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Negation Invariant Representations of 3D Vectors
for Deep Learning Models applied to Fault

Geometry Mapping in 3D Seismic Reflection Data
Daniel Kluvanec, Kenneth J. W. McCaffrey, Thomas B. Phillips, Noura Al Moubayed

Abstract—We can represent the orientation of a plane in 3D
by its normal vector. However, every plane has two normal
vectors that are negatives of each other. We propose four novel
representations of vectors in 3D that are negation invariant
and can be used by a neural network to predict orientation.
Our proposed solution is the first to introduce representations
that are negation invariant, continuous and easily parallelisable
on the GPU. We evaluate the representations by predicting
the orientation of a plane on a toy task, and by applying
them to synthetic seismic tomographic data where we predict
the presence and orientation of faults for every voxel in the
volume. We further make use of the orientation of the faults
in a post-processing algorithm on the GPU that separates the
faults into segments (i.e. instances) that do not intersect, which
allows us to selectively visualise faults in 3D. We demonstrate
the utility of the representations by deploying the model on the
Laminaria 3D Seismic volume as a case study. We quantitatively
compare the model’s prediction against human interpretations of
slices through the volume as well as existing interpretations in
literature. Our analysis shows good agreement (F1 score of 88%)
of the model with human interpretation in the shallow levels,
where the ambient noise is lower, but this agreement degrades
at deeper levels (F1 score of 68%). We explore possible reasons
for this degradation.

Index Terms—Deep Learning, Representations, Invariance,
Fault Geometry Detection, 3D Image Processing, Semantic Seg-
mentation, Seismic Reflection

I. INTRODUCTION

Deep Learning methods can be applied to a wide range
of tasks across a variety of data domains. A neural network
interacts with any data represented as vectors. The choice
of representation plays a crucial role in the functionality
of the network and determines the task for which a model
can be used. Common tasks include classification, bounding
box prediction, pose estimation, regression, image denoising,
audio synthesis or text summarisation. Some representations
may perform better than others, such as representations with
values normalised to a standard normal distribution. It is
also beneficial to avoid representations with discontinuities,
where a change in the represented attribute can lead to a
disproportional change in the representation.

When representing cyclical properties such as angles that
repeat every 360° a commonly used representation is the sine
and cosine of the angle, rather than predicting the angle di-
rectly. This avoids problems of having a discontinuity at 0° and
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360°, where similar angles are represented by distant values.
However, there is no simple representation that is continuous
and maps any vector in 3D and its negative to the same
point. In this paper we explore the possible representations
for vectors in 3D that are invariant to negation.

A representation for vectors that is invariant to negation can
be used to represent the orientation of any object where we
do not distinguish one of its directions. For instance: it can
represent the orientation of a plane (flat surface) in 3D that has
two normal vectors which are negatives of each other, direction
of a road or a land border, or the orientation of symmetrical
objects. We focus on the application of predicting the orien-
tation of a plane in 3D and evaluate the representations on a
toy dataset, consisting of an 8x8x8 volumes within which we
determine the orientation of a plane. Subsequently, we move
onto the real application on seismic data.

We propose four novel representations of negation invariant
vectors in 3D. Two representations are trained as a regression
using the mean-squared-error loss and two are inspired by
classification and make use of a softmax activation function
and a cross-entropy loss. We show the effectiveness of all
four representations and identify the Projection-Doubleangle
representation as the best, which we then use in our case study
on real seismic data.

We train our seismic model on synthetic data, on which
we also evaluate the representations. We predict the following
features for every voxel in the volume: whether a fault is
present near the voxel, whether more than one fault is present
near the voxel, the orientation of the fault (this output is
ignored if no fault or more than one fault are present). We also
deploy the model trained on synthetic data on a real seismic
volume imaged in the Laminaria 3D seismic volume. We make
use of the predicted fault orientation to distinguish chaotic
regions in the prediction that occur near areas of intersection
between faults and use it to separate the network of faults into
separate fault instances that do not intersect. We then compare
the predicted faults to those obtained in previous studies [1]
and compare their orientations. Finally, given that deeper levels
in seismic volumes have more inherent noise, we examine
qualitatively how the reliability of the modelled faults varies
with depth through the Laminaria 3D seismic volume.

You can find the code for our proposed representations
implemented in Python using PyTorch on Github1.

1https://github.com/KluvaDa/NegInvVector3D
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II. RELATED WORK

A. Representations

A related field focused on predicting the orientation of
objects is 6D pose estimation, where both the location and
orientation of an object are predicted. Symmetrical objects
pose a particular challenge, since they look similar in multiple
orientations. One way of addressing the issue is by creating
representations that are ambiguity aware and deliberately do
not distinguish different symmetries of the same object from
each other.

In 2D, angles are commonly represented using their sine
and cosine which avoids a discontinuity at 0° and 360° [2]–[4].
This representation can easily be extended to cover rotational
symmetries by taking the sine and cosine of a multiple of
the angle. In the case of 180° symmetry we can use the sine
and cosine of two times the angle [5], [6]. We refer to this
representation as the Double-Angle representation and define
it in Equations 6, 7.

Unlike in our task, where we only consider the negation
of a vector corresponding to 180° rotational symmetry or
planar symmetry, 6D pose estimation concerns itself with
objects that contain a number of other symmetries as well.
A few approaches tackle this problem [7], [8] by creating a
general solution addressing a broad range of symmetries that
are needlessly complicated for our purposes.

Saxena et al. [9] propose a framework for representing the
orientation of objects with numerous symmetries. Part of their
framework can be used to just represent vectors and their
negatives as the same point by encoding a vector v ∈ R3×1 as
R = vvT ∈ R3×3. To invert the representation, the eigenvector
corresponding to the largest eigenvalue of the matrix R is
taken. Finding the eigenvector is, however, computationally
expensive even when using approximations [10]. We refer to
this representation as Saxena’s representation.

B. Fault Segmentation from Seismic Volumes

In order to determine the orientation of faults in seismic
volumes, we must first determine the location of the faults.
This can be done by classifying every voxel in the volume as
a semantic segmentation. Wu et al. [11] use a Convolutional
Neural Network inspired by the UNet architecture [12], while
using 3D convolutional layers to work on volumes rather than
images. In order to train this FaultSeg3D model, they create a
synthetic dataset using a similar method to Wu and Hale [13],
which they further explained in a later publication [14]. They
demonstrate that their method translates well from synthetic
data to real seismic volumes where it correctly annotates faults.

Gato et al. [15] propose the use of a new nested Unet
architecture trained on Wu et al.’s synthetic dataset. They
achieve better results, especially in noisy areas. Dou et al.
[16] also propose a new model architecture and a new loss
function which can be used to train the model on sparsely
labelled data and makes it feasible to train on real seismic data.
Feng et al. [17] used Monte-Carlo sampling in the form of
dropout at evaluation time to sample multiple possible network
predictions and determine the certainty of the model. Hu et
al. [18] turn to a different convolutional architecture, which,

unlike the UNet, does not down-sample and up-sample the
data. Instead it uses dilated convolutions and atrous spacial
pyramid pooling to analyse the data at multiple resolutions.
An et al. [19], [20] published a real-world dataset with partial
annotations of faults together with a method that can train
directly from the data without requiring synthetic data. Wrona
et al. [21] published a framework complete with the source
code for predicting faults, salt bodies and horizons. They make
use of the UNet architecture for predicting pixel-wise outputs.

When focusing on faults, the aforementioned methods only
predict the locations where faulting occurred. In addition to
these outputs, some methods also predict the geometry of the
faults. Wu et al. [22] framed the task as a classification, in
which the 3D variant, they separate the fault’s dip and strike
angles into bins of 3° and 5° respectively. The combination
of these two features form a total of 576 classes, together
with a final class for no fault being present. Their model
classifies the whole input patch based on the central pixel, but
could be reformulated into an equivalent fully convolutional
architecture that would perform a semantic segmentation.

Wu et al. [23] predict the faulting geometry as one of
the outputs from their multi-task model. They represent the
geometry in the form of a vector field which is normal to the
fault planes, similarly to our Z-Aligned-Vector representation,
and train it using a normalised cosine-similarity function. The
network outputs these values for every voxel in the volume in
a manner similarly to a semantic segmentation.

To further analyse the geometry of the faults, some methods
resort to modelling the faults as surfaces [24], [25]. When
applied on top of the predictions of the neural networks, these
methods use graph theory to transform the predicted voxel data
into surfaces. However, unlike our post-processing method that
separates faults using their orientation, these methods cannot
be easily parallelised on the GPU.

C. Case Study

We have chosen the Laminaria 3D seismic volume for our
case study because it is a well-known high quality dataset with
clear fault structures [26]. The seismic volume was acquired in
the Australian North West shelf and imaged thick Paleozoic,
Mesozoic and Cenozoic sedimentary sequences deposited in
a series of rifting phases [27]. The dominant structural trend
including the Laminaria high is ENE-WSW with a more E-W
trend at deeper levels [1], [26].

III. REPRESENTATIONS

To use Deep Learning to predict some attribute, the attribute
must be expressed as a vector, which is then output by the
neural network. We call this vector the representation of the
attribute. To represent the orientation of a plane, we can use a
unit vector v that is normal to the plane. However, we do not
distinguish the two faces of the plane, leading to two distinct
normal vectors: v and −v. This ambiguity is problematic and
we argue that for effective use in neural networks the repre-
sentations need to be both unique and continuous. In other
words, if the represented attribute changes by a small amount,
the representation of the attribute should also only change
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by a small amount. In this section we define some common
equations and notation, before defining the representations.
We start with existing representations (subsections A-C) that
are problematic in various ways before defining our proposed
representations (subsections D-G).

‖u‖ =
√
u20 + u21 + ...+ u2n (1)

is the magnitude of the vector u ∈ Rn with ui being the ith

element of the vector.

sign(a) =

{
1 if a ≥ 0

−1 if a < 0
. (2)

We define the dip and strike angles associated with the
normal unit vector v: (atan2 is the 2-argument arctangent)

dip = acos(vz), (3)
strike = atan2(−vy, vx), (4)

v =

 cos(strike) · sin(dip)
− sin(strike) · sin(dip)

cos(dip)

 . (5)

The Double-Angle representation [5], [6] can be expressed
in two forms. Firstly, to represent angles with 180° periodicity
as follows:

r =

[
r0
r1

]
=

[
cos(2θ)
sin(2θ)

]
, θ =

1

2
atan2(r1, r0). (6)

Secondly, to represent vectors v ∈ R2 with negation invariance
as follows:

r = ‖v‖
[
cos
(
2 atan2(v1, v0)

)
sin
(
2 atan2(v1, v0)

)]= 1

‖v‖

[
v20 − v21
2v20v

2
1

]
,

v′ = ‖r‖
[
cos
(
1
2 atan2(r1, r0)

)
sin
(
1
2 atan2(r1, r0)

)]= ‖r‖
 √

1
2 + r0

2‖r‖

sign(r1)
√

1
2−

r0
2‖r‖

.
(7)

Note that the inverted vector v′ is equal to either v or −v.

A. Z-Aligned-Vector Representation

We can remove the ambiguity and define a unique repre-
sentation by ensuring that the z-axis of the vector v is greater
than zero by multiplying v by ±1 accordingly. Although this
representation is unique, it is not continuous, because of the
change of the sign near values where vz = 0. This is prob-
lematic, because the neural network has to learn to strongly
differentiate two vectors that are similar. We demonstrate the
problems with this representation in Section IV-A.

We predict this representation using 3 features with a linear
activation function and train it using the Mean Squared Error
as a loss function.

B. Dip and Strike Representation

When working with faults, their geometry is commonly
defined using dip and strike angles. To define a unique
representation we can reduce the allowed angles to one of
the following two ranges: dip ∈ [0°, 90°], strike ∈ [0°, 360°),

x (E)

y (N)

z (up)

v

dipdip

strikestrike

dipdip

strikestrike

(a)

x (E)

y (N)

z (up)

v

dipdip

strikestrike

dipdip

strikestrike

(b)
Fig. 1. Diagram showing the definition of dip and strike angles of a plane
defined using its normal unit vector v = (x, y, z), as dip = acos(z) and strike
= atan2(x,−y). The following two domains are visualised:
(a) dip ∈ [0°, 90°], strike ∈ [0°, 360°);
(b) dip ∈ [0°, 180°], strike ∈ [−90°, 90°).

or to dip ∈ [−90°, 90°], strike ∈ [0°, 180°). These ranges are
visualised in Fig. 1. Even though we can define these angles
using their sine and cosine values, it does not fully remove the
discontinuity in the representation. Moving one angle past its
boundary will cause a discontinuous shift in the other angle,
which we demonstrate experimentally in Section IV-A.

The Dip90° Strike360° representation normalises the dip
angles from a range of [0°, 90°] to [0, 1] and predicts the
strike angle using sin(strike) and cos(strike). The 3 values
are predicted with a linear activation and trained using the
Mean Squared Error.

The Dip180° Strike180° representation normalises the dip
angles from a range of [−90°, 90°] to [−1, 1] and predicts the
strike angle using sin(2 · strike) and cos(2 · strike) (the 2D
doubleangle representation). The 3 values are predicted with
a linear activation and trained using the Mean Squared Error.

C. Saxena’s Representation

An existing representation that we compare against is pro-
posed by Saxena et al. [9]. It encodes the vector v as the 3×3
matrix v ·vT . As a symmetrical matrix, it consists of 6 unique
values that have to be predicted. To invert the representation,
the eigenvector corresponding to the largest eigenvalue of the
matrix is found using Principal Component Analysis [10]. The
downside is that PCA is an expensive operation, especially
since it cannot be easily performed on a GPU.

We predict this representation using 6 features with a linear
activation function and train it using the Mean Squared Error
as a loss function.

D. Piecewise-Aligned Representation

This is our first proposed representation. It is based on
aligning the vector v with different axes. If we ensure that
the x-axis is positive, discontinuities will occur near x = 0.
The same principle applies for the y and z axes. If we create
three copies of the vector v: vx, vy and vz , and align each
vector with a different axis, then at least one of the vectors
will be far from its respective discontinuity. We then modify
the magnitude of each vector as follows: v2xvx, v2yvy and v2zvz .
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This way we remove the discontinuity from each vector. To
invert the representation, we align all vectors with the same
axis and add them.

Definition:
In this representation we make three copies of the input

vector v ∈ R3 with a magnitude of 1: vx, vy , and vz . We then
apply the following equation to each vector with its respective
axis symbolised as a ∈ {x, y, z}:

ra ∈ R3 = v2a · sign(va) · v. (8)

The representation is then defined by concatenating the three
vectors: r = [rx, ry, rz].

To invert the representation we need to align each vector
rx, ry, rz to the same axis b. We select this axis b such that
max(‖rx‖, ‖ry‖, ‖rz‖) = ‖rb‖. The represented vector is then
defined as:

v′ =
∑

a∈{x,y,z}

sign(ra,b) · ra, (9)

where ra,b is the bth element of ra. Finally, we divide v′ by
its magnitude to ensure that it is a unit vector.

We predict this representation using 9 features with a linear
activation function and train it using the Mean Squared Error
as a loss function.

E. Projection-Doubleangle Representation

Our second proposed representation works by projecting the
vector v onto the three orthogonal planes x = 0, y = 0 and
z = 0, as seen in Fig. 2. Their orientation on the 2D plane
can then be encoded using the Double-Angle representation,
which encodes a negation invariant 2D vector. We define it
in Equations 6, 7. This way we lose the information about
the exact sign of the projected vector elements, but we retain
information about whether the two axes have the same sign
or not. This is sufficient information to recreate the original
vector multiplied by an arbitrary sign.

Definition:
Take the input unit vector v ∈ R3 and project it onto

three different planes to get pab = [va, vb], where a and b
correspond to two axes from {x, y, z}. pab is then encoded
using the doubleangle representation from equation 7 to get
the representation:

rab =
1√

v2a + v2b

[
v2a − v2b
2v2av

2
b

]
. (10)

The full representation is then formed by concatenating the
three vectors: r = [ryz, rxz, ryz].

To invert the representation we first find the projected vector
p′ab using Equation 7:

p′ab = ‖rab‖

 √
1
2 +

rab,0

2‖r‖

sign(rab,1)
√

1
2 −

rab,0

2‖r‖

 , (11)

where rab,i is the ith element of rab. pab,0 then corresponds to
the vector element on axis a and pab,1 on axis b. We can then

θyz

θxz

x

x

x

y

y

y

z

z

z

v

θxy

Fig. 2. How angles θyz , θxz , and θxy are measured for the Projection-
Doubleangle representation for any unit vector v.

take the two elements corresponding to each axis and average
them, if we correctly determine its sign as follows:

v′ =

 1
2 · (sxz · p

′
xz,0 + sxy · p′xy,0)

1
2 · (syz · p

′
yz,0 + sxy · p′xy,1)

1
2 · (syz · p

′
yz,1 + sxz · p′xz,1)

 , (12)

where sab ∈ {−1, 1}. We want the corresponding axis ele-
ments to have the same sign, which may not be possible due
to model inaccuracies. In that case, we take the axis with the
smallest absolute values and allow it to have different signs.
Let:

m =

|p′xz,0|+ |p′xy,0||p′yz,0|+ |p′xy,1|
|p′yz,1|+ |p′xz,1|

 , (13)

and let k ∈ {x, y, z} be the axis with the smallest value of
mk. The sign is then defined as

sab =



{
1 if sign(pab,1) = sign(pbc,0)

−1 if sign(pab,1) 6= sign(pbc,0)
if k = a{

1 if sign(pab,0) = sign(pac,0)

−1 if sign(pab,0) 6= sign(pac,0)
if k = b

1 if k = c

.

(14)

We predict this representation using 6 features with a linear
activation function and train it using the Mean Squared Error
as a loss function.

F. Classification-Dip-Strike Representation

Our third and fourth representations are both inspired by
classification tasks, which are expanded to be continuous.
Rather than classifying the vector into distinct and unique
classes based on its orientation, we partially assign multiple
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Fig. 3. Diagram showing the points corresponding to categories in the
Classification-Dip-Strike representation. (b) is a top-down view of (a).

classes to the vector based on how close it is to the centre-
points of the classes. We ensure that all the class weights add
up to 1, allowing us to use the softmax activation function
similarly to a classification.

This third proposed representation classifies the vector
based on its polar coordinates, or the dip and the strike of
the plane normal to the vector (shown in red) as seen in Fig.
1. The categories are centered around the points seen in Fig. 3.
Note that due to our desired negation invariance, points on the
opposite side of the sphere are treated as the same class. We
then calculate the partial assignment values as the similarity
in the dip multiplied by the similarity in the strike between
the vector and a class. For instance, in the example shown in
Fig. 3, classes E, F, B and C have non-zero weights and class
E’s weight is calculated as:

d

c+ d
· b

a+ b
.

Definition:
We define the centre-points of categories as seen in Fig. 3,

as the following:

Point A B C D E F G H I J
Dip 90° 90° 90° 45° 45° 45° 45° 45° 45° 0°
Strike 0° 60° 120° 0° 60° 120° 180° 240° 300° n/a

Each point X also has a point on the opposite side, defined
as X ′ with X ′dip = 180° − X ′dip and X ′strike = Xstrike + 180°
mod 360°. However, the model will only predict the larger
class weight of each pair.

If a represented vector has a dip between 45° and 90°, we
use the following equations to determine the class weights for
the example on face EFBC as seen in Fig. 3:

wdip =
c

c+ d
,

wstrike =
a

a+ b
,

wE = (1− wdip) · (1− wstrike),

wF = (1− wdip) · wstrike,

wB = wdip · (1− wstrike),

wC = wdip · wstrike.

(15)
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Fig. 4. A diagram showing which vertices belong to which face of the
icosahedron.

If the vector has a dip between 0° and 45°, such as the face
JEF, we use the following equation:

wJ = (1− wdip),

wE = wdip · (1− wstrike),

wF = wdip · wstrike.

(16)

To invert the representation, we first determine which face
the represented vector lies on. This is the face with the largest
sum of its vertices’ weights. We assign the same weight to
vertices on opposite sides of the sphere, such as vertices A
and A′. We then use the following equations for faces with 4
vertices, such as face EFBC:

dip′v = dipB + (dipE − dipB) ·
wE + wF

wE + wF + wB + wC
,

strike′v = strikeB+(strikeC−strikeB)·
wC + wF

wE+wF+wB+wC
.

(17)

If the face has 3 vertices, such as EFJ, then we use the
following:

dip′v = dipE + (dipJ − dipE) ·
wJ

wE + wF + wJ
,

strike′v = strikeE + (strikeF − strikeE) ·
wF

wE + wF
.

(18)

We predict this representation using 10 features with a soft-
max activation function and train it using the Cross-Entropy
loss. Note that the Cross-Entropy loss has to be defined in a
way that allows for multiple non-zero target values.

G. Classification-Icosahedron Representation

Our fourth proposed representation is also inspired by
classification tasks. Unlike the Classification-Dip-Strike rep-
resentation, this representation centres its categories on the
vertices of an icosahedron, evenly distributing its classes on
the sphere.

Definition:
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a=(0, 0, 0) b=(2, 0, 0)

c=(1,√3, 0)
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λB
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λC
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λA
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λB

λA λA
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λA

Fig. 5. Faces of an icosahedron are mapped to the displayed triangle,
within which we can calculate the similarity metric for the representation:
Icosahedron using Basis Vector Coefficients.

We define the vertices of an icosahedron as the centre-points
of our categories with the coordinates:

c0 = (0, 1, ϕ), c6 = (0,−1,−ϕ),
c1 = (0,−1, ϕ), c7 = (0, 1,−ϕ),
c2 = (ϕ, 0, 1), c8 = (−ϕ, 0,−1), (19)
c3 = (−ϕ, 0, 1), c9 = (ϕ, 0,−1),
c4 = (1, ϕ, 0), c10 = (−1,−ϕ, 0),
c5 = (−1, ϕ, 0), c11 = (1,−ϕ, 0),

where ϕ = 1+
√
5

2 is the golden ratio. Note that the magnitude
of these vectors is not 1. Also note that cn = −cn+6. This
allows us to unify the categories that are opposite each other
to achieve negation invariance.

We define the faces fm of the icosahedron as a list of indices
n of the vertices cn that belong to the face. The first 10 faces
are defined as:

f0 = [1, 0, 2] f5 = [1, 3, 10]

f1 = [0, 1, 3] f6 = [10, 11, 1]

f2 = [0, 2, 4] f7 = [1, 2, 11] (20)
f3 = [4, 5, 0] f8 = [2, 9, 11]

f4 = [0, 3, 5] f9 = [2, 9, 4]

while the remaining 10 faces are identical, only using the
opposite vertices. The relationship between faces and vertices
can be seen in Fig. 4.

We first determine which face a vector belongs to, by finding
the similarity sn between the vector v and all the vertices cn
using the equation:

sn =

∣∣∣∣ v · cn
‖v‖ · ‖cn‖

∣∣∣∣. (21)

The face fm with the largest sum of similarities is then
selected. We then find an euclidean transformation from this
face to a normalised face with coordinates: a = (0, 0, 0),
b = (2, 0, 0), c = (1,

√
3, 0) as seen in Fig. 5. This

transformation then maps the vector v onto vector u, and we

set the z-axis element of u to zero so that it lies on the face.
We can then express the class weights as:

wa = 1− λb
2
− λc

2
= 1− x

2
− y

2
,

wb = 1− λa
2
− λc

2
=
x

2
− y

2
√
3
,

wc = 1− λa
2
− λb

2
=

y√
3
.

(22)

To invert the representation, we first determine which face
has the largest sum of its vertices’ weights. We then take
those weights and use them to calculate the vector u′ in the
normalised space as follows:

u′ =

1− wa + wb√
3 · wc

0

 . (23)

Next, use the inverse euclidean matrix to transform u′ in the
normalised space to v′ on the surface of the icosahedron.
Finally, we normalise the magnitude of v′ to make it a unit
vector.

We predict this representation using 6 features with a soft-
max activation function and train it using the Cross-Entropy
loss. Note that the Cross-Entropy loss has to be defined in a
way that allows for multiple non-zero target values.

IV. METHODS

We evaluate the representations on three different levels.
We need to evaluate the representations in a controlled setting
that equally considers all possible orientations. We designed
the toy task for this purpose. At the same time, the toy task
least resembles true applications. The synthetic data provides a
balance between realism and having ground truths. It has fault
surfaces that are flat, but they do not cover the whole space of
possible orientations, more closely resembling the distribution
of orientations of real faults. We train the same model for
both the synthetic and real data tasks. The real data is where
we ultimately want the representations to perform well on,
however we cannot quantitatively evaluate the representations
on it, since we haven’t got ground truth values to compare
the predictions to. Note that we train this model using the
synthetic data.

A. Toy Task

The toy task dataset consists of volumes of size 8× 8× 8,
which contain a pixelated plane that goes through the centre of
the volume and is in any orientation. All voxels with centre-
points within a distance of 0.6 of the plane are given a value
of 1, while the background has a value of 0. An example can
be seen in Fig. 6.

We train a tiny neural network seen in Figure 7 to predict
the orientation of the plane in the volume using one of the
representations. We generate the volumes at runtime for any
given orientation, so there is no notion of training/testing
dataset splits. For both training and testing we sample from
the same space of all possible orientations.
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Fig. 6. An example of a volume from the toy dataset which represents a
pixelated plane that we predict the orientation of.

Fig. 7. The neural network architecture used for the toy task. Conv is a 3D
convolutional layer with a 3 × 3 × 3 kernel, padding of 1 and a strike of
1. i-norm is instance normalisation, down-s is 2× downsampling using max
pooling, Dense is a fully connected layer.

B. Training on Synthetic Seismic Volumes

To evaluate the representations further, we turn to the task
of predicting the location and orientation of faults present in
a synthetic seismic volume. We use a proprietary dataset of
synthetic seismic volumes, which is based on the method of
Wu [13], [14]. The dataset consists of 1536 synthetic volumes
with a resolution of 96×96×96. An example is visualised in
Fig. 8. Synthetic data provides us with the annotations required
to train and evaluate the performance of the model and the
different representations. We split the synthetic dataset into a
training and testing set with a 80%− 20% split.

We train a neural network to predict whether a fault is
present in any voxel as well as its orientation using one of
the representations. These features are predicted as separate
channels for every voxel in the volume. The fault presence is
predicted as a single feature with a sigmoid activation function
and is trained using the dice loss [28]. If a fault is not present
in a voxel, we ignore the orientation output for that voxel.

Our neural network architecture is visualised in Figure 9.
The network uses 3D convolutions inside HarDNet blocks
[29] within the structure of a UNet [12]. With the model
architecture being fully convolutional, it can be deployed on
volumes of any size (that is a multiple of 8), with GPU VRAM
being the only limiting factor. We trained the model on an
NVidia Titan RTX with 24GB of VRAM, using mixed (16
and 32 bit) floating point precision and a batch size of 4.

C. Deploying on Real Seismic Data

Finally, we evaluate the model on a real dataset, the Lam-
inaria 3D seismic volume. Because of a lack of ground truth
labels for the real dataset, we cannot train a model using

this data, nor can we quantitatively evaluate the performance
of the representations. Instead, we use a model trained on
synthetic data and analyse the results on the Laminaria volume
in the form of a case study. We perform a post-processing
step that makes use of the network predictions and separates
the faults into segments that do not intersect. These fault
segments can then be selectively visualised in 3D, as seen in
Fig. 10. We analyse the model’s performance by comparing it
against manual interpretations by a geologist (McCaffrey), the
interpretations of Phillips et al. [1] and Cifci & Langhi [26].

Our post-processing algorithm allows us to make use of the
orientation of the faults and separate them into distinct fault
segments that do not intersect, aka instances. In conjunction
with the fault probability and orientation, we also predict the
following values using the model, which we use in the post-
processing algorithm:

1) At least one fault is present (fault probability)
2) More than one fault is present (intersection probability)
3) Exactly one fault is present (segment probability)
4) The orientation of the fault normal (only if 3 is True)
5) The orientation of the intersection, which is perpendicular

to the intersecting faults’ normals (only if 2 is True)

The post-processing algorithm takes the predicted fault
locations and removes areas from the volume until its fault
segments are disjointed in space. These are then enumerated
and grown out to cover the original predicted volume. The
steps of the algorithm are visualised in Figure 11 and explained
below.

1) Threshold the fault probability, intersection probability,
and segment probability values. Morphologically dilate
the intersection volume and subtract it from the fault seg-
ment volume. The resultant binary volume of segments
will further be refined until the segments are separated in
space.

2) Subtract areas with inconsistent fault orientation from
the segments, measured as the absolute value of the dot
product between normals in a neighbourhood.

3) Connected smoothing: Only keep segment voxels that
have sufficient neighbours as segment voxels. This re-
moves noisy parts of the volume and smooths out the
segments.

4) Shrink the fault segments along the fault plane, which
avoids thinning them. For every segment voxel, consider
the points in its neighbourhood that are perpendicular
to the orientation expressed as a normal vector to the
fault plane. Of the considered points, count the number
labelled as a segment and only keep the points where
this count is higher than a threshold. Repeat this process
3 times.

5) Connected smoothing: Repeat the same operation from
point 3.

6) We proceed to label each distinct segment with a unique
integer. To do this in a GPU parallelisable manner, we
assign every segment voxel in the volume a unique integer
and assign non-segment voxels a very large integer. We
then iteratively apply the min operation over segment
voxels in a local neighbourhood until no more changes
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Fig. 8. An example of a volume from the synthetic seismic dataset, where the faults in the volume are visualised.
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Fig. 9. Diagram of the network architecture used on the synthetic and real seismic data. Downsampling and upsamping reduce/increase the resolution by a
factor of two respectively, using the max-pooling operation for downsampling and trilinear interpolation for upsampling. The model has 39 million trainable
parameters.
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Fig. 10. 3D visualisation of shallow faults from the Laminaria 3D dataset bordering slice (b) in Fig. 18. The strike angle of the faults is visualised using
colour, with additional shading making deeper voxels darker. In part (a) we visualise the seismic data only as slices on the boundary of the volume. Part (b)
adds the predicted faults to the slices. Part (c) adds a single fault segment in 3D, which was separated by the post-processing algorithm in Section IV-C. Part
(d) visualises all of the predicted faults in 3D.

occur. Finally, we count which unique integer values are
present in the volume and map them to consecutive values
starting at 2. The background is set to 0 and segments
that are too small are assigned a value of 1.

7) The segments are now uniquely labelled and returned.
However, they are smaller than the original predicted
segments.

8) The segments are iteratively dilated until they cover the
volume of the original segment probability volume. To
encourage the dilating segments to grow in a meaningful
manner, an iteration of connected smoothing is applied
between every iteration of dilation until no more changes
occur, and return the output.

9) Finally, we repeat the dilation process, but cover the
whole faults including the intersections. This is used as
the third and final output.

This algorithm returns its predicted fault segments in 3
levels. The first being the core points that were used to separate
the fault segments, while the second covers the whole fault
segments (voxels with exactly 1 fault present) as predicted by
the neural network. The third covers all the faults (at least 1
fault present). One of the major advantages of this algorithm is
that all its operations are performed in a local neighbourhood.
They can be expressed as stencils and are therefore easily
parallelisable on a GPU.

Due to GPU VRAM memory constraints, it is not possible
to work with the whole Laminaria 3D volume at once, which
has a resolution of 1444× 3964× 751. Instead, we turn to a

sliding window approach for both the model prediction and
post processing. With the model having a fully convolutional
architecture, it can be applied to any resolution. With 24GB
of VRAM we were able to deploy the model on volumes
of shape 176× 176× 176, and moved the sliding windows
with a stride of 44. We perform a weighted average of all
the overlapping sliding windows, where the weight is highest
in the centre of a window and 0 at the edge. Points near the
edge cannot see the full context past the edge of the window to
make the prediction, which is why they have a lesser weight.
The weight changes sinusoidally from zero at the edge to 1
in the centre. To average the orientations we cannot simply
average their vectors, since we don’t know whether to multiply
them by −1. Instead, we make use of our Piecewise-Aligned
representation, where taking a mean of multiple orientations
in this representation yields a meaningful average orientation.
To do this we translate the orientation output of the model
from any trained representation into the Piecewise-Aligned
representation, average the values and invert the representation
back into a vector.

When performing the post-processing, we use a sliding
window of size 608× 608× 751. Note that 751 is the full
height of the Laminaria 3D volume. We slide the window
with a stride of 304, where we compare the fault instances in
overlapping windows. If two fault instances share more than 5
voxels in the core points volume (1st level output), we unify
them as the same instance.
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Fig. 11. 3D visualisation of shallow faults from the Laminaria 3D dataset at different stages of the post-processing algorithm. (a) - (f) visualise the strike angle
using colour, while (g) - (i) visualise distinct fault segments in different colours. Additional shading is applied making deeper voxels darker. (a) visualises
voxels with a high fault probability. (b) - (f) visualise the fault segments after steps 1 - 5 of the post processing algorithm respectively. (g), (h), and (i)
visualise the result of steps 7, 8, and 9 respectively.

V. RESULTS

We can see the results of the toy task in Fig. 12, where the
error is shown for all possible orientations. Note the clear areas
of inconsistency in the locations of the theoretically identified
discontinuities on the align-z representation and both dip and
strike representations. All four proposed representations have
a very low error and the error is similar for all possible
orientations. This means that the proposed representations
correctly address the theoretical issues that we identified with
the existing representations. To evaluate the overall perfor-
mance of the representations we plot the distribution of the
performance over multiple runs in Fig. 13 as well as the
average performance changing during training in Fig. 14. Note
how the classification-style representations train faster initially.

We further evaluate the representations on the synthetic
seismic volumes and plot their performance in Fig. 15 and 16.
Note that not all orientations are represented in the synthetic
dataset, which is why the toy task is important. We could not
evaluate Saxena’s representation on this task, since it took over
350 times longer to train than any other representation.

We deploy the best model trained on the synthetic dataset
with the Projection-Doubleangle representation on real seismic
data from the Laminaria 3D volume. We visualise the predic-
tion on three horizons through the volume in map view in Fig.
17, which we compare to the interpretation by Phillips et al.
[1]. We compare the orientation of the faults on the horizons,
as well as in areas around the Corallina, Laminaria and Vidalia
wells in Fig. 19. To evaluate how well the model distinguishes
the faults, we analyse two slices through the volume seen in
Fig. 18, where a geologist annotates the predicted faults as
true positives or false positives. They also annotate faults that
the model missed as false negatives. We count the number of
faults in each category and calculate the following metrics:

F1 Score:
2 ∗ TP

2 ∗ TP + FP + FN
, (24)

Jaccard Index (IOU):
TP

TP + FP + FN
. (25)

The results can be seen in Tables I and II. For comparison, on
the synthetic test set, the model achieved an F1 of 98% and
an IOU of 96%. Volumetrically, it got an IOU of 67%.
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Fig. 12. The error of models trained on the toy dataset with a variety of representations, visualised for all possible orientations on a Lambert azimuthal
equal-area projection, aka equal-area stereonet. Note the symmetry in the diagrams, where two points with any dip and (180°− dip) on the other side of the
diagram represent the same orientation.

Fig. 13. Graph showing the distribution across 10 runs, of the average error
in degrees on the toy task. (lower is better)

Fig. 14. Graph showing the median over 10 runs, of the average error in
degrees during training of the toy task.

Fig. 15. Graph showing the distribution across 4 runs, of the average error
in degrees on the synthetic seismic dataset. (lower is better)

Fig. 16. Graph showing the median over 4 runs, of the average error in
degrees during training on the synthetic seismic dataset.
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Fig. 17. 2D map comparison between modelled fault traces and those intepreted by Phillips et al. [1]. There is generally good correspondence between the
model and interpreter at shallow (H25 level, c. 1s TWT). At intermediate (H75, c. 2.3 s TWT) the level of agreement drops. The structures identified by
Phillips et al. correspond to the main east-west fault traces. The Corallina, Laminaria and Vidalia (yellow circles) are where the wells were drilled in the
area of this seismic volume. The model shows a lot of additional detail in the form of short E-W and ENE-WSW trending fault segments that are probably
secondary faults to the main structures. At deep (H80, c. 2.6 s TWT) levels there is very little correspondence between the modelled and interpreter structures
other than a broad agreement in the trend and location of some of the bigger faults. Lines (a) and (b) correspond to the two slices through the data shown in
Fig. 18.
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(a) (b)
Fig. 18. Slice (a) and (b) taken across the Laminaria High (locations are shown on Fig. 17). The model fault picks are shown in red and blue. False positive
structures (where the interpreter (McCaffrey) does not agree with a model pick) are shown and are overall quite low in number. False negatives (model has
missed faults the interpeter would pick) increase dramatically with depth. The faults are grouped into shallow between 400-1680 on TWT scale (green),
intermediate between 1680-2400 (yellow) and deep level for those greater than 2400 TWT (red) which corresponds to the levels identified by Phillips et al.
[1]) and the metrics presented in Table I and II.

TABLE I
METRICS ON SLICE (A) IN FIG. 18.

Shallow Intermediate Deep All

Total Faults 39 52 63 154
True Positives 32 38 30 100
False Positives 2 2 2 6
False Negatives 5 12 31 48

F1 Score 90.1% 84.4% 64.5% 78.7%
Jaccard Index 82.1% 73.1% 47.6% 64.9%

TABLE II
METRICS ON SLICE (B) IN FIG. 18.

Shallow Intermediate Deep All

Total Faults 55 64 68 187
True Positives 42 50 38 130
False Positives 5 1 3 9
False Negatives 8 13 27 48

F1 Score 86.6% 87.7% 71.7% 82.0%
Jaccard Index 76.4% 78.1% 55.9% 69.5%

VI. DISCUSSION

We observe that all the baseline representations are fun-
damentally flawed. The lack of continuity in the Z-Aligned-
Vector, Dip 90° Strike 360°, and Dip 180° Strike 180° is
problematic because a small change in orientation causes a
big change in the representation’s values. This generates large
errors in the predicted orientation near areas of discontinuity
on the toy dataset, as seen in Fig. 12. It also causes a larger
overall error on the toy dataset performance (Fig. 13, 14). On
the synthetic data these representations also perform poorly in
comparison to our proposed representations (Fig. 15, 16).

The only existing representation in literature that is con-
tinuous is Saxena’s representation. However, it is difficult
and computationally expensive to invert this representation,
making it infeasible for use on the seismic data.

Out of the four novel representations that we propose, we
single out the Projection-Doubleangle representation as the
most appropriate for predicting the orientation of planes in
3D. It performs the best on both the toy task (Fig. 13, 14)
and the synthetic seismic data for predicting the orientation
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Fig. 19. Rose diagrams showing the distribution of the strike and dip angles in the following areas: Horizon spans the whole area of the volume at shallow
horizon H25 level, intermediate horizon H75 and deep horizon H80 respectively. Corallina, Laminaria and Vidalia span an area with a radius of 2km and
±100ms from the respective horizon in TWT, as seen in Fig. 17 in yellow.

of faults (Fig. 15, 16). Additionally, it requires a mere 6
values to represent the orientation, which is the least out of
all the proposed representations. However, the other proposed
representations do provide some advantages.

Our Piecewise-Aligned representation has the advantage of
easily scaling to n-dimensional vectors instead of being limited
to 3D vectors. We can also make use of the representation
to find an average orientation by averaging the values of
multiple orientations represented using the Piecewise-Aligned
representation. We make use of this property in our post-
processing algorithm that separates faults into non-overlapping
instances.

The Classification Dip-Strike and Classification Icosahedron
representations have the advantage of being trained using a
cross-entropy loss on top of a softmax activation function.
This allows them to train more quickly at the beginning, as
seen in Fig. 14, since a rough prediction brings the output
into the neighbourhood of the closest category. This contrasts
with the Piecewise-Aligned and Projection-Doubleangle repre-
sentations that require finer adjustments before the prediction
becomes useful. The Classification Icosahedron representation
is advantageous because it only requires 6 values to encode an
orientation, albeit at the expense of more complicated equa-
tions. The Classification Dip-Strike representation requires 10
values.

Using the Projection-Doubleangle representation we apply
the model to the Laminari 3D seismic volume, where we
demonstrate the utility of predicting the orientation of the
faults by using it as one of the key elements for separating
faults into non-intersecting fault instances or fault segments.
Our post-processing fault-separation algorithm only uses local

operations, making it easily parallelisable on the GPU. It
makes the visualisation of the predicted faults in 3D much
simpler, by selectively hiding some fault segments that may
be obscuring other faults of interest. We can also sort the
fault segments by their size, only displaying larger faults while
applying smoothing to the predicted fault orientations over
neighbouring voxels of the same fault segment.

We further analyse the prediction on the Laminaria 3D
seismic volume where we observe that the model performs
well at shallow levels. There is good agreement with a high
F1 score and Jaccard Index at the shallow levels in Table I
and II from Fig. 18. In 2D map view, the structures match
well in terms of location (Fig. 17) and orientation (Fig. 19)
with previous manual interpretations by Phillips et al. [1] and
Çiftçi and Langhi [26]. The trends in Fig. 19 for the Corallina,
Laminaria and Vidalia areas at the shallow level are the same
ENE-WSW trends as shown in the previous work. At the deep
level both E-W trending and a large number of ENE-WSW
fault major structures were identified by the model, however
only E-W structures were identified in previous work. This
is possibly because the ENE-WSW structures are short and
were considered to be secondary faults by the authors. Note
the prominent structural feature where the two trends meet, as
seen in Fig. 17 in horizon Shallow H25, which was labelled
as ’intersection point’ and ’outboard en-echelon faults’ by
Phillips et al. [1].

There is some drop off in performance between the model
and interpreter at intermediate level (Fig. 18, Table I, II), but
overall the agreement remains relatively high. At deep levels,
the amount of correspondence between the interpreter and
the model is relatively low (Fig. 18, Table I, II). The main
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reason for the poorer model performance is the number of
false negatives, i.e. structures that the model has not recognised
that the interpreter thinks should have been there. Possible
explanations for this poorer performance at deep levels might
have to do with the high levels of ambient noise at depth in
the Laminaria 3D seismic volume and the presence of more
low dip angle structures, both of which are missing from the
synthetic training data set. We can see from our modelled
dip values that there are more gently dipping faults at the
deep and intermediate levels compared to the shallow level.
In contrast, at the deep and intermediate levels many more
faults are picked by the model than shown in the published
interpretations. We do not, however, consider these to be false
positives because they were not identified as such in our own
interpretation (Fig. 18). It is likely that in previous studies
[1] the fault interpretation has been implicitly simplified at
intermediate and deep levels to focus on primary structures,
i.e., those that bound the main high structures. Our model
has picked out both the major and minor (secondary) faults.
This illustrates the difficulty in comparing Deep Learning
representations of faults with published interpretations.

VII. CONCLUSION

Up until now, there have been no representations for nega-
tion invariant vectors in 3D that can be predicted by a neural
network, are continuous, and are easily parallelisable on a
GPU. We propose four novel representations with all of these
properties and use them to predict the orientation of planes in
3D, both on a toy task and applied to predicting the orientation
of faults in seismic tomographic volumes. Our Projection-
Doubleangle representation outperforms all other existing rep-
resentations on this task. We train our model on synthetic data
and deploy it on the Laminaria 3D volume, where we predict
the location and orientation of faults. We further separate
faults into individual non-intersecting segments using their
orientation in a post-processing algorithm on the GPU. We
observe that the model performs well in shallow regions. In
deeper levels with more ambient noise, the model misses
more faults. In intermediate levels the model detects many
more correct faults that were missed or ignored by previous
studies. In contrast to previous work, our model is capable of
predicting the orientation of the faults and use this information
to separate the predicted faults into fault segments.
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