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Abstract—Despite its fruitful applications in remote sensing,
image super-resolution is troublesome to train and deploy as it
handles different resolution magnifications with separate models.
Accordingly, we propose a highly-applicable super-resolution
framework called FunSR, which settles different magnifica-
tions with a unified model by exploiting context interaction
within implicit function space. FunSR composes a functional
representor, a functional interactor, and a functional parser.
Specifically, the representor transforms the low-resolution image
from Euclidean space to multi-scale pixel-wise function maps;
the interactor enables pixel-wise function expression with global
dependencies; and the parser, which is parameterized by the
interactor’s output, converts the discrete coordinates with addi-
tional attributes to RGB values. Extensive experimental results
demonstrate that FunSR reports state-of-the-art performance on
both fixed-magnification and continuous-magnification settings,
meanwhile, it provides many friendly applications thanks to its
unified nature.

Index Terms—Remote sensing images, super-resolution, im-
plicit neural network, function space, continuous image repre-
sentation.

I. INTRODUCTION

IMAGE super-resolution (SR), as a vital technique for
elevating image and video spatial resolution, has found

vast applications in medical imaging [1, 2], surveillance and
security [3, 4], and remote sensing image analysis [5–7],
etc. Particularly, remote sensing applications including object
detection and recognition [8–11], semantic segmentation [12–
14], and change detection [15] require high-resolution (HR)
images with rich high-frequency details and texture infor-
mation to perform effective image discrimination, analysis,
interpretation, and perception. In face of the forbidden cost
in image acquisition, SR becomes indispensable for remote
sensing image applications.

Continuous magnification SR is especially vital for remote
sensing imagery for three reasons. First, imaging real-world
surface objects is a process of discretizing continuous signals
influenced by the relative acquisition height, so that the objects
of the same actual size will show different scales in different
images or at different locations. Second, multi-source and
multi-resolution image processing is the key challenge in
remote sensing imagery, which can be partially settled by
continuous magnification. Third, different spatial resolutions
might reveal distinct layers and structures of surface objects. It
is also critical to efficiently and effectively run the SR network
with different magnifications in various application settings.

Albeit favorable applicability, image SR is hard to achieve
due to its ill-posed nature, such that one LR image usually
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Fig. 1. Our proposed FunSR is capable of producing images of arbitrary
resolution by a single trained model. FunSR converts location coordinates with
some additional attributes, e.g., scale factor, to RGB values using functions
parameterized by the transformed LR image.

corresponds to a large set of HR ones [16]. To learn this com-
plicated LR-to-HR mapping, compared with classical learning
methods or statistical methods based on edge [17, 18], sparse
representation [19–21], local information encoding [22, 23],
etc., deep learning methods demonstrate greater feature ex-
pression ability and better performance. Various deep learning
methods have been widely employed and achieved milestone
results, ranging from the convolutional neural network (CNN)
based methods (e.g., [24–27]) to generative adversarial net-
work (GAN) based methods (e.g., [28, 29]) and, more recently,
Transformer based methods (e.g., [30, 31]) and implicit neural
representation (INR) based methods (e.g., [32, 33]).

Although these methods have greatly improved the develop-
ment of image SR, the majority of them adhere to the paradigm
of using upsampling operations to achieve the enlargement of
LR images, and generally only apply a fixed magnification
factor or multiple fixed magnification factors. According to
the position of the upsampling operation, they may be split
into the pre-upsampling SR framework [22, 34] and the post-
upsampling one [35, 36]. Most of these methods cannot
achieve continuous magnification SR. During the application,
they will alter the network structure and retrain the model to
meet changing magnification needs, posing significant train-
ing, deployment, and storage issues.

Currently, only a few researchers have attempted to use a
single model to handle various upscaling factors or continuous
factors, and these methods have primarily focused on natural
images. These SR methods can be classified into two folds:
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conditioned on scale factor and coordinate-based represen-
tation. The previous one frequently designs an upsampling
module that is conditioned on the scale factor in order to
dynamically rescale the output. It is difficult to get optimal
performance on out-of-distribution training magnification and
large-scale datasets since they simply use a single number (i.e.,
the magnification) to regulate the continuous spatial resolution.
Furthermore, they can only excel in low-magnification (less
than ×4) SR conditions. INR-based SR breaks the paradigm
of explicitly incorporating the magnification factor as an input,
which turns the LR image signal into a representation in the
coordinate space, then recovers the HR image by querying
the pixel-wise features according to the coordinates. The
INR-based SR approach has unique advantages in efficiently
modeling continuous differentiable signals and large-scale HR
signals. Most INR-based SR methods are extensions of local
implicit image function (LIIF) [32], which simply concatenates
the coordinates/periodic transformation of coordinates and
local features and predicts the RGB value using a multilayer
perceptron (MLP) network. These methods mainly focus on
synthesis from local representation, ignore global semantic
coherence, and miss the expression of multi-level features
in diverse magnification settings. Furthermore, concatenating
coordinates and local features to the same decoding network
limits the representation of local high-frequency details and
large-scale datasets.

To address the above concerns, we propose FunSR, a
method for learning continuous representations of remote
sensing images based on context interaction in implicit func-
tion space, as illustrated in Fig. 1. FunSR is made up of
three modules: a functional representer, a functional interactor,
and a functional parser, as shown in Fig. 2. The functional
representor is designed to convert a low-resolution image from
Euclidean space into multi-scale pixel-wise function maps,
which can be implemented by feature extraction networks,
e.g., ResNet [37], EDSR [35], and RDN [38]. The functional
interactor allows for the expression of pixel-wise functions
with global dependencies, i.e., each local function can interact
with any other functions at different locations and levels. It
contributes to global semantic coherence within the resulted
super-resolved HR images. To fit the image’s high-frequency
features, the functional parser takes discrete coordinates as
input and produces RGB values of the corresponding locations
with a periodic activation function [39]. The parameters of the
parser are derived from the interactor. We develop a dual-path
parser to enhance contextual fusion, i.e., a global parser, and a
local parser. The global parser’s parameters are shared across
locations, whereas the local parser utilizes location-dependent
varying parameters.

The main contributions of this paper are as follows:
1) We propose FunSR, a method for learning continuous

representations of remote sensing images in implicit function
space based on context interaction. FunSR first converts the
LR image to a continuous function representation, then takes
the HR image’s discrete coordinates as input and outputs the
RGB values corresponding to the discrete coordinates accord-
ing to the function. We can achieve arbitrary magnification
SR by employing varied sample intervals in the continuous

coordinate space.
2) We propose a functional interactor that allows each pixel-

wise function to interact with functions at other locations,
therefore enhancing global semantic coherence. Furthermore,
we present a dual-path functional parser for generating HR
images by parsing coordinates from the global and local levels,
improving the feature description ability at different concepts.

3) FunSR is a training, deployment, and storage friendly
continuous-scale remote sensing image SR framework. It
excels at expressing local high-frequency details, contextual
consistency, and large-scale signal generalization. In terms
of objective indicators and visual effects, FunSR outperforms
other state-of-the-art methods.

The remainder of this paper is structured as follows. Sec.
II contains a full description of the related works. Sec. III
thoroughly discusses the proposed FunSR. Sec. IV presents
quantitative and qualitative results as well as ablation studies.
Sec. IV brings this paper to a close.

II. RELATED WORKS

A. Deep Learning based Remote Sensing Image SR

Deep learning has made significant progress in the field
of remote sensing image SR in recent years [7, 40, 41]. Lei
et al. [7] propose a local-global-combined network that learns
residuals between HR remote sensing images and upscaled
LR ones by utilizing the multi-level features of CNN. Qin
et al. [42] design a gradient-aware loss combined with the
L1 loss to improve the recovered edges of surface targets.
Wang et al. [43] construct a lightweight feature enhancement
network to achieve a good trade-off between model complexity
and performance for remote sensing images. Chen et al.
[15] propose a U-Net like network combined with a split
attentional fusion model to obtain HR remote sensing images.
Moreover, GAN is also introduced to improve the visual
super-resolved results for remote sensing LR images. Jiang
et al. [40] incorporate the edge-enhancement structure into the
traditional GAN framework to weaken the influence caused
by noises and artifacts. Lei et al. [44] propose coupled
adversarial training with a well-designed discriminator to learn
a better discrimination between the super-resolved image and
the corresponding ground truth. Liu et al. [45] design a
saliency-guided GAN method to improve visual results with
additional salient priors. Some researchers focus on the SR of
remote sensing satellite videos. Shen et al. [46] combine the
multi-frame SR model with an edge-guided single-frame SR
for remote sensing video reconstruction. These methods are
centered on the study of image SR with fixed magnification. In
various application scenarios, the network must be redesigned
and retrained to accommodate varied magnifications.

B. Image SR with Continuous Magnification

The SR method of arbitrary magnification has significantly
advanced research. It vastly outperforms the previous single-
magnification SR method in terms of convenience, by breaking
the paradigm of just targeting a single specific integer scale.
MDSR [35] presents a multi-scale deep SR network with



3

×1.3

×2.0

⋯

⋯

Function Parameter Map: ΘLR Image

RGB = + ,, . ; 0

Coordinates: ", $

.

LR Image

EDSR/RDN/RCAN
Pyramid-like 

Parameter 
Generator

Coordinates: ", $

Functional Representor

⋯

Parameter Maps

+

PE Maps

Downsampling

⋯

+
%!"#$%"

⋯

⋯

⋯ Tr
an

sf
or

m
er

 E
nc

od
er ⋯

⋯

⋯

%&

%'

&"#(%"

&!"#$%"

&"#(%"(*,,)

Global Parser

Local Parser

Weighted

HR ImageCoordinates: ", $

Functional ParserFunctional Interactor

", $

Fig. 2. The outline of the proposed FunSR for continuous magnification remote sensing image SR. The LR image is first converted to multi-scale parameter
maps by the functional representor. Then, we design a functional interactor, i.e., a Transformer encoder, to grasp the effective relationship between functions
at different pixel-wise locations and contextual levels. It returns a parameter map with global interaction for the local parser and a semantic parameter vector
for the global parser via an additional learnable token. Finally, we weight the RGB value produced by the local and global parsers parameterized with the
local parameter map and the global parameter vector, respectively, to generate the final RGB value in the HR image.

multiple magnification factors, based on the developed en-
hanced deep SR network (EDSR) in the paper, but it can only
deal with several pre-defined integer magnifications. Meta-SR
[47] achieves SR at arbitrary magnification by the designed
meta-upscale module, which can utilize the coordinates and
scale factors to build the parameters of the convolution kernel.
However, using a single simple scale information to condition
the entire SR network would restrict the performance. The ar-
chitecture of Meta-SR has been further explored and improved
in some subsequent works (e.g., ArbRCAN [48], RSI-HFAS
[49], RSAN [50]). They often design a scale parser module to
term the magnification factor as a network conditional input, or
an upsampling module to dynamically resize the feature map
according to the magnification. These methods use a single
variable (magnification factor) to dynamically modulate the
spatial size of the SR image. It is difficult to attain optimal
performance in out-of-distribution and large-scale synthesis
[32], and these methods still focus on the synthesis of low-
upscale factor (less than ×4).

C. Implicit Neural Representations

INR enables continuous magnification image SR by break-
ing the paradigm of explicitly employing magnification factors
as network input. It can recover high-quality SR images
of any size by learning continuous image representation in
coordinate space and then sampling discrete pixel signals
based on different-sized coordinate maps. INR is essentially
a continuously differentiable function that can map properties
(e.g., amplitude, intensity, distance) of a space/time point as
a function of the related coordinates, i.e., Fθ : Rn → Rm.
Taking representing an image as an example, Fθ, usually an
MLP, converts coordinates (n = 2, the coordinates) to pixel
values (m = 3, RGB values). It is extensively used to represent
objects, images, scenes, etc. Learning implicit neural represen-
tations of 2D images lends itself well to image super-resolution
challenges, where more detailed (i.e., higher resolution) image
representations can be acquired by sampling pixel signals (i.e.,
RGB values) anywhere in the spatial domain. Inspired by INR,
LIIF [32] designs a local implicit image function to achieve
continuous image SR, which takes the coordinates and nearby

feature representations as input and outputs the RGB value
of the corresponding location. Based on LIIF, IPE-LIIF [51]
aggregates local frequency information by positional encoding
to improve SR performance. UltraSR [33] deeply integrates
coordinate encoding with implicit neural representations to
improve the accuracy of high-frequency textures.

The aforementioned INR-based SR methods concentrate on
constructing an upsampling decoding module by simply con-
catenating the coordinates/periodic encodings of coordinates
and local features together, and predicting the RGB value
of the corresponding location using an MLP network. These
methods ignore global semantic consistency and multi-level
feature expression at different magnification scenarios. Fur-
thermore, merely concatenating coordinates and local features
to the same decoding network will limit the expression of local
high-frequency details and large-scale image data while also
having an effect on generalization. These limitations have a
greater impact on SR performance for remote sensing image
data, since they have a more complicated distribution, richer
details and textures, and a larger data scale than SR datasets
frequently utilized in natural images, e.g., face. To alleviate
the aforementioned challenges, we propose FunSR, which
transforms the LR image from the image’s Euclidean space to
the function space, performs multi-scale and global interaction
in the function space, and uses local and global functional
parsers to get the function value (i.e., RGB value) of the HR
image.

D. Transformer for Image Processing

Transformer was originally developed in natural language
processing [52]. Thanks to its capacity to build long-distance
dependencies, researchers have steadily adapted Transformer
to computer vision applications in recent years and achieved
tremendous success. ViT [53] verifies that directly applying
a pure transformer to sequences of image patches can reach
the bar on the performance of a CNN-based model on image
classification tasks. DETR [54] builds a CNN-Transformer
hybrid fully end-to-end detector by combining the benefits
of CNN and transformer without anchor generation and non-
maximum suppression post-processing. TTSR [30] introduces
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a novel texture Transformer network for image SR, in which
low- and high-resolution images are formulated as queries and
keys in a transformer, respectively. TransENet [41] proposes
a transformer-based enhancement network for remote sensing
image SR by exploiting features at various levels. Our pro-
posed FunSR intends to leverage Transformer to enhance the
interaction between functions at different spatial locations and
different conceptual levels.

III. METHODOLOGY

In this section, we will introduce the proposed FunSR, a
continuous SR method for remote sensing images, includ-
ing the overview, functional representor, functional interactor,
functional parser, and loss function.

A. Overview

The outline of the proposed FunSR is shown in Fig.
2. Assume we are given a training dataset, i.e., Dtrain =
{(I1

LR, I1
HR), . . . , (INLR, INHR)}, where IiLR ∈ RH×W×3 and

IiHR ∈ RH′×W ′×3 refer to the original LR image and its cor-
responding ground-truth HR reference. Our goal is to train a
model that can process any image from a test set (IkLR ∼ Dtest),
simultaneously obtaining various magnification HR images
through coordinate maps of different sizes as follows,

Θ = Φinteractor ◦ Φrepresentor(IkLR)

IHR = Φparser((xi, yi); Θ)
(1)

where the image is processed progressively by a functional
representor and a functional interactor to generate the local-
global interacted parameter map (Θ ∈ RH×W×d) of the
function. By inputting the discrete coordinates ((xi, yi) ∼
{(x0, y0), (x1, y1), · · · }) to the functions (Φparser with param-
eters Θ), we can acquire the RGB value corresponding to the
location (xi, yi). Considering that we use different intervals
on continuous coordinates to sample discrete coordinate maps
of different sizes, we can obtain HR images of different mag-
nifications through a unified function parser. For simplicity,
we will omit the superscript k when describing the proposed
model.

B. Functional Representor

The functional representor is designed to transform LR
images of Euclidean space to function space parameters like
follows:

M = {θ1, · · · , θl} = Φrepresentor(ILR)

= Φpyramid ◦ Φencoder(ILR)
(2)

where θi refers to the parameter map at the i-th level. The
encoder (Φencoder) used in our method is a CNN module
without any upscaling layer. We have adopted some modules
in previous works as the encoder directly, including EDSR
[35], RCAN [55], and RDN [38]. In order to allow pixel-level
functions to resolve local visual representations at multiple
scales and levels, we design a pyramid-like parameter gener-
ator (Φpyramid). For simplicity and efficiency, the structure of
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Fig. 3. An illustration of the proposed functional parser, an N-layer MLP
with a sinusoidal activation function. It takes coordinates with some additional
attributes as input (s), and returns RGB values (y). The parser’s parameters
are modulated by θ.

Φpyramid follows a downsampling pipeline rather than an up-
sampling one, based on Cross Stage Partial Layer (CSPLayer)
[56, 57]. We use three CSPLayers with a downsampling factor
of 2 between each layer, which generates four parameter maps
of different sizes, i.e., M = {θi ∈ R

H

2i−1 × W

2i−1 ×d}, i ∈
{1, 2, 3, 4}.

C. Functional Interactor

We present a functional interactor to enable the expression
of local pixel-wise functions to imply global information,
i.e., to allow each local pixel-wise function to interact with
functions at other locations, even at different conceptual levels.
The functional interactor contributes to the global semantic
coherence of the final parsed HR image. Here, we use self-
attention based Transformer encoder layers [52] to implement
the interaction between multi-level local functions as follows,

T i = Flatten(θi + Φsamp(PE))

T = Cat([Tglobal, T
1, · · · , T l])

Θ = {θglobal, θlocal}
= Φinteractor(M) = Φtransformer(T )

(3)

where PE ∈ RH×W×d is a learnable positional encoding
map with the same shape as the first level parameter map,
θ1. Φsamp denotes bicubic sampling, making it possible to use
the same positional encoding map for other size parameter
maps. Flatten is an operation to flatten the map to vectorized
tokens (T i). Tglobal is a learnable token used to capture global
information for subsequent global parsing. Cat represents vec-
tor concatenation to increase the token number. The functional
interactor uses N-layer plain transformer encoders (Φtransformer)
to establish dependencies between local functions at different
levels, and finally obtains functional parameters that can
express global semantic content: global function parameter
vector (θglobal ∈ R1×d) from the first token of the output;
local pixel-level function parameter map (θlocal ∈ RH×W×d)
reshaping from the 2-nd to (H×W+1)-th token of the output.
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D. Dual-path Parser

Through the functional representor (Φrepresentor) and the
functional interactor (Φinteractor), we can represent the LR
image as the parameters (Θ) of functions. A naive idea is
that these parameters reflect the mapping relationship between
image coordinates (xi, yi) and image pixel values I(xi,yi),
i.e., I(xi,yi) = fΘ(xi, yi). We view this as a parsing process
from coordinates to pixel values, i.e., term fΘ as a functional
parser (Φparser), as illustrated in Eq. 1. Considering that we
use different sampling intervals of a fixed range, generally
[−1, 1], we can obtain coordinate maps of different sizes.
Using the functions to parse these coordinates to retrieve the
corresponding pixel values, we can generate HR images of any
sizes, and achieve continuous magnification SR. Furthermore,
the coordinate-based representation method allows us to easily
obtain SR of out-of-distribution magnifications.

We present a dual-path coordinate parser that can parse
coordinates from both the global and local perspectives, as
well as improve image feature descriptions at various levels.
The difference between the two parsers is that: the parameters
of the global parser are shared across spatial positions; the
parameters of the local parser are dependent on the spatial
location. The formula description is given below,

Iglobal = Φglobal((xi, yi); θglobal)

θ
(xi,yi)
local = Φinterp(θlocal, (xi, yi))

Ilocal = Φlocal((xi, yi); θ
(xi,yi)
local )

ÎHR = Conv(Cat([Iglobal, Ilocal]))

(4)

where (xi, yi) is the coordinate, Φglobal and Φlocal are the two
parsers respectively, and Φinterp is an interpolation operation
to get the local function parameters at an arbitrary location,
i.e., θ(xi,yi)

local ∈ R1×d from the local parameter map (θlocal). We
utilize the nearest interpolation to obtain the local function
parameters of a query location for efficiency. Iglobal and Ilocal
are the plain HR images parsed from the global and local
parsers respectively. To produce the required RGB image, we
simply concatenate the two to form a 6-channel image and
use a convolutional layer with a kernel size of 3 to restore the
3-channel HR image.

Following that, we will go over Φglobal and Φlocal in further
detail. They are identical in network architecture, so we will
introduce the global parser as an example. When representing
pixel values as a function of coordinates, the first challenge lies
in the difficulty to use neural networks to fit high-frequency
features of images, e.g., edges, and textures. Fortunately,
previous studies have explored the Fourier feature mapping
[58, 59] and periodic activation functions [39, 60] to learn
high-frequency functions in low-dimensional domains. We
employ a similar MLP architecture with periodic activation
functions to form the parser, also known as Sirens [39, 60].
If the parser’s parameters are entirely sourced from θglobal, the
training of FunSR will suffer from the θglobal with very high
dimension. It’s also resource-intensive work.

As a result, we only use θglobal as part of the parser’s
parameters to regulate the frequency and phase of the periodic
activation functions. In this way, only a small number of
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LR image coordinate map: 4×4

(−1,−1) (1,−1)

(1,1)(−1,1)

global coordinate: 0.125,−0.375
local  coordinate: 0.5, 0.5

(−1, −1) (1, −1)

(−1,1) (1, 1)

global coordinate: 0.375,0.375
local  coordinate: −0.5,−0.5

Fig. 4. The global and local coordinates are supposed to be relative to the
center of the image and the center of the nearest LR pixel, respectively. All
are rescaled to [−1, 1]2.

parameters (e.g., as few as 64) can be used to perfectly control
the whole parsing process, which is friendly for training. Our
parser performs an N-layer MLP, as illustrated in Fig. 3, which
can be written recursively as follows,

m0 = ReLU(wm0 θglobal + bm0 )

h0 = sin(wh0 s+m0)

mi = ReLU(wmi Cat([θglobal,mi−1, hi−1]) + bmi )

hi = sin(whi hi−1 +mi) + hi−1

y = whNhN−1 + bhN

(5)

where wmi , whi , bmi , and bhi are the weights and biases, i
indicates the i-th layer, and s is the input global coordinates
(xi, yi) with some additional attributes, e.g., scale factor,
interpolated RGB value, and local coordinates (here, we refer
to the global and local coordinates relative to the center of
the image and the center of the nearest LR pixel respectively,
as shown in Fig. 4). mi denotes the bias shift to regulate
the frequency and phase of the sinusoidal activation function.
hi is the intermediate state of the parser. Cat means vector
concatenation. The first two formulas describe the modeling
process of the first MLP layer, the last one represents the
output of the final pixel values of the HR image, and the other
two represent the MLP’s middle layers.

E. Loss Function

We train the proposed model using the L1 loss function with
Dtrain as shown bellow,

L =
1

N ·M

N∑
i=0

M∑
j=0

‖ Î(xi,yj)
HR − I(xi,yj)

HR ‖1 (6)

here, we just show the loss function for an image. ÎHR and
IHR are the HR images from our proposed FunSR model and
annotations, respectively. (xi, yj) is the sampling location for
supervised training. N and M denote the width and height of
the image.
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IV. EXPERIMENTAL RESULTS AND ANALYSES

A. Experimental Dataset and Settings
In this paper, we use two public remote sensing datasets,

UCMecred [61] and AID [62], to verify the effectiveness of
the proposed method. These datasets have been widely used
in the field of remote sensing SR [7, 36, 41].
UCMecred Dataset [61]: This dataset covers 21 different
types of remote sensing scenarios, e.g., agricultural, airplane,
baseball diamond, and beach. There are 100 images in each
class with a size of 256×256 pixels, and a spatial resolution of
0.3 m/pixel. We split the dataset into a training set, a validation
set, and a test set with a ratio of 6:2:2 for each class.
AID Dataset [62]: This dataset contains 10000 images from
30 different remote sensing scenes, e.g., airport, bareland,
church, and dense-residential. All images have an image
resolution of 600 × 600 pixels and a spatial resolution of
0.5 m/pixel. For the AID dataset, 80% of the images in each
class are selected at random to represent the training set, while
the remaining images serve as the test set. Furthermore, we
randomly choose 10 images per class in a total of 300 images
to form the corresponding validation dataset.

B. Evaluation Protocol and Metrics
To evaluate the performance of the proposed method, we

take two most popular metrics: Peak Signal-to-Noise Ratio
(PSNR) and Structural SIMilarity (SSIM). They are commonly
used to objectively assess the quality of image reconstruction
[41, 63]. PSNR is defined by Mean Squared Error (MSE), as
follows,

PSNR = 10× log10

( L2

MSE
)

(7)

where L denotes the achievable largest pixel value, e.g., 255
for an 8-bit image.

SSIM is more concerned with the perceptual quality of two
images, as demonstrated by,

SSIM = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

s(x, y) =
σxy + C3

σxσy + C3

(8)

where l(x, y), c(x, y) and s(x, y) are measures of luminance,
contrast, and structure, respectively, µx and µy are the mean
value of x and y. σx and σy are the variance of x and y, σxy
is the covariance of x and y. C1, C2 and C3 are constants. α,
β and γ are usually set to 1.

C. Implementation Details
This method focuses on learning continuous representation

for remote sensing image SR, i.e., remote sensing image
SR with continuous magnifications. In our experiments, we
consider the original image to be a real HR reference, and the
corresponding LR image is produced via bicubic downsam-
pling.

1) Architecture Details: For the functional representor, we
utilize EDSR [35], RCAN [55], and RDN [38], without
their upsampling module, as the encoder in our experiments.
The pyramid-like parameter generator is formed by a 3-layer
CSPLayer module with 2, 4, and 6 Darknet Bottleneck blocks
in each CSPLayer. The functional interactor is a 3-layer
transformer encoder with 256 input and output dimensions and
512 feedforward dimensions. As for the parser, the global and
local parsers use the same design, but with distinct parameter
modulations. Specifically, the functional parser is made up of
a 5-layer MLP (each with 256 hidden units), as described in
Sec. III-D.

2) Training Details: During the training phase, 48 × 48
patches are randomly cropped from LR remote sensing images,
and reference patches are cropped from their corresponding
HR ones. Meanwhile, we use random rotation (90◦, 180◦, and
270◦) and horizontal flipping to augment the training samples.
The coordinate and image RGB values are all normalized to
be between -1 and 1. The scale factors in the training phase
are uniformly distributed from 1 to 4. During the test phase,
the LR test images are cropped into a set of 48× 48 patches
and then fed into the model without any bells and whistles.

For optimization, we use AdamW optimizer with an initial
learning rate of 1e − 4 to train our model. The mini-batch
size is set to 8. The total training epochs are 4000 for the
UCMecred dataset and 2000 for the AID dataset. We conduct
a Cosine Annealing scheduler [70] to decay the learning rate.
The proposed method is implemented by PyTorch, and all
experiments are run on an NVIDIA A100 Tensor Core GPU.

D. Comparison with the State-of-the-Art
In this section, we compare the proposed method with some

other state-of-the-art SR methods, including the classic bicubic
interpolation, fixed magnification SR methods (e.g., SRCNN
[64], FSRCNN [65], LGCNet [7], VDSR [34], DCM [36],
TransENet [41]), and continuous magnification SR methods
(e.g., MetaSR [47], LIIF [32], A-LIIF [67], DIINN [68],
SADN [69], OverNet [66], ArbRCAN [48]). In terms of
continuous magnification image SR, we have applied various
image encoders (EDSR [35], RCAN [55], and RDN [38]) to
verify the robustness of the proposed method. We can run
out-of-distribution evaluations (training under ×4, evaluating
beyond ×4) because of the coordinate-based architecture.
All the methods are implemented according to the official
publications with Pytorch.

1) Quantitative Results on the UCMerced Dataset: The
results of FunSR versus other comparison methods on the
UCMerced Dataset are shown in Tab. I, with the best per-
formance shown by a bold number. We just show the upscale
factor of ×2.0, ×2.5, ×3.0, ×3.5, ×4.0, ×6.0, ×8.0, and
×10.0 for simplicity. FunSR nearly achieves the highest per-
formance in terms of PSNR and SSIM across all backbones
and upscale factors. Specifically, FunSR outperforms the state-
of-the-art fixed magnification transformer-based SR method
TransENet (26.98/0.7755) by 27.11/0.7781, 27.24/0.7799, and
27.29/0.7798 on PSNR and SSIM under ×4 magnification
utilizing EDSR, RCAN, and RDN image encoders, respec-
tively. FunSR has also shown comparable performance with
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TABLE I
MEAN PSNR (DB) AND SSIM ON THE UCMERCED TEST DATASET WITH CONTINUOUS UPSCALE FACTORS.

Method In-distribution (PSNR↑/SSIM↑) Out-of-distribution (PSNR↑/SSIM↑)
×2.0 ×2.5 ×3.0 ×3.5 ×4.0 ×6.0 ×8.0 ×10.0

Bicubic 31.96/0.9029 28.77/0.8356 26.68/0.7698 25.48/0.7228 24.55/0.6803 22.04/0.5597 20.74/0.4926 19.85/0.4527
SRCNN [64] 32.71/0.9094 - 27.14/0.7824 - 25.15/0.6984 - - -

FSRCNN [65] 32.04/0.8988 - 26.94/0.7756 - 24.92/0.6913 - - -
LGCNet [7] 33.48/0.9196 - 27.36/0.7913 - 25.33/0.7108 - - -
VDSR [34] 33.97/0.9254 - 28.08/0.8126 - 25.90/0.7364 - - -
DCM [36] 34.01/0.9263 - 28.20/0.8156 - 26.02/0.7414 - - -

TransENet [41] 33.78/0.9233 - 28.87/0.8322 - 26.98/0.7755 - - -

OverNet [66] 33.89/0.9243 30.43/0.8675 28.23/0.8142 27.05/0.7770 26.05/0.7412 22.98/0.6017 21.34/0.5186 20.24/0.4667

MetaSR [47]

EDSR

32.31/0.9066 29.25/0.8439 27.16/0.7832 26.06/0.7404 25.14/0.7008 22.62/0.5800 21.32/0.5122 20.47/0.4720
LIIF [32] 33.91/0.9242 30.59/0.8700 28.42/0.8178 27.33/0.7862 26.32/0.7487 23.33/0.6204 21.82/0.5472 20.79/0.5001

A-LIIF [67] 33.78/0.9224 30.53/0.8690 28.36/0.8158 27.27/0.7841 26.28/0.7469 23.32/0.6191 21.83/0.5469 20.84/0.5015
DIINN [68] 34.32/0.9292 31.00/0.8793 28.79/0.8281 27.70/0.7994 26.64/0.7637 23.42/0.6259 21.88/0.5510 20.82/0.5017
SADN [69] 34.18/0.9278 30.87/0.8772 28.64/0.8250 27.53/0.7931 26.50/0.7575 23.31/0.6223 21.73/0.5450 20.71/0.4985

FunSR 34.61/0.9318 31.40/0.8860 29.19/0.8391 28.10/0.8095 27.11/0.7781 23.62/0.6314 22.05/0.5531 20.98/0.5007

MetaSR [47]

RCAN

33.89/0.9227 30.59/0.8702 28.40/0.8166 27.31/0.7849 26.33/0.7482 23.26/0.6162 21.48/0.5328 20.36/0.4808
LIIF [32] 34.27/0.9282 31.02/0.8792 28.92/0.8336 27.81/0.8008 26.83/0.7682 23.54/0.6322 21.79/0.5516 20.54/0.4956

A-LIIF [67] 34.18/0.9268 30.94/0.8775 28.82/0.8305 27.71/0.7972 26.72/0.7625 23.47/0.6302 21.86/0.5539 20.77/0.5002
DIINN [68] 34.71/0.9323 31.47/0.8871 29.33/0.8430 28.20/0.8124 27.16/0.7792 23.44/0.6300 21.54/0.5408 20.38/0.4872

ArbRCAN [48] 34.72/0.9328 31.39/0.8866 29.20/0.8393 28.10/0.8089 27.10/0.7772 23.24/0.6116 21.48/0.5256 20.42/0.4746
FunSR 34.86/0.9341 31.65/0.8902 29.41/0.8445 28.27/0.8156 27.24/0.7799 23.65/0.6341 21.94/0.5553 20.81/0.5010

MetaSR [47]

RDN

34.23/0.9263 30.98/0.8778 28.83/0.8295 27.73/0.7980 26.76/0.7654 23.55/0.6309 21.83/0.5481 20.66/0.4945
LIIF [32] 34.30/0.9277 31.07/0.8801 28.94/0.8336 27.84/0.8021 26.88/0.7676 23.63/0.6364 21.95/0.5569 20.78/0.5040

A-LIIF [67] 34.19/0.9274 30.96/0.8781 28.81/0.8288 27.68/0.7960 26.72/0.7615 23.56/0.6337 21.91/0.5548 20.79/0.5034
DIINN [68] 34.68/0.9322 31.38/0.8851 29.26/0.8405 28.11/0.8094 27.06/0.7744 23.55/0.6361 21.90/0.5548 20.78/0.5029
SADN [69] 34.57/0.9312 31.31/0.8840 29.09/0.8338 28.01/0.8051 26.98/0.7712 23.46/0.6329 21.67/0.5453 20.65/0.5000

FunSR 34.82/0.9341 31.64/0.8898 29.41/0.8416 28.31/0.8113 27.29/0.7798 23.69/0.6372 22.04/0.5575 20.93/0.5038

TABLE II
MEAN PSNR (DB) AND SSIM ON THE AID TEST DATASET WITH CONTINUOUS UPSCALE FACTORS.

Method In-distribution (PSNR↑/SSIM↑) Out-of-distribution (PSNR↑/SSIM↑)
×2.0 ×2.5 ×3.0 ×3.5 ×4.0 ×6.0 ×8.0 ×10.0

Bicubic 34.93/0.9169 31.76/0.8560 29.69/0.7995 28.45/0.7595 27.48/0.7245 24.66/0.6207 23.15/0.5656 22.15/0.5302
SRCNN [64] 35.70/0.9245 - 30.31/0.8151 - 28.21/0.7465 - - -

FSRCNN [65] 35.10/0.9177 - 29.93/0.8051 - 28.06/0.7416 - - -
LGCNet [7] 36.17/0.9304 - 30.59/0.8231 - 28.45/0.7563 - - -
VDSR [34] 36.46/0.9341 - 31.01/0.8350 - 28.93/0.7743 - - -
DCM [36] 36.55/0.9352 - 31.19/0.8396 - 29.14/0.7804 - - -

TransENet [41] 36.56/0.9357 - 31.43/0.8467 - 29.47/0.7937 - - -

OverNet [66] 36.54/0.9354 33.31/0.8875 31.32/0.8435 30.21/0.8127 29.26/0.7850 26.21/0.6814 24.49/0.6102 23.35/0.5601

MetaSR [47]

EDSR

36.35/0.9326 33.15/0.8841 31.17/0.8391 30.06/0.8074 29.11/0.7790 26.18/0.6814 24.54/0.6182 23.44/0.5730
LIIF [32] 36.47/0.9346 33.27/0.8869 31.29/0.8429 30.20/0.8122 29.25/0.7847 26.33/0.6895 24.67/0.6274 23.55/0.5824

A-LIIF [67] 36.43/0.9340 33.23/0.8860 31.24/0.8415 30.14/0.8103 29.19/0.7825 26.29/0.6875 24.64/0.6262 23.53/0.5818
DIINN [68] 36.65/0.9366 33.40/0.8895 31.42/0.8461 30.33/0.8160 29.37/0.7891 26.36/0.6933 24.63/0.6290 23.47/0.5825
SADN [69] 36.61/0.9363 33.39/0.8892 31.40/0.8455 30.30/0.8153 29.36/0.7885 26.36/0.6918 24.64/0.6277 23.52/0.5823

FunSR 36.74/0.9382 33.49/0.8925 31.53/0.8499 30.44/0.8205 29.51/0.7948 26.46/0.6969 24.72/0.6298 23.53/0.5816

MetaSR [47]

RCAN

36.75/0.9373 33.51/0.8918 31.54/0.8496 30.46/0.8202 29.54/0.7942 26.59/0.7008 24.87/0.6359 23.70/0.5874
LIIF [32] 36.80/0.9383 33.57/0.8930 31.60/0.8511 30.53/0.8219 29.61/0.7962 26.68/0.7046 24.98/0.6419 23.81/0.5942

A-LIIF [67] 36.78/0.9382 33.55/0.8926 31.58/0.8505 30.52/0.8216 29.59/0.7960 26.66/0.7039 24.96/0.6415 23.79/0.5943
DIINN [68] 36.97/0.9400 33.70/0.8952 31.71/0.8535 30.63/0.8247 29.70/0.7993 26.68/0.7059 24.91/0.6408 23.70/0.5920

ArbRCAN [48] 37.11/0.9410 33.83/0.8969 31.78/0.8548 30.66/0.8255 29.72/0.8001 26.44/0.6943 24.57/0.6179 23.38/0.5652
FunSR 37.16/0.9417 33.86/0.8982 31.82/0.8554 30.73/0.8272 29.83/0.8017 26.75/0.7063 25.03/0.6427 23.79/0.5938

MetaSR [47]

RDN

36.77/0.9374 33.52/0.8917 31.55/0.8497 30.48/0.8204 29.56/0.7943 26.62/0.7017 24.90/0.6373 23.72/0.5886
LIIF [32] 36.81/0.9382 33.57/0.8927 31.60/0.8505 30.52/0.8215 29.60/0.7957 26.68/0.7039 24.98/0.6414 23.80/0.5939

A-LIIF [67] 36.76/0.9379 33.51/0.8917 31.55/0.8496 30.48/0.8203 29.55/0.7944 26.63/0.7022 24.93/0.6397 23.76/0.5927
DIINN [68] 36.98/0.9398 33.71/0.8950 31.71/0.8533 30.62/0.8243 29.68/0.7987 26.65/0.7042 24.88/0.6387 23.68/0.5899
SADN [69] 36.84/0.9386 33.58/0.8930 31.60/0.8507 30.53/0.8217 29.60/0.7961 26.56/0.7016 24.81/0.6367 23.63/0.5890

FunSR 37.01/0.9406 33.79/0.8968 31.81/0.8557 30.73/0.8269 29.82/0.8018 26.70/0.7043 25.01/0.6417 23.77/0.5923
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LR 1.5× 2.0× 2.5× 3.0× 3.5× 4.0× HR

Fig. 5. The visual comparisons of some image examples upsampling with different scale factors by FunSR-RDN. The LR image is downsampled from the
HR reference image with a scale ratio of 1/4. The first two rows are from the UCMerced test set (“tenniscourt99” and “airplane35”), while the last two are
from the AID test set (“bridge 28” and “denseresidential 20”).

LGCNet
34.30/0.8689

VDSR 
34.92/0.8807

DCM 
35.10/0.8840

FunSRHRLR Global_1 Global_2 Global_3 Local_1 Local_2 Local_3

Fig. 6. Some visual examples of the feature maps generated from the global and local parsers with an upscale factor of ×4. The first two rows are scenes
(“baseballdiamond31” and “runway76”) from the UCMerced dataset and the last two rows (“bridge 353” and “square 83”) are from the AID dataset.
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FunSR 
27.07/0.8985

FunSR 
27.69/0.9016

Bicubic 
24.55/0.8406

Bicubic 
20.99/0.6699

SRCNN 
23.59/0.8200

SRCNN 
21.97/0.7374

FSRCNN 
23.13/0.8107

FSRCNN 
21.91/0.7275

LGCNet
23.82/0.8326

LGCNet
22.31/0.7548

VDSR 
24.75/0.8586

VDSR 
23.73/0.8011

DCM 
24.94/0.8620

DCM 
23.54/0.7963

TransENet
26.23/0.8841

TransENet
26.23/0.8826

OverNet
25.10/0.8669

OverNet
24.30/0.8244

MetaSR
26.02/0.8843

MetaSR
25.79/0.8641

LIIF
26.39/0.8901

LIIF
26.53/0.8805

A-LIIF 
26.03/0.8705

A-LIIF 
25.84/0.8816

DIINN
26.81/0.8945

DIINN
27.09/0.8933

SADN
26.94/0.8969

SADN
26.80/0.8858

HR

LR

HR

LR

Fig. 7. Comparisons on the UCMerced test set with different methods under ×4 factor. Image crops are from “parkinglot17” and “denseresidential58”
respectively. Zoom in for better visualization.

FunSR 
35.60/0.8939

FunSR 
34.34/0.9113

Bicubic 
33.31/0.8521

Bicubic 
30.13/0.8551

SRCNN 
33.97/0.8618

SRCNN 
31.22/0.8701

FSRCNN 
33.73/0.8584

FSRCNN 
31.01/0.8637

LGCNet
34.30/0.8689

LGCNet
31.33/0.8744

VDSR 
34.92/0.8807

VDSR 
31.51/0.8846

DCM 
35.10/0.8840

DCM 
33.16/0.8976

TransENet
35.55/0.8937

TransENet
33.99/0.9089

OverNet
35.25/0.8872

OverNet
32.03/0.8933

MetaSR
35.44/0.8909

MetaSR
33.99/0.9069

LIIF
35.48/0.8913

LIIF
34.11/0.9086

A-LIIF 
34.01/0.9079

A-LIIF 
35.46/0.8912

DIINN
35.48/0.8917

DIINN
34.22/0.9094

SADN
35.52/0.8922

SADN
34.01/0.9079

HR

LR

HR

LR

Fig. 8. Comparisons on the AID test set with different methods under ×4 factor. Image crops are from “viaduct 271” and “storagetanks 336” respectively.
Zoom in for better visualization.
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TABLE III
MEAN PSNR (DB) AND SSIM OF EACH SCENE CLASS ON THE UCMERCED TEST DATASET WITH THE UPSCALE FACTOR OF ×4.

class Bicubic SRCNN [64] FSRCNN [65] LGCNet [7] VDSR [34] DCM [36] TransENet [41]

1 22.95/0.3882 23.55/0.4065 23.63/0.4239 24.06/0.4868 25.26/0.5739 26.17/0.6465 26.91/0.6757
2 24.07/0.7093 24.62/0.7324 24.31/0.7208 24.77/0.7403 25.26/0.7575 25.24/0.7563 26.08/0.7825
3 30.79/0.7901 31.69/0.8043 31.34/0.7988 31.81/0.8087 32.08/0.8166 32.11/0.8165 32.57/0.8271
4 30.98/0.8101 31.43/0.8125 31.23/0.8103 31.48/0.8160 31.58/0.8195 31.63/0.8203 32.28/0.8449
5 21.73/0.6908 22.28/0.7247 22.11/0.7160 22.39/0.7350 22.82/0.7543 22.83/0.7525 23.33/0.7743
6 23.29/0.6629 23.43/0.6576 23.38/0.6549 23.56/0.6688 23.78/0.6876 23.74/0.6838 24.30/0.7189
7 22.08/0.6731 22.74/0.7077 22.48/0.6937 22.92/0.7200 23.61/0.7472 23.55/0.7463 24.97/0.7964
8 26.28/0.6255 26.61/0.6225 26.54/0.6200 26.68/0.6283 26.99/0.6486 26.98/0.6492 27.41/0.6766
9 24.51/0.7085 25.40/0.7403 24.94/0.7225 25.74/0.7545 27.32/0.8000 27.68/0.8110 29.11/0.8502

10 29.43/0.7579 30.26/0.7737 29.80/0.7649 30.43/0.7794 30.84/0.7904 30.86/0.7924 31.53/0.8096
11 19.80/0.6932 20.53/0.7295 20.31/0.7198 20.70/0.7422 21.27/0.7684 21.52/0.7744 22.75/0.8181
12 24.31/0.7020 24.78/0.7138 24.61/0.7072 24.91/0.7205 25.34/0.7394 25.34/0.7408 26.27/0.7760
13 21.74/0.6102 22.21/0.6289 22.10/0.6235 22.33/0.6383 22.75/0.6592 22.69/0.6564 23.61/0.6941
14 22.57/0.7198 23.07/0.7420 22.82/0.7288 23.28/0.7516 23.99/0.7796 24.02/0.7776 25.31/0.8206
15 22.80/0.6744 23.64/0.7103 23.38/0.6960 23.94/0.7246 25.15/0.7737 25.53/0.7866 27.20/0.8328
16 19.06/0.6417 19.16/0.6505 19.06/0.6446 19.27/0.6630 19.82/0.6962 19.88/0.6931 21.72/0.7778
17 26.55/0.6757 27.34/0.6856 27.24/0.6840 27.46/0.6907 27.85/0.7051 27.82/0.7067 28.18/0.7248
18 26.98/0.7105 28.00/0.7321 27.45/0.7212 28.36/0.7415 28.96/0.7608 29.14/0.7625 30.72/0.7945
19 24.13/0.6050 24.51/0.6160 24.31/0.6110 24.62/0.6225 24.91/0.6375 24.93/0.6354 25.33/0.6532
20 25.00/0.7395 25.79/0.7667 25.52/0.7571 25.96/0.7763 26.64/0.7977 26.78/0.7995 27.99/0.8355
21 26.58/0.6973 27.04/0.7078 26.79/0.6993 27.16/0.7173 27.79/0.7513 27.95/0.7614 28.91/0.8014

Average 24.55/0.6803 25.15/0.6984 24.92/0.6913 25.33/0.7108 25.90/0.7364 26.02/0.7414 26.98/0.7755

class OverNet [66] MetaSR [47] LIIF [32] A-LIIF [67] DIINN [68] SADN [69] FunSR

1 25.27/0.5752 26.01/0.6230 25.78/0.5886 25.25/0.5441 25.03/0.5609 24.76/0.5375 25.22/0.5659
2 25.38/0.7618 25.96/0.7763 26.09/0.7805 26.00/0.7774 26.32/0.7868 26.31/0.7851 26.43/0.7892
3 32.19/0.8186 32.57/0.8253 32.60/0.8257 32.55/0.8247 32.73/0.8286 32.66/0.8279 32.74/0.8299
4 31.66/0.8225 31.94/0.8299 32.04/0.8333 31.94/0.8304 32.15/0.8397 32.12/0.8380 32.35/0.8445
5 23.06/0.7631 23.53/0.7794 23.59/0.7821 23.47/0.7787 23.55/0.7846 23.58/0.7846 23.87/0.7919
6 23.75/0.6837 24.05/0.7014 24.13/0.7052 24.07/0.7018 24.18/0.7118 24.17/0.7103 24.33/0.7186
7 23.78/0.7572 24.61/0.7834 24.85/0.7913 24.62/0.7845 25.09/0.8000 25.00/0.7972 25.39/0.8069
8 26.90/0.6446 27.30/0.6657 27.33/0.6670 27.30/0.6651 27.38/0.6730 27.36/0.6722 27.47/0.6767
9 27.83/0.8169 28.74/0.8369 28.98/0.8419 28.63/0.8372 29.36/0.8542 29.17/0.8478 29.66/0.8579

10 30.83/0.7914 31.22/0.8011 31.29/0.8021 31.21/0.8008 31.43/0.8064 31.40/0.8060 31.57/0.8095
11 21.41/0.7754 22.57/0.8096 22.81/0.8166 22.61/0.8115 23.12/0.8261 23.01/0.8239 23.45/0.8319
12 25.55/0.7479 26.18/0.7723 26.35/0.7793 26.17/0.7724 26.53/0.7888 26.52/0.7857 26.87/0.7966
13 22.80/0.6631 23.42/0.6853 23.49/0.6879 23.39/0.6835 23.68/0.6981 23.62/0.6959 23.89/0.7047
14 24.23/0.7875 25.19/0.8153 25.36/0.8212 25.21/0.8172 25.59/0.8298 25.51/0.8273 25.78/0.8336
15 25.71/0.7928 27.12/0.8311 27.38/0.8361 27.11/0.8299 27.92/0.8476 27.66/0.8430 28.21/0.8527
16 19.72/0.6912 21.10/0.7536 21.38/0.7657 21.06/0.7539 21.92/0.7870 21.82/0.7837 22.49/0.8048
17 27.90/0.7074 28.21/0.7186 28.22/0.7187 28.22/0.7174 28.33/0.7233 28.31/0.7234 28.32/0.7269
18 29.18/0.7659 30.13/0.7837 30.33/0.7881 30.13/0.7829 30.72/0.7963 30.75/0.7948 31.25/0.8009
19 25.04/0.6382 25.38/0.6504 25.43/0.6512 25.35/0.6492 25.48/0.6573 25.40/0.6547 25.57/0.6597
20 26.98/0.8064 27.94/0.8302 28.05/0.8346 27.93/0.8304 28.43/0.8464 28.29/0.8429 28.66/0.8508
21 27.91/0.7547 28.90/0.7999 28.98/0.8034 28.89/0.7984 29.32/0.8165 29.22/0.8131 29.55/0.8224

Average 26.05/0.7412 26.76/0.7654 26.88/0.7676 26.72/0.7615 27.06/0.7744 26.98/0.7712 27.29/0.7798

continuous image SR algorithms over different backbones for
in-distribution and out-of-distribution training magnifications.

The comprehensive results of various methods for all 21
scene classes1 of the UCMeced dataset are available in Tab.
III at ×4 magnification. We can see that FunSR achieves
the best PSNR/SSIM values in most scene classes, whereas
TransENet achieves comparable performance in the remaining
four, namely agricultural, beach, chaparral, and golfcourse.

1All the 21 classes of the UCMerced dataset: 1 agricultural, 2 airplane,
3 baseballdiamond, 4 beach, 5 buildings, 6 chaparral, 7 denseresidential, 8
forest, 9 freeway, 10 golfcourse, 11 harbor, 12 intersection, 13 mediumresi-
dential, 14 mobilehomepark, 15 overpass, 16 parkinglot, 17 river, 18 runway,
19 sparseresidential, 20 storagetanks, and 21 tenniscourt.

When compared to the TransENet, FunSR is more effective
in situations with high-frequency characteristics and repetitive
patterns, such as buildings, dense residences, storage tanks,
and tennis courts.

2) Quantitative Results on AID Dataset: We conduct com-
parison experiments on the AID dataset to further validate
FunSR’s effectiveness. Unlike the UCMerced dataset, this one
is larger in size and has more scene categories, totaling 30.
Tab. II displays the overall results of various methods on
this dataset. It can be seen that, when compared to other
approaches, FunSR produces the best results on the majority
of magnifications presented across different image encoders.

In addition, Tab. IV lists the detailed performance on the
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TABLE IV
MEAN PSNR (DB) AND SSIM OF EACH SCENE CLASS ON THE AID TEST DATASET WITH THE UPSCALE FACTOR OF ×4.

class Bicubic SRCNN [64] FSRCNN [65] LGCNet [7] VDSR [34] DCM [36] TransENet [41]

1 26.20/0.7252 26.96/0.7469 26.90/0.7433 27.21/0.7564 27.65/0.7740 27.87/0.7815 28.19/0.7942
2 34.91/0.8320 34.95/0.8327 34.70/0.8299 35.01/0.8342 35.26/0.8395 35.33/0.8402 35.18/0.8375
3 33.06/0.8443 33.92/0.8584 33.50/0.8526 34.20/0.8641 34.69/0.8728 34.82/0.8752 35.05/0.8787
4 31.42/0.7812 31.71/0.7886 31.53/0.7856 31.80/0.7917 32.11/0.7982 32.24/0.8004 32.26/0.8035
5 27.43/0.7576 28.58/0.7874 28.40/0.7827 29.20/0.8035 30.35/0.8358 30.67/0.8454 31.49/0.8624
6 26.16/0.7301 27.17/0.7626 26.99/0.7564 27.60/0.7767 28.47/0.7993 28.79/0.8092 29.54/0.8302
7 20.87/0.5550 21.91/0.6053 21.81/0.5972 22.30/0.6281 22.88/0.6580 23.15/0.6695 23.48/0.6957
8 24.67/0.7020 25.25/0.7216 25.21/0.7173 25.38/0.7284 25.73/0.7456 25.91/0.7514 26.13/0.7650
9 21.74/0.5905 22.32/0.6166 22.26/0.6105 22.45/0.6279 22.77/0.6496 22.94/0.6563 23.22/0.6827

10 36.54/0.8724 37.07/0.8792 36.79/0.8763 37.21/0.8821 37.28/0.8837 37.41/0.8866 37.32/0.8855
11 32.42/0.8119 33.33/0.8296 33.17/0.8264 33.68/0.8376 34.28/0.8518 34.58/0.8594 34.71/0.8633
12 26.77/0.6171 27.10/0.6154 27.04/0.6116 27.19/0.6199 27.39/0.6330 27.47/0.6348 27.46/0.6507
13 23.75/0.6569 24.66/0.6915 24.50/0.6840 25.02/0.7077 25.69/0.7379 26.00/0.7513 26.48/0.7790
14 32.40/0.7263 32.88/0.7386 32.78/0.7377 32.93/0.7423 33.09/0.7470 33.21/0.7483 33.15/0.7523
15 23.73/0.6017 24.47/0.6383 24.35/0.6331 24.70/0.6542 25.20/0.6789 25.37/0.6846 25.67/0.7043
16 27.22/0.6972 27.75/0.7065 27.68/0.7030 27.80/0.7097 27.89/0.7175 27.96/0.7187 27.89/0.7268
17 27.68/0.7320 28.32/0.7457 28.24/0.7411 28.42/0.7507 28.65/0.7604 28.68/0.7609 28.71/0.7695
18 21.30/0.6982 21.74/0.7250 21.61/0.7174 21.90/0.7363 22.56/0.7648 22.97/0.7797 24.36/0.8247
19 34.50/0.8506 35.27/0.8635 34.99/0.8588 35.56/0.8701 36.30/0.8824 36.55/0.8869 37.16/0.8953
20 36.30/0.8946 37.32/0.9029 36.93/0.9011 37.56/0.9062 37.87/0.9109 37.98/0.9125 38.01/0.9109
21 25.07/0.7859 25.83/0.8088 25.72/0.8038 26.07/0.8178 26.52/0.8322 26.80/0.8393 27.28/0.8546
22 24.72/0.6747 25.65/0.7152 25.54/0.7097 26.11/0.7374 27.04/0.7817 27.43/0.7998 28.12/0.8271
23 24.86/0.6935 25.33/0.7120 25.21/0.7053 25.49/0.7210 25.97/0.7399 26.13/0.7440 26.38/0.7605
24 28.96/0.7334 29.65/0.7454 29.54/0.7422 29.80/0.7507 30.00/0.7595 30.05/0.7599 30.06/0.7647
25 23.40/0.6653 24.09/0.6924 23.98/0.6838 24.29/0.7031 24.71/0.7237 24.91/0.7288 25.31/0.7504
26 22.68/0.5717 23.47/0.6086 23.41/0.6036 23.73/0.6229 24.11/0.6411 24.27/0.6442 24.43/0.6596
27 27.60/0.7451 28.19/0.7747 28.00/0.7671 28.45/0.7863 29.07/0.8049 29.22/0.8091 29.60/0.8254
28 30.47/0.8352 32.08/0.8570 31.83/0.8520 32.33/0.8618 32.95/0.8707 33.22/0.8762 34.02/0.8892
29 22.44/0.6372 23.40/0.6784 23.29/0.6713 23.72/0.6947 24.23/0.7199 24.52/0.7292 25.04/0.7514
30 24.96/0.6497 25.88/0.6865 25.76/0.6820 26.33/0.7091 27.18/0.7537 27.48/0.7684 28.11/0.7986

Average 27.48/0.7245 28.21/0.7465 28.06/0.7416 28.45/0.7563 28.93/0.7743 29.14/0.7804 29.47/0.7937

class OverNet [66] MetaSR [47] LIIF [32] A-LIIF [67] DIINN [68] SADN [69] FunSR

1 27.96/0.7853 28.24/0.7950 28.31/0.7961 28.25/0.7947 28.42/0.7987 28.32/0.7960 28.62/0.8037
2 35.39/0.8411 35.43/0.8424 35.43/0.8429 35.41/0.8424 35.45/0.8434 35.43/0.8426 35.51/0.8463
3 34.87/0.8769 35.12/0.8815 35.15/0.8818 35.11/0.8812 35.22/0.8831 35.18/0.8825 35.34/0.8872
4 32.33/0.8027 32.43/0.8048 32.43/0.8054 32.42/0.8051 32.47/0.8065 32.43/0.8056 32.56/0.8109
5 30.93/0.8502 31.46/0.8619 31.49/0.8627 31.44/0.8615 31.63/0.8658 31.49/0.8629 31.79/0.8692
6 28.98/0.8123 29.59/0.8283 29.64/0.8314 29.56/0.8281 29.78/0.8354 29.63/0.8303 30.04/0.8427
7 23.31/0.6780 23.60/0.6920 23.62/0.6950 23.60/0.6923 23.74/0.7005 23.66/0.6966 23.88/0.7077
8 25.97/0.7552 26.24/0.7662 26.26/0.7672 26.21/0.7653 26.32/0.7695 26.26/0.7672 26.44/0.7741
9 23.06/0.6636 23.27/0.6754 23.31/0.6784 23.26/0.6757 23.36/0.6822 23.30/0.6789 23.55/0.6903

10 37.39/0.8860 37.48/0.8877 37.51/0.8884 37.50/0.8883 37.52/0.8885 37.50/0.8882 37.72/0.8950
11 34.65/0.8620 34.90/0.8673 34.92/0.8676 34.90/0.8670 34.97/0.8688 34.93/0.8679 35.05/0.8721
12 27.50/0.6394 27.61/0.6457 27.62/0.6482 27.60/0.6452 27.66/0.6519 27.64/0.6495 27.72/0.6565
13 26.16/0.7576 26.53/0.7741 26.55/0.7762 26.50/0.7731 26.65/0.7807 26.56/0.7763 26.81/0.7869
14 33.27/0.7518 33.35/0.7539 33.38/0.7551 33.33/0.7546 33.35/0.7555 33.36/0.7545 33.45/0.7602
15 25.48/0.6900 25.80/0.7014 25.84/0.7043 25.80/0.7025 25.90/0.7069 25.83/0.7055 26.00/0.7124
16 27.97/0.7213 28.06/0.7250 28.07/0.7255 28.06/0.7251 28.10/0.7272 28.08/0.7258 28.19/0.7320
17 28.74/0.7631 28.89/0.7689 28.91/0.7699 28.88/0.7689 28.95/0.7719 28.91/0.7702 29.03/0.7762
18 23.36/0.7927 24.24/0.8179 24.31/0.8203 24.20/0.8171 24.62/0.8280 24.36/0.8209 24.94/0.8368
19 36.85/0.8920 37.28/0.8992 37.30/0.8995 37.23/0.8987 37.43/0.9015 37.25/0.8989 37.59/0.9056
20 38.02/0.9129 38.18/0.9146 38.17/0.9147 38.15/0.9147 38.26/0.9156 38.17/0.9149 38.33/0.9182
21 26.89/0.8433 27.38/0.8545 27.39/0.8554 27.33/0.8541 27.48/0.8579 27.39/0.8562 27.68/0.8636
22 27.68/0.8091 28.19/0.8263 28.21/0.8265 28.13/0.8239 28.31/0.8300 28.20/0.8256 28.48/0.8351
23 26.26/0.7492 26.51/0.7588 26.55/0.7606 26.50/0.7589 26.64/0.7645 26.54/0.7611 26.72/0.7682
24 30.09/0.7624 30.22/0.7659 30.23/0.7670 30.22/0.7665 30.26/0.7680 30.23/0.7666 30.33/0.7718
25 25.07/0.7363 25.35/0.7471 25.41/0.7499 25.36/0.7475 25.47/0.7525 25.41/0.7504 25.62/0.7585
26 24.39/0.6501 24.61/0.6580 24.64/0.6604 24.61/0.6588 24.72/0.6637 24.66/0.6616 24.80/0.6676
27 29.42/0.8154 29.74/0.8258 29.81/0.8276 29.72/0.8255 29.86/0.8306 29.80/0.8272 30.03/0.8354
28 33.46/0.8813 33.99/0.8921 34.09/0.8930 33.94/0.8905 34.20/0.8944 33.99/0.8898 34.53/0.9007
29 24.60/0.7345 25.04/0.7488 25.08/0.7505 25.02/0.7481 25.16/0.7544 25.06/0.7507 25.34/0.7598
30 27.60/0.7737 28.12/0.7944 28.17/0.7966 28.10/0.7934 28.26/0.8005 28.17/0.7964 28.39/0.8054

Average 29.26/0.7850 29.57/0.7946 29.60/0.7960 29.55/0.7944 29.68/0.7987 29.60/0.7961 29.82/0.8018
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Fig. 9. Some SR results on the UCMerced dataset (top two rows) and the
AID dataset (bottom two rows) with different image encoders under the ×4
factor. Image crops are from “airplane15”, “buildings25”, “farmland 112”,
and “viaduct 108” respectively. Zoom in for better visualization.

30 classes2 with a magnification of ×4. It demonstrates that
FunSR delivers the best results on all the surface target scenes.
According to Tab. II and Tab. IV, it implies that FunSR can
produce better results as the quantity of the dataset and the
complexity of the data expand.

3) Qualitative Visual Comparisons: In addition to quanti-
tative comparison, we have presented some visual examples
from FunSR-RDN on continuous magnification factors in
Fig. 5. It can be observed that the proposed FunSR can be
used to generate considerable visual effects in image SR at
continuous magnification. For a better visual comparison with
other methods, we here provide a qualitative comparison of
the recovered results under the upscale factor of ×4. Fig.
7 displays some super-resolved examples of the UCMerced
dataset including “parking lot” and “dense residential” scenes,
while Fig. 8 presents some of the AID dataset, including
“viaduct” and “storage tanks” scenes. Overall, when compared
to other approaches, the proposed FunSR produces better
results with crisper edges and contours that are also closer
to the HR references.

2All the 30 classes of the AID dataset: 1 Airport, 2 BareLand, 3 Baseball-
Field, 4 Beach, 5 Bridge, 6 Center, 7 Church, 8 Commercial, 9 DenseRes-
idential, 10 Desert, 11 Farmland, 12 Forest, 13 Industrial, 14 Meadow,
15 MediumResidential, 16 Mountain, 17 Park, 18 Parking, 19 Playground,
20 Pond, 21 Port, 22 RailwayStation, 23 Resort, 24 River, 25 School, 26
SparseResidential, 27 Square, 28 Stadium, 29 StorageTanks, and 30 Viaduct.

TABLE V
ABLATION OF VARIOUS COMPONENTS IN FUNSR-EDSR. MEAN PSNR

(DB) AND SSIM ON THE UC TEST DATASET WITH CONTINUOUS UPSCALE
FACTORS ARE PROVIDED.

Φpyramid Φinteractor Φglobal ×2.0 ×2.5 ×3.0 ×3.5 ×4.0

34.01/0.9251 30.83/0.8759 28.61/0.8247 27.50/0.7946 26.46/0.7574
X 34.36/0.9279 31.15/0.8823 28.97/0.8365 27.86/0.8054 26.86/0.7733
X X 34.49/0.9306 31.27/0.8847 29.10/0.8389 27.98/0.8077 26.95/0.7751
X X X 34.61/0.9318 31.40/0.8860 29.19/0.8391 28.10/0.8095 27.11/0.7781

TABLE VI
ABLATION OF THE POSITIONAL ENCODING (PE) AND THE LEARNABLE

GLOBAL TOKEN (LT) IN THE FUNCTIONAL INTERACTOR.

PE LT ×2.0 ×2.5 ×3.0 ×3.5 ×4.0

X 32.07/0.9024 28.91/0.8366 26.77/0.7731 25.64/0.7271 24.71/0.6855
X 34.28/0.9283 31.06/0.8825 28.98/0.8358 27.75/0.8047 26.75/0.7731

X X 34.61/0.9318 31.40/0.8860 29.19/0.8391 28.10/0.8095 27.11/0.7781

TABLE VII
ABLATION OF DIFFERENT INPUT ATTRIBUTES (GC: GLOBAL

COORDINATE, LC: LOCAL COORDINATE, SR: SCALE RATIO, RGB:
INTERPOLATED RGB VALUE) IN THE FUNCTIONAL PARSER.

GC LC SR RGB ×2.0 ×2.5 ×3.0 ×3.5 ×4.0

X 33.97/0.9245 30.63/0.8709 28.52/0.8184 27.37/0.7877 26.43/0.7497
X X 34.39/0.9292 31.03/0.8782 28.82/0.8271 27.71/0.7960 26.67/0.7601
X X X 34.54/0.9317 31.17/0.8816 29.01/0.8308 27.87/0.7990 26.86/0.7657
X X X X 34.61/0.9318 31.40/0.8860 29.19/0.8391 28.10/0.8095 27.11/0.7781

E. Ablation Study

In this section, we run a series of experiments on the
UCMereced dataset to explore the significance of each com-
ponent in our method, with all models trained with the
same settings of the EDSR image encoder unless otherwise
specified.

1) Effects of Different Components in FunSR: We con-
ducted relevant ablation experiments with FunSR-EDSR on
the UCMerced dataset to validate the effectiveness of compo-
nents in the proposed FunSR. As seen in Tab. V, performance
tends to grow monotonically with the increased component
terms, from 26.46/0.7574 to 27.11/0.7781 on PSNR/SSIM
metric under ×4 upscale factor, suggesting that all the de-
signed components count. To intuitively depict the role of the
local and the global parsers, Fig. 6 shows the final feature
map (2× 3 feature maps) generated by the two parsers. It can
be seen that the global parser prioritizes the restoration of the
overall scene, whereas the local parser pays more attention to
details, such as contours, textures, etc.

2) Effects of Different Image Encoders in the Functional
Representor: We have tried different image encoders on the
LR images in the proposed FunSR to learn shallow functional
representations. Tab. I and Tab. II display the performance
values of different encoders on the two datasets respectively.
Experiments show that FunSR can outperform other methods
across different image encoders. Fig. 9 provides a straightfor-
ward visualization for comparing SR results among different
image encoders.

3) Effects of Positional Encoding and Learnable Global
Token in the Functional Interactor: The functional interactor
is designed to allow each pixel-wise function to interact with
functions in other locations, hence improving global semantic
coherence. To actualize the interaction process, we use a
Transformer-based design. We conducted ablation studies on
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Fig. 10. PSNR/SSIM and convergence duration time over different layer
numbers of the interactor.
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Fig. 11. PSNR/SSIM and convergence duration time over different layer
numbers of the parser.

the positional encoding and the learnable global token to
validate the necessity for its internal detailed designs. For the
design without a learnable global token, we use a global pool-
ing operation on the feature map generated by the interactor to
form the global function parameters (θglobal). Tab. VI shows the
ablation results on the UCMerced dataset using FunSR-EDSR.
It indicates that FunSR performs significantly worse without
the global learnable token and marginally worse without the
positional encoding.

4) Effects of Different Input Attributes in the Functional
Parser: The functional parser queries the pixel-wise functions
based on the corresponding coordinates and parses the RGB
pixel value of the position by inputting the global coordinates
and certain extra properties, such as local coordinates, scale
factor, and interpolated RGB value. Since it doesn’t make
sense to feed the local coordinates into the global parser, we
only consider global coordinates in the global parser. Tab. VI
indicates that as the input information increases, the SR perfor-
mance also increases monotonically, e.g., from 26.43/0.7497
to 27.11/0.7781 on PNSR/SSIM under the magnification of
×4.

5) Layer Numbers of the Interactor and Parser: The layer
numbers of the interactor and parser can have an effect on
our method’s performance. Therefore, we perform a series
of experiments on this topic. In addition to the effectiveness
metrics (PNSR and SSIM), we also pay attention to the
efficiency, because the Transformer in the interactor and the
MLP in the parser are resource consumption. Here we take
the convergence duration time (H, Hour) during training to

measure the efficiency. We conduct the experiments on a single
NVIDIA A100 Tensor Core GPU with a batch size of 8. Fig.
10 and Fig. 11 give a clear understanding of the PSNR/SSIM
and convergence duration time over different layer numbers
of the interactor and parser respectively. To balance efficiency
and effectiveness, we finally choose a 3-layer interactor and a
5-layer parser to form the proposed FunSR.

V. CONCLUSION

In this paper, we propose FunSR, a novel SR framework for
remote sensing images. FunSR aims at learning continuous
representations for remote sensing images based on context
interaction in implicit function space. It consists of three
main parts: a functional representor, a functional interactor,
and a functional parser. The representor first converts the
LR image to a multi-scale continuous function representation,
then the interactor allows each pixel-wise function to interact
with functions at other locations and levels, and finally, the
parser parses the discrete coordinates of the HR image to
corresponding RGB values. The effectiveness of each com-
ponent has been verified through ablation studies. Meanwhile,
experimental results on two public datasets reveal that our
method outperforms other state-of-the-art fixed magnification
and continuous magnification methods in terms of super-
resolved results.
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