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Abstract—Advanced Patch Attacks (PAs) on object detection in
natural images have pointed out the great safety vulnerability in
methods based on deep neural networks. However, little attention
has been paid to this topic in Optical Remote Sensing Images (O-
RSIs). To this end, we focus on this research, i.e., PAs on object
detection in O-RSIs, and propose a more Threatening PA without
the scarification of the visual quality, dubbed TPA. Specifically,
to address the problem of inconsistency between local and
global landscapes in existing patch selection schemes, we propose
leveraging the First-Order Difference (FOD) of the objective
function before and after masking to select the sub-patches
to be attacked. Further, considering the problem of gradient
inundation when applying existing coordinate-based loss to PAs
directly, we design an IoU-based objective function specific for
PAs, dubbed Bounding box Drifting Loss (BDL), which pushes
the detected bounding boxes far from the initial ones until there
are no intersections between them. Finally, on two widely used
benchmarks, i.e., DIOR and DOTA, comprehensive evaluations
of our TPA with four typical detectors (Faster R-CNN, FCOS,
RetinaNet, and YOLO-v4) witness its remarkable effectiveness.
To the best of our knowledge, this is the first attempt to study
the PAs on object detection in O-RSIs, and we hope this work
can get our readers interested in studying this topic.

Index Terms—Object detection, Adversarial patch attacks,
Remote sensing images.

I. INTRODUCTION

DRAW on the powerful representation ability of Deep
Neural Networks (DNNs), a great deal of revolutionary

achievements have been made in the aspect of image un-
derstanding technology [1]–[10]. Similarly, the technology of
understanding Optical Remote Sensing Images (O-RSIs) has
made great progress [11]–[17]. Nevertheless, the exposed ad-
versarial vulnerability [18], [19] of DNN leaves great security
concerns, hindering their widespread applications.

Facing this security hazard, many researchers devote them-
selves to studying adversarial robustness [18]–[23]. Recently,
the security concerns of DNN-based deep learning methods
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Fig. 1. Visualization of samples drawn from DIOR and DOTA. Here we
can see that the distribution of objects in remote sensing images are globally
sparse and locally dense.

in O-RSIs have also received progressive attention [24]–[27].
Among them, little attention has been paid to the adversar-
ial vulnerability in O-RSI object detection, an essential and
typical research field in O-RSI understanding.

To date, there are three widely studied attack schemes for
object detection, i.e., the Full-Scale Attacks (FSAs) [28]–
[32], the Patch Attacks (PAs) [33]–[35], and the Adver-
sarial Patches (APs) [36]–[38]. In short, FSAs perturb the
whole image, and only the pixels in some specific regions are
perturbed in PAs. Compared to FSAs and PAs, the adversarial
examples generated by APs are more human-perceptible, and
all the targets in an image share the same pattern. The
only difference among these APs is their physical parameters
(location, angle, scale, etc.). Given the intrinsic property of O-
RSIs, i.e., the objects in O-RSIs are characterized by globally
sparse and locally dense ( cf., Fig. 1 for better visualization),
PAs exhibit more threats than the other attacks for O-RSIs, on
account of their region-efficiency and visual-imperceptibility.

In general, the attack scheme of PAs consists of two
critical steps, i.e., the patch selection scheme and the objective
function. For the former, recent research [35] proposes to
leverage the norm of the gradients passed from the objective
function to select the most critical sub-patches. However,
adding perturbation is to produce a significant function drop,
but the gradient is defined within a tiny neighborhood of data
points. Thus, it could not simulate the masking manipulation in
PAs. Besides, previous study [23] has shown that the direction
of gradients does not always align with the optimal direction
(cf. Fig. 2 for more details). That is, for high-dimensional
nonlinear functions such as DNNs, the local landscape and the
global landscape around a data point are usually inconsistent.
To this light, we propose a patch selection scheme based
on First-Order Difference (FOD), which first calculates the
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FOD of the objective function by masking the sub-patches and
selects top-k sub-patches with the largest FOD. In this way,
we could find the most critical sub-patches within a relatively
larger neighborhood.

Besides, the objective functions leveraged in existing
PAs [33]–[35] only focus on the classification branch without
the attack on the Bounding box (Bbox) regression. Fortunately,
a commonly adopted loss [30] in the field of FSAs designs the
Coordinate-Based Loss (CBL) to make all the Bboxes cover
the entire image. However, the perturbed regions in PAs are
not large enough to force the detected Bboxes to cover the
whole image, especially for the images with the characteristic
of global sparse such as O-RSIs (cf. Fig. 1). Then, the gradient
of CBL will exist over the entire attack progress with a larger
magnitude than that passed from the classification branch [30].
Consequently, the gradients passed from the classification head
may be at risk of being inundated by those passed from the
regression branch. To this end, we propose a Bbox Drifting
Loss (BDL) to merely reduce the Intersection over Union
(IoU) between the detected Bboxes and the initial ones so
as to avoid the problem of gradient inundation when applying
CBL to PAs directly.

Finally, we validate the effectiveness of our method on
DIOR [11] and DOTA [12], respectively. Here, a total of
seven typical detectors are utilized to evaluate the general
effectiveness of our method. Specifically, four kinds of vic-
tim detectors including Faster R-CNN [3], RetinaNet [5],
FCOS [4], and Yolo-v4 [6] are leveraged for the evaluations,
and we equip the first three detectors with two backbones, i.e.,
ResNet-50 [8] with Feature Pyramid Networks (FPN) [39] and
ResNet-101 [8] with FPN [39]. Throughout the comprehensive
evaluations, our TPA achieves the most threatening results.

In summary, our contributions are:
• The threats of patch attacks on object detection in O-

RSIs are exhibited for the first time in this paper, which
provides the preliminary empirical evidence for the safety
concern when applying DNN-based methods to practical
deployment.

• We propose FOD patch selection scheme to boost the
visual-efficiency of patch attacks. It imitates the attack
scheme in PAs by masking the sub-patches and selecting
the ones with the highest FOD.

• We propose Bounding box Drifting Loss, an IoU-based
objective function specialized for patch attacks. In this
way, the gradient passed from the regression branch can
be stopped if there are no overlaps between the detected
Bboxes and the initial ones.

II. RELATED WORK

In this section, we first provide a brief review of the classical
researches on adversarial attacks for image recognition. Later,
we will pay much attention to the studies on adversarial attacks
for object detection.

A. Adversarial Attacks on Image Recognition

Early studies on adversarial vulnerability mainly focus on
the task of image recognition. Among them, the white-box
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Fig. 2. Illustrations of the local curvature artifacts [23]. It reflects the
loss of the adversarially trained Inception-v3 [1] (v3adv), with the form of
x∗ = x+ ε1 · g + ε2 · g⊥. Here, g is the signed gradient of v3adv and g⊥

is an orthogonal adversarial direction, sampled from Inception-v4 [2].

setting [18]–[22], where the attackers have full access to
the victim model, received a wide-spread attention. Later,
on the black-box setting, some researchers tried to enhance
the transferability via data-augmentation [40]–[42], advanced
optimization scheme [42], [43], etc. Besides, some other attack
scenarios also received in-depth studies, e.g., query-based
black-box attacks [44]–[47] and model stealing [48], [49]. In
fact, there is a wide variety of works on this topic. Limited
by the space, we could not review them thoroughly in this
paper. To this end, we recommend our readers [50] for more
comprehensive reviews of the research progress.

B. Adversarial Attacks on Object Detection

Full-Scale Attacks. Xie et al. [28] propose a first attempt,
dubbed DAG, to attack object detection and segmentation. It
sets a wrong category for the target to increase the confidence
of negative samples while reducing the confidence of pos-
itive samples in an iterative manner. Inspired by Carlini et
al. [20] and the Expectation over Transformation (EoT) [51],
Chen et al. [29] propose to add random perturbation over
each iteration so as to enhance the robustness of adversarial
examples for Faster R-CNN [3]. Later, RAP [30] attacks
the Region Proposal Networks (RPN) in two-stage object
detectors by destroying both the classification and regression.
In addition to the objective function of RAP [30], Zhang et
al. [31] introduces contextual loss to increase the confidence of
the background and inhibits the confidence of the foreground.
More recently, Nezami et al. [32] proposes to precisely manip-
ulate the pixel of the target object to change its label without
affecting the other objects.
Patch Attacks. In this field, Wu et al. [33] proposes a diffused
patch with the shape of asteroid-like or grid-like and pays
more attention to the proposals that escaped from attack.
Zhao et al. [34] designs heatmap-based and consensus-based
algorithms to select patches for the attack. Recently, RPAt-
tack [35] enhances the threats of PAs in patch selection
and optimization schemes. Specifically, it proposes a patch
selection based on the gradient feedback and leverages the
ensemble learning to improve the attack strength.
Adversarial Patches. Brown et al. [36] is the first attempt
to attack object detection via a single adversarial patch. It
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designs an unrestricted patch with a fixed position to attack
the classification branch. Liu et al. [37] mislead the victim
detector by forcing it to perceive only the stoked rectangular
patch at a fixed position. Liu et al. [52] proposed a perceptual-
sensitive generative adversarial network to synthesize adver-
sarial patches. Moreover, there are a great variety of researches
on adversarial patches, including aerial detection [53]–[55] and
physical APs for real-world detection [38], [56], [57], etc.

In summary, current works regarding adversarial attacks on
object detection pay much attention to FSAs and APs, while
the research on PAs has not received widespread attention.
However, given the threats posed by the imperceptibility of
PAs, it deserves in-depth research. Therefore, we take a closer
look at PAs on object detection in this paper.

III. PRELIMINARY

A. Problem Formulation
Considering the general representation, we denote the

ground truth of an image x as:

O(x) = {Bi(x),yi(x)} , (i = 1, 2, 3 . . . N), (1)

where N denotes the number of instance in x. Here, Bi(x) =
{Bxi , B

y
i , B

w
i , B

h
i } is the location information with (Bxi , B

y
i )

denote the coordinates of the Bbox center point, and (Bwi , B
h
i )

are the width and height of the Bbox. The class information
yi(x) ∈ {1, 2, ..., C} denotes the label of an instance, where
C is the number of categories. In this way, the detected results
for a given image x can be represented as:

Õ(x) =
{
B̃i(x), P̃ i(x)

}
, (2)

where P̃ i(x) = {P̃ 1
i , P̃

2
i , ..., P̃

C
i } is the class probability

vector. Then, the detected class is the index corresponding
to the maximum in P̃ i(x). That is,

C̃i(x) = argmaxP̃ i(x). (3)

Based on the above notations, the objective of adversarial
attacks on object detection can be formulated as the following:

min ||ξ||p
s.t. O (xadv) 6= O(x)

, (4)

where x are clean images and ξ are the corresponding
perturbations. The objective in Eq. (4) is to find the ad-
versarial example with the minimum visual distortion. Since
both our method and our competitors are based on the BIM
optimizing framework, we choose the `∞ norm as the visual
constraint, i.e., p =∞ in Eq. (4).

Here, the misleading to either the branch of classification or
regression can be seen as a successful attack. That is, either
C̃i(x) 6= C̃i(xadv) or IoU(B̃i(x), B̃i(xadv)) < 0.5 can be
seen as a successful attack. Besides, for PAs, the representation
of adversarial examples can be formulated as:

xadv = x+ M∗ � ξ∗, (5)

where � is the element-wise multiplication. M is the attack
map with the same size as x, which determine the regions to
be attacked. Here, ξ∗ represents the optimal solution of Eq. (4)
and M∗ denotes the optimal results of the attack map, which
is fixed over the entire attack progress in general.

Clean Images

Detector

Gradient FeedBacks

Patch Gradients

   

( )PG

1,2,..., ; 1,2,...,

j
j
i

i

ii N j P







 
 

 xx
x


Top‐K CellsAttack Maps

. . .

. . .

 

0.11 0.73

0.33

0.12

0.25

0.06 0.05

0.42

0.05  

 

Fig. 3. Illustration of the patch selection scheme in RPAttack [35].

B. Patch Selection Scheme

In this section, we mainly introduce the patch selection
scheme in RPAttack [35]. For simplicity, we dub it Gradient
Feedback (GF). As can be seen in Fig. 3, it first splits the Bbox
of each instance evenly to get a series of sub-patches. Then, the
sub-patches are ranked w.r.t. the gradient norm, and the top-k
sub-patches with the largest gradient norms are selected. Here,
L denotes the objective function leveraged for the optimization
of the perturbations and PGji (x) denotes the `1 norm of the
j-th sub-patch in the i-th instance of an image x.

C. Objective Function

Here, the objective function proposed by [30] to attack the
regression branch of a detector is introduced in this section.
For simplicity, we dub it the Coordinate-Based Loss (CBL).
In general, attacking the regression branch aims at making
the detected Bboxes own undesirable shape or position. To
this end, RAP assigns large offsets for the detected Bboxes
to make them cover the entire image as much as possible.
Formally, the CBL is expressed as:

LCBL(B̃(xadv)) =

m∑
j=1

zj((B
x
j − τx)2 + (Byj − τ

y)2

+ (Bwj − τw)2 + (Bhj − τh)2)
, (6)

where {τx, τy, τw, τh} is the predefined offsets. Besides, zj
is the indicator of j-th proposal and its formulation can be
expressed as:zj = 1, if

{
IoU(B̃j(x), B̃j(xadv)) > 0.1

maxP̃ j(xadv) > 0.4

zj = 0, otherwise

. (7)

In this paper, we follow the setting of RAP [30] to set τx =
τy = τw = τh = 105 in Eq. (7).

IV. METHOD

A. Overview

This paper aims to propose a threatening patch attack that
is applicable to multiple target detectors, including Faster R-
CNN [3], RetinaNet [5], YOLO-v4 [6], and FCOS [4]. Since
the structures of these detector networks are different, the
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Fig. 4. The framework of our proposed TPA. Here, � and ⊕ denote the element-wise multiplication and addition, respectively. Also, the generated
adversarial examples should be clipped to legal interval of image, as shown in Eq. (5). Please refer to Sec. IV-A for more exact illustration.

attack framework is not designed specifically for a certain kind
of detector but based on the final prediction results. Here, we
depict the framework of our TPA in Fig. 4. Specifically, we
first select the regions to acquire the attack map M via the
proposed FOD patch selection scheme, and M will be fixed
over the entire attack progress. Then, similar to BIM [58], we
optimize the adversarial example in an iterative manner.

Formally, at each iteration t+ 1, we have:

xadv = x̂t+1

= x+ M� ξt+1

, (8)

where ξt+1 is formulated as:

ξt+1 = Clipε−ε{Clip10{x̂t + M� [α · sign(gt+1)]} − x}, (9)

where ε denotes the `∞ constraint and α is the attack step
size. In our TPA, the attack map M is a binary mask, which
determines where to attack. Besides, the expression of gt+1

in Eq. (9) is:

gt+1 =
∇x̂t
L(x̂t)

||∇x̂t
L(x̂t)||1

. (10)

Here, the specific details regarding how to get the attack map
M and the expression of L(x) will be introduced next.

B. First-Order Difference Patch Selection Scheme

For patch attacks, the selection of sub-patches is a critical
factor that affects the attack efficiency. However, as we have
mentioned in Sec. I, the advanced patch selection scheme
proposed by RPAttack [35] may suffer from the problem of
inconsistency between the local and global landscapes, since
the gradient is defined within a small neighborhood around
the data point, which is not large enough to explore the global
landscapes. To this end, we propose to imitate the “masking”
manipulation in patch attacks by covering each sub-patch
of the instance and select the sub-patches with the highest
feedback.

Specifically, as shown in Fig. 5, we first divide the Bbox
of each instance into a grid of n × n. Here, considering the
objects in O-RSIs with the same class could have different

sizes, n can vary according to the size of the instance. In
this paper, we provide two options for the grid segmenta-
tion, i.e., the uniform segmentation scheme and the scale-
adaptive segmentation scheme. All the instances in the uniform
segmentation share the same setting of n. For simplicity, we
denote U(n) as the uniform segmentation scheme with the size
of n. For the scale-adaptive segmentation scheme, similar to
MS COCO [59], we divide the instances into three kinds of
scales in terms of their areas. To be specific, we denote the
area of an instance as S . Then, we set n to n1 for S ≤ 322,
n2 for 322 < S ≤ 642, and n3 for S > 642. Thus, we can use
SA(n1, n2, n3) to represents the scale-adaptive segmentation
scheme with certain parameters. The results regarding these
two patch segmentation scheme will be reported and analyzed
in Sec. V-C.

Once we acquire the masked inputs, we feed them into the
victim detector to calculate the FOD. Formally, for a sub-
patch, we define the FOD as:

FODji (x) = L(x)− L(x
j
i )

= L(x)− L(Mj
i � x)

, (11)

where Mj
i denotes masking the j-th sub-patch of the i-th

instance. Correspondingly, xji is the input with the j-th sub-
patch of the i-th instance is masked, and FODji (x) is the
first-order difference of the j-th sub-patch belonging to the
i-th instance. Associating with the objective function utilized
in our TPA (please refer to Sec. IV-C for more detailed
introduction), Eq. (11) can be expressed as:

(maxP̃ i(x)−P̃
C̃i(x)

i (xj
i ))+(1−IoU(B̃i(x), B̃i(x

j
i ))), (12)

where P̃
C̃i(x)

i (xj
i ) denotes the C̃i(x)-th entry of P̃ i(x

j
i ).

C. Bounding box Drifting Loss

Compared to the image classifier, attacking the object
detector is deemed as a more complicated problem, on ac-
count of the complex outputs from the detector. Therefore,
in addition to attacking the classification branch, destroying
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the regression branch of the detector is another essential step,
which could enhance the threats of attacks to a large extent.
Existing methods for PAs only focus on the attack against the
classification branch. Fortunately, RAP [30] has proposed CBL
to break the Bbox regression branch. However, as we analyzed
in Sec. I, applying CBL directly to the framework of PAs may
be at risk of gradient inundation. In other words, since PAs
only attack some specific regions of an image, making all
the detected Bboxes covering the entire image seems sets an
impossible objective. As a result, the gradients of CBL will
exist over the entire attack progress. Besides, the norms of the
gradient passed from CBL are larger than that passed from the
classification loss, on account of the large threshold in CBL.
Consequently, the gradient of the classification loss may suffer
from being inundated by that of CBL, leading to the stagnation
of optimization.

In fact, with the goal of attacking the regression branch,
offsetting the detected Bboxes is exact what we want to see.
To this end, there exist many solutions for this purpose. One of
the most threatening scenario is that there are no intersections
between the initial Bbox and detected ones after attacking.
Thus, we formulate the attacking on the regression branch
as the above situation. That is, drifting the detected Bboxes
away from the initial one until there are no overlap between
them. When it comes to measuring the overlaps between two
Bboxes, a natural idea is to leverage the IoU, a commonly-
adopted metric in object detection. Therefore, we formulate
our Bbox drifting loss as:

LBDL(x̂) =
1

N

N∑
i=1

max(IoU(B̃i(x), B̃i(x̂))), (13)

where N denotes the number of instances in the initial results.
During the iterations, there may exist a lot of detected Bboxes
around the initial one. To this end, Eq. (13) takes the Bbox
with the highest IoU between the initial one into calculation.
In this way, the detected Bboxes that have no overlaps between
the initial one are not taken into consideration. That is, these
Bboxes have been attacked successfully.

Another loss function utilized in our TPA is for the attack
on the classification branch. Here, we use the loss in RPAt-
tack [35], which is formulated as:

Lcls(x̂) =
1

k

k∑
i=1

||maxP̃ i(x̂)||2, (14)

where k denotes the number of detected results in x̂. Finally,
we use Eq. (15) as the total objective function in our TPA.

L(x̂) = LBDL(x̂) + Lcls(x̂). (15)

V. EXPERIMENTS

A. Experimental Settings

Datasets. We carry out the evaluations on two widely-adopted
benchmarks for object detection in O-RSIs, i.e., DIOR [11]
and DOTA [12]. For DIOR dataset, it contains 23463 images in
RGB color space, covering 192518 instances of 20 categories.
All the images are formatted in a fixed size of 800×800 with
a spatial resolution varying across 0.5 to 30 meters. DOTA
dataset (we use DOTA-1.0 in this paper) includes 2860 images
covering 15 categories, and the size of images in DOTA vary
across 800 × 800 to 4000 × 4000. In practical, considering
computational burden caused by the large scale of images in
DOTA, we split the images into a fixed size, which is set to
800 × 800 in this paper. Besides, to facilitate the evaluation
of the following research regarding adversarial attacks on
object detection in O-RSIs, similar to the commonly-adopted
protocol [35], [43] in the field of adversarial attacks, we
sample 2000 images from the testing subset of DIOR and the
validation subset of DOTA, respectively, dubbed DIOR-A and
DOTA-A. The class-wise instance distributions of them are
exhibited in Fig. 6. Here, we plot both the class-wise instance
distribution histograms and their corresponding Kernel Density
Estimation (KDE) curves, in which we can see that the
sampled datasets share almost the same class-wise distribution
with their corresponding parent datasets. Besides, since only
2000 images are utilized for the evaluation, they could reduce
the calculation budget to some extent, compared to using the
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TABLE II
COMPARISON RESULTS ON DIOR-A AND DOTA-A DATASETS. RESULTS ARE SEPARATED BY THE DOUBLE LINE, ABOVE WHICH ARE THE RESULTS

ON DIOR-A AND THE REMAINS ARE ON DOTA-A. THE BEST RESULTS ARE SHOWN IN BOLD.

Detector FR-50 FR-101 FC-50 FC-101 RT-50 RT-101 YOLO-v4

Method RPA [35] Ours RPA [35] Ours RPA [35] Ours RPA [35] Ours RPA [35] Ours RPA [35] Ours RPA [35] Ours

mAP (%) 53.20 47.80 55.80 50.80 - 47.00 - 51.90 - 39.60 - 44.70 50.40 20.30
Recall (%) 69.70 55.80 71.00 58.30 - 61.50 - 66.40 - 58.00 - 60.70 29.60 20.20
`0 Norm 0.110 0.059 0.120 0.059 - 0.059 - 0.059 - 0.059 - 0.059 0.110 0.059
`2 Norm 6.840 4.990 6.860 5.160 - 5.640 - 5.790 - 5.170 - 5.310 6.840 4.860

mAP (%) 31.90 26.60 54.00 39.40 - 28.70 - 32.10 - 17.10 - 20.50 34.80 21.70
Recall (%) 49.80 26.60 65.50 48.20 - 47.60 - 50.30 - 37.00 - 40.50 36.40 22.30
`0 Norm 0.060 0.032 0.060 0.031 - 0.033 - 0.032 - 0.032 - 0.032 0.060 0.032
`2 Norm 5.412 3.628 5.557 3.756 - 4.304 - 4.411 - 3.944 - 4.005 5.412 3.731

Since RPAttack [35] (RPA) utilizes Faster R-CNN [3] and YOLO-v4 [6] to carry out an ensemble attack, it can not attack RetinaNet and FCOS under the
white-box setting. In this case, we only report the results of RPAttack on FC-50, FC-101, and YOLO-v4.

TS GF STA CH OP BC WM BF APL VE SH STO TC HA BR GTF ESA ETS APO DAM

DIOR-KDE
DIOR-A-KDE
DIOR-Hist
DIOR-A-Hist

DIOR v.s. DIOR-A w.r.t. Class-Wise Instance Distribution.

HC RA BD SP TC ST LV SH SV PL HA BR SBF GTF BC

DOTA-KDE
DOTA-A-KDE
DOTA-Hist
DOTA-A-Hist

DOTA v.s. DOTA-A w.r.t. Class-Wise Instance Distribution.

Fig. 6. Class-Wise instance distributions.

parent datasets for the evaluation. Thus, we will carry out all
the following experiments on these sampled datasets.
General settings. We leverage Pytorch framework to imple-
ment our method on a single NVIDIA RTX 2080Ti. Here, four
kinds of detectors are utilized for the evaluations, where Faster
R-CNN [3] (FR), RetinaNet [5] (RT), and FCOS [4] (FC)
are trained on MMDetection, and YOLO-v4 [6] are based
on DarkNet [7]. For the detectors on MMDetection, we
equip them with two backbones including ResNet-50 [8] with
FPN [39] and ResNet-101 [8] with FPN [39]. For simplicity,
FR-50 denotes Faster R-CNN with ResNet-50+FPN as the
backbone, and so on. The testing results on clean images
of DIOR-A and DOTA-A are reported in Tab. I. Here, for
DIOR-A, we utilize the train-val subsets to train the victim
detectors, and training subset is leveraged to train the detectors
for DOTA-A. More training details and the sampled datasets

TABLE I
RESULTS ON DIOR-A AND DOTA-A DATASETS.

Detector FR-50 FR-101 FC-50 FC-101 RT-50 RT-101 YOLO-v4

mAP (%) 88.30 88.60 87.30 87.60 87.30 87.30 89.50
Recall (%) 90.30 90.90 91.30 91.60 92.80 92.80 90.00

mAP (%) 68.70 68.40 65.70 66.80 62.20 64.80 69.70
Recall (%) 77.70 76.10 79.10 80.00 79.50 81.30 76.80

Here, the results above the double lines are those on DIOR-A dataset and
the others are those on DOTA-A dataset, the same to Tab. II

are open accessed1.
Attack settings. Considering the implementation and rela-
tivity, we choose RPAttack [35], the state-of-the-art patch
attack on object detection in natural images, as our competitor.
For the evaluation metrics, we leverage mAP and Recall to
measure the strength of different attacks. Besides, we introduce
`2 and `0 norms to evaluate the visual quality of adversarial
examples. For the attack settings, the `∞ constraint ε in Eq. (9)
is set to 10/255 and the number of iterations T is 10. The step
size α in Eq. (9) is set to 1/255. Furthermore, both RPAttack
and our TPA attack bn×n2 c patches of an instance, for which
we divide to n × n patches in total. Here, b·c represents
the floor division. Finally, for the grid segmentation, we use
SA(1, 2, 3) as the main scheme. The reason for this choice
will be discussed in Sec. V-C.

B. Peer Comparisons

In this subsection, we carry out experiments to validate
the advancement of our TPA. The quantitative results are
summarized in Tab. II. Surprisingly, the performance of our
TPA can surpass the advanced competitor, RPAttack, which
leverages the ensemble setting to enhance its threats, where
ensemble setting is a powerful attack setting that utilizes more
than one victim for the optimization of adversarial examples.
Specifically, we summarize the advantages of our TPA as three
folds. First, we exceed RPAttack by a large margin in terms
of Recall, which indicates that TPA owns the great potential
of hiding targets than RPAttack. Second, we can keep the

1https://github.com/plpl2019/TPA

https://github.com/plpl2019/TPA
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//

YOLOv4FC‐50

RPAttack

FR‐50 YOLOv4 FR‐50 RT‐50GT

TPA (Ours)

Fig. 7. Qualitative results w.r.t. the effect of the bounding box drifting loss. Here, GT for ground truth. Samples extracted from DIOR-A and DOTA-A
are separated by the dotted line, where the upper samples belong to DIOR-A and the remains belong to DOTA-A.

highest attack strength while keeping the lowest `2 norms,
which demonstrates the great attack efficiency of our TPA.
Finally, different from RPAttack that is restricted by the choice
of the victim detector, the proposed TPA is applicable to a
variety of detection models.

Later, we also visualize the detected results in Fig. 7. Here,
all the targets surrounded by the boxes with the same color
belong to the same category, and we use different colors to
distinct the categories. As we can see from Fig. 7, compared to
RPAttack, TPA can make most targets ”invisible”. In addition,
Fig. 7 releases a significant trend that the invisible ability
of RPAttack gets decreased as the density of the targets
increases. From this point of view, TPA shows more threats
than RPAttack, since the dense instance distribution is a very
common phenomenon in O-RSIs.

C. Further Studies

In this subsection, we arrange extended experiments to take
a closer look at our TPA. Specifically, we provide three ab-
lation studies regarding the choice of patch selection scheme,
the choice of the objective functions for the Bbox regression,
and the choice of patch segmentation scheme.
Ablation Study on Patch Selection Scheme. As we have
introduced in Sec. I, RPAttack utilizes the gradient feedback
to select the most critical regions to be attacked, which

TABLE III
ABLATION RESULTS REGARDING THE PATCH SELECTION SCHEME.

Detector Method mAP (%) Recall (%) `0 Norm `2 Norm

RD 52.80 61.30 0.059 5.050

GF [35] 50.00 59.40 0.059 4.990FR-50

FOD 47.80 55.80 0.059 4.900

RD 52.30 67.50 0.059 5.640

GF [35] 49.60 65.00 0.059 5.620FC-50

FOD 47.00 61.50 0.059 5.510

RD 45.20 64.90 0.059 5.180

GF [35] 43.10 62.90 0.059 5.180RT-50

FOD 39.60 58.00 0.059 5.170

may suffer from the inconsistency between local and global
landscapes, leaving the attack efficiency to be suppressed. To
this end, we vary the choice of the patch selection scheme
in our TPA to see the effect of our FOD. The results of
this part are summarized in Tab. III. Here, GF stands for
the gradient feedback patch selection scheme that is leveraged
in RPAttack [35] and RD represents selecting the regions in
a random manner. Not surprisingly, FOD achieves the best
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TABLE IV
ABLATION RESULTS REGARDING THE OBJECTIVE FUNCTION FOR

THE BOUNDING BOX REGRESSION.

Detector Method mAP (%) Recall (%) `0 Norm `2 Norm

Lcls 55.20 61.70 0.059 4.800
Lcls + LCBL 50.90 61.50 0.059 5.340

FR-50

Lcls + LBDL 47.80 55.80 0.059 4.990

Lcls 55.80 70.06 0.059 5.466
Lcls + LCBL 52.60 65.30 0.059 5.630

FC-50

Lcls + LBDL 47.00 61.50 0.059 5.540

Lcls 42.90 61.90 0.059 5.010
Lcls + LCBL 42.60 61.80 0.059 5.240

RT-50

Lcls + LBDL 39.60 58.00 0.059 5.170

Fig. 8. Visualizations of the detected results (the Singular columns)
and the corresponding features (the even columns). Here, the results on
clean images are shown in the first row, the results on adversarial examples
generated via Lcls only are exhibited in the second row, and the others are
the results on adversarial examples generated via Lcls + LBDL.

results in terms of both strength and visual quality, and picking
the sub-patches in a random manner exhibits the poorest
performance. That is, selecting the sub-patches indeed plays
a critical role in final results. Besides, as we have pointed
out in Sec. I, FOD selects the most critical sub-patches via
imitating the attack scheme in PAs so that to escape from
the sub-optimal within the local neighborhood to find the sub-
patches with the most attack potential. From this point of view,
a relatively constrictive neighborhood could mislead the choice
of sub-patches, resulting in poor threats.
Ablation Study on Bbox Regression Loss. Here, we vary the
choice of the objective function for Bbox regression to validate
the importance of our proposed BDL. Specifically, we first
preserve only the objective function for the classification (de-
noted as Lcls in Tab. IV) to see the importance of attacking
the Bbox regression. Then, we set another competitor, i.e.,
the CBL loss [30]. The results are reported in Tab. IV, where
two conclusions can be established. First, attacking only the
classification branch shows more inferior threats than taking
both Bbox regression into consideration. Meanwhile, both the

TABLE V
ABLATION RESULTS REGARDING THE GRID SEGMENTATION

SCHEME.

Detector Method mAP (%) Recall (%) `0 Norm `2 Norm

U(2) 48.50 56.90 0.065 5.180

U(3) 49.40 57.50 0.057 4.980
SA(1, 2, 3) 47.80 55.80 0.059 4.990

FR-50

SA(2, 3, 4) 46.30 55.20 0.064 5.210

U(2) 48.20 63.00 0.065 5.800

U(3) 49.10 63.50 0.057 5.510
SA(1, 2, 3) 47.00 61.50 0.059 5.540

FC-50

SA(2, 3, 4) 45.20 59.30 0.064 5.840

U(2) 40.30 58.20 0.065 5.290

U(3) 41.30 59.90 0.057 5.140
SA(1, 2, 3) 39.60 58.00 0.059 5.170

RT-50

SA(2, 3, 4) 38.20 55.10 0.064 5.380

introduction of BDL and CBL can sacrifice the `2 norm, result-
ing in poorer visual quality than using Lcls only. However, the
improvements of the attack strengths are significant compared
to the decrease of the visual quality. Thus, introducing the
attack on Bbox regression poses more threats than attacking
the classification only. Second, compared to CBL, we reach the
significant threats with the competitive improvements of the
visual quality. We can see that the `2 norms of CBL are larger
than our TPA, which echoes what we discussed in Sec. IV-C,
i.e., the problem of gradient inundation in CBL [30] may risk
the stagnation of optimization, leading to the decrease of the
attack threats. Besides quantitative results, we visualize the
effects of our BDL in Fig. 8. Compared to Lcls only, the
addition of LBDL can result in more intense destruction, which
can be reflected in the feature maps, where the attention areas
are significantly interfered. By contrast, using Lcls only could
not cause significant attacks on intermediate representations.
Ablation Study on Grid Segmentation Scheme. Since grid
segmentation is the first step in patch selection scheme, and
there is no researches regarding the influence of different
scheme on final results. To this light, we propose to provide
a preliminary experimental exploration in this subsection.
Recall that we provided two options for the grid segmenta-
tion in Sec. IV-B, i.e., the universal scheme and the scale-
adaptive scheme. In this part, we explore the influence on
these schemes. Specifically, we set different parameters in
U(n) and SA(n1, n2, n3). The results are shown in Tab. V.
Generally speaking, the choice of these schemes seems do
not play a key role in the final results. When we take a
closer look at these results, we can find that with the same
visual effect, the scale-adaptive scheme shows more aggressive
ability than the universal scheme, while leaving the visual
quality get sacrificed slightly. For instance, SA(1, 2, 3) and
U(3) achieve almost the same visual effect, but the attack
strength of SA(1, 2, 3) is better than U(3). The same case can
be found in the comparison between U(2) and SA(2, 3, 4),
where SA(2, 3, 4) exhibits more threats than U(2). Thus, con-
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sidering the attack strength and visual effect comprehensively,
we chooses SA(1, 2, 3) as our final choice.

VI. CONCLUSIONS

In this paper, we paid attention to PAs on object detec-
tion in O-RSIs and proposed a Threatening PA without the
scarification of the visual quality, dubbed TPA. Specifically,
to address the problem of inconsistency between local and
global landscapes in existing patch selection schemes, we pro-
posed to leverage the First-Order Difference of the objective
function before and after masking to select the sub-patches
to be attacked. Further, considering the problem of gradient
inundation when applying existing coordinate-based loss to
PAs directly, we designed an IoU-based objective function
specific for PAs, dubbed Bounding box Drifting Loss, which
pushes the detected bounding boxes far from the initial ones
until there are no overlaps between them. Compared to the
advanced competitor, the extensive evaluations have witnessed
the remarkable effectiveness of our TPA. Moreover, we also
replace the key factors of our TPA to see their influence
in the final results. These comprehensive explorations also
demonstrate the key role of our FOD and BDL. We hope this
first attempt can arouse the research interest in further works
regarding PAs on object detection in O-RSIs.
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