% in the RE band; however, in the NIR band, 
Color Balancing had the lowest RMSE and MRPE of 0.044 and 
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15.5%. 

Fig. 10 shows the results of 5-fold cross-validation. It can be 
found that the vignetting had a great influence on the calibration 
accuracy of RBA_NoVig, especially in the RE and NIR bands. 
Overall, RBA_Vig had the highest radiometric calibration 
accuracy, with mean RMSE and MRPE of 0.038, 15.1%, and 
0.028, 15.5% in the two study areas, respectively; followed by 
RBA, with mean RMSE and MRPE of 0.039, 15.4%, and 0.031, 
17.2%, respectively. Moreover, the calibration accuracy of the 
two in all bands was relatively close, which indicated that the 
feasibility and potential of vignetting correction using the RBA. 

C. Uncertainty Analysis 

There are 4 factors that influence the calibration accuracy of 
the RBA, and the uncertainties caused by these factors are listed 
in TABLE VI and TABLE VII. For each factor, 10 tests were 
conducted and the uncertainties were expressed as the average 
of the relative changes in RMSE before and after the changes 
in the corresponding factor. 

1) Weight settings of error equations established by 
RTPs: the weights of the observations represent their 
reliability and therefore have an impact on the 
calibration accuracy of the RBA. When calculating the 
uncertainties, the weights of error equations were set 
to random numbers between [0, 1]. The uncertainties 
of different bands caused by the weight setting ranged 
from 1.046% to 5.233% for study area 1, and from 
1.066% to 3.782% for study area 2. 

2) Geometric mismatching: when extracting the DN 
values and pixel coordinates of RTPs or RCPs, the 
geometric mismatch can interfere with their 
information. The shifted window was used to obtain 
the uncertainty caused by geometric mismatching. 
When extracting the DN values of RTPs, the window 
was randomly shifted by 3 pixels on the row and 
column respectively. The range of the uncertainties of 
different bands caused by geometric mismatching in 
the two study areas was 0.598%~3.730% and 
0.810%~2.770%, respectively. 

3) Noise: the image quality can be influenced by the 
noise. In addition, the dark current is also a kind of 
noise in a sense. In this part, Gaussian noise with a 
mean of 0 and a standard deviation of 5% is added to 
the DN values of RTPs. The uncertainties caused by 
the noise ranged from 1.528% to 2.661% for study 
area 1 and 1.266% to 2.790% for study area 2. The 
uncertainties caused by noise were relatively small, 
which indicated that the RBA had a certain degree of 
noise immunity. 

4) Equation solution: the iteration stopping condition is 
that the increments of unknows are less than 10-5 or the 
iteration number is larger than 500. As a result, the 
uncertainty caused by the equation solution in the two 
study areas was near 0% in all bands. 

The total uncertainties of different bands were between 
2.307% and 6.664% in study area 1 and 2.427% and 4.732% in 
study area 2. Among them, the weights, geometric 

mismatching, and noise had a relatively large impact on the 
radiometric correction accuracy, while the equation solution 
had little effect on the calibration results. 
 

TABLE VI 
INFLUENCE FACTORS AND THEIR UNCERTAINTY (%) OF STUDY 

AREA 1 
Influence 

factor 
B G R RE NIR 

Weights 5.233 1.391 3.732 1.103 1.046 
Geometric 

mismatching 
3.730 1.452 1.492 0.598 0.776 

Noise 1.766 1.528 2.661 2.035 1.904 
Equation 
solution 

0.000 0.000 0.000 0.000 0.000 

Total 
uncertainty 

6.664 2.525 4.820 2.390 2.307 

 
TABLE VII 

INFLUENCE FACTORS AND THEIR UNCERTAINTY (%) OF STUDY 

AREA 2 
Influence 

factor 
B G R RE NIR 

Weights 3.426 3.782 1.066 1.786 2.620 
Geometric 

mismatching 
1.695 1.997 0.810 2.770 2.020 

Noise 2.790 1.781 2.024 1.266 1.866 
Equation 
solution 

0.001 0.001 0.001 0.001 0.000 

Total 
uncertainty 

4.732 4.633 2.427 3.531 3.798 

D. Potential of the Proposed Radiometric Block Adjustment 

The RBA proposed in this paper can directly correct the 
vignetting at the same time as the radiometric calibration and 
does not require additional auxiliary measurements, thus 
reducing the complexity of the experiment and data processing. 
In addition, RBA requires only a small number of calibration 
blankets as input, making it a practical radiometric calibration 
method. At the same time, RBA allows the addition of reference 
targets of known reflectance in the study area, giving it some 
flexibility. 

When there were obvious radiometric differences between 
images, the RBA could significantly improve the radiometric 
calibration accuracy, such as in the visible light bands; and 
when the radiometric differences between images were not 
obvious, the proposed method could also obtain reasonably 
radiometric calibration results, such as in the RE and NIR 
bands. Vegetation, as the main ground object in the two study 
areas of this paper, had low reflectance in visible light bands 
and high reflectance in the RE and NIR bands. Therefore, 
changes in factors such as illumination could easily make the 
images in visible light bands have obvious light-dark 
differences, while the light-dark differences in the RE and NIR 
bands were not obvious. Thus, the method proposed in this 
paper performed better in visible light bands. At the same time, 
the experimental results also showed that the RBA proposed in 
this paper was more suitable for the situation where there were 
obvious light-dark differences between images. 

Blending and Color Balancing could obtain the mosaics with 
good visual quality when the radiometric differences between 
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images were small (Fig. 3 (b) and (c)). However, when the 
radiometric differences became large, only good visual quality 
can be obtained locally, as shown in Fig. 5 (b) and (c). This is 
because Blending and Color Balancing mainly eliminate the 
radiometric differences between adjacent images. The RBA 
eliminates the radiometric differences between images from the 
whole, so it can obtain mosaics with good visual quality. In 
addition, RBA can effectively control the radiometric error 
propagation and accumulation and has great potential in the 
radiometric calibration of large-scale UAV images. 

Satellites are affected by many factors when collecting 
images, so there will be different degrees of light-dark 
differences between images. Zhang et al. proposed a BA-based 
radiometric normalization method and validated its feasibility 
on Landsat-8 OLI images [54]. In addition, Han et al. proposed 
a cross-calibration method based on BA [50, 55]. In this paper, 
we proposed a BA-based radiometric calibration method 
suitable for multiple UAV images. However, due to the 
influences of various factors, such as atmospheric conditions, 
there are large differences between UAV images and satellite 
images. Therefore, the proposed method may not be directly 
applicable to satellite images. Further exploration is required if 
the method in this paper is to be applied to satellite data. 
However, it is feasible to eliminate the radiometric differences 
between satellite images based on the idea of BA. 

VI. CONCLUSION 

Based on the theory of BA, the radiometric block adjustment 
model between the DN value and the surface reflectance was 
built under the consideration of vignetting and light-dark 
differences between images and achieved the radiometric 
calibration of multiple UVA images using only a few 
calibration blankets. When obvious light-dark differences 
existed between images, such as visible light bands, the 
accuracy of radiometric calibration could be improved 
significantly by using the proposed method in this paper. The 
proposed method could also obtain reasonable results when the 
differences of brightness between images were small. The mean 
RMSE and MRPE were 0.053, 21.6%, and 0.037, 20.4% in the 
two study areas. After radiometric calibration, the homogeneity 
of the two datasets improved from 13.16%~21.82% to 
5.47%~12.72%. And the total uncertainties ranged from 
2.307% to 6.664% in the two study areas. Increasing the 
number of RCPs could effectively control the error propagation 
and accumulation and improve the calibration accuracy. We 
recommended adding a total of 4 RCPs of different types to the 
four corners of the study area, to improve the accuracy while 
keeping the workload at an appropriate level. At the same time, 
the results have shown that the proposed method has great 
potential in correcting image vignetting. 

In the paper, we designed a weight setting method to reduce 
the influence of view geometry. However, it remains a 
challenge to accurately correct the BRDF in the UAV images 
while radiometric calibration. In addition, although UAVs 
taking images at low altitudes can reduce the influence of the 
atmosphere, significant atmospheric effects had been found 

even at 50 m flight altitude [56]. Therefore, eliminating the 
BRDF and atmosphere effects in UAV images is very important 
to obtain accurate surface reflectance. And this will be the focus 
of our future research. 
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