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Location-aware Adaptive Normalization: A Deep
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Abstract—Climate change is expected to intensify and increase
extreme events in the weather cycle. Since this has a significant
impact on various sectors of our life, recent works are con-
cerned with identifying and predicting such extreme events from
Earth observations. With respect to wildfire danger forecasting,
previous deep learning approaches duplicate static variables
along the time dimension and neglect the intrinsic differences
between static and dynamic variables. Furthermore, most existing
multi-branch architectures lose the interconnections between the
branches during the feature learning stage. To address these
issues, this paper proposes a 2D/3D two-branch convolutional
neural network (CNN) with a Location-aware Adaptive Normal-
ization layer (LOAN). Using LOAN as a building block, we can
modulate the dynamic features conditional on their geographical
locations. Thus, our approach considers feature properties as a
unified yet compound 2D/3D model. Besides, we propose using
the sinusoidal-based encoding of the day of the year to provide
the model with explicit temporal information about the target
day within the year. Our experimental results show a better
performance of our approach than other baselines on the chal-
lenging FireCube dataset. The results show that location-aware
adaptive feature normalization is a promising technique to learn
the relation between dynamic variables and their geographic
locations, which is highly relevant for areas where remote sensing
data builds the basis for analysis. The source code is available
at https://github.com/HakamShams/LOAN.

Index Terms—Machine learning, remote sensing, climate sci-
ence, wildfire, convolutional neural network, adaptive normaliza-
tion, time encoding.

I. INTRODUCTION

THERE is a general expectation that weather and cli-
mate extremes will change their patterns and frequencies

in the future [1]–[4]. This is particularly the case for the
Mediterranean region, which has been identified as a hot
spot for climatic changes [5]–[7]. Because extreme weather
events can impose short- and long-term risks in our Earth
system, predicting these risks such as droughts, windstorms,
and wildfires has become recently more relevant. In particular,
wildfire forecasting constitutes one of the open challenges for
risk assessment and emergency response [8]–[10]. Wildfire
forecasting refers to the task of fire-susceptibility mapping
using key remote sensing, meteorological, and anthropogenic
variables [11]. Building an integrated modeling system of the
Earth should also consider wildfire events to comprehend the
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origin of past patterns better and predict future ones [12].
Unlike typical prediction tasks, understanding when weather
conditions have a high tendency to cause fire events addresses
more complexities; among these are the stochastic nature of
fire events [13] and fire drivers, which are time-dependent and
inter-correlated across variables [14]. Moreover, the prediction
model should consider difficulties like a high false positive
error rate, uncertainty, and class imbalance.

In recent years, many works leveraged classical machine
learning approaches to solve the task [11]. More recently, deep
learning methods [15] have become popular since they can
handle large multivariate datasets more efficiently and are able
to learn highly complex relationships between observations
and the predicted outcome. In the context of wildfire danger
forecasting, Prapas et al. [16] and Kondylatos et al. [13]
proposed to use recurrent neural networks in combination with
2D convolutions to exploit both temporal and spatial context.
These approaches, however, do not distinguish between the
different input variables. Static variables like elevation, which
barely change over time, are simply copied and concatenated
with dynamic variables like surface temperature. This results
not only in a highly redundant input to the network, but it
also neglects strong causal effects between static and dynamic
variables. For instance, the surface temperature strongly de-
pends on the geographical location, which is described by
static variables.

In this work, we thus propose a convolutional neural net-
work for wildfire danger forecasting that handles static and
dynamic variables differently. Since the static variables do not
change over time, they are processed by a branch consisting
of 2D convolutions while the dynamic variables are processed
by the second branch with 3D convolutions as illustrated
in Fig. 1. To address the causal effect of static variables
on dynamic variables, we introduce feature modulation for
the dynamic variables where the modulation parameters are
generated dynamically and conditionally on the geographical
location. We thus name this method Location-aware Adaptive
Normalization (LOAN). In addition, we encode the date of
the forecasting during a year by an absolute time encoding
based on the sinusoidal encoding [17]. Both LOAN and the
time encoding can be implemented as plugin layers in different
deep learning architectures. We view our model as a generic
architecture that can be used for other time-dependent fore-
casting tasks with static and dynamic variables. We conduct
extensive experiments on the FireCube dataset [18] where our
approach outperforms previous works. We achieve an overall
improvement of up to 5.72% in precision, 3.24% in F1-
score, 0.63% in AUROC, and 1.15% in OA on the test set.
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The rest of this paper is organized as follows. Section II
reviews the related literature. Section III provides information
about the used dataset. The proposed method is described in
detail in Section IV. The experimental results and ablation
study are provided in Section V and Section VI, respectively.
Finally, conclusions and outlook are given in Section VII.

II. RELATED WORKS

A. Wildfire Danger Forecasting

Wildfire forecasting or wildfire-susceptibility mapping from
remote sensing and Earth observations data is a very important
topic for wildfire management [11]. We briefly review some
prior related works in this direction. Iban et al. [19], Pham
et al. [20], and Gholami et al. [21] relied on traditional
machine learning approaches to generate susceptibility maps.
Shang et al. [22] and Mitsopoulos and Mallinis [23] utilized
Random Forests classifiers (RF). In their works, they studied
the importance of biotic and abiotic predictors for wildfire
forecasting. Jiang et al. [24] proposed a deep learning approach
based on a Multi-Layer Perceptron (MLP) and included a
comparison with traditional machine learning algorithms. In
Le et al. [25], a similar MLP-based approach was presented
to generate a forest fire danger map. Zhang et al. [26] used a
convolutional neural network (CNN) and extended their work
later to predict fire susceptibility at the global level [27]. Other
works with CNN were conducted in Bjånes et al. [28] and
Bergado et al. [29]. Furthermore, Huot et al. [30] approached
the problem as a scene classification task using U-Net models
to predict wildfire spreading. Their approach operates directly
on the whole scene. A similar approach based on a U-Net++
model for global wildfire forecasting was proposed in Prapas
et al. [31]. Yoon and Voulgaris [32] presented an approach
that relies on a recurrent network with Gated Recurrent
Units (GRU) to model past observations and on a CNN
to predict wildfire probability maps for multiple time steps.
More recently, Prapas et al. [16] and Kondylatos et al. [13]
proposed to use LSTM-based (Long-Short Term Memory)
approaches. They exploited both temporal and spatio-temporal
context by applying recurrent LSTM and ConvLSTM models.
They did not consider the whole scene at once but rather the
classification of one pixel at a time (pixel-level).

Unlike these works, we do not treat all observation variables
in the same way, but we propose a deep learning model that
handles different types of variables in separated 2D and 3D
CNN branches. In contrast to a ConvLSTM, which models
spatial and temporal relations separately, a 3D CNN models
spatio-temporal relations jointly. We assume that the dataset
contains static and dynamic variables, which we argue is
the case for most datasets. Similar to Prapas et al. [16] and
Kondylatos et al. [13], we also formulate the problem as pixel-
level classification taking into account the spatio-temporal
local context around the target pixel.

B. Multi-Branch Neural Networks

When deep learning is applied to potentially multi-source
remote sensing-based Earth observation data, multi-branch
neural networks are a commonly used framework. This is

mainly because such networks enrich representation learning
and provide discriminative learning perspectives of the input
variables [33]. In addition, an important aspect of the multi-
branch design is the capability to adapt some parts of the
model to a specific type of input. The general framework
generates features from each branch and fuses these features
in the network to obtain a unified feature vector. This fused
representation is used as input to the subsequent layers. In
Gaetano et al. [34], a two-branch 2D CNN network was pro-
posed to handle panchromatic information along with a multi-
spectral one for image classification. Tan et al. [35] reduced
the depth of a semantic segmentation classifier by applying
consecutive blocks, each containing three CNN branches. A
similar objective can be found in Zhao et al. [33], where
the network complexity was reduced via weight sharing and
self-distillation (SD) embedding. In this way, only the main
branch is used during inference, which inherits the knowledge
of trained subbranches and has a close performance to an
ensemble model. For hyperspectral image classification, Xu
et al. [36] introduced a model called Spectral–Spatial Unified
Network (SSUN). In their model, spectral features are learned
by a grouping-based LSTM, and spatial features are learned by
a 2D CNN. Shen et al. [37] used separated spectral and spatial
convolutional branches for hyperspectral input (S2CDELM).
They based their framework on the extreme learning machine
(ELM). Unlike common backpropagation algorithms, they
used a single hidden layer feed-forward model. A multi-
branch architecture was also explored for image fusion. Liu
et al. [38] proposed a two-stream CNN called (StfNet). They
investigated the task of spatio-temporal image fusion. Their
network takes a coarse image input along with its neighboring
images to predict the reconstructed fine image. Some works
adapted a multi-branch architecture to construct a multi-
scale feature vector. In Gan et al. [39], a dual-branch CNN
with different filter kernel sizes was used as an autoencoder.
Thus, the input image could be processed at different scales.
Tang et al. [40] proposed a multi-scale Gaussian pyramid to
handle hyperspectral input. They used the Gaussian pyramid
to obtain multi-scale images which are then processed by
ResNet modules [41]. In this way, spatial features can be
learned at different scales. They further used a second branch,
which performs a discrete wavelet transform on the spectral
input followed by an LSTM module [42]. The spatial and
spectral features are then fused and processed by an MLP
to obtain the final classification result. For short-term multi-
temporal image classification, Zheng et al. [43] addressed the
task through a Multi-temporal Deep Fusion Network (MDFN).
In their framework, the LSTM-based branch is used to learn
temporal-spectral features. At the same time, temporal-spatial
and spectral-spatial information is learned via a joint 3D-2D
CNN with two branches. Furthermore, some works employed
attention mechanisms with multi-branch architectures [44]–
[46]. When attention is applied, it drives the model to focus
more on regions of interest. The former described methods
[34]–[40], [43], [44] except of Zhao et al. [33], Zhu et al. [45],
and Deng et al. [46] did not consider linking information
between branches during the feature learning stage. This limits
the gradient flow and disentangles the correlations between the
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Fig. 1. Overview of the proposed approach. Our network handles static and dynamic variables by two branches. For the static branch, we use 2D convolutions
whereas we use 3D convolutions for the dynamic branch since the dynamic variables change over time. Since dynamic variables like surface temperature
strongly depend on static variables like elevation, we modulate the dynamic features conditioned on the static features at two blocks (LOAN). This makes the
model location-aware since the static variables contain geographic data like land cover. The feature vector Xd from the dynamic branch is combined with a
weighted temporal encoding vector Xτ before it is concatenated with the static feature vector Xs. The concatenated vector serves as input to fully connected
layers that predict the probability of a wildfire.

learned features.
This paper proposes an architecture composed of two CNN

branches for a forecasting task. A 2D branch is used to learn
spatial features from static variables. At the same time, a 3D
branch is used to learn spatio-temporal features from dynamic
variables, which vary along the input temporal dimension. The
branches are further linked via adaptive modulation layers
to model the causal effects of static variables on dynamic
variables.

C. Conditional Normalization

Since the introduction of normalization techniques in deep
learning, they became a basic building block in many state-
of-the-art models. Common normalization methods include
batch normalization [47], group normalization [48], instance
normalization [49], and layer normalization [50]. It has been
shown empirically that normalization layers help with model
optimization and regularization. Through normalization layers,
the activation maps inside the model are normalized to follow a
normal distribution with zero mean. After that, the normalized
activation maps are modulated or denormalized by learnable
affine transformation parameters. These parameters vary across
channels and are learned based on the running training statis-
tics together with the model parameters. Therefore, such a
normalization method is called unconditional. Compared to
popular unconditional normalizations, there exist conditional
normalization techniques which aim to learn affine parameters
conditionally on external input. In the field of computer vision,
conditional normalization is often used for image synthesis
and style transformation [51]–[64]. More recently, Marı́n and
Escalera [65] adapted the conditional normalization from
Wang et al. [52] and Park et al. [51] to generate high-resolution
satellite images. We use the conditional normalization in a

very different way than [51], [52], [65]. While these works
focus on synthesizing an image using the segmentation map
as conditional input, we aim to modulate dynamic features
conditioned on static features.

D. Temporal Positional Encoding

A plethora of studies exist about temporal modeling in
remote sensing [66]–[69]. Recently, the self-attention model,
also known as Transformer and first presented by Vaswani
et al. [17] for natural language processing, has become a
natural choice to handle sequential data, which includes a
positional encoding. In the field of remote sensing, many
works showed the benefits of adapting positional encoding
for time-dependent image classification (Garnot et al. [70],
Garnot and Landrieu [71]), panoptic segmentation (Garnot and
Landrieu [72]), and image generation (Dress et al. [73]). In
their work, each image was given an encoded time vector
according to its position with respect to a reference point,
i.e., the first acquisition time step. Nyborg et al. [74] used
the calendar time (day of the year) to provide positional
information within the sequence. They also proposed to learn
or estimate time shifts between geographically distant regions
to enhance the generalization further. In another work, Nyborg
et al. [75] used the thermal time, which is obtained by
accumulating daily average temperatures over the growing
season, for crop classification. In general, transformer-based
approaches require the positional encoding since the temporal
information is otherwise lost within a transformer model.
While 3D CNNs consider the temporal order of the input such
that a positional encoding is not necessary, we show in this
work that adding an absolute temporal encoding is also useful
for time-dependent forecasting.
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III. DATASET

There are only very few publically available datasets for
wildfire forecasting and they differ significantly in the obser-
vational variables, the spatial and temporal resolutions, and the
task that needs to be addressed. A related dataset is the Next
Day Wildfire Spread dataset [30] where the task is to predict
wildfire spread. It is formulated as a scene classification task
and not as a pixel-wise wildfire forecasting task as it is
proposed in the FireCube dataset [18] and addressed in this
work. The FireCube dataset was first published in Prapas
et al. [16] and extended later in Kondylatos et al. [13]. It
includes multivariate spatio-temporal data streams with 90
variables from the years 2009-2021 with a resolution of
1 km×1 km×1 day. The area is 1253 km×983 km, covering
parts of the Eastern Mediterranean. The observational variables
include meteorological data [76], satellite-derived products
[77], [78], topographic features [79], human-related activities
[80], and historical fire records [81], [82]. In addition, Coper-
nicus Corine Land Cover (CLC) [83] and Fire Weather Index
(FWI) [84] are provided. The target is to predict for each pixel
if a wildfire will ignite and become large (> 0.3 km2) in the
next day. The task is equivalent to binary classification, where
the positive class represents a wildfire event.

Since wildfire forecasting is essentially an imbalanced
classification task, the authors of [13] extracted samples as
follows: For a target day T+1, the static variables form a
patch of 25 km × 25 km centered around the target pixel
at day T . In contrast, the dynamic variables consist of
25 km × 25 km × 10 days time series of observations from
days T−9 until T . For each positive sample, a few negative
samples from different locations are sampled. Although the
negatives are from different locations, they are sampled from
regions that have a similar land cover distribution as the
positive samples to make the task more difficult.

Overall the dataset includes 71471 samples for training
(13518 positives and 57953 negatives for the years 2009-
2018), 6430 samples for validation (1300 positives and 5130
negatives for the year 2019) and 42820 samples for testing
(1228 positives and 4860 negatives for the year 2020 and 4407
positives and 32325 negatives for the year 2021). The year
2021 in the test set contains an extreme wildfire season in
Greece [13], [85]. The extracted samples are available in [86].

In this paper, we use from the described dataset the same
variables as in Kondylatos et al. [13]. This includes the
following:

• 15 static variables:
– Digital elevation model (DEM) and Slope [79].
– Distance to roads, distance to waterway, and popu-

lation density [80].
– Copernicus Corine Land Cover variables represent-

ing the fractions of classes for each pixel. This gives
10 variables per pixel [83].

• 10 dynamic variables:
– Day and night land surface temperature [78].
– Normalized difference vegetation index (NDVI) [77].
– Soil moisture index [87].

– Maximum 2m temperature, maximum wind speed,
minimum relative humidity, total precipitation, max-
imum 2m dew point temperature, and maximum
surface pressure [76].

IV. METHODOLOGY

Problem formulation. Given a multivariate spatio-temporal
data cube C({V, T,W,H}), where H and W are the spatial
extensions of the cube, T is the temporal extension in the
past for the time series 1, 2, . . . , T , and V is the number of
variables (static and dynamic), our aim is to learn a mapping
function f approximated by a neural network that can predict
the probability YT+1 ∈ [0, 1] of a wildfire event to start at the
center of W ×H for the target day T+1:

f : C({V, T,W,H})→ YT+1 . (1)

To achieve this, we propose a spatio-temporal 2D/3D CNN
with two branches as illustrated in Fig. 1. First, the network
design is introduced in Section IV-A. Then, the Location-
aware Adaptive Normalization layer (LOAN), which is the
core of our work is explained in detail in Section IV-B. Finally,
Section IV-C describes the integration of the absolute temporal
encoding (TE) into the model.

A. 2D/3D Two-Branch CNN

As shown in Fig. 1, our network consists of two
branches that process dynamic and static variables, respec-
tively. We denote the data cube with dynamic variables by
C({Vd, T,W,H}) and the data cube with static variables by
C({Vs,W,H}). As in previous works, we normalize the input
channel-wise to the range [0, 1]. Since the static variables do
not have a time component, we use 2D convolutions for the
static branch and 3D convolutions for the dynamic branch.
More in detail:

Dynamic branch. The dynamic branch takes the variables
Vd which vary over time as input. It consists of 3 blocks; each
block has a 3D convolution with a 3× 3 kernel size followed
by a ReLU activation function and a 3D max pooling layer.
To reduce overfitting, we use global average pooling (GAP)
[88] at the end of the last block. We denote the feature vector
learned from this branch as Xd ∈ R256.

Static branch. In parallel to the dynamic branch, the static
branch has a similar architecture. However, 2D convolutions
are used instead of 3D ones. We denote the feature vector
learned from this branch as Xs ∈ R128. Note that the
dimensionality of the static feature vector is lower than the
dimensionality of the dynamic feature vector since the input
data cube is smaller.

In a nutshell, the dynamic- and static branch are two
functions fd and fs, respectively:

fd : C({Vd, T,W,H})→ Xd , (2)
fs : C({Vs,W,H})→ Xs . (3)

For the dynamic feature vector we add an absolute temporal
encoding Xτ , which will be described in Section IV-C. The
two feature vectors are then concatenated and fed into 4
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classification layers with 1D convolutions of kernel size 1.
The layers reduce the dimensionality from 384 to 256, 128,
32, and 2. To reduce overfitting, we use dropout with a dropout
probability p = 0.5 for the 1D convolutional layers except the
last two layers. Finally, a softmax activation is used after the
last classification layer to predict the probability of a wildfire.
In addition, we use a batch normalization layer [47] for the 1st

block of each branch. More implementation details are given
in Section V.

For training, we use the binary cross entropy as loss
function:

− 1

N

N∑
n=1

[
Ŷ

(n)
T+1 log(Y

(n)
T+1)+(1−Ŷ (n)

T+1) log(1−Y
(n)
T+1)

]
, (4)

where N denotes the batch size and Ŷ (n)
T+1 ∈ {0, 1} is the true

label for sample n.
In the following, we discuss the Location-Aware Adaptive

Normalization (LOAN) that modulates the dynamic features
based on the static features and the already mentioned absolute
temporal encoding.

B. Location-Aware Adaptive Normalization (LOAN)

In general, dynamic variables are correlated with the geo-
graphic location, i.e., temperature and pressure change with
elevation, soil moisture and NDVI vary with land cover, and
humidity is correlated with some static variables like the
waterway distance. Since the dynamic variables depend on
the static variables and not vice versa, we aim to exploit
this knowledge in our approach. This is done by learning
to normalize the dynamic features based on the location-
dependent static features. To this end, we propose a condi-
tional normalization technique for remote sensing data called
Location-aware Adaptive Normalization (LOAN).

We first describe a batch-normalization [47] where the
activation map is normalized before it is modulated by scale
γ and bias β. Let zdi ∈ RN×Ki×Di×W i×Hi

be an activation
map in the i-th block of the dynamic branch and zs

i ∈
RN×Ki×W i×Hi

be an activation map of the corresponding
i-th block in the static branch, where Ki denotes the number
of channels and Di, W i and Hi denote the depth, width,
and height of the activation map zi, respectively. Using the
indices n ∈ {1, . . . , N}, k ∈ {1, . . . ,Ki}, t ∈ {1, . . . , Di},
w ∈ {1, . . . ,W i}, and h ∈ {1, . . . ,Hi}, the normalization of
the dynamic branch is performed by the following equation:(

zd
i
(n,k,t,w,h) − µk

σk

)
. γk + βk , (5)

where zdi(n,k,t,w,h) is the activation before the normalization,
µk and σk are the computed mean and standard deviation of
channel k, i.e., computed over the tensor Di ×W i ×Hi and
all samples n in the batch, and γk and σk are the learnable
modulation parameters.

In our case, we aim to learn a modulation of the dynamic
features zdi(n,k,t,w,h) at the i-th block where the modulation

Fig. 2. Illustration of the Location-aware Adaptive Normalization layer
(LOAN) when using the conditional map from the static branch. The condi-
tional map of the static branch and the activation map of the dynamic branch
have the same N , Ki, W i, and Hi dimensions. BatchNorm denotes a batch
normalization layer. 3×3-Conv-Ki denotes a convolution layer with a kernel
size of 3× 3 and Ki output channels.

parameters γsi(n,k,w,h) and βs
i
(n,k,w,h) depend on the corre-

sponding static features zsi(n,k,w,h):

zd
i
(n,k,t,w,h) . γs

i
(n,k,w,h) + βs

i
(n,k,w,h) . (6)

In contrast to (5), the modulation parameters γsi(n,k,w,h) and
βs
i
(n,k,w,h) vary with respect to sample n in the batch, the

location (w, h), and across channel k, but they are constant
over time t. Furthermore, they are conditioned on the static
features zs

i. We thus call zsi the conditional map for the
modulation.

The way how γs
i
(n,k,w,h) and βs

i
(n,k,w,h) are computed

is illustrated in Fig. 2. First, the conditional map zs
i is

normalized channel-wise as following:

ẑs
i
(n,k,w,h) =

zs
i
(n,k,w,h) − µk

i

σki
, (7)

where

µk
i =

1

NW iHi

N∑
n=1

W i∑
w=1

Hi∑
h=1

zs
i
(n,k,w,h) , (8)

σk
i =

√√√√ 1

NW iHi

N∑
n=1

W i∑
w=1

Hi∑
h=1

(zsi(n,k,w,h)−µki)
2
. (9)

Afterward, ẑsi(n,k,w,h) is projected by two convolutional
layers with Ki filters to compute γsi(n,k,w,h) and βsi(n,k,w,h).
In our implementation, these modulation parameters are then
duplicated along the temporal dimension to match the depth
Di of zdi such that (6) can be computed.

We add the Location-aware Adaptive Normalization layer
(LOAN) in the first two blocks as shown in Fig. 1. The
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Fig. 3. Illustration of the Location-aware Adaptive Normalization layer
(LOAN) when using C static variables directly for modulation. In this case,
there is a mismatch between the dimensions of the conditional map and the
activation maps of the dynamic branch at the i-th block. To adjust for the
spatial resolution, we resize the conditional map using nearest-neighbor down-
sampling to match the resolution of the activation map from the dynamic
branch. The convolution layer takes C channels as input and generates an
output with Ki channels.

activation maps of the dynamic branch are normalized only
in the 1st block and modulated in both the 1st and 2nd blocks.
The impact of the blocks where the LOAN layer is added is
evaluated in Table VI.

In the experimental section, we also evaluate a variant of
LOAN that is not conditioned on the intermediate features
of the static branch as shown in Figs. 1 and 2, but on the
static variables directly as shown in Fig. 3. In this case, the
conditional map has different spatial dimensions and number
of channels compared to the features in the dynamic branch,
i.e., the conditional maps consist of C variables and have
W s ×Hs spatial dimensions. In this respect, the conditional
map (W s×Hs) is first resized to match the spatial dimensions
(W i × Hi) of the activation map from the dynamic branch.
We use the nearest-neighbor method for the down-sampling.
The resized conditional map is then fed into a convolutional
layer with 3×3 kernel size to double the number of channels,
i.e., 2 × C. Finally, as in the previous version of LOAN,
the conditional map is normalized, projected by two convo-
lutional layers, and duplicated along the temporal dimension
to compute γsi(n,k,w,h) and βsi(n,k,w,h). The impact of different
conditional maps using the variants of LOAN is evaluated in
Table IV.

C. Absolute Temporal Encoding (TE)

Some extreme events in the climate model have a dependent
relation on time [14], [89]. This is also the case for the
FireCube dataset [18] where wildfire events vary from month
to month and occur more frequently in the summer time as

Fig. 4. Illustration of how the absolute temporal encoding is added in the
model. The day of year τ is encoded into a vector Xτ and each element is
weighted by the learned weight vector W. The weighted vector is then added
to the dynamic feature vector Xd.

shown in Fig. 5. So far, the network does not consider an
absolute time like the day of the year. Instead, for any forecast
day T+1, the last 10 days are used as observations but the
network does not have the information what day during the
year T is.

As shown in Fig. 1, we add this information to the dy-
namic branch before we concatenate the static and dynamic
features. To encode the day of the year, we use the standard
fixed sinusoidal-based encoding by Vaswani et al. [17]. We
pre-compute for each day of the year τ∈ [0, 365]1, which
is extracted from T , the absolute temporal encoding vector
Xτ ∈ R256:

Xτ (2j) = sin(τ/102j/256) , (10)

Xτ (2j+1) = cos (τ/102j/256) , (11)

where j is the embedding dimension. Each even dimension
results from a sine function, while each odd dimension results
from a cosine function. This allows τ to have a smooth and
yet unique encoding for every time step, i.e., each day of a
year. Note that the vector has the same size as Xd.

In order to add the absolute time encoding vector Xτ to the
dynamic feature vector Xd, we weight each element of the
vector by a learnable weight vector W ∈ R256:

Xd + W ◦ Xτ , (12)

where ◦ denotes the Hadamard product, i.e., element-wise
multiplication. Fig. 4 illustrates how the temporal embedding
is added to the model.

V. EXPERIMENTAL RESULTS AND ANALYSIS

Implementation Details. The network is trained with the
binary cross entropy loss (4) using the Pytorch framework
[90] with a learning rate 0.00003 and the Adam optimizer
(β1 = 0.9, β2 = 0.999) [91] with a weight decay 0.02. We
use a batch size of N = 256 and train the network for 40

1We consider February 29 for the encoding.
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Fig. 5. Distribution of the wildfire events per day between 06/03/2009 and
29/08/2021 (FireCube dataset).

epochs. All models were trained on a single NVIDIA GeForce
RTX 3090 GPU.

Performance Metrics. As described in Section III, we use
the FireCube dataset [18]. We follow the same protocol for
quantitative comparison as in Prapas et al. [16] and Kondylatos
et al. [13]. The evaluation metrics are precision, recall, and
F1-score, calculated for the positive class that represents a
wildfire event. In addition, we report true positives (TP), false
positives (FP), true negatives (TN), and false negatives (FN).
Moreover, we provide the overall accuracy (OA) and the area
under the receiver operating characteristic curve (AUROC) as
evaluation metrics. OA is the accuracy obtained on all negative
and positive samples in the test set. The AUROC describes the
true positive rate (TPR) against the false positive rate (FPR)
within multiple thresholds in one value.

A. Comparison with Baselines

We compare our approach to the approaches that have been
evaluated on the described dataset in Kondylatos et al. [13].
This includes two deep learning models, namely LSTM [42]
and ConvLSTM [66], and two classical machine learning
classifiers, namely Random Forests (RF) [94] and XGBoost
[95]. For further details regarding the architectures and hyper-
parameters of the models, we refer to the work of Kondylatos
et al. [13]. In order to demonstrate the benefit of treating
static and dynamic variables differently, we also compare
with a one-branch 3D CNN where we duplicate the static
variables along the temporal dimension and concatenate them
together with the dynamic variables to form a single data cube.
In addition, we compare to the recent transformer models
TimeSformer [92] and Video SwinTransformer [93], which
use space-time attention. As mentioned in Subsection II-D,
vision transformers are based on a self-attention mechanism
to model spatio-temporal dependencies. Compared to CNNs,
transformers have less inductive bias and need much more
computational resources for training. To the best of our

knowledge, no prior work has done a systematic study about
the performance of video vision transformers for wildfire
forecasting.

To ensure a fair comparison, all baselines were re-
implemented and trained on the same samples with a fixed
random seed. We do not use any augmentation technique. The
quantitative results of our experiments are provided in Table
I. The results of the proposed 2D/3D CNN are shown with
and without absolute temporal encoding (TE).

We can observe that the proposed 2D/3D CNN outperforms
the other methods for most metrics, particularly FP, TN,
Precision, F1-score, and OA, on the validation and testing
sets. SwinTransformer and ConvLSTM achieve a slightly
higher AUROC for 2019 and 2020, respectively. LSTM and
SwinTransformer achieve a higher recall, but at the cost of a
very low precision. In comparison with other deep learning
methods, LSTM and SwinTransformer have even the highest
number of false positives for all years. The main weakness
of LSTM lies in the fact that it does not consider the spatial
context, while large models like SwinTransformer are prone
to overfitting, which results in a relatively poor performance
for 2020. RF and XGBoost have the same disadvantage as
LSTM, but even a weaker temporal model and thus perform
worse than LSTM. Most interesting is the comparison to
3D CNN since it uses the same 3D CNN structure but
only one branch, i.e., it treats static variables like dynamic
variables. The results show that the proposed approach with
two branches outperforms the single-branch architecture for
all metrics and all years. This demonstrates the importance
of treating static variables differently than dynamic variables.
Adding the absolute temporal encoding (TE) to the model
substantially reduces FP at the cost of decreasing TP. This
is also reflected in the precision and recall.

In Table II, we present additional experimental results
alongside the memory footprint as the number of parame-
ters (# Params), the estimated multiply-accumulate operations
(multiply-adds) (MMACs), and the expected inference time,
which is estimated as samples per millisecond (# SPmS). The
performance metrics are calculated on both testing years 2020-
2021 as one set. Since the LOAN layers increase the amount
of parameters of the 2D/3D CNN, we report the results of the
one-branch 3D CNN using 323k and 499k parameters. The
smaller 3D CNN has about the same amount of parameters
as the 2D/3D CNN without LOAN, whereas the larger 3D
CNN has more parameters than the proposed model. Due
to the lack of a spatial modeling, LSTM has the fewest
parameters and is the fastest, but the precision is very low.
ConvLSTM, the small one-branch 3D CNN, and 2D/3D CNN
without LOAN and TE, which consider the spatial context,
perform similar but 2D/3D CNN is the fastest approach and
ConvLSTM is the slowest approach among them. Compared
to the other approaches, transformer models have considerably
more parameters and require more operations, which makes
them computationally expensive. Nevertheless, our approach
outperforms both transformer models while requiring by far
less parameters and computational operations.

Normalizing the dynamic features conditioned on the static
features (LOAN) increases all metrics. It also outperforms the
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TABLE I
COMPARISON WITH BASELINES. THE CLASSIFICATION METRICS ARE SHOWN FOR THE YEARS 2019-2021. THE VALUES OF PRECISION, RECALL,

F1-SCORE, OA, AND AUROC ARE GIVEN IN PERCENT (%). (TE) DENOTES THE ABSOLUTE TEMPORAL ENCODING.

Year 2019 (val) - 6430 samples

Algorithm TP(↑) FP(↓) TN(↑) FN(↓) Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑)

RF [13] 575 372 4758 725 60.72 44.23 51.18 88.54 82.94
XGBoost [13] 928 448 4682 372 67.44 71.38 69.36 92.33 87.25

LSTM [13] 968 431 4699 332 69.19 74.46 71.73 93.63 88.13
ConvLSTM [13] 867 276 4854 433 75.85 66.69 70.98 94.69 88.97

TimeSformer [92] 967 248 4882 333 79.59 74.38 76.90 95.71 90.96
SwinTransformer [93] 979 324 4806 321 75.13 75.31 75.22 94.54 89.97

3D CNN 918 265 4865 382 77.60 70.62 73.94 94.17 89.94

2D/3D CNN 970 248 4882 330 79.64 74.62 77.05 94.52 91.01
2D/3D CNN w/ TE 905 182 4948 395 83.26 69.62 75.83 95.08 91.03

Year 2020 (test) - 6088 samples

Algorithm TP(↑) FP(↓) TN(↑) FN(↓) Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑)

RF [13] 750 245 4615 478 75.38 61.07 67.48 91.17 88.12
XGBoost [13] 891 322 4538 337 73.45 72.56 73.00 91.12 89.18

LSTM [13] 891 290 4570 337 75.44 72.56 73.97 93.60 89.70
ConvLSTM [13] 811 155 4705 417 83.95 66.04 73.93 94.31 90.60

TimeSformer [92] 751 140 4720 477 84.29 61.16 70.88 92.41 89.87
SwinTransformer [93] 794 202 4658 434 79.72 64.66 71.40 92.79 89.55

3D CNN 797 160 4700 431 83.28 64.90 72.95 93.10 90.29

2D/3D CNN 841 160 4700 387 84.02 68.49 75.46 93.98 91.02
2D/3D CNN w/ TE 776 117 4743 452 86.90 63.19 73.17 94.20 90.65

Year 2021 (test) - 36732 samples

Algorithm TP(↑) FP(↓) TN(↑) FN(↓) Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑)

RF [13] 3264 1157 31168 1143 73.83 74.06 73.95 96.82 93.74
XGBoost [13] 3016 1345 30980 1391 69.16 68.44 68.80 95.88 92.55

LSTM [13] 3739 1359 30966 668 73.34 84.84 78.67 97.13 94.48
ConvLSTM [13] 3514 769 31556 893 82.05 79.74 80.87 97.76 95.48

TimeSformer [92] 3578 867 31458 829 80.49 81.19 80.84 97.67 95.38
SwinTransformer [93] 3962 954 31371 445 80.59 89.90 84.99 98.09 96.19

3D CNN 3766 810 31515 641 82.30 85.45 83.85 98.02 96.05

2D/3D CNN 3870 757 31568 537 83.64 87.81 85.68 98.19 96.48
2D/3D CNN w/ TE 3841 416 31909 566 90.23 87.16 88.67 98.54 97.33

TABLE II
QUANTITATIVE RESULTS OF DIFFERENT DEEP LEARNING MODEL DESIGNS. THE CLASSIFICATION METRICS ARE GIVEN IN PERCENT (%). ADDITIONALLY,

THE TOTAL NUMBER OF PARAMETERS (# PARAMS), ESTIMATED MULTIPLY-ACCUMULATE OPERATIONS GIVEN IN MEGA (MMACS),

and the inference time as samples per millisecond (# SPmS) are provided. (TE) denotes the absolute temporal encoding and (LOAN) the location-aware
adaptive normalization layer.

Year 2020-2021 (test)

Algorithm LOAN TE # Params(↓) MMACs (↓) # SPmS(↑) Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑)

LSTM [13] × × 30k 0.27 955±43 73.74 82.17 77.72 96.53 93.80

ConvLSTM [13] × × 372k 417.08 7±0 82.40 76.75 79.47 97.12 94.78

TimeSformer [92] × × 1.16m 831,667.58 2±0 81.13 76.82 78.92 96.57 94.60

SwinTransformer [93] × × 1.78m 122,346.56 1±0 80.45 84.40 82.38 97.06 95.25

3D CNN
× × 323k 476.56 18±1 83.93 77.48 80.58 97.15 95.08

× × 499k 585.11 17±1 82.47 80.98 81.72 97.15 95.23

2D/3D CNN

× × 321k 137.24 47±0 83.35 79.98 81.63 97.11 95.26
√

× 413k 168.23 33±1 83.71 83.60 83.65 97.41 95.70

×
√

321k 137.24 47±1 83.90 84.22 84.06 97.64 95.80
√ √

414k 168.23 33±2 89.65 81.93 85.62 97.78 96.38
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TABLE III
PERFORMANCE METRICS FOR DIFFERENT CATEGORIES OF STATIC VARIABLES. THE VALUES ARE GIVEN IN PERCENT (%).

Year 2019 (val) Year 2020-2021 (test)

Static Variables Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑) Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑)

DEM + slope 75.61 73.69 74.64 93.82 89.88 80.88 81.67 81.27 97.06 95.05

Distance to roads
Distance to waterway
Population density

77.27 76.08 76.67 94.16 90.63 81.91 74.48 78.02 96.11 94.48

Land cover 77.27 76.62 76.94 94.62 90.72 81.85 79.93 80.88 96.92 95.03

DEM + slope
Distance to roads
Distance to waterway
Population density

75.09 77.00 76.03 94.09 90.19 79.64 76.89 78.24 96.69 94.37

DEM + slope
Land cover

74.61 73.46 74.03 94.24 89.58 80.05 81.44 80.74 97.20 94.89

Land cover
Distance to roads
Distance to waterway
Population density

77.52 73.23 75.32 94.52 90.30 82.63 81.12 81.87 96.98 95.27

All static variables 79.64 74.62 77.05 94.52 91.01 83.71 83.60 83.65 97.41 95.70

TABLE IV
IMPACT OF DIFFERENT CONDITIONAL MAPS ON THE FEATURE MODULATION. THE EVALUATION METRICS ARE GIVEN IN PERCENT (%).

Year 2019 (val) Year 2020-2021 (test)

Conditional Map Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑) Precision(↑) Recall(↑) F1-score(↑) AUROC(↑) OA(↑)

− 75.68 62.23 68.30 93.38 88.32 83.35 79.98 81.63 97.11 95.26

DEM + slope 70.84 71.00 70.92 92.77 88.23 76.90 79.45 78.15 96.16 94.15

Distance to roads
Distance to waterway
Population density

73.83 76.15 74.97 93.74 89.72 77.98 76.63 77.30 96.22 94.08

Land cover 79.05 72.00 75.36 94.58 90.48 81.53 75.19 78.23 96.80 94.49

All static variables 77.12 74.92 76.00 94.95 90.44 81.05 84.08 82.54 97.55 95.32

Activation maps
(Static branch) 79.64 74.62 77.05 94.52 91.01 83.71 83.60 83.65 97.41 95.70

large 3D CNN in all metrics and inference time. Adding TE
increases all metrics when LOAN is not used, while increasing
the computational cost only very little. When LOAN is used,
adding TE decreases the recall but increases all other metrics.
Since LOAN and TE change the dynamic features, we observe
a different trade-off between recall and precision if both are
used. This change is consistent over the years as shown in
Table I. Nevertheless, the F1-Score, AUROC, and OA are
highest if both are used.

B. Variable Importance

To assess the importance of different static variables, we
present the results obtained with different combinations of
static variables in Table III. For this experiment, we use 2D/3D
CNN with LOAN but without TE. All dynamic variables are
used in this experiment and the results are reported for the
year 2019 and for the years 2020-2021 as one set. The static
variables are grouped into 3 main categories: topographic
variables consisting of digital elevation model (DEM) and
slope, anthropogenic-related variables consisting of distance

to roads or waterway and population density, and land cover
variables.

From the results in Table III, we can conclude that among
the 3 categories topographic variables give the best results for
the years 2020-2021 when they are used without other vari-
ables. While land cover and anthropogenic-related variables
provide the best results for the year 2019. Overall, all static
variables are relevant and the best results are obtained when
all static variables are used (last row). This is also better than
using the static variables of 2 out of the 3 categories, which
is reported in rows 4-6 of Table III.

C. Comparing Different Conditional Maps

While Table III shows the importance of different static
variables as input to the 2D/3D CNN, we also analyze the
impact of different ways to modulate the dynamic features in
Table IV. For the experiments, we use the 2D/3D CNN without
TE and all dynamic and static variables as input. While we use
all variables, the different settings differ in the input that is fed
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to the LOAN layer, i.e., the static features that the modulation
of the dynamic features is conditioned on.

The results of the proposed conditioning, where we use the
features from the corresponding block of the static branch,
are shown in the last row. In the first row, we show the
results if we do not use LOAN at all, i.e., we do not use
any modulation of the dynamic features. For the other rows
of Table IV, we modify LOAN such that it is not conditioned
on the intermediate features of the static branch as shown in
Figs. 1 and 2. Instead, we condition LOAN directly on static
variables. Note that we need to slightly adapt LOAN as shown
in Fig. 3 since the number of static input variables C differs
from the number of feature channels K at the block where
LOAN is added.

As seen from Table IV, the best result is obtained when we
use the activation maps, i.e., the intermediate features, from
the static branch for conditioning the modulation. However,
comparable results are obtained when all static variables are
directly used by the variant of LOAN that is shown in Fig. 4.
While this variant achieves slightly higher AUROC, the variant
shown in Fig. 3 achieves higher F1-score and OA. Using
the static variables directly, we can analyze how the three
categories of static variables impact the modulation of the
dynamic features and thus the results. We can conclude that
the modulation of the dynamic features is very sensitive to
its condition. For the year 2019, all three categories (rows 2-
4) improve the results compared to the setup without feature
modulation (first row). For the years 2020-2021, this is not the
case and only the combination of all static variables (row 5)
leads to an improvement. The reason is the mismatch between
C and Ki. Compared to the other categories, land cover
has the highest number of variables per pixels (C=10) and
shows the best performance. This indicates that conditioning
the modulation of the dynamic features on the intermediate
features of the static branch is a more practical approach than
conditioning the modulation on the static variables directly,
which seems to be sensitive to the number of variables.

D. Qualitative Results

Predicted wildfire danger-susceptibility maps are depicted in
Figs. 6, 7, and 8. We take input from the 1st and 2nd days of
three consecutive months in summer (June, July, and August)
and predict for the 2nd and 3rd days of each month. We end
up with around 500k pixels (samples) per day. The output
from the deep learning models (LSTM, ConvLSTM, Ours) is
a probability Y ∈ [0, 1]. In addition, we visualize the predicted
maps produced by FWI with the provided spatial resolution
8 km×8 km. The output of FWI is clipped to the range [0, 50]
[13]. The ignition points of large wildfires at those days are
represented as black circles on the map. The first observation
is that regardless of the coarse resolution of FWI, the predicted
maps produced by the deep learning models are more reliable.
While FWI relies on meteorological observations and models
functional relationships, the results show that the modeled
functional relationships are insufficient and do not reflect the
complexity of the problem of forecasting wildfire. We also find
that our proposed model with TE discards spots that result in

a high false positive error rate while it keeps extreme ones (cf.
the results for July in 2020 and 2021). Another important ob-
servation is that the LSTM model, which does not account for
the spatial context, tends to produce heterogeneous predictions
where neighboring pixels often have very different wildfire
danger probabilities. Consequently, it generates many false
positives. In contrast, our proposed model and ConvLSTM
produce more homogeneous and clustered predictions. The
respective performance metrics for Figs. 6 and 7 are provided
in Table V.

VI. ABLATION STUDY

We finally evaluate two additional aspects. In Section VI-A,
we analyze at which blocks of the proposed 2D/3D CNN
LOAN is best added and the impact of the absolute temporal
encoding with respect to the number of negative samples in
Section VI-B.

A. LOAN Position in the Model

As shown in Fig. 1, the proposed network has three blocks
and we add LOAN to the first and second block. We evaluate in
Table VI different configurations where we add LOAN only
to the first or to all three blocks. The results are reported
without TE. If we add LOAN only to the first block, the
performance increases for the year 2019 but not for the years
2020-2021 compared to our model without LOAN (first row).
When adding LOAN to the first two blocks, we observe
a consistent improvement for all years. For the year 2019,
Precision, Recall, F1-score, and AUROC are improved by
+3.96%, +12.39%, +8.75%, and +1.14%, respectively, and
by +0.36%, +3.62%, +2.02%, and +0.30% for the years
2020-2021, respectively. Adding LOAN to all three blocks
performs worse than adding LOAN only to the first two blocks.
This is due to the decrease of spatial resolution after each block
by the pooling layers. In the third block the spatial resolution
is too coarse for a location-specific modulation of the dynamic
features.

B. Absolute Temporal Encoding

As we have seen in Tables I and II, absolute temporal
encoding (TE) increases precision at the cost of lower recall.
Depending on the use of the wildfire forecasting, recall or
precision are more important. The precision also depends on
the amount of negative samples. In order to show that TE gives
consistently a higher precision, we varied the number of nega-
tive samples. In this experiment, we test on all positive samples
in the test set (years 2020-2021) and gradually increase the
number of negative ones. As shown in Fig. 9, we start with
a setup where the number of negative samples is equal to
the number of positive samples, i.e., 5635 positive and 5635
negative samples. We then increase the number of negative
samples. Since the number of negative samples increases, the
precision decreases for all methods. Note that the recall does
not change since the number of positive samples remains the
same. As already observed in Table II, LSTM has a very low
precision. 2D/3D CNN with LOAN has in all settings a higher
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Fig. 6. Qualitative results for 6 days during the wildfire season in year 2020. The black circles represent an ignition of a large wildfire on that day. (TE)
denotes absolute temporal encoding.
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Fig. 7. Qualitative results for 6 days during the wildfire season in the extreme year 2021. The black circles represent an ignition of a large wildfire on that
day. (TE) denotes absolute temporal encoding.
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Fig. 8. Predictions for 8 consecutive days in August. The upper two rows show the results for the year 2020 and the last two rows show the results for the
extreme year 2021. The maps are produced by the proposed 2D/3D CNN with absolute temporal encoding. The black circles represent an ignition of a large
wildfire on that day.

precision than ConvLSTM and a much higher recall as shown
in Table II. Transformer models on the other hand have less
precision than ConvLSTM but provide an overall better recall
as shown in Table II. While adding TE decreases recall, it
improves the precision substantially and the improvement in-
creases when the number of negative samples increases. While
other metrics like F1-score or AUROC combine precision and
recall in a single measure, depending on the application a
higher recall or a higher precision might be more important.
If precision is more important, TE is very useful. If recall is
more important, TE should not be used. We also point out that
TE encodes only the day of the year since the dataset has a

relatively small spatial extension (10.2◦Lon× 8◦Lat). In case
of larger datasets at continental scale, a consideration of the
spatial location for the encoding would also become relevant as
biogeographical regions occur [74], which are characterized by
different climate variabilities and anthropogenic drivers over
time. Finally, we plot in Fig. 10 the loss (4) curve during
training.

VII. CONCLUSION

In this work, we proposed a new deep learning approach
for wildfire danger forecasting. In contrast to previous works,
we handle spatial (static) and spatio-temporal (dynamic) vari-
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TABLE V
RECALL (%) METRIC PER CLASS FOR FIGURES 5 AND 6. (P) DENOTES THE POSITIVE CLASS AND (N) THE NEGATIVE ONE. THE NUMBER OF POSITIVE

SAMPLES IS SHOWN BELOW THE DATE. THIS IS EQUIVALENT TO THE AREA (KM2) THAT WAS BURNED BY LARGE WILDFIRES AT THAT DAY.

02/06/2020 03/06/2020 02/07/2020 03/07/2020 02/08/2020 03/08/2020
# Positive samples 0 0 2 0 71 25

Algorithm P N P N P N P N P N P N

LSTM [13] - 99.98 - 99.96 00.00 81.41 - 82.37 87.32 48.93 88.00 56.23
ConvLSTM [13] - 100.00 - 100.00 00.00 89.72 - 92.46 92.96 65.09 80.00 72.52
2D/3D CNN - 100.00 - 99.99 100.00 89.51 - 90.33 73.24 66.74 80.00 76.17
2D/3D CNN w/ TE - 100.00 - 100.00 00.00 96.81 - 97.92 78.87 65.68 80.00 74.32

02/06/2021 03/06/2021 02/07/2021 03/07/2021 02/08/2021 03/08/2021
# Positive samples 0 0 36 22 679 1417

Algorithm P N P N P N P N P N P N

LSTM [13] - 98.23 - 96.44 100.00 70.58 68.18 83.14 82.03 32.54 93.30 23.88
ConvLSTM [13] - 99.11 - 98.25 100.00 75.53 100.00 87.42 71.87 35.66 87.01 28.28
2D/3D CNN - 99.38 - 98.08 100.00 84.36 100.00 88.97 83.80 39.17 99.29 33.75
2D/3D CNN w/ TE - 99.91 - 98.95 100.00 94.77 100.00 98.61 85.13 36.67 99.36 31.67

TABLE VI
ABLATION STUDY OF DIFFERENT POSITION CHOICES FOR THE LOAN
LAYER. ALL CLASSIFICATION METRICS ARE GIVEN IN PERCENT (%).

Year 2019 (val)

Block
Precision(↑) Recall(↑) F1-score(↑) AUROC(↑)

1st 2nd 3rd

× × × 75.68 62.23 68.30 93.38
√
× × 76.90 75.54 76.21 94.40

√ √
× 79.64 74.62 77.05 94.52

√ √ √
73.92 70.85 72.35 93.68

Year 2020-2021 (test)

Block
Precision(↑) Recall(↑) F1-score(↑) AUROC(↑)

1st 2nd 3rd

× × × 83.35 79.98 81.63 97.11
√
× × 80.90 78.72 79.80 97.22

√ √
× 83.71 83.60 83.65 97.41

√ √ √
79.77 81.30 80.52 96.92

ables differently. Our model processes the spatial and spatio-
temporal variables in two separated 2D/3D CNN branches
to learn static and dynamic feature vectors. Moreover, we
have introduced the Location-aware Adaptive Normalization
layer, which modulates the activation maps in the dynamic
branch conditionally on their respective static features to
address the causal effect of static features on dynamic features.
We furthermore integrated an absolute time encoding into
the model. By encoding the calendar time, we make the
model explicitly aware of the forecasting day. While the
time encoding reduces the recall, it substantially increases
the precision. We conducted our experiments on the FireCube
dataset and demonstrated the effectiveness of our approach
compared to several baselines in terms of Precision, F1-
score, AUROC, and OA. Although our approach demonstrated
a substantial improvement compared to previous works for
wildfire forecasting, it still has some limitations. Despite the

Fig. 9. Impact of the number of testing samples on the precision. (TE) denotes
the absolute temporal encoding.

Fig. 10. BCE loss during training for the training (solid) and validation
(dashed) set. (LOAN) denotes the Location-aware Adaptive Normalization
layer and (TE) denotes the absolute temporal encoding.

fact that our framework includes domain knowledge through
the normalization layer and absolute time encoding, it does
not incorporate physical knowledge about the Earth system.
Furthermore, the FireCube dataset covers only parts of Eastern
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Mediterranean and the years 2009-2021. There is a need
for more standardized datasets for wildfire forecasting at a
continental scale and longer time periods. Finally, there may be
hidden events that are correlated with climate variability and
extreme weather conditions. It is an open question how these
impact the forecast quality and if additional input variables
will be needed to improve the forecast accuracy.

We believe that the proposed approach of dealing with
spatial and spatio-temporal variables is also highly relevant
for other remote sensing applications.
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