
© 2023 IEEE.  Personal use of this material is permitted.  Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for resale 
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other 
works. 

Citation: A. Sarkar, T. Chowdhury, R. Murphy, A. Gangopadhyay and M. Rahnemoonfar, "SAM-VQA: 
Supervised Attention-Based Visual Question Answering Model for Post-Disaster Damage Assessment on 
Remote Sensing Imagery," in IEEE Transactions on Geoscience and Remote Sensing, doi: 
10.1109/TGRS.2023.3276293. 

DOI: https://doi.org/10.1109/TGRS.2023.3276293 

 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 
platform.  

 
Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s 
important to you. Thank you.  

 

https://doi.org/10.1109/TGRS.2023.3276293
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 61, 2023 4702716

SAM-VQA: Supervised Attention-Based Visual
Question Answering Model for Post-Disaster

Damage Assessment on Remote Sensing Imagery
Argho Sarkar , Member, IEEE, Tashnim Chowdhury , Member, IEEE, Robin Roberson Murphy, Fellow, IEEE,

Aryya Gangopadhyay , Member, IEEE, and Maryam Rahnemoonfar , Member, IEEE

Abstract— Each natural disaster leaves a trail of destruction
and damage that must be effectively managed to reduce its
negative impact on human life. Any delay in making proper
decisions at the post-disaster managerial level can increase
human suffering and waste resources. Proper managerial deci-
sions after any natural disaster rely on an appropriate assessment
of damages using data-driven approaches, which are needed
to be efficient, fast, and interactive. The goal of this study is
to incorporate a deep interactive data-driven framework for
proper damage assessment to speed up the response and recovery
phases after a natural disaster. Hence, this article focuses on
introducing and implementing the visual question answering
(VQA) framework for post-disaster damage assessment based on
drone imagery, namely supervised attention-based VQA (SAM-
VQA). In VQA, query-based answers from images regarding
the situation in disaster-affected areas can provide valuable
information for decision-making. Unlike other computer vision
tasks, VQA is more interactive and allows one to get instant
and effective scene information by asking questions in natural
language from images. In this work, we present a VQA dataset
and propose a novel SAM-VQA framework for post-disaster
damage assessment on remote sensing images. Our model outper-
forms state-of-the-art attention-based VQA techniques, including
stacked attention networks (SANs) and multimodal factorized
bilinear (MFB) with Co-Attention. Furthermore, our proposed
model can derive appropriate visual attention based on questions
to predict answers, making our approach trustworthy.

Index Terms— Attention, post-disaster management, remote
sensing, search and rescue, visual question answering (VQA).

I. INTRODUCTION

DISASTER management can be defined as an account-
able organization and management for dealing with

all humanitarian aspects, particularly post-disaster response
and recovery, to mitigate the impact of a disaster. In the
response and recovery stage after any catastrophic event,
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disaster management requires a fast and interactive data-driven
approach to thoroughly comprehend the damaged situation.
A rapid and in-depth understanding of the damage in the
aftermath of disasters is essential for supporting the decision-
making system. The decisions regarding the distribution of
relief and food to the highly victimized areas, the operation
of the search and rescue missions, the reconstruction of the
damaged roads and buildings, etc., are dependent on the proper
assessment of the damage. Any delay in the recovery phase
can drive human lives toward death and dissipate an abundance
of money. Haas et al. [3] established a logarithmic heuristic
which suggests that reducing the time spent on each phase
of a disaster response reduces the time spent on the next
phase by a factor of 10. In this article, we present a super-
vised attention-based visual question answering (SAM-VQA)
framework to provide high-level scene information for proper
damage assessment to speed up the response and recovery
phases after any natural disaster.

Visual question answering (VQA) is a complicated multi-
modal research problem in which the aim is to answer an
image-specified question. In a VQA framework, we generally
ask questions about images in natural language. Thus, the
VQA framework needs to model the question and visual
content to get the most appropriate answers from images.
Substantial research efforts have been made on the VQA
task in the computer vision and natural language processing
communities [1], [4], [5], [6], [7] using deep learning-based
multimodal methods. The key benefit of the VQA method
is that it can promptly deliver high-level scene information
from images through interaction, which is limited in other
computer vision tasks. Image segmentation [8], [9], [10], [11]
segments an image into several object categories, objection
detection [12], [13] algorithms detect objects from an image.
However, these tasks do not consider both providing high-
level scene information and interacting with users. On the
other hand, in any VQA task, a model needs to detect objects
(object detection), classify their attributes (classification), and
figure out the interactive relationship among different enti-
ties within images to provide answers. This high-level scene
understanding has the potential to advance the post-disaster
managerial decision support system, especially in the rescue
mission. In this interactive framework, a non-domain expert
can obtain information regarding damages from images by
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asking questions in natural language. Fig. 2 presents how
rescuers can utilize the VQA task in the post-disaster damage
assessment. This direct interaction also makes this data-driven
approach faster compared to other data-driven approaches.
In this study, VQA for post-disaster damage assessment has
been considered on the extension of the FloodNet-VQA
dataset proposed in [14]. This new version of FloodNet-VQA
V2.0 has more types of image-question pairs related to dam-
ages after a hurricane. “How many buildings are flooded?,”
“Is the road flooded?,” “Do the rescuers need to provide help
urgently?,” and “How is the building density in this area?” are
some examples. Answers to those questions certainly provide
a deep understanding of the condition of the affected areas to
the rescuers, which assists them in estimating the damage and
providing direction to take action. This motivates us to include
the task of VQA for post-disaster damage assessment.

Existing VQA algorithms [1], [4], [7] are mostly trained on
ground-based images. However, in this research, we consider
an aerial imagery-based (e.g., drone) VQA framework. The
concept of developing drone-based VQA stems from the
characteristics of a drone which is its ability to reach remote
areas for data collection during or after any natural disaster.
However, developing a drone imagery-based VQA algorithm
for post-disaster damage assessment is extremely difficult for
many reasons. First, the representation of drone images refers
to a top-down (vertical) view, which is different compared
to the human-centric (horizontal) representation captured by
traditional digital cameras. Top-down pictorial representations
make it very difficult to distinguish between several objects,
as the objects of interest become relatively small. Second,
in the case of damage assessment, the degree of scene com-
plexity gets much higher due to noises coming from many
sources, such as structural debris. Therefore, special care needs
to be taken in the modeling part to successfully provide correct
answers from the drone-based VQA system.

Attention-based VQA models [1], [2], [7], [15], [16] showed
remarkable performance on many ground imagery-based VQA
datasets. Attention in VQA algorithms is defined as assign-
ing weights within different image regions according to the
importance of getting clues for predicting the answer to a
given question. Relevant image portions should get higher
weights compared to irrelevant portions to answer a ques-
tion. Although those attention-based VQA frameworks can
obtain relevant visual attention weight from many ground
imagery-based VQA datasets, they fail to obtain relevant visual
attention from remote sensing images. The main reason for
not obtaining relevant visual attention weights on remote
sensing images is the way those models are learning visual
attention weights. Most of the attention-based VQA models
are trained in a supervised manner (i.e., minimizing the cross-
entropy loss between the ground truth and predicted answers).
However, visual attention weights within those models are
learned without any additional supervision and solely based
on ground-truth answers. By ground-truth answer, we mean
the corresponding true text answer to a given question about
an image. The estimated visual attention weight distributions
for remote sensing images learned solely by minimizing loss
between the ground-truth answers and predicted answers in a

Fig. 1. Comparison of derived visual attentions for given questions from
two VQA models, one of which is trained without visual supervision and
the other with visual supervision. The yellowish tone in the image denotes
higher attention weight. Attention learned with visual supervision (the last
column) emphasizes the relevant image portions (buildings and roads in this
case) to address the questions from the top and bottom images, respectively.
On the other hand, the attention learned without visual supervision (the middle
column) fails to pay proper attention to both images.

classification manner could not properly highlight the relevant
image regions. An additional learning component as a means
of supervision is needed so that the estimated visual attention
weight can focus on relevant image portions to answer a ques-
tion. Thus, to supervise the visual attention weight, we need
the visual ground-truth which will highlight the relevant image
portions necessary for answering a given question. To address
this, we propose a SAM-VQA framework to obtain relevant
visual attention weights on remote sensing images in the con-
text of post-disaster damage assessment. In contrast to existing
approaches, our proposed approach allows visual attention to
be supervised by the visual mask equivalent to visual ground-
truth along with the supervision of the model by ground-truth
answers. The visual mask is generated from the image based
on the corresponding question. For example, if the question is
about the road, then the visual mask is generated by masking
all other parts of the corresponding image except the “road.”
Thus, a visual mask provides attention weight distribution
over an image by highlighting the relevant visual portions
based on the question. Our approach will allow learning from
both the visual mask and true answer distribution jointly.
The visual mask allows the model to learn relevant visual
attention weights and the true answer distribution enables
the model to predict rational answers. We name this process
of providing supervision to images as visual supervision.
Fig. 1 compares the quality of the derived visual attention
map of the SAM-VQA approach with the approach that does
not consider additional visual supervision for remote sensing
images. It is clearly shown that when the estimated visual
attention weights are learned through visual supervision, the
algorithm learns better where to put attention on the image
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Fig. 2. Rescuer can acquire effective information about the affected area by asking questions when a drone coupled with a VQA system captures images
from the hurricane-stricken area from a high altitude.

content to predict the answer compared to the process where
attention is learned without visual supervision. For example,
to answer the questions from the top and bottom images
in Fig. 1, the model must emphasize the building and road
portions of the images, respectively. When we trained the
model without visual supervision, it could not pay attention to
the corresponding relevant image portions. Fig. 9 demonstrates
our proposed architecture.

The main contributions of this research work consist of the
following.

1) Develop a VQA dataset, FloodNet-VQA V2.0, which is
the extension of FloodNet-VQA [14] for post-disaster
damage assessment purposes.

2) Propose a novel SAM-VQA on top of the developed
dataset.

3) We experimentally showed that our approach is more
accurate in terms of providing correct answers and trust-
worthy in respect of providing relevant visual attention
compared to the state-of-the-art attention-based VQA
methods.

The organization of this article is as follows. In Section II,
existing works on natural disaster assessment and VQA are
discussed. Section III provides the details on the dataset.
Our newly proposed method and the result are described in
Sections V and VI, respectively. Finally, the future work and
the conclusion have been addressed in Sections VII and VIII,
respectively.

II. RELATED WORKS

We will discuss the notable works done for natural disaster
damage assessment based on aerial and satellite imagery in
the first subsection. The latter subsection discusses research
on VQA for remote sensing images.

A. Natural Disaster Damage Assessment

Most of the research on natural damage assessment is
limited to structural damage detection (e.g., detecting dam-
aged buildings), classification (e.g., classifying the level of

damage associated with structures), and semantic segmenta-
tion. In recent time, many aerial [10], [14], [17], [18] and
satellite imagery [8], [9], [13], [19], [20], [21] have been
proposed for the aforementioned computer vision tasks. Feng
et al. [22] propose a model to estimate the risk of causality
based on damages to buildings after a disaster. In [12],
collapsed buildings were detected from the aerial images
after earthquakes. In [23], structural damage assessment is
conducted based on multiperspective, overlapping, very high-
resolution oblique images obtained with unmanned aerial
vehicles (UAVs). In [18], AIST Building Change Detection
(ABCD) aerial dataset has been proposed that includes post-
tsunami images to investigate if the buildings have been
washed away. Chen et al. [13] propose a dataset including
aerial and satellite imagery in order to detect building dam-
age after a hurricane. A segmentation model is proposed to
identify the structural-level changes and estimate the effects
of natural disasters in [8]. Aerial Image Database for Emer-
gency Response (AIDER) is proposed in [17], which aims to
classify UAV imagery. A dataset collected from both Sentinel-
1 and Sentinel-2 satellites is introduced in [9]. This dataset
offers semantic segmentation of flooded buildings. In order to
determine building damages, xBD is proposed in [19], which
includes both pre- and post-event satellite images. UAV-based
datasets and deep learning approaches have been proposed
in [14], [24], and [25] for post-disaster damage assessment
purposes after hurricanes. Many approaches such as image
segmentation [24], [26], [27] and instance segmentation [10]
are proposed, where images are collected using UAVs. Tilon
et al. [28] conduct experiments to detect damaged buildings
using the xBD dataset. In [29], a semi-supervised technique
is proposed to detect the damaged building based on satellite
images.

B. Vision-Language Model for Remote Sensing

Recently, vision- and language-based multimodal
approaches (e.g., image captioning, visual question generation,
and VQA) are gaining attention in the remote sensing
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community. Many datasets are provided for image captioning
tasks, including RSCID [30], UCM-Captions [31], and
Sydney-Captions [31]. A summarization-driven deep remote
sensing image captioning algorithm is proposed in [32].
The authors in this work integrated the summary of the
caption with ground-truth captions to overcome information
redundancy as captions are repetitive or semantically similar
to each other. Scene attention, defined as utilizing both the
semantic information from long short-term memory (LSTM)
and the global visual information from features to generate
an attention map, is proposed in [33] for image captioning
tasks through an encoder–decoder-based architecture. Visual
question generation (VQG), one of the vision-language-based
multimodal tasks, is proposed in [34], where the motivation
is to generate meaningful questions from remotely sensed
images.

Besides the above tasks, remarkable progress has been
made in VQA for remote sensing. Many works have been
proposed to tackle this challenge. In [35], two VQA datasets
for remote sensing, in general, have been proposed. Further-
more, a large-scale remote sensing VQA dataset has been
proposed in [36] which includes 15 million image-question-
answer (QA) triplets from the BigEarthNet dataset. Different
fusion strategies between image and text features for fine-
grained multimodal feature extraction for the VQA task have
been studied in [37]. Attention-based VQA frameworks are
also explored in much of the research for remote sensing. The
mutual attention network [38] considers both the convolutional
feature map and the semantic visual feature vector from the
image model, as well as the question vector from the question
model, to achieve mutual attention. This joint representation
is further fed into a fully connected (FC) layer for answer
prediction. A cross-modal attention-based VQA method has
been proposed in [39] for remote sensing. In this cross-
modal technique, image and question representations are fed
to a cross-modal transformer network that uses cross-attention
between the image and text modalities to generate the answer.
Besides remote sensing in general, several application-based
VQA methods have recently been proposed. In [14] and [40],
study of VQA algorithms for post-disaster damage assessment
has been carried out. Change detection in the form of VQA
has been proposed in [41].

In this research work, we proposed a SAM-VQA frame-
work for post-disaster damage assessment on the extended
FloodNet-VQA V2.0 dataset. Our research aims to provide
high-level scene information through interaction following any
disaster to advance the decision support system.

III. FLOODNET-VQA V2.0 DATASET FOR POST-DISASTER
ASSESSMENT

Like other deep learning models, the success of VQA
also relies on a large volume of image data. There are
various sources after a disaster from which the image data
can be obtained. Human participation is involved in most of
those traditional data-collection processes. Due to a variety
of adverse circumstances during natural disasters, such as
damaged highways, flooded areas, and so on, human involve-
ment in the data collection process is very risky in terms of

safety. Drones are an efficient way of collecting images from
impacted areas without the need for human intervention. Our
VQA framework, in this study, is built for drone imagery.
In this section, we will discuss the process of image collection,
data annotation, and the development of the VQA dataset.
At the end of this section, we discuss the difference between
FloodNet-VQA and its extension, FloodNet-VQA V2.0.

A. Image Collection

The data collection process took place after the Hurricane
Harvey. Hurricane Harvey was a Category 4 hurricane that
hit Texas and Louisiana in August 2017, causing catastrophic
flooding and killing over 100 people. We take advantage of the
UAV platform to capture images and videos from the affected
areas. DJI Mavic Pro quadcopters have been used for the data
collection process. The data were collected after conducting
several flights covering areas mostly in Ford Bend County,
Texas, and other directly impacted areas between August
30 and September 4, 2017. Fig. 4 represents the risk level
in many counties in Houston, Texas. The dataset is unique
for two reasons. First, images are very high in resolution, and
second, it is the only known database for small UAV (sUAV)
disaster imaging. In all the images, the post-flood damages
from the affected areas are depicted. Other collections of
imagery, utilizing unmanned and manned aerial assets captured
during disasters, such as the National Guard Predators or Civil
Air Patrol are larger and fixed-wing assets that operate above
the 400 feet above ground level (AGL). Our images, taken
from a height of 200 feet, have a very high spatial resolution
of about 1.5 cm, making them special among natural disaster
datasets. We consider a fixed size of 4000 × 3000 for all
the images. All available aerial and satellite images [8], [9],
[10], [13], [18], [19], [20] vary in size and have a lower
resolution than ours. Our high-resolution imagery provides
detailed information, which leads to a good understanding of
the situation.

B. Image Annotation Task

QA pairs are generated from the pixel-wise annotations
(i.e., semantic segmentation) of images [14]. We annotate
each image pixel-wise to identify multiple objects and their
attributes. Fig. 8 shows some examples of pixel-wise anno-
tation. Building-flooded, building-non-flooded, road-flooded,
road-non-flooded, water, tree, car, pool, and grass are the
nine classes that have been assigned pixel-wise labels in each
of the images. When at least one side of a building is in
contact with flood water, it is classified as a flooded building.
To differentiate between natural and flood water, the “water”
class has been created, which represents any natural water
body like a river or lake. In addition, each image is labeled as
“flooded” or “non-flooded” as a whole. If flood water covers
more than 30% of an image, it is classified as a flooded
image; otherwise, it is classified as a non-flooded image. After
annotation, we created a dictionary for each image that stores
each object type and corresponding annotation details (e.g.,
polygon). The multiple presences of the same object in a
particular annotation dictionary indicate the frequency of that
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Fig. 3. Distribution of answers from FloodNet-VQA V2.0. The outer figure represents the distribution of all answers from the dataset. The nested left and
right figures show the distribution of answers for counting and non-counting questions, respectively.

Fig. 4. Risk level among counties in Houston due to Hurricane Harvey [42].

object in that particular image. Fig. 5 provides an example of
the annotation dictionary. This dictionary is used to generate
ground-truth answers for all the questions in our dataset.

C. Data Quality Assurance

Throughout the annotation process, we have maintained
the quality of pixel-level annotations. A two-stage quality
assurance system has been followed. Each annotation must
be approved by reviewers, who decide the quality of the
annotations by ensuring that annotators follow the rules estab-
lished by experts in the field. If the annotation is not up to
par, reviewers send it back to the same annotator with a list

Fig. 5. Example of image dictionaries for two different images. Each dictio-
nary contains annotation information regarding the objects and corresponding
attributes.

of issues and suggestions for improvement. The annotations
that were rejected are then re-annotated and forwarded to the
reviewers for approval. This cycle is repeated until all of the
images have been properly annotated and the standards have
been accurately followed.

D. Dataset Preparation

1) Question Category Selection: The selection of question
categories is very important so that the information from the
questions can allow the rescuers to have a better understanding
of damages to the affected areas. For making decisions at the
post-disaster managerial level, a lot of information needs to be
analyzed so that the recovery process can be made faster and
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Fig. 6. Distribution of question categories where each slice in the pie chart
represents the ratio between the number of questions in a particular category
and the total number of questions.

more efficient. The recovery process includes the distribution
of manpower engaged in rescue missions, the distribution of
relief supplies, and so on. These factors are taken into account
while generating the questions. Each question in the dataset
provides different spectra of information through answers
to enhance the decision support system. The distribution of
different question categories in our dataset is presented in
Fig. 6.

1) One of the objectives of understanding the post-disaster
scene is to identify image-level characteristics (i.e.,
the flooded and non-flooded images). We design ques-
tions that will provide image-level information through
answers. “What is the overall condition of the entire
image?” is an example of this question category. To gen-
erate ground-truth answers for this question category,
we follow the rules described in Section III-B. We define
this question category as Entire Image Condition Recog-
nition.

2) Rescuers need to identify the condition of roads to
save lives and operate their search and rescue mission.
This recognition allows the rescuers to see whether the
impacted area is reachable by road before they start their
move to that specific area. “What is the condition of
the road?,” “Is the road flooded?” will definitely serve
this purpose. This question category is denoted as Road
Condition Recognition.

3) Identifying building-level damage is also very important
in the rescue mission. To address this, we include
Building Condition Recognition question category. “Is
there any flooded buildings?” is an example of this kind.

4) Counting the structural entities provides an intuition of
the level of risk and damage in an area due to the
disaster. For instance, if numerous buildings in a specific
location are damaged by a disaster, the extent of the
damage will be higher in that area compared to places
where fewer buildings are damaged. We separate these
counting-related questions into two categories, namely
simple counting and complex counting. In the Simple
Counting problem, we ask about an object’s frequency
of presence (mainly buildings) in an image regardless

of the attribute (e.g., “How many buildings are in the
image?”). Complex Counting is specifically intended to
count the number of a particular building attribute (e.g.,
“How many flooded or non-flooded buildings are in
the image?”). We are interested in counting only the
flooded or non-flooded buildings under this category of
question. In comparison to simple counting, a higher
level of scene understanding can be obtained by complex
counting.

5) Identifying the level of density of the structures will
help in the rescue mission by distributing the limited
manpower. Highly dense areas need to allocate more
rescuers than less dense areas in the recovery process.
Hence, the proposed dataset includes Density Estimation
question category. “What is the building density of the
area?” is an example of this category.

6) In the recovery process, rescuers should take immediate
action in highly affected areas as the level of risk
associated with human life at that location is high. For
that, rescuers need to identify the level of risk in different
affected areas. To serve this purpose, we include Risk
Assessment question category. “Do the rescuers need to
provide help urgently in this area?,” “Does this area need
immediate help?” are some examples from this question
category.

2) Answer Generation: Fig. 5 represents the example of an
annotation dictionary used in this study. Dictionaries contain
the information from which answers to the questions are
assigned. We have followed some rules or thresholds while
generating answers.

1) To identify whether an image is flooded, we consider
the value from Neighborhood key in the corresponding
image dictionary. Neighborhood key in the annotation
dictionary contains the image-level information (flooded
or non-flooded).

2) Fig. 5 contains information regarding the road condi-
tion, namely road-flooded and road-non-flooded. This
information is used to assign answers for the questions
related to Road Condition Recognition.

3) Answers to counting questions are generated by count-
ing the presence of a building with or without an
attribute from the corresponding image dictionary. For
example, in Fig. 5 (right side), building-non-flooded
appears twice. Thus, the answer to the question “How
many buildings are non-flooded?” will be 2.

4) The level of density can be identified from the number
of buildings in an image. In this study, we consider an
area highly dense if the number of buildings is greater
than 5. If the number of buildings is between 3 and
5, we consider it moderate, and if the frequency of
buildings is lower than 3, we consider it a less dense
area. As the density depends on the image resolution, the
setting of these threshold levels for density estimation is
applicable only to our dataset. Our images, taken from
a height of 200 feet, have a very high spatial resolution
of about 1.5 cm.

5) Answers to the questions in the Risk Assessment ques-
tion category depend on the number of flooded buildings
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Fig. 7. Distribution of the questions by their first four words. This plot highlights the variety of questions in FloodNet-VQA V2.0. The length of an arc is
in proportion to the number of questions involving that word.

present in an image. This is because the greater the
number of flooded buildings, the more risky the area is.
The threshold point (the frequency of flooded buildings
in a given image) for taking immediate action is 3.

Fig. 3 refers to the distribution of possible answers of our
dataset.

E. FloodNet-VQA V2.0 Versus FloodNet-VQA

Extension of FloodNet-VQA, FloodNet-VQA V2.0, includes
2348 images and 10 480 QA pairs. On the other hand,
FloodNet-VQA includes 7355 QA pairs. The distribution of the
number of questions for each category of FloodNet-VQA V2.0
is presented in Fig. 6. In addition, this new extension includes
three more types of question categories, including Density
Estimation, Risk Assessment, and Building condition Recog-
nition. Due to the necessity of comprehending the damaged
scenario completely and making the rescue mission effective,
these types of questions are incorporated into the dataset. Road
Condition Recognition and Entire Image Condition Recogni-
tion include the highest number of questions. The number of
words in the longest question is 11 for our dataset. Fig. 7
presents the distribution of questions’ varieties based on the
starting word. Questions starting with the word “what” have
the highest variation compared to other starting words.

Table I compares the data statistics between FloodNet-VQA
and FloodNet-VQA V2.0.

IV. GENERATION OF VISUAL MASK (GVM)

Generally, “visual attention” is defined as giving impor-
tance to relevant image regions (i.e., pixels) for a predic-
tion. In VQA, understanding the specific visual content (e.g.,
objects, relations among different objects, or attributes of

TABLE I
COMPARISON BETWEEN FLOODNET-VQA AND FLOODNET-VQA

V2.0 FOR DIFFERENT ATTRIBUTES

objects) within an image is important for providing answers.
The task of attention in VQA is to prioritize image portions
that are highly relevant to answering a question. The attention
in VQA is question-dependent, meaning different visual atten-
tions are required to answer different questions from the same
image. Failing to focus on the proper image regions (incorrect
attention weight) leads to wrong answers. This is because
matrix multiplication between the image feature matrix and
the estimated attention vector, shown in Fig. 9, is fed into the
VQA classifier to predict the answer. As a result, a misleading
attention weight vector can manipulate matrix multiplication
and be responsible for the wrong prediction for a given image-
question pair. Thus, we include the visual mask highlighting
the relevant visual clues in the training process so that the
model understands where to direct more visual attention for a
given question in order to predict the answer.

To generate visual masks, we mask the irrelevant portions
of the images based on the questions. From the questions,
we first identify which objects or regions within images are
important for providing correct answers. Then we leverage
the annotation from semantic segmentation to mask images.
From semantically segmented images, we mask the irrelevant
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Fig. 8. Overview of the dataset. Each image is associated with the corresponding semantically segmented image and visual mask. These visual masks provide
supervision to the visual attention obtaining process, enabling our model to learn where it should focus.

objects or portions of images by replacing the pixel value
with [0, 0, 0], considering the RGB channel, and highlight the
relevant portions by replacing the pixel values with [1, 1, 1].
The process of obtaining the visual mask for each question
category is described below.

1) In Building Condition Recognition question category,
the answer will be either “yes or no.” For example,
if the question is “Is there any flooded buildings?” and
the corresponding ground-truth answer is “no,” then
the model needs to pay more attention to the image
regions related to non-flooded buildings, and if the
answer is “yes,” the model needs to focus on parts
of flooded buildings. These flooded buildings and non-
flooded buildings are categorized by the level of water
described in Section III. Thus, we generate the visual
mask by only highlighting the non-flooded buildings for
the first case and the flooded buildings for the second
case.

2) In Complex Counting, the model needs to count
attribute-specific buildings. To count the flooded build-
ings in an image, the model needs to pay attention to
the regions where flooded buildings are located. On the
other hand, to count non-flooded building models, the
model needs to pay higher attention to non-flooded
buildings in an image. As a result, if the question is
“How many flooded buildings are there in the image?”
we only highlight flooded buildings, and if the question
is “How many non-flooded buildings are there in the
image?” we only highlight non-flooded buildings. The
second example from the top in Fig. 8 shows the visual
mask of this question category.

3) In Simple Counting, we highlight all the buildings
regardless of attributes (e.g., flooded or non-flooded)
and mask the rest. The first example from the top
in Fig. 8 presents the visual mask of this question
category.
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4) In the Density Estimation question category, the model
needs to count the buildings, regardless of attributes,
to give an answer. As a result, the focus should be placed
on all the buildings depicted in the image. To generate
visual masks for this question category, we only high-
light all the buildings and mask the rest of the portions
of the images.

5) In Entire Image Condition Recognition question cat-
egory, two types of answers are involved. One type
of answers describes the situation, and another type
provides an answer in binary (“yes/no”) form. For
instance, answers (flooded or non-flooded) related to the
question “What is the overall condition of the image?”
provide situational information. On the other hand, the
answer to the question “Is the area mostly flooded?”
will be between “yes and no.” To generate visual masks
for this question category, we relied on the answers.
If the question is “What is the overall condition of the
image?” and the related answer is “flooded,” the model
should pay attention to flooded regions such as flooded
buildings or flooded roads. Thus, the visual mask in this
case is generated by highlighting the flooded buildings
and flooded road-related image regions. On the other
hand, if the question is “Is the area mostly flooded?”
and the corresponding answer is “no,” then we generate
the visual mask by masking out the whole image except
the non-flooded buildings and non-flooded road-related
regions, and vice versa.

6) In Risk Assessment question category, attention should
be given to the flooded buildings in the images to
provide answers. This is because the more flooded
buildings there are in a location, the more people living
in that area are in danger. Thus, we only highlight
the flooded buildings from images while generating the
visual masks.

7) Like Entire Image Condition Recognition, Road Condi-
tion Recognition includes two types of answers. To gen-
erate visual masks for this question category, we also
relied on the answers. If the answers are “flooded” and
“yes” for the questions “What is the condition of the
road?” and “Is the road easily accessible?” respectively,
we highlight the flooded roads and non-flooded roads.
Otherwise, we highlight the non-flooded and flooded
roads. The last image from the top in Fig. 8 represents
an example of the visual mask for this question category.

V. SAM-VQA MODEL

Due to the challenges involved in the drone imagery-based
VQA approach, described in Section I, visual attention weight
estimated without additional visual supervision fails to give
importance to the most relevant image portions. Therefore,
we propose to provide visual supervision through the visual
mask for better estimating visual attention weight on drone
images along with ground-truth answers. Fig. 9 represents
our proposed VQA model, in which we provide the visual
mask by masking the irrelevant image portions (i.e., regions
in the image that are not necessary to look at for predicting
an answer) for a given question. In this way, visual attention

weights can be learned by minimizing the distance between
the visual mask and estimated visual attention distribution
(namely, attention loss) along with categorical cross-entropy
loss between the ground-truth and predicted answers. It is
worth mentioning that answers in our VQA approach are
predicted in a classification manner. By learning this auxiliary
loss (attention loss), our proposed VQA approach is able to
learn to focus on the relevant image portions for a given
question. As a result, we enhance the performance of our
proposed VQA algorithm for post-disaster damage assessment
and obtain relevant visual attention maps. Though we train our
proposed VQA model with two losses, we only consider the
classification part to predict answers in the test phase. In this
section, we will discuss the components of our proposed SAM-
VQA model.

A. Problem Formulation

Let our dataset D has n number of sample data: {(I1,Q1,

GVM1), (I2,Q2,GVM2), . . . , (In,Qn,GVMn}. Here I, Q,
and GVM refer to the main image of interest, the correspond-
ing question, and visual mask, respectively. The objective of
VQA is to predict the answer â from a set of possible answers
A to the given question Q from the image I

â = arg max
a∈A

fθ (a|I ,Q ).

Here, f is the learnable model with θ ∈ 2 trainable
parameters.

B. Proposed VQA Framework

Our VQA framework depends on four important steps:
1) Visual Feature Extraction
2) Question Feature Extraction
3) Fusion of Visual and Question Features
4) Visual Attention Derivation
1) Step-1: Visual Feature Extraction: We first obtain the

image feature matrix fI , described in Fig. 9, from the last
pooling layer of the CNN (Resnet-152) architecture. At first,
we resize the RGB images to be 224 × 224 × 3 and then
extract image feature matrices of size 14 × 14 × 1024, where
14 × 14 (=196) is the number of grids in an image feature
matrix and 1024 is the dimension of each grid feature vector.
In another way, each grid in the feature matrix represents the
16 × 16 image region of an input image

fI = ResNet(I) ∈ Rm×n×d .

Here, m, n, and d represent the height, width, and number
of channels of the image feature matrix, respectively. In this
case, value for m, n and d are 14, 14, and 1024, respectively.

2) Step-2: Question Feature Extraction: For question-level
feature representation, two-layer LSTM has been taken into
account. To extract the semantic features of the question,
we obtained the feature vector fQ from the last cell of the
last layer of the LSTM. We considered the dimension of the
question feature vector to be 1024

fQ = LSTM(Q) ∈ Rd .

Here, d represents 1024 dimensional question feature vector.
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Fig. 9. Overview of our proposed SAM-VQA model. In this framework, we use Resnet-152 and a two-layer LSTM to obtain the image feature matrix and
question feature, respectively. We then consider MFB pooling to obtain a fine-grained multimodal representation. A softmax function is applied to that joint
representation to estimate attention weights from the images for given questions. Finally, we calculate two loss functions: one minimizes the distance between
the visual mask and the estimated visual attention weight, and the other minimizes the loss between the ground-truth answer and the predicted answer from
the VQA classifier.

Fig. 10. Workflow of MFB pooling technique.

3) Step-3: Fusion of Visual and Question Features: In
Fig. 9, we represent that each image grid feature vector
fIr ∈ Rd , where r ∈ {1, 2, . . . , mn} represents the grid
index, is fused with the corresponding text feature vector
fQ ∈ Rd using the concept of multimodal factorized bilinear
(MFB) pooling. MFB pooling is shown in Fig. 10. Given the
feature vectors from two modalities, image grid feature vector
fIr ∈ Rd and question feature vector fQ ∈ Rd , the fusion
strategy is divided into two stages. In the expanding process,
the image grid and question feature vectors are multiplied
element-wise, followed by a dropout layer as follows:

mr = f T
Ir ⊙ fQ ∈ Rd .

In the squeezing step, sum pooling is considered, followed
by power and ℓ2 normalization layers. ⊙ refers to element-
wise multiplication operation

vr = ℓ2(power(SumPool(mr ))) ∈ Rk

where the notation SumPool(x, w) denotes the sum pooling
operation over x using a 1-D, non-overlapping window of size
w. In this case, w = 2 is set. k is the new output dimension
after sum pooling which is 512 in our study. The power nor-
malization (mr ← sign(mr )|mr |

0.5) and ℓ2(mr ← mr/||mr ||)
layers are added after MFB output. M = (v1, v2, . . . , vmn) ∈

Rm×n×k is the final output matrix considering MFB operation
for all r .

4) Step-4: Visual Attention Derivation: The visual attention
derivation process is shown in Fig. 9. The Softmax function is
applied to the M, from Step-3, to estimate the visual attention
weight pr , r ∈ {1, 2, 3, . . . , mn}, for each mn image grids

from the image feature matrix fI . Let us define p ∈ Rmn

as the estimated attention weight vector. In another way, this
estimated visual attention weight vector can be defined by
ĜVM which is supervised by GVM in our proposed model.
Each value in the estimated attention weight vector refers
to the contribution of that corresponding image grid to the
prediction for a corresponding question. After the attention
layer, two branches are considered. One branch minimizes the
distance between the visual mask and estimated visual atten-
tion weight, namely Loss 2 and the second branch considers
the classification task of predicting answers. In the second
branch, each image grid feature vector fIr is multiplied by
the corresponding estimated attention weight pr to generate
a weighted feature matrix. The weighted feature vector (or
attention vector) y is then the sum of the weighted feature
matrix across each grid. This weighted feature vector is fed
into the classifier for the prediction by minimizing the Loss
1. We consider categorical cross-entropy loss as Loss 1 and
Kullback–Leibler divergence (KL loss) as Loss 2

y =
mn∑
r=1

fIr pr . (1)

Here, y is the attention vector calculated by taking the sum
of the weighted feature matrix over each grid r , where r ∈
{1, 2, 3, . . . , mn} represents the grid index.

C. Classification

Weighted feature vector y is summed up with fQ and fed
into the FC layer and finally, the output from the FC layer is
fed into the Softmax layer for answer prediction â

â = Softmax(FC(y + fQ)). (2)

D. Loss Function

The joint loss function for the proposed model is

L total = −

|A|∑
i=1

ai logP(ai |I,Q)+ βK L(GVM||ĜVM).

(3)
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Here, |A| is the length of possible answers. The first term
is categorical cross-entropy loss and the second term is KL
divergence loss. On the other side, GVM and ĜVM are
the visual mask and estimated visual attention weight vector,
respectively. β is the scaling parameter.

VI. RESULTS AND DISCUSSION

A. Model Comparison

Five baseline models are compared to our proposed model.
There are two types of models: attention-free (VIS + LSTM,
CNN + LSTM) and attention-based [Stacked Attention Net-
work (SAN), MFB Pooling with Co-Attention (MFB + CoAtt)].

1) Question-Only: In this experiment, we only provide
questions to predict answers. This model addresses the
effect of language bias in VQA.

2) VIS + LSTM: This is a simple, attention-free VQA
approach [43] where the image is fed into a convolu-
tional net (CNN) and the LSTM is considered to predict
the answer. In this algorithm, the LSTM is initialized
with the output from the CNN.

3) CNN + LSTM: In this attention-free approach [44],
image features are extracted by CNN, and question
features are extracted from the last cell of one-layer
LSTM. Finally, these features are fused by element-wise
multiplication and fed into the MLP layer to predict the
answer.

4) Stacked Attention Networks (SAN): SAN [1] is a state-of-
the-art attention-based model for VQA. In this approach,
multistep attention is considered to predict the answer.
In our experiment, we adopted the SAN model with two-
step attention.

5) MFB Pooling With Co-Attention (MFB + CoAtt):
This is another state-of-the-art model [2] that consid-
ers co-attention mechanisms to predict the answer. In
co-attention, both word-level attention from a question
and image-level attention are computed. However, prior
to guiding the image feature to derive attention over
image regions, question attention is derived. In the
fusion stage, image and question features are fused with
MFB pooling.

B. Implementation Details

We consider the batch size to be 32, and the adam optimizer
is used during the training phase. The learning rate for this
study is set to 0.001, and the learning rate of each parameter
group is decayed by a factor of 0.1 every five epochs. Image
feature is extracted from the Resnet-152 model, and a two-
layer LSTM model is chosen for question feature extraction.
Models are trained from scratch, meaning that we have not
considered pre-trained weights for image and text (e.g., Glove
embedding). We have considered 6000 image-question pairs
for the model training purposes, 1800 QA samples for the
validation, and finally 2680 samples for testing purposes.

C. Ablation Study

1) Effect of Different Visual Encoders: The visual encoder
plays an important role in VQA to extract meaningful image

Fig. 11. Performance of different visual encoders on model accuracy for the
validation data.

feature, which gets refined further after being fused with the
corresponding question feature. The more relevant features are
extracted, the more prediction of a model is rational. To inves-
tigate the effect of different visual encoders on model accuracy,
we evaluated three CNN algorithms, namely VGG-16, Resnet-
50, and Resnet-152. To compare the effects of different visual
encoders, we have considered three combinations: 1) visual
encoders with one-layer LSTM; 2) visual encoders with two-
layer LSTM; and 3) visual encoders with three-layer LSTM.

The comparison is shown in Fig. 11. From that figure,
we can see that there is less variation in prediction accu-
racy between different visual encoders. However, Resnet-152
performs better compared to VGG-16 and Resnet-50.

2) Effect of Different Language Encoders: To study the
effect of different language encoders, we have examined the
impact of one-layer, two-layer, and three-layer LSTM on
different visual encoders. From Fig. 12, we can see that the
performance of the two-layer LSTM is slightly better than that
of the one-layer and three-layer LSTM for all visual encoders.
For VGG-16, this difference is much higher compared to
Resnet-50 and Resnet-152.

3) Effect of Visual Supervision: To prove the acceptability
of our proposed visual supervision technique, we have con-
sidered several combinations of different visual and language
encoders: 1) VGG-16 with one-layer, two-layer, and three-
layer LSTMs; 2) Resnet-50 with one-layer, two-layer, and
three-layer LSTMs; and 3) Resnet-152 with one-layer, two-
layer, and three-layer LSTMs. These combinations are then
considered for two experimental settings: 1) train each of these
models without visual supervision and 2) train each of these
models with visual supervision. A comparison of the accuracy
on the validation data between models without supervision and
models with supervision is provided in Fig. 13. We found that,
in all combinations, the model with supervision outperformed
the model without supervision. This proves our hypothesis that
providing visual supervision in the training stage improves
accuracy. The highest accuracy from 30 epochs for all these
models on the validation dataset is represented in Table II.
Table III compares the accuracy between the models with
and without visual supervision on the test dataset. We can
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Fig. 12. Performance of different language encoders on model accuracy for the validation dataset. 1) The left figure depicts the effect of language encoders
when VGG-16 is used as an image encoder. 2) The middle figure shows the effect of language encoders while considering Resnet-50 as an image encoder.3)
The right figure shows the effect of language encoders while considering Resnet-152 as an image encoder.

Fig. 13. Effect of the proposed visual supervision technique of our SAM-VQA model on the validation dataset. Several combinations of visual and language
encoders are taken into consideration when comparing the effectiveness of visual supervision with that of not having visual supervision. In all combinations,
the model with visual supervision outperforms the model without visual supervision.

TABLE II
EFFECT OF VISUAL SUPERVISION ON THE VALIDATION DATA

identify that, in both cases, the model with visual supervision
outperforms the model without visual supervision.

D. Accuracy Assessment

Table IV shows the comparison of the model accuracy
between the baseline methods and our proposed method.

TABLE III
EFFECT OF VISUAL SUPERVISION ON THE TEST DATA

We consider top-1 accuracy in our study. From the table,
we can see that our proposed SAM-VQA outperforms all
the baseline methods. The overall accuracy of our model
is 0.81. This accuracy is 8% higher than the Question-only
model. Question-only model shows that the model can predict
the answer with higher accuracy from the question itself
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TABLE IV
ACCURACY COMPARISON BETWEEN SAM-VQA AND OTHER BASELINE MODELS ON THE TEST DATASET FOR DIFFERENT QUESTION CATEGORIES

Fig. 14. Comparison of the visual attention map of the proposed SAM-VQA model with other baseline models for given image-question pairs. Correct
prediction is indicated by green, and wrong prediction is indicated by the red word color. The higher the attention, the darker the transition from a green
color to a yellow color in the image.

for Entire Image Condition Recognition and Risk Assessment
question categories. This is due to the imbalanced distribu-
tion of answers from these two categories. Fig. 3 depicts

this imbalanced distribution. In this experiment, we compare
our model with two attention-free baseline models, namely
VIS + LSTM [43] and CNN + LSTM [44]. Our model
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TABLE V
COMPARISON OF MSE BETWEEN THE ESTIMATED VISUAL ATTENTION

WEIGHT AND VISUAL MASK ON THE TEST DATASET

outperforms those two models by a larger margin. The capabil-
ity of our proposed model can be identified when we compare
it with state-of-the-art attention-based models. The overall
accuracy of our proposed model is 2% and 1% higher than
the MFB + CoAtt [2] and SAN [1] models, respectively.

From the results mentioned in Table IV, we understand that
providing correct answers regarding the counting and Density
Estimation question categories are very challenging. However,
our SAM-VQA model is more accurate in providing the correct
answers for these categories, while other baseline models
struggle a lot. Our proposed model exceeds the accuracy by
a margin of 5% and 4% in Simple and Complex Counting
question categories, respectively compared to the most com-
petitive SAN model. Based on the results from the Simple
and the Complex counting question categories, we can further
interpret that by adding visual supervision in the training
phase, the proposed model is able to differentiate between
flooded and non-flooded buildings more accurately. On the
other hand, the SAM-VQA model outperforms in the Density
Estimation question category by 6% compare to the attention-
based baseline models. For the rest of the question categories,
our SAM-VQA model also outperforms other baseline models.

E. Quality of Derived Visual Attention Map

The main purpose of our proposed SAM-VQA approach
is to obtain relevant visual attentions from given questions.
Proper attention makes the VQA model trustworthy. Our
proposed VQA pipeline is capable of drawing relevant visual
attention. Fig. 14 visually proves that attention in our model
is much more relevant compared with the other two attention-
based VQA approaches, namely SAN and MFB with Co-
Attention. To answer the question “What is the level of
building density in this image?” from the top image in Fig. 14,
a trustworthy model needs to focus on the building regions
in the image. Our proposed SAM-VQA model highlights that
image portions properly, whereas the SAN model fails to
provide that proper visual attention. However, predictions for
that image-question pair from all three models are correct. For
Complex Counting question, the second image from the top in
Fig. 14, our proposed model perfectly provides the relevant
visual attention, buildings in this case, whereas the atten-
tion from MFB with Co-Attention is sparse. Although the
predictions are incorrect for all three models, our proposed
SAM-VQA model predicts the building number with the least
amount of error compared to the other two approaches. In the
last example from Fig. 14, we further see that our model
can identify the road from the image and provide the correct
prediction to the question related with road, whereas the other
two models predict the answer correctly but fail to provide
relevant visual attention. To have a quantitative analysis of

the visual attention map, we consider the mean squared error
(MSE) between the visual mask and the estimated visual
attention vector from our proposed model. In Table V, we see
that our proposed model achieves a lower MSE compared to
the baseline model (model without visual supervision). Based
on the quantitative and qualitative results presented above,
we can conclude that supervising visual attention during the
training phase improves the accuracy and reliability of our
proposed model.

F. Language Bias

A major issue with VQA models is language bias, which
occurs when the prediction of the model relies mainly on the
question rather than the image. For each question in the test
set, we randomly selected an image to examine the language
bias in our model. In the test set, we find an overall accuracy
of 77.10%. This slight decline in accuracy from 81% in the
test data suggests that there is less language bias and the model
mostly extracts information from images based on questions.

VII. FUTURE WORK

In this study, we propose a novel VQA framework on remote
sensing images to assess post-disaster damage. For the objec-
tive of visual supervision, we manually generate the visual
mask. Manual annotation is time-consuming and expensive,
so our future work focuses on developing a supervision system
that eliminates the need for manual annotation.

VIII. CONCLUSION

In this study, we present the concept of VQA for post-
disaster damage assessment purposes. We highlight the impor-
tance of the VQA task in damage assessment after any natural
disaster. From this study, we provide a VQA dataset in the con-
text of post-disaster damage assessment and develop a novel
SAM-VQA algorithm. Our experiment demonstrated that our
proposed model is more accurate in providing answers to
the questions than the state-of-the-art attention-based baseline
models. Finally, we showed that providing visual supervision
substantially increases the model’s reliability by obtaining
proper visual attention that is relevant to answer a question.
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