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Abstract—This work reports a case study of the use of synthetic 
cyclone models for the development, assessment and validation of 
GNSS-R wind speed remote sensing algorithms using a CYGNSS 
data record extending from August 1st, 2018 to December 31st, 
2022. Synthetic cyclone models are shown to be useful in assessing 
the high wind speed sensitivity of CYGNSS’s v1.0, v2.1, v3.0, v3.1, 
and future v3.2 normalized bistatic radar cross section (NBRCS) 
products due to the extended matchup dataset of high wind speed 
information that is obtained. The models are also shown useful 
in investigating the impacts of specifc error corrections terms 
and in the development of Level-2 geophysical model functions 
for the retrieval of ocean surface winds. 

Index Terms—Cyclone global navigation satellite system, 
CYGNSS, Global Navigation Satellite Systems Refectometry 
(GNSS-R), synthetic storm models, Level-1 calibration, Level-
2 ocean wind speed retrieval algorithm development, microwave 
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T
I. INTRODUCTION 

HE retrieval of ocean surface wind speed [1]–[6] is a 
core mission objective in many global navigation satellite 

system-refectometry (GNSS-R) missions such as NASA’s Cy-
clone Global Navigation Satellite System (CYGNSS) mission 
[7]. The CYGNSS mission launched an eight satellite constel-
lation of receivers into low earth orbit in 2016. Each satellite 
is equipped with a Delay Mapping Receiver (DMR) primary 
science payload [8] that observes the refections of Global 
Positioning System (GPS) transmissions from Earth’s surface. 
Because contact was lost with CYGNSS fight module (FM) 
6 in November 2022, the constellation now consists of seven 
receivers. Each receiver is capable of tracking up to 4 GPS 
refections off the Earth’s surface so that the constellation pro-
duces a total of 28 (originally 32) simultaneous measurements 
over the 1000 msec (prior to August 2019) or 500 msec (after 
August 2019) integration period of a single measurement. 
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The 1.575 GHz frequency of the GPS L1 Coarse/Acquisition 
(C/A) signals used makes CYGNSS measurements insensitive 
to cloud cover and rain attenuation, even in heavy rain rates 
[9], allowing CYGNSS to provide the all-weather operation 
and frequent revisit [10] needed to provide deeper insights 
into cyclone development and evolution [11]. 

CYGNSS’s measurements are impacted by multiple sources 
of uncertainty [12]–[16] that are corrected when producing the 
mission’s calibrated Level-1 products from which downstream 
Level-2 ocean wind speeds are derived. Because the CYGNSS 
mission team continues to develop improved calibration pro-
cesses, matchup datasets that provide information on “true” 
ocean wind speeds remain valuable to the mission team [17]. 
The availability of matchup datasets is a particular issue for 
wind speeds that exceed 20 m/s due to the relative infrequency 
of these wind speeds and limitations in existing matchup 
datasets for high wind speeds. 

This work explores the utility of synthetic cyclone mod-
els in CYGNSS Level-1 calibration algorithm and Level-2 
retrieval algorithm development. The next Section overviews 
CYGNSS’s Level-1 calibration algorithm, and Section III 
discusses the means with which Level-1 observables may 
be used for the retrieval of ocean surface winds and the 
limitations associated with existing reference datasets at high 
winds. Section IV describes the synthetic storm model used 
in the analysis, and Section V describes uses of the model in 
the context of CYGNSS calibration, validation and algorithm 
development activities. Section VI then provides concluding 
remarks. 

II. LEVEL-1 CALIBRATION OF CYGNSS’S OBSERVABLES 

CYGNSS’s standard delay-Doppler Map (DDM) measure-
ments are frst produced in uncalibrated L0 “raw count” units 
by downlinking a 17 (delay) × 11 (Doppler) set of points 
C(τ, f) cropped from the 128 × 20 DDM formed onboard 
each receiver. A frst set of “L1a” calibration steps are applied 
to C(τ, f) to convert it into an absolute power DDM in watts 

(C(τ, f) − NCNDR · CN ) (PB + Pr)
Pg(τ, f) = (1)

CB 

Here CN represents internal and external noise power 
contributions that are subtracted from the received counts to 
obtain the refected power. CN is computed as the mean value 
of the counts in the frst 45 “early time” delay rows of the 
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Fig. 1: Normalized Level-1 DDM measured by CYG01 tracking PRN 
11 over 30.5◦N 172.38◦E on DOY 256, 2018. Reference ECMWF 
surface winds estimated to be ≈8.9 m/s. 

full onboard DDM in which no ocean refected signals should 
be present. The term NCNDR represents a multiplicative 
correction to this noise level estimate [14] defned as 

NCNDR = 1 − SNDR (1 − Γref (BRnoise)) (2) 

that accounts for discretization effects in CYGNSS’s 2 bit 
Analog-to-Digital Converter (ADC) in the presence of signal 
power level biases. These effects are described by the function 
Γref that depends on ‘bin ratios’ (BRnoise) observed in the 
ADC. BRnoise describes the ratio of the number of samples 
within states ±1 to the number of samples within states 
±3 over a 1 second period. As specifed in [14], Γref can 
be determined as a function of BRnoise to eliminate ADC-
induced calibration biases using end-to-end simulations of the 
on-board instrument. The fnal scale factor SNDR is defned 
so that a value of 0 translates to no correction being applied 
and a value of 1 results in the full Γref correction. 

Equation (1) also involves the thermal noise power levels 
PB and Pr in Watts for the reference blackbody load and the 
receiver, respectively. The former is known through onboard 
measurements of the blackbody load physical temperature 
while the latter is obtained using pre-launch parameterizations 
as a function of physical temperature. Finally, CB represents 
the counts measured when the receiver is switched to observe 
the blackbody load. Equation (1) shows that CYGNSS’s “L1a” 
calibration is fundamentally concerned with correcting for 
noise levels and instrument gain as a function of varying 
internal temperature. 

The second “L1” stage of CYGNSS’s calibration algorithm 
corrects for a wide range of other observation geometry 
and GPS transmit power level terms to obtain a Normalized 
Bistatic Radar Cross Section (NBRCS). By assuming that the 
forward propagation paths and the projection of CYGNSS’s re-
ceive antenna patterns onto the surface do not vary appreciably 
within the L1 DDM’s maximum extent, a BRCS σ(τ, f) DDM 

in square meters is frst computed by inverting the bistatic 
radar equation: 

(4π)3 1 Pg(τ, f)R2 R2 LaT Rσ(τ, f) = (3)
λ2 EIRP GR 

in which the range from the specular point to the transmitter 
RT and receiver RR, the CYGNSS antenna gain at the spec-
ular point GR, any atmospheric loss La, the electromagnetic 
wavelength λ, and the varying Effective Isotropic Radiated 
Power (EIRP) of the GPS satellite toward the specular point 
are all assumed known. The EIRP can also be estimated using 
signal power measurements PZ from the zenith antenna and 
an inversion of the Friis transmission formula: 

EIRP = PT · GT (4) 

(4πRLOS )
2 

NCz · Pz 
= · (5)

λ2 Gz · GZ · ZSRLNA R 

in which RLOS is the direct path range from the transmitter to 
the receiver, GZ is the CYGNSS zenith antenna gain toward R 
the GPS satellite at incidence and azimuth angles θZ and 
ϕZ , and ZSR represents the ratio of the GPS EIRP toward 
CYGNSS as compared to that towards the specular point. 
Finally GZ accounts for the temperature dependence of the LNA 
zenith antenna low noise amplifer, while NCz is a bin-ratio 
correction analogous to that in Equation (2). 

A smaller subset of pixels within σ(τ, f) are then averaged 
to form a Delay Doppler Map Average (DDMA) that is later 
normalized by an equivalent effective scattering area DDM A 
to obtain an NBRCS: P1 P2 

σ(τT + i, fT + j)i=−1 j=−2
σ0 = P1 P2 (6) 

A(τT + i, fT + j)i=−1 j=−2 

where τT and fT are the specular bin (or tracking point) delay 
and Doppler indices, respectively. For CYGNSS, the DDMA 
is computed over a 3×5 pixel region with resolutions ∆τ = 
0.25 chips (1 chip ≈ 0.97µs) and ∆f = 500 Hz per pixel, 
centered on the tracking point as indicated by the white box 
in Fig. 1. 

Estimates of the scattering area A(τ , f) are obtained using 
forward models describing the total physical area satisfying 
the delay/Doppler limits for a given DDM pixel (as specifed 
by the Woodward Ambiguity function)ZZ 

A(τ, f) = Λ2(τ − τ ′ )S2(f − f ′ )dxdy (7) 

The process is typically repeated for a wide range of receiver 
elevations, incidence angles, and azimuth rotation angles to 
form a reference scattering area look up table (LUT) such 
that reported areas are predictions of anticipated footprints as 
opposed to being direct retrievals of scattering range cells. 

The CYGNSS mission has released multiple Level 1 data 
products as calibration processes have continued to improve. 
The differences between these data products can be described 
as related to: 
• the version of the nadir antenna pattern GR used. Prelaunch 
gain pattern measurements (performed prior to the mounting 
of the science antenna arrays in the fight modules) have been 
refned in subsequent releases through tuning based either on 
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Fig. 2: Probability density function (PDF) communicating ERA-5 
wind reports for specular observations estimated to have occurred 
within a 50 km radius of cyclone center at the time of observation. 
The PDF combines data for all cyclones occurring within CYGNSS’s 
coverage over a 1 year data record 

Level 2 wind speed matchups or on model-based predictions 
of NBRCS values based on ocean wind speed and/or wave 
matchup datasets. An additional approach used in v3.2 empha-
sizes achieving a uniform NBRCS, given comparable surface 
conditions, across all receive channels. 
• the EIRP estimates used. Early CYGNSS releases assumed a 
static EIRP level. However, the analyses described in [15], [16] 
highlighted the need to track EIRP levels in real-time given 
the relative frequency of commanded GPS EIRP variations. 
The repurposing of the CYGNSS zenith antennas into direct 
power monitors in August 2018 allowed the dynamic EIRP 
correction described in equation (5) to be used in subsequent 
releases. 
• the inclusion of the bin-ratio correction for the nadir antenna. 
Reference [14] shows that NBRCS offsets in excess of 50% 
given comparable surface conditions can occur due to these 
effects. The initial correction used in CYGNSS’s v3.1 data 
was removed in v3.2 (see Section V-B) and a refned version 
is under development for v3.3. 
• the inclusion of the bin-ratio correction for the zenith 
antenna. Thse effects have also been shown to compromise 
real-time EIRP estimates and attempts to compensate for 
related degradation as a function of zenith bin ratios have been 
attempted. 
• the correction of thermal variations in the zenith antenna. Re-
cent investigations [18] have noted non-geophysical temporal 
oscillations dominated by a 42-60 day sinusoidal component in 
CYGNSS’s observables. Root cause analyses have identifed 
thermal variations in the zenith antenna as contributing, so that 
a revised zenith LNA gain vs temperature table is included in 
v3.2. 

Fig. 3: Example HWRF wind feld in current use for Level-2 
CYGNSS algorithm development. The wind feld describes the struc-
ture of Hurricane Walaka on DOY 277, 2018 at 06:00:00 UTC 

III. LEVEL-2 OCEAN WIND SPEED RETRIEVAL 
ALGORITHM DEVELOPMENT 

The retrieval of ocean surface winds using CYGNSS’s ob-
servables, namely NBRCS and/or Leading Edge Slope (LES) 
estimates, requires the inversion of either physically-based 
[19], [20] or empirically-based [21] models that relate these 
quantities to surface wind speeds. The Geometrical Optics 
approximation of incoherent forward scattering from a rough 
surface is the most commonly applied physically-based model, 
and relates the NBRCS to the surface mean square slope [22], 
[23]. While the GO is successful at describing the overall 
trends of received power as a function of surface winds, 
it achieves reduced effcacy in predicting received power 
levels when compared to an empirical data driven approach. 
The empirical approach used in CYGNSS’s Level-2 ocean 
wind speeds [21] uses co-locations of CYGNSS’s NBRCS 
measurements with reference wind speed estimates to derive 
an empirical Geophysical Model Function (GMF) relating 
the two quantities given parameters such as the incidence 
angle, specifc receive channel, CYGNSS receiver/transmitter 
pair, and/or ancillary wave information such as the signifcant 
wave height. Given the emphasis in this work on Level 
1 calibration processes and to simplify the discussion, the 
CYGNSS NBRCS in examined in what follows as a function 
of wind speed alone. 

The need for coincident wind speeds in deriving the GMF 
places particular emphasis on the quality of the reference wind 
speed datasets used. The CYGNSS mission currently uses 
winds from the the latest generation of the European Centre 
for Medium-Range Weather Forecasts (ECMWF) reanalysis 
product, ERA5 [24]. The product incorporates historical and 
contemporary observations from spaceborne receivers, air-
borne campaigns, and in situ sensors into global assimilation 
systems to produce surface wind components (10 meter u-
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Fig. 4: Example Willoughby model wind felds (a) Cat 1, Hurricane Isaias on DOY 216, 2020 (b) Cat 3, Hurricane Sam on DOY 268, 2021 
(c) Cat 5, Hurricane Dorian on DOY 244, 2019 

Fig. 5: Time series capturing the total number of unique storms reported by IBTrACS and observed by CYGNSS 

component and 10 meter v-component) projected on hourly, 
uniformly sampled 0.25×0.25 degree (≈25 km resolution) 
latitude/longitude maps. The available data record extends 
from 1979 to the present with a latency that is on the order 
of 5 days and 3 months for preliminary and fnal releases 
respectively. The hourly record the dataset provides with root-
mean-square-errors (RMSEs) on the order of 1.2-2.3 m/s [25], 
[26] relative to in situ observations has motivated its use in 
the development of CYGNSS’s Level-2 retrieval algorithms 
for wind speed retrievals up to 20-30 m/s. Retrievals in this 
wind speed regime are labeled “Fully Developed Seas” (FDS) 
winds. 

A probability density function of ERA5 wind speeds within 
a 50 km radius of all Category 1 or greater cyclones observed 
by CYGNSS over a 1 year period is shown in Figure 2. The 
small probabilities of wind speeds greater than 30 m/s in 
Figure 2 indicates limitations in the ERA5 matchup data at 
higher wind speeds. These limitations are attributable in part 
to the strict data quality control enforced in the ERA product 
that reduces confdence in higher wind speed input data [27]. 
These issues motivate the identifcation of alternate matchup 
datasets for GMF development under high wind conditions. 

The CYGNSS mission also retrieves wind speeds using 
a second Young Seas Limited Fetch (YSLF) GMF that is 
intended to better represent the NBRCS under high wind speed 

conditions. Reference wind speeds for the development of the 
YSLF GMF have previously been obtained from the stepped 
frequency microwave radiometer (SFMR) on board NOAA’s 
hurricane hunter aircraft [28]. The use of aircraft reference 
data however is challenged by the limited amount of data 
available and by the differences in spatial resolution between 
spaceborne and airborne observations. Other potential sources 
of high wind reference wind felds include commercial cyclone 
data such as that provided by Oceanweather, Inc (OWI) 
[29] or by the Hurricane Weather Research and Forecasting 
(HWRF) model; sample HWRF wind speeds for Hurricane 
Wakala on Day Of Year (DOY) 277 during 2018 are shown in 
Figure 3. While these wind felds shown improved properties, 
their greater costs, increased latency, temporal resolution of 3 
hours or coarser, and limited availability to end users remain 
challenging. 

It is important to reiterate that in what follows, the proposed 
use of synthetic cyclone models for GNSS-R calibration, 
validation and algorithm development is exclusively concerned 
with high wind speed observation scenarios. The use of 
ERA5 as a reference set for observation scenarios where the 
‘FDS’ L2 algorithm is applicable continues to be a preferred 
approach. The proposed work is intended to address the need 
for reference data not met by model winds for observation 
scenarios where the ‘YSLF’ L2 algorithm applies (see Fig. 

https://0.25�0.25
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TABLE I: Description of major L1 calibration differences across different CYGNSS data releases. u10 refers to a wind based 
tuning, σM refers to a model NBRCS based tuning, σ0 refers to a tuning approach that minimizes NBRCS variability across0 
the different receive channels. For EIRP defnition see (5), for NCNDR defnition see (2). GZ 

LNA are the set of channel specifc 
zenith LNA gains and GR are the set of channel specifc nadir antenna gain patterns. 

Data Version EIRP NCNDR NCZ GZ Version LNA GR Version GR Tuning 

v1.0 Static × × Prelaunch 1 N/A 
v2.1 Static × × Prelaunch 6 u10 

v3.0 Measured × × Prelaunch 9 σM 
0 

v3.1 Measured ✓ ✓ Prelaunch 17 σM 
0 

v3.2 Measured × ✓ Revised 20 σ0 

2). 

IV. OVERVIEW OF SYNTHETIC CYCLONE MODELS 

Given the challenges identifed in the preceding section, the 
use of synthetic cyclone models appears to be a desirable 
alternate method for producing high wind speed matchup 
datasets. Synthetic cyclone models provide a representation 
of wind speeds within a specifed radius of a cyclone’s center, 
and have been used in many applications including storm surge 
predictions and in the design of coastal protection measures 
[30]–[32]. Other recent works have examined their use in 
improving the retrieval of high wind speed wind felds from 
CYGNSS measurements [11]. A variety of synthetic cyclone 
models have been reported in the literature; in what follows, 
the Willoughby storm model [33], [34] is adopted given its 
reasonable accuracy in reproducing wind speeds within several 
hundred kilometers of a cyclone’s center while retaining a 
simple analytical form. 

The model is expressed solely in terms of the latitude φ 
and longitude θ of the cyclone center at time t, the maximum 
Sustained Surface Wind (SSW) Vmax of the cyclone, the speed 
of the cyclone center’s translational motion Vt and the compass 
angle θt of this motion. References [33], [34] then provide 
equations that determine the quantities Rmax, n, X1, X2, A 
and ω from Vmax and φ. For a translating storm, the output 
wind speed Vf is determined as [35]: s � �2

V  sin θ
V = (−V cos θ )2  t t
f m t +

R2 + r2 
(8)

max 

in which Vm is specifed as Vin, Vout, or Vtr depending on 
the distance of a point from the cyclone center. Vin is used 
for wind speeds within radius Rmax of the cyclone center � �n 

r 
Vin(r) = Vmax (9)

Rmax 

where r is the radial separation from the storm’s center to a 
surface point. Vout then describes surface winds for distances 
greater than Rmax + 25 km as h

− r−Rmax − r−Rmax 
i 

Vout(r) = Vmax (1 − A)e X1 + Ae X2 (10) 

Wind speeds within Rmax and Rmax + 25 km are fnally a 
mixture of the winds in the inner and outer domains weighted 
by ω. 

Vtr(r) = Vin(1 − ω) + ωVout (11) 

Example Willoughby renditions of hurricanes observed by the 
CYGNSS constellation are depicted in Fig. 4. 

The storm center location and Vmax time history infor-
mation required by the Willoughby model is obtained from 
the International Best Track Archive for Climate Stewardship 
(IBTrACS) dataset [36]. This dataset unifes global storm best 
track data derived from a variety of sources such as HURDAT, 
ATCF, JAMA and others into a single self contained data 
release. Figure 5 plots the number of cyclones per month 
obtained using the IBTrACS dataset from August 1st 2018 to 
December 31st 2022 and the corresponding number having 
CYGNSS coverage within the same period. A cyclone is 
deemed to have been observed by CYGNSS when any specular 
point lies within +/- 250 km of cyclone center within +/- 15 
minutes of the overpass. The extensive high wind matchup 
dataset provided by the synthetic storm approach is evident in 
Figure 5. 

V. APPLICATIONS OF SYNTHETIC STORM MODELS FOR 
GNSS-R L1 CALIBRATION ASSESSMENT, TUNING AND 

LEVEL-2 ALGORITHM DEVELOPMENT 

A. Use For Level-1 Calibration Assessment 

In this Section, IBTrACS/Willoughby wind felds are ap-
plied in studies of CYGNSS’s Level-1 and Level-2 processing. 
Level-1 studies examine calibration approaches used in the 
v1.0, v2.1, v3.0, v3.1 and v3.2 releases. Differences in these 
releases involve the EIRP, zenith bin ratio, receive antenna gain 
pattern, nadir bin ratio, and thermal corrections as discussed 
previously and as summarized more specifcally in Table I. 

Wind speed matchup datasets for CYGNSS measurements 
were generated by interpolating IBTrACS cyclone center and 
maximum wind data in time from the original 3, 6, or 12 
hour interval into a 1 second time sampling used to generate 
Willoughby model wind felds. Storm locations and maximum 
winds are linearly interpolated between reporting intervals to 
provide this 1 second information. It is acknowledged that 
some storms can undergo rapid intensifcation over various 
phases of their life cycle such that this simple interpolation 
may not always be representative of their true behaviour at 
the time of observation. CYGNSS specular points within 250 
km of cyclone center within a +/-15 minute window were then 
identifed, and the corresponding IBTrACS/Willoughby model 
wind speeds compiled at the specular point location. The fnal 
dataset obtained from this process can then be binned versus 
the matchup wind speed, and the mean µNBRCS and standard 
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(a) (b) 

Fig. 6: Mean CYGNSS NBRCS binned by reference wind speed. Reference wind speed estimates are locally generated using the Willoughby 
parametric storm model informed by 610 cyclones in the IBTrACS dataset. (a) Mean CYGNSS NBRCS vs wind speed (b) Mean CYGNSS 
NBRCS vs wind speed normalized by value at wind speed 10 m/s 

deviation σNBRCS of the NBRCS in each bin computed; 
results for µNNRCS are shown in Figure 6(a). 

The results show that µNBRCS values for both the v3.0 
and v3.1 data are consistently higher across all wind speeds 
when compared to other data versions. Because a constant 
shift across all wind speeds can be accounted for in any 
corresponding GMF for each product, these shifts have little 
impact on wind speed retrieval. Figure 6(b) plots the results 
of plot (a) divided by the value at wind speed 10 m/s to 
emphasize the wind speed dependence of each product. For 
wind speeds in the 40-50 m/s range, the sensitivity of the 
v3.0 NBRCS to wind speed appears to be greatest (achieving 
a slope of 0.36 (m2/m2)/(m/s), with v3.2 having the next 
highest, and v3.1 the least (a slope of 0.05 (m2/m2)/(m/s), an 
86% reduction relative to v3.0.) The differences in product 
performance for high wind speeds revealed by use of the 
IBTrACS/Willoughby approach indicates the utility of the 
method in product development and assessment. 

The NBRCS standard deviation normalized by its mean 
(σNBRCS /µNBRCS ) can also be examined as a function of 
wind speed as shown in Figure 7. Smaller values of this 
parameter indicate reduced variability in the data within a 
specifc wind speed bin and should be expected to improve 
the accuracy of downstream wind speed retrievals. Sources 
of variability in a bin include the impacts of incidence angle, 
inhomogeneous ocean conditions, inaccuracies in the matchup 
datasets, speckle and thermal noise errors, calibration uncer-
tainties, and/or other effects. 

The results in Figure 7 show for wind speeds 10-30 m/s 
that the v3.1 approach delivers the least uncertainty (≈0.35 on 
average) while the v1.0 approach has the greatest uncertainty 
(≈0.5 average). These results seem reasonable given the 

Fig. 7: Different versions of CYGNSS NBRCS (σN BRCS /µNBRCS )
binned by reference wind speed. Reference wind speed estimates
are locally generated using the Willoughby parametric storm model 
informed by the IBTrACS dataset. Local wind predictions used to 
bin CYGNSS’s observations span a total of 610 storms 

prelaunch antenna patterns used in v1.0 that provide only an 
approximation of the on-board antenna patterns and therefore 
introduce greater variability. For wind speeds 40-50 m/s, 
v3.0 and v3.2 show the lowest σNBRCS /µNBRCS values of 
≈0.275 and ≈0.380. When combined with the improved high 
wind sensitivity of µNBRCS for these products, the continued 
improvements in product performance are evident. Table II 



7 

Fig. 8: Normalized mean CYGNSS NBRCS vs reference wind speeds 
with/without nadir bin ratio corrections (NCNDR). All other elements 
of their respective calibration schemes are identical and mimic v3.2 

summarizes the high wind slope and σNBRCS /µNBRCS met-
rics for the 40-50 m/s wind speed range for all the products 
considered. 

Note that the analyses of this Section do not focus on 
“true” NBRCS values but rather on the wind speed sensitivity 
and variability of these products that can be revealed by 
incorporating the IBTrACS/Willoughby matchup dataset. 

B. Use For Level-1 Calibration Tuning 

The IBTRaCS/Willoughby matchup dataset can also be 
used to assess the impact of specifc calibration corrections 
within a given data release as part of the development of 
the release. As discussed in [13] and [14], interference from 
other spaceborne transmitters necessitates the inclusion of the 
bin ratio correction in estimating system noise levels. This 
correction was incorporated as part of the v3.1 approach prior 
to the use of the IBTRaCS/Willoughby matchup dataset for 
high wind analyses. 

Figure 8 illustrates µNBRCS values versus wind speed for 
two v3.1-like approaches including or excluding the bin-ratio 
correction for the nadir antenna. While including the correction 
was found in other analyses to reduce the impact of external 
sources of interference, Figure 8 shows that the correction 
has the undesired impact of reducing wind speed sensitivity 
by up to 75% at higher wind speeds as found in other 
references [37]. This correction is therefore not included in 
CYGNSS’s upcoming v3.2 data release. The reduction in high 
wind sensitivity caused by the previous bin ratio correction 
is hypothesized to involve a coupling of signal intensity and 
noise levels that causes signal compression effects and gain 
correction uncertainties. The development of an improved 
correction using the in-orbit LNA gain settings is currently 
underway. 

Fig. 9: Normalized mean CYGNSS NBRCS vs reference wind speeds 
with/without corrections intended to minimize effects of thermal de-
pendencies. All other elements of their respective calibration schemes 
are identical and mimic v3.2 

TABLE II: Estimates of mean CYGNSS NBRCS sensitivity 
and normalized uncertainty over a wind speed range of 40-
50 m/s across different Level-1 calibration schemes. Refer-
ence wind speed estimates are locally generated using the 
Willoughby parametric storm model informed by the IBTrACS 
dataset 

Data Version |dσ0/du10| σN BRCS /µN BRCS 

v1.0 0.08 0.37 
v2.1 0.05 0.39 
v3.0 0.36 0.28 
v3.1 0.05 0.36 
v3.2 0.16 0.27 

Figure 9 presents results from a second study of a v3.2-like 
approach applied with and without thermal corrections. These 
corrections are implemented using a temperature-dependent 
zenith LNA gain LUT found to reduce the magnitude of 
temperature dependencies that cause 40-60 day temporal oscil-
lations of CYGNSS observables. In this case the modifcation 
has only a small impact on NBRCS sensitivity, with mean 
pre-correction slopes of ≈0.19 (m2/m2)/(m/s) reducing only 
to ≈0.17 (m2/m2)/(m/s) post-correction. These results have 
motivated the inclusion of the thermal correction as part of 
the upcoming v3.2 CYGNSS L1 data release. 

C. Use For L2 Algorithm Development 

The µNBRCS curves versus wind speed obtained using the 
IBTRaCS/Willoughby matchup dataset (see Fig. 6) can also 
be applied in a zeroth-order study of the potential wind speed 
retrieval performance of specifc products. Figure 10 plots the 
NBRCS and corresponding inverted wind speeds (labeled the 
“synthetic storm GMF” wind speeds) for a sample CYGNSS 
track crossing Hurricane Walaka in 2018 using a v3.2 Level-1 
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Fig. 10: Example Level-2 wind speed retrieval using synthetic storm GMF (SSG) for a CYGNSS track observing Hurricane Walaka on DOY 
275, 2018 at approximately 12:00:00 UTC. A v3.2 calibration is applies to NBRCS 

Fig. 11: Level-2 wind speed retrieval using synthetic storm GMF (SSG) for a CYGNSS track observing a Cat. 3 Hurricane on DOY 283, 
2018. Along track retrieved wind speed correlation is 85% and uRMSE relative to storm maximum winds at the time of observation is 7.70% 

Fig. 12: Level-2 wind speed retrieval using synthetic storm GMF (SSG) for a CYGNSS track observing a Cat. 4 Hurricane on DOY 249, 
2021. Along track retrieved wind speed correlation is 86% and uRMSE relative to storm maximum winds at the time of observation is 
10.77% 

Fig. 13: Level-2 wind speed retrieval using synthetic storm GMF (SSG) for a CYGNSS track observing a Cat. 4 Hurricane on DOY 250, 
2021. Along track retrieved wind speed correlation is 81% and uRMSE relative to storm maximum winds at the time of observation is 
10.18% 

calibration algorithm; reference HWRF wind speeds are also and reference wind speeds for this track is 97% despite an 
included for comparison. The correlation between retrieved 8.25 m/s reduction in the mean wind speed in the retrieved 
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product. The root-mean-square-error (RMSE) over the track is 
9.18 m/s and the unbiased-RMSE is 1.78 m/s. These results 
again demonstrate the utility of the IBTRaCS/Willoughby 
matchup dataset and the potential for its use in continuing 
improvements of both the Level-1 and Level-2 products of 
the CYGNSS mission. It is also of interest to explore retrieval 
performance over storms with a higher level of development. 
To further highlight the utility of the proposed approach in 
the context of L2 algorithm development activities, Figs 11-
13 depict observed trends for additional storms observed by 
CYGNSS for which reference HWRF wind felds were avail-
able for validation and where the level of storm development, 
at the time of observation, was equivalent to a Cat 3. Hurricane 
or greater. The debiasing factors for each track were found to 
be dependent on specifc observation geometry and level of 
storm development, ranging between 0.5-9 m/s. Along track 
correlations of retrieved wind speeds range between 73-81% 
with an uRMSE relative to the storm’s maximum wind at the 
time of observation on the order of 7.70-10.77%. To provide 
context, the CYGNSS mission requirement is 10% retrieval 
error. 

VI. CONCLUSION 

The utility of an alternate high wind reference dataset in the 
context of GNSS-R ocean wind speed remote sensing algo-
rithm development, assessment, and validation was presented 
in this paper. The results indicate clear correlations between 
CYGNSS NBRCS and simulated surface winds highlighting 
the utility of integrating such models as part of standard 
algorithm development and calibration assessment practices. 
The IBTRaCS/Willoughby model considered represents only 
one example of the method, and future studies may consider 
incorporating more sophisticated models that may more ac-
curately capture storm structure and thereby further improve 
matchup datasets. 
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