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Abstract—Deep learning-based hyperspectral image (HSI) clas-
sification and object detection techniques have gained significant
attention due to their vital role in image content analysis,
interpretation, and broader HSI applications. However, current
hyperspectral object detection approaches predominantly em-
phasize spectral or spatial information, overlooking the valuable
complementary relationship between these two aspects. In this
study, we present a novel Spectral-Spatial Aggregation (S2ADet)
object detector that effectively harnesses the rich spectral and
spatial complementary information inherent in the hyperspectral
image. S2ADet comprises a hyperspectral information decoupling
(HID) module, a two-stream feature extraction network, and a
one-stage detection head. The HID module processes hyperspec-
tral data by aggregating spectral and spatial information via
band selection and principal components analysis, consequently
reducing redundancy. Based on the acquired spectral and spatial
aggregation information, we propose a feature aggregation two-
stream network for interacting spectral-spatial features. Fur-
thermore, to address the limitations of existing databases, we
annotate an extensive dataset, designated as HOD3K, containing
3,242 hyperspectral images captured across diverse real-world
scenes and encompassing three object classes. These images
possess a resolution of 512×256 pixels and cover 16 bands
ranging from 470 nm to 620 nm. Comprehensive experiments on
two datasets demonstrate that S2ADet surpasses existing state-
of-the-art methods, achieving robust and reliable results. The
demo code and dataset of this work are publicly available at
https://github.com/hexiao-cs/S2ADet.

Index Terms—Hyperspectral image object detection, deep
learning, feature fusion, spectral-spatial aggregation.

I. INTRODUCTION

OBJECT detection is a crucial task that involves identify-
ing objects belonging to specific classes within images.

It has a wide range of applications in various domains, includ-
ing remote sensing [1], autonomous driving [2], and medical
analysis [3]. Over the past few decades, significant efforts
have been made to improve object detection performance
for RGB images [4]–[6]. However, hyperspectral data offer
several advantages over RGB data, which can capture more
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intrinsic properties of object materials, enabling fine-grained
object detection [7]–[10]. Hence, hyperspectral detection has
garnered substantial attention in the community.

Hyperspectral detection exhibits a pivotal role in remote
sensing applications by identifying specific materials or ob-
jects through spectral features. Recent research by Rui et
al. [11], Chang et al. [12], and Dong et al. [13] primarily
rely on either pixel-level spectral information or correlation
information between neighboring pixels. These approaches are
divided into two main categories: statistical distribution and
subspace models. Statistical distribution models, as described
by Shang et al. [14] and Chang et al. [15], assume that the
background of the image conforms to a multivariate normal
distribution. These models detect anomalous pixels by compar-
ing them to the center of the background distribution, enabling
the detection of potential objects within the anomalous pixel
region. On the other hand, subspace models [14], [16], [17]
typically involve designing a linear filter that minimizes the
output energy while satisfying a constraint equation. This ap-
proach allows for identifying subspaces containing the signal
of interest, leading to accurate hyperspectral target detection.

Object detection in hyperspectral images is a broader con-
cept that does not require knowledge of the spectral character-
istics of the target of interest. Recently, Yan et al. [18] intro-
duced a pioneering deep learning method for leveraging the
spatial attributes of hyperspectral data. Moreover, they created
a HOD-1 dataset for object detection in hyperspectral images,
comprising 454 images with annotated bounding boxes that
tightly encircle the edges of the objects. To the best of our
knowledge, HOD-1 is the first object detection dataset for
hyperspectral images.

However, most current hyperspectral detection methods pri-
marily rely on the spectral information of specific image bands
to identify materials, neglecting the critical semantic informa-
tion contained in the spatial dimension. In contrast, existing
deep learning-based object detection methods in hyperspectral
images focus on spatial information and do not consider the
rich spectral semantic information available. Furthermore, the
hyperspectral image in neighboring bands are highly similar
and contain a large amount of redundant information between
neighboring bands, and simply feeding them into the feature
extractor can significantly hinder the detection performance.

To address this challenge, we propose S2ADet, a novel
object detector with a two-stream spectral-spatial feature ag-
gregation approach to detect objects in hyperspectral data.
S2ADet leverages complementary spatial and semantic in-
formation to learn better semantic features of objects. The
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Fig. 1. Illumination of the S2ADet. The S2ADet is purposely designed to handle object detection in hyperspectral data.

detector comprises a hyperspectral information decoupling
(HID) module, a two-stream feature extraction network, a
spectral-spatial aggregation (SSA) module, and a one-stage
detection head. First, to address the issue of hyperspectral
information redundancy and aggregate the spectral and spatial
information, the HID module uses principal component anal-
ysis (PCA) to obtain SpEtral (SE) information by aggregating
spectral dimension data, as shown in Fig 1. Furthermore, we
employ a band selection algorithm to select representative
bands that retain high-quality spatial information, generating
SpAtial (SA) information as another input to the network.
Next, the spectral and spatial semantic information is extracted
separately using a two-stream network. An SSA module is
embedded in the network to facilitate the spatial interaction
and aggregation of the spectrum between the two network
streams. Finally, the aggregated features are input to a one-
stage object detector to obtain fine-grained object bounding
boxes and classification results.

Furthermore, current hyperspectral datasets suffer from
limited background distribution and small dataset sizes, as
observed in HYDICE, San Diego [19], and Cuprite [20], as
illustrated in Fig 2. To overcome this shortcoming and promote
the development of object detection in hyperspectral images,
we have annotated a dataset, namely HOD3K, comprising
3,242 hyperspectral images of urban roads, campuses, and
residential areas, containing 15,149 objects classified into three
categories. HOD3K is an extensive hyperspectral dataset that
provides a valuable resource for researchers to enhance the
effectiveness of object detection methods.

The main contributions of this paper are summarized as
follows:

• We propose a novel detector dedicated to hyperspectral
object detection, namely S2ADet. It contains a HID
module, a two-stream network, and a SSA module. The
detector achieves the most superior performance and
provides uniform input to the network during training
and inference.

• We design the HID module to decouple hyperspectral
images, thereby reducing redundancy and aggregating the
spectral and spatial information.

• We designed a two-stream network and facilitated the
aggregation of spectral and spatial information by the
SSA module, thus extracting refined features.

• We annotated a comprehensive large-scale object de-
tection dataset in hyperspectral images. It can provide
profound insights for developing detection.

The remainder of this paper is structured as follows. In
Section II, we provide a brief review of the most related work.
Section III elaborates on the specifics of the proposed method.
Next, in Section IV, we provide a detailed description of the
proposed dataset. Section V comprises a series of experiments,
discussions, and model analyses. Finally, we conclude this
paper in Section VI.

II. RELATED WORK

A. General Object Detection

Object detection aims to perform edge regression and class
classification on detected objects, and it has found numerous
applications, such as in autonomous driving [21] and anomaly
detection [22]. Object detection methods can be categorized
based on the number of stages involved in the detection head,
which are two-stage methods [23], [24] and one-stage meth-
ods [25], [26]. Two-stage object detection methods have been
rapidly evolving since the introduction of RCNN by Girshick
et al. [27], and a series of detectors based on the Faster R-
CNN [28] method have been proposed and achieved notable
results. Although the two-stage detector has higher accuracy
than the one-stage detector, the region proposal step in the
detection process reduces the speed of object detection [29].

Several highly efficient one-stage object detectors have
emerged to facilitate scene applications requiring high detec-
tion speed. One-stage detectors have found widespread use
in industrial scenarios [30]. Feng et al. [31] have proposed
TOOD to address the problem of conflicting classification
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(a) (c)(b)

Fig. 2. Comparison of existing benchmarks and datasets. (a) Hyperspectral target detection dataset. (San Diego as an example) where targets are represented
as pixel-level categories and annotations. (b) Example of HOD-1 dataset. The annotations are boxes and categories immediately adjacent to the edges of the
objects. Its scene is constructed by posing objects. (c) Example of our HOD3K dataset with diverse scenes.

TABLE I
COMPARISON OF EXISTING DATASETS. WHERE THE MARK IS PIXEL-LEVEL CLASSIFICATION AND ANNOTATION, THE RESOLUTION IS THE MAXIMUM

RESOLUTION OF THE VIDEO/IMAGE CONTAINED IN THE DATASET, AND HBB DENOTES THE HORIZONTAL BOUNDING BOX. PLACE INDICATES A SCENE
CONSTRUCTED BY PLACING OBJECTS, WHICH GENERALLY DOES NOT APPEAR IN REAL LIFE, AS SHOWN IN FIG. 2(B).

Hyperspectral datasets Scene Categories Resolution Bands #Images Annotations Avg. #labes/images Labeling method Year

Muufl Gulfport aerial 1 337 × 325 72 1 - - mark -
Nuance Cri aerial 1 400 × 400 46 1 - - mark -
San Diego aerial 1 400 × 400 224 1 3 3 mark 1998

HS-ISD [45] aerial 1 301 × 298 48 56 1085 19.37 mark 2023
HOD-1 [18] place 8 467 × 336 96 454 1657 3.65 HBB 2021

HOD3K natural 3 512 × 256 16 3242 15149 4.37 HBB 2023

and regression tasks by aligning them into unified parallel
tasks. In recent years, anchor-free approaches have received
considerable attention, and FCOS [32] has proposed replacing
the anchored frames with anchored points for object detection.
To enable end-to-end object detection, Carion et al. [33]
have proposed DETR, which uses learnable queries to detect
objects.

B. Intelligent Interpretation of HSI

With the advent of sensor technology, hyperspectral imag-
ing has emerged as a key area of interest for numerous
researchers [34]–[37]. Hyperspectral data capture objects or
scenes across a broad range of wavelengths in the electro-
magnetic spectrum. Compared to conventional color images,
hyperspectral data can provide more detailed and accurate
information [38]–[40]. Intuitively, RGB images are composed
of three channels. In contrast, hyperspectral images usually
consist of numerous channels or bands (B). Images containing
more than ten bands are generally classified, while images
with more than three but fewer than ten bands are consid-
ered multispectral images [41]. Compared with RGB images,
hyperspectral images contain many bands, with each pixel
containing a representative feature of the captured substance.
Its finds widespread use in applications such as crop monitor-
ing [42], target tracking [43], military surveillance [44], and
many others.

Dataset. In recent years, several hyperspectral datasets have
been proposed for target detection, such as Muufl Gulfport,
Nuance Cri, and San Diego, mainly consisting of a single
remote sensing image [46]–[48]. Fang et al. [45] annotated an
instance segmentation dataset consisting of 56 hyperspectral
images to address the gap in hyperspectral data. Yan et al.
[18] created a dataset for camouflage object detection by con-
structing scenes with posed objects, leveraging the ability to
analyze the physics using hyperspectral spectral dimensional
feature information. However, these datasets are restricted in
size and scene diversity [49], [50]. To address this issue, we
propose a new hyperspectral object detection dataset, namely
HOD3K, with annotations in practical application to meet
the requirements of various practical applications. Example
images from the HOD3K dataset and existing representative
datasets (San Diego and HOD-1) are shown in Fig.2. As shown
in Table I, our proposed dataset is distinct from others in that
it contains ten times more images and annotations than the
most prominent existing hyperspectral dataset (HOD-1) and
includes diverse scenes such as campuses, roads, and living
areas. The HOD3K dataset is explicitly designed for object
detection in hyperspectral images, making it a valuable re-
source for studying detection in large-scale scenes. A detailed
comparison of the HOD3K dataset with other related datasets
for object detection is presented in Table I.

Hyperspectral Detection. Hyperspectral imaging captures
rich image feature information employing dozens of con-
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TABLE II
DISTRIBUTION OF ANNOTATED BOUNDING BOXES BY CATEGORY IN THE

HOD3K DATASET.

Dataset Annotation People Car Bike All

HOD3K Number 12,144 817 2,188 15,149

Ratio 80.2% 14.4% 5.4% 100%

tiguous spectral bands. However, the information redundancy
between adjacent spectral bands increases the computational
cost, making it challenging to leverage hyperspectral im-
ages on a large scale, especially with equipment limitations.
To eliminate redundant information in hyperspectral images,
Wang et al. [51] mapped the bands into subspaces and se-
lected a combination of bands with more information, less
correlation, and better category differentiability. Cheng et al.
[52] utilized principal component analysis to extract the rep-
resentative features of hyperspectral data. However, due to the
limitation of sensors, the available hyperspectral image dataset
could be more robust. Thus, research on HSI intelligence
interpretation has mainly focused on image classification and
semantic segmentation, with less research on object detection.

Existing methods for hyperspectral target detection mainly
rely on pixel-level spectral information or simple correlation
information between neighboring pixels. For instance, Chang
et al. [12] proposed a statistical distribution model that detects
anomalous pixels by comparing them with the center of
the background distribution. This method assumes that the
background follows a multivariate normal distribution and can
detect possible objects in the region of anomalous pixels.
Similarly, the subspace model involves designing a linear
filter that minimizes the output energy while satisfying the
constraint equations [53].

To leverage in-depth information from hyperspectral images
using deep learning, Yu et al. [54] proposed a CNN-based
object detector that integrates hyperspectral images into ex-
isting object detection models using 3D convolutional layers.
However, The aforementioned methods ignore the rich contex-
tual semantic complementary information in the spectral and
spatial dimension information. To address these limitations,
we propose a hyperspectral information decoupling (HID)
module that decouples hyperspectral data from a spectral and
spatial perspective and a two-stream network to interact with
spectral and spatial dimensional information. Thus, we aim
to aggregate the rich contextual semantic information in the
spatial dimension with the spectral dimension information.

III. HOD3K DATESET

Hyperspectral imaging has been extensively utilized in
remote sensing applications for many years, typically satellite
sensors. However, recent advancements in sensor technology
have facilitated the acquisition of hyperspectral data from
natural scenes to a considerable extent. The hyperspectral
object detection dataset, HOD-1, introduced by Yan et al. [18],
has played a crucial role in detecting camouflaged objects by
providing 454 hyperspectral images captured in 96 spectral
bands, featuring 1657 annotations. However, the limitations

of the dataset size and single scene availability pose signifi-
cant challenges to developing large-scale hyperspectral object
detection datasets for natural scenes.

To promote the development of hyperspectral data, we have
developed the HOD3K dataset, inspired by [55]. We have
transformed hyperspectral images into pseudo-color images
and annotated them using Labelme [56]. The HOD3K dataset
includes 3242 hyperspectral images of natural scenes acquired
using a XIMEA snapshot VIS camera. Each hyperspectral
image contains 512 × 256 pixels with 16 bands arranged in a
mosaic pattern spanning the range of 470 nm to 620 nm. The
dataset includes various scenarios, such as urban roads and
campuses, presenting challenges like occlusion, small objects,
and scale changes. We have provided finely annotated bound-
ing boxes for all objects belonging to the three categories:
people, cars, and bikes, resulting in a total of 15,149 objects,
with an average of 4.67 objects per image. Specifically, the
dataset comprises 12,144 people, 817 cars, and 2,188 bikes.
Table II shows the distribution of the number of tags in each
category. The availability of the dataset provides researchers
with a more extensive and diverse set of natural scene images
and presents new challenges for developing and evaluating
object detection algorithms. Moreover, we use pseudo-color
images for refined annotation, allowing researchers to develop
and test new techniques to advance the field of hyperspectral
detection further.

IV. PROPOSED METHOD

In this section, we present an overview of the proposed
method. Subsequently, we shall expound upon the intricate
workings of the hyperspectral information decoupling module,
spectral-spatial aggregation module, the two-stream network,
and the detector. Finally, We elucidate the construction of the
loss function.

A. Framework Overview

Fig. 3 depicts the overall architecture of our novel object
detection detector, named S2ADet, which leverages the rich
spectral and spatial information in hyperspectral images. To
this end, we employ a feature pyramid network (FPN) [57] and
detector head inspired by the one-stage object detector [30].
For the sake of brevity, we omit the FPN and detector head
from the figure.

First, the problem of redundant hyperspectral information
is solved by band selection and principal component analysis,
which decouples hyperspectral information into spectral (SE)
information and spatial (SA) information. Then, we intro-
duce a two-stream backbone network that utilizes a recursive
structure to extract the features of the aggregated images.
The network comprises five stages, with the features of the
SA information in each stage denoted as a1, a2, · · · , a5, and
the features of the SE information in each stage denoted as
e1, e2, · · · , e5. The two-stream backbone is illustrated at the
bottom of Fig. 3, and the structure of the first three layers of
the feature extraction network is described as follows:

ai+1 = Stagei
(
ai
)
, ei+1 = Stagei

(
ei
)
, (1)
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Fig. 3. The structure of S2ADet. It contains a hyperspectral information decoupling (HID) module, a two-stream network, a spectral-spatial aggregation
(SSA) module, and a one-stage detection head. The hyperspectral information decoupling module is used to remove redundant information. We designed a
two-stream feature extraction network embedded with SSA modules for interacting with the spectral and spatial dimensional features of hyperspectral images.

where Stagei is the feature extraction of the i-th stage. And
then, to effectively integrate both the spectral and spatial
information from the hyperspectral image, we introduce a
spectral-spatial aggregation module (SSA) to facilitate in-
teractions between spectral and spatial features. The SSA
module is inserted into the last three layers of a two-stream
network and operates on a tensor containing both spectral
and spatial features. The module outputs two tensors, one
for aggregated spectral information and another for aggregated
spatial information. Specifically, we use a stage-wise approach,
where the aggregated information is added to the feature maps
in each stage. The equation represents it:

[
aiT
eiT

]
= SSA

([
ai

ei

])
,[

ai+1

ei+1

]
= Stagei

([
ai

ei

]
+

[
aiT
aiT

])
,

(2)

where ai and ei denote the spectral and spatial feature maps at
stage i, respectively. The output of the SSA module, denoted as
aiT and eiT , are concatenated to the input feature maps before
being passed to the next stage. Then, The resulting features
are subsequently fed into the detection head. This operation is
mathematically represented as:

Si = Add
(
âi, êi

)
, (3)

where S3, S4, and S5 are the resulting features utilized as
input to the object detector module. After passing through the
object detector, the final detection result is obtained.

B. Hyperspectral Information Decoupling

Hyperspectral imaging instruments demonstrate variabil-
ity in capturing spectral bands, leading to high information
redundancy within hyperspectral images. Hence, the direct
processing of hyperspectral images using the detector (H)
limits the detector’s performance. To overcome this challenge,
we decouple the hyperspectral image from spectral and spatial
perspectives and process the raw data by a hyperspectral
information decoupling (HID) module, as shown in Fig. 3.
This process can be expressed as follows:

a = SpatialFilter (H) , e = SpectralFilter (H) , (4)

Spatial Aggregated Information. Hyperspectral imaging is
characterized by a high correlation between adjacent spectral
bands, leading to significant spatial data redundancy. To reduce
the redundancy between hyperspectral bands, we introduce
a parameter-free method known as optimal neighborhood
reconstruction (ONR) [51] is employed to select the most
informative spectral bands from the hyperspectral data. This
band selection step creates a spatial dimension aggregation
image that preserves the most relevant spectral information.
Furthermore, to further refine the spatial information, we
employ a technique known as color mapping to generate SA
information (a).

Spectral Aggregated Information. The hyperspectral im-
age contains more than ten times the number of bands in
natural images, leading to a considerable reduction in the
object detection speed. To address this challenge posed by the
redundancy of spectral data in hyperspectral images, we have
utilized principal component analysis [58] for compressing
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these images based on their spectral dimensions. Through
dimensionality reduction, we obtained SE information (e).

C. Spectral-Spatial Aggregation module

After creating the hyperspectral information decoupling
module, the SE and SA information can be acquired. In
order to extract the features of the interacted images in both
spectral and spatial dimensions, we have designed a two-
stream network. As shown in the top of Fig. 3, the network
performs feature extraction from the SE and SA information,
combining attention operations to form the spectral-spatial
aggregation (SSA) module.

The input ai ∈ Rn×d is the feature input from the SA
information, while ei ∈ Rn×d denotes the SE information.
Here, n denotes the number of patches, which is equal to
the product of the height (h) and width (w) of the image,
and d denotes the dimension of the features. Firstly, To
achieve contextual information aggregation of spectral-spatial
image features, we concatenate together two image features as
follows:

f i = Concat
(
ai, ei

)
. (5)

Then, f i as the common f iWK ∈ Rn×dk×2 and f iWV ∈
Rn×dv×2, ai as aiWQ ∈ Rn×dv , and ei as eiWQ ∈ Rn×dv ,
and feed into the separate transformer modules. Since calcu-
lating attention directly through hyperspectral features would
entail high computational effort, we use spatial reduction
attention [59] to reduce the dimension of the key and value.

f iW̃K = DWConv(f iWK) ∈ R
n
r2

×dk×2,

f iW̃V = DWConv(f iWV ) ∈ R
n
r2

×dk×2,
(6)

where r is the spatial reduction rate of the SRA. Then,
aiWQ, e

iWQ, f
iW̃K , f iW̃V are put into the attention block

separately to calculate.

Attn1(aiWQ, f
iW̃K , f iW̃V ) = Softmax

(
att(ai, f i)√

dk

)
f iW̃V ,

Attn2(eiWQ, f
iW̃K , f iW̃V ) = Softmax

(
att(ei, f i)√

dk

)
f iW̃V ,

(7)
where att(x, y) = (xWQ) (yWK)

T . Then the FFN layer is
sent to add nonlinear transformations. The overall architecture
after transformers is expressed formally as:[

ãi

ẽi

]
=

[
ai

ei

]
+ Att

([
ai

ei

])
,[

ai

ei

]
=

[
ãi

ẽi

]
+ FFN

([
ãi

ẽi

])
.

(8)

We coupled interactive hyperspectral information by lever-
aging transformer global and dynamic modeling capabilities.
Hence, this process ultimately aggregates contextual informa-
tion based on spectral-spatial dimensions.

Spectral Attention module. In order to interact with the
information of spectral dimensions, we further used the SAM

[Maxpool,Avgpool]

Conv layer

Spatial Attention

Input feature

Input feature
channel
attention
module

spatial
attention
module

Channl Attention

Maxpool

Avgpool

Refined
feature

Channel-refined
feature

Elementwise multiplication

Activation function

Shared MLP

Fig. 4. Illustration of SAM module. The SAM module comprises a channel
attention module and a spatial attention module.

module [60] to calculate the channel attention (shown in
Fig. 4), and the module can be formulated as:

f̃ i = Concat
(
ai, ei

)
,

f̃ i
c = Mc(f̃

i)⊗ f̃ i,

f̃ i
s = Ms

(
f̃ i
c

)
⊗ f̃ i

c,

(9)

where Mc(·) is the channel attention map, Ms(·) is the spatial
attention map, and ⊗ stands for elementwise multiplication.
Then, we mapped them into the respective feature extraction
networks by 1× 1 convolution, aligning the number of feature
extraction network channels and continuing the extraction
operation.

aiT = Conv1×1

(
f̃ i
s

)
, eiT = Conv1×1

(
f̃ i
s

)
, (10)

where f̃ i ∈ Rn×d×2. aiT , e
i
T ∈ Rn×d. Through this operation,

the spectral and spatial information of the hyperspectral image
is aggregation.

Loss Function. For the task of HSI object detection, the
multitask loss function is defined as follows during training:

L = Lcls + Lbox, (11)

where Lcls is the classification loss and Lbox is the bounding-
box loss. The decouples box and class prediction differ from
common practice when applied to object detection. Several
experimental results from previous work have proved that the
loss function is the key to good object detection results. Our
subsequent experiments show that this loss function applies to
hyperspectral object detection.

V. EXPERIMENTS

In this section, we present our experimental settings, ab-
lation study, extensive results with in-depth analysis, and
comparisons with competing methods in detail.

A. Experimental Setting

1) Implementation Details: We used DarkNet-FPN as the
two-stream backbone network, and the pretrained DarkNet-
50 was used for initialization. We conducted comprehensive
experiments on two datasets to demonstrate the effectiveness
of our proposed method. All experiments trained 50 epochs.
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TABLE III
COMPARISON TO METHODS ON HOD3K DATASET WITH RESOLUTION AT 512 × 256. SA DENOTES THE IMAGE OF SPECTRAL AGGREGATED

INFORMATION, AND SE DENOTES THE IMAGE OF SPECTRAL AGGREGATED INFORMATION.

Detectors Backbone Type people bike car mAP50 mAP FLOPs Param. Input

Faster RCNN [28] ResNet50 two-stage 81.8 94.5 91.7 89.4 56.9 206.68 41.14M SA
Libra RCNN [61] ResNet50 two-stage 83.6 95.0 90.8 89.8 56.6 207.73 41.40M SA

FCOS [32] ResNet50 one-stage 55.0 19.7 69.8 48.2 23.7 196.81 31.84M SA
YOLOF [62] ResNet50 one-stage 60.8 67.8 67.6 65.4 28.6 98.23 42.13M SA

Deformable DETR [63] ResNet50 one-stage 52.8 56.3 64.9 58.0 22.3 195.23 39.82M SA
Retinanet [64] ResNet50 one-stage 85.6 94.8 92.6 91.2 53.3 205.69 36.17M SA

TOOD [31] ResNet50 one-stage 85.1 87.0 89.6 87.2 55.4 180.66 31.80M SA
YOLOv5 DarkNet53 one-stage 79.3 94.0 91.2 88.1 54.4 48.30 20.88M SA
YOLOv5† DarkNet53 one-stage 83.6 96.4 95.2 91.7 56.3 89.72 35.49M SA + SE

S2ADet* S2ANet one-stage 83.8 94.3 92.7 90.3 55.5 169.20 48.64M SA + SA
S2ADet(Ours) S2ANet one-stage 87.2 97.7 95.3 93.4 59.8 169.20 48.64M SA + SE

TABLE IV
COMPARISON TO METHODS ON HOD-1 DATASET. THE SCREEN IS DENOTED AS S, AND REAL IS DENOTED AS R. HSI IS DENOTED AS THE

HYPERSPECTRAL IMAGE.

Detectors Backbone toyblock S photo S pen S photo R toyblock R pen R leaf S leaf R mAP

FCOS [32] ResNet50 - - - - - - - - 80.9
Double-Head RCNN [65] ResNet50 - - - - - - - - 81.2

FoveaBox [66] ResNet50 - - - - - - - - 80.2
YOLOv5 DarkNet53 82.4 80.3 34.0 97.7 97.6 76.9 81.1 93.3 80.4
YOLOv5 DarkNet53 81.6 83.0 33.3 98.6 97.3 77.0 79.6 94.7 80.7

HOD-1 [18] VGG16 - - - - - - - - 83.5
S2ADet (Ours) DarkNet53 83.1 88.3 51.5 98.4 98.0 91.2 83.3 98.7 86.6

We use a mosaic of data enhancement techniques. For a fair
comparison, all experiments were trained and tested on a single
NVIDIA RTX 3090, using an SGD optimizer with a learning
rate of 0.01. The poly learning scheme is adopted so that the
learning rate is adjusted as (1− epoch

max epoch )
power × lr, where

power = 0.9. The threshold for non-maximum suppression
(NMS) IoU in testing was 0.6.

2) Evaluation Metrics: We evaluate S2ADet on the two
datasets using the Average Precision (AP) evaluation metric.
According to the IoU threshold (i.e., 0.50:0.95, 0.50, 0.75),
AP makes a finer division of the evaluation metrics.

B. Datesets and Evaluation metrics

In our experiments, we use two hyperspectral object detec-
tion benchmark datasets. The detailed information is listed as
follows.

HOD3K. The HOD3K dataset consists of 16 bands and
includes various natural scenes. In constructing the dataset
partitioning protocol, we considered two primary factors.
Firstly, we ensured that the distribution of objects within each
category was consistent across all sets (training, validation, and
test). Secondly, we randomly selected images from different
scenes to create a ratio of 7:1:2 for the training, validation, and
test set, respectively. Subsequently, we obtained segmented
training, validation, and test sets. We trained the methods on
the training set for all experiments and evaluated them on the
test set.

HOD-1. The HOD-1 dataset is a recently introduced hyper-
spectral object detection dataset comprising 1657 hyperspec-
tral images, categorized into eight distinct categories, with a

band count of 96. The dataset generates an object detection
scene by strategically placing objects, which are then captured
using a hyperspectral camera. The dataset also features a
camouflaged scene, created by initially photographing the real
scene with an iPadAir camera and then capturing the image on
the iPadAir screen using the hyperspectral camera. Thus, both
the real and camouflaged images are available for analysis.

Evaluation metrics. We employ the standard metric of
mean average precision (mAP) to assess the accuracy of
multispectral object detection. For mAP calculations, an In-
tersection over Union (IoU) threshold of 0.5 is utilized to
determine True Positives (TP) and False Positives (FP).

C. Comparative Methods

Performance on HOD3K Dataset. We compared our
proposed S2ADet method with state-of-the-art advanced object
detection methods, including Faster RCNN [28], FCOS [32],
Deformable DETR [63], YOLOF [62], YOLOv5, TOOD [31],
and Libra RCNN [61], which mainly focus on local features.
In contrast, our method captures rich global semantic rela-
tional information, which enables it to outperform these six
methods. The experimental results are presented in Table III.
Specifically, our method captures rich spectral and spatial
semantic relationship information, which makes it superior to
the aforementioned methods.

Compared to the state-of-the-art method, our S2ADet
method improves 2.9% mAP over Faster RCNN, which cur-
rently holds the best performance in mAP. Moreover, com-
pared to the one-stage object detection method, our method
achieves a 3.5% mAP improvement over the current best
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TABLE V
ABLATION STUDY OF DIFFERENT INPUTS IN SPECTRAL AND SPATIAL AGGREGATED INFORMATION ON HOD3K DATASET. THE BASELINE IS YOLOV5. SA

IS THE IMAGE OF SPECTRAL AGGREGATED INFORMATION, AND SE IS THE IMAGE OF SPECTRAL AGGREGATED INFORMATION. G INDICATES
GENERATION.

Detectors Input Bands people bike car mAP50 mAP

Baseline
SA w/o G 3 3.69 71.4 66.0 47.0 34.7

SE 3 75.0 67.8 90.8 77.9 45.2
SA 3 79.3 94.0 91.2 88.1 54.4

S2ADet
SA w/o G + SA w/o G 6 2.01 76.2 55.7 44.6 40.4

SA + SA 6 83.3 91.7 90.1 88.3 57.2
SA + SE 6 87.2 97.7 95.3 93.4 59.8

TABLE VI
ABLATION STUDY OF THE SSA MODULE IN ON HOD3K DATASET.

Detectors Input Bands SSA SAM mAP

Baseline SA 3 − − 54.4

S2ADet

SA + SE 6 − − 56.3
SA + SE 6 − ✔ 57.1
SA + SE 6 ✔ − 58.9
SA + SE 6 ✔ ✔ 59.8

method. Additionally, when compared to the highest accuracy
in each category of the compared methods, our S2ADet
method achieves the highest detection accuracy across all
three categories. Specifically, comparing the state-of-the-art
algorithm YOLOv5†with mAP50, our method improves the
accuracy of detecting people, bikes, and cars by 3.6% mAP,
1.3% mAP, and 0.1% mAP, respectively. These results further
confirm the effectiveness of our proposed method.

Performance on HOD-1 Dataset. We conducted a series
of comparative experiments using the HOD-1 dataset [18] to
assess the efficacy of our proposed methodology rigorously.
We compared four other state-of-the-art methods, specifically
FCOS [32], Double-Head R-CNN, FoveaBox, and HOD-1. A
summary of the results can be found in Table IV. Notably,
our proposed method surpasses the current leading technique
(HOD-1) by achieving a 3.1% mAP improvement in mean
average precision (mAP). It is essential to mention that the
input data size for our method is merely one-sixteenth of
that of HOD-1. Nevertheless, our method still attains a higher
mAP than the modified algorithm. This result underscores the
effectiveness of our meticulously designed hyperspectral infor-
mation decoupling module tailored explicitly for hyperspectral
images.

Furthermore, our proposed method, S2ADet, achieves good
results in each category, particularly on photo screen, pen
screen, and pen real, with performance improvements of
5.3% mAP, 18.2% mAP, and 14.2% mAP, respectively. These
comprehensive experiments on two datasets demonstrate the
robustness and effectiveness of our approach.

D. Ablation studies

1) Effectiveness of different input: We performed a com-
prehensive ablation study on S2ADet to assess the impact of
various input images on detection performance, as presented in

TABLE VII
ABLATION STUDY OF THE HID MODULE ON HOD3K DATASET.

Detectors Input Bands HID SSA mAP

Baseline SA 3 − − 54.4
Baseline + HID SA + SE 6 ✔ − 56.3

Baseline + SSA SA 3 − ✔ 54.9
S2ADet SA + SE 6 ✔ ✔ 59.8

Table V. The YOLOv5 single-stream model served as the base-
line. Before input, we obtained three images by decoupling
hyperspectral information: SE information, pre-generation SA
information, and post-generation SA information.

To evaluate the efficacy of decoupling, we fed the three
aggregated images into the baseline model as input. The
results indicate that the post-generation spatial aggregation
image produced the best outcomes, followed by the SE infor-
mation. Notably, the SA information demonstrated a 41.1%
improvement in mAP50 after generation, surpassing the SE
information. The result suggests that the generation process
significantly impacts the processing of spatial aggregation
information. Furthermore, to validate the complementarity of
spectral and spatial aggregated information, we employed
different combinations of aggregated information as input to
S2ADet. The results demonstrate that the combination of
spectral and spatial information yielded the best performance,
with a 2.6% mAP advantage over S2Det, which exclusively
uses SA information as input. These findings further confirm
the effectiveness of our generated spectral and SA information.

2) Effectiveness of hyperspectral information decoupling:
The objective of the HID module is to perform decoupling-
based aggregation of spectral and spatial information in the
hyperspectral image. To demonstrate the effectiveness of the
HID module in S2ADet, we present a breakdown of the
benefits of each internal component in Table VII.

The results demonstrate that the standalone HID module
surpasses the baseline performance by a margin of 1.9% mAP.
Furthermore, the synergistic combination of the HID and SSA
modules contributes to a substantial improvement of 4.9%
mAP in the S2ADet performance. This indicates that when
employed concurrently, the HID and SSA modules exhibit
a complementary effect, augmenting the detector’s overall
efficacy. Our comprehensive experimental evaluation reveals
that each constituent of the two modules enhances the HOD3K
dataset performance.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 14, AUGUST 2023 9

Baseline Baseline S2ADet (Ours)
(a) Error Detection

S2ADet (Ours)
(b) Missed Detection

Fig. 5. Qualitative analysis of S2ADet on HOD3K. The first column in (a) and (b) shows the baseline performance, and the second column shows the
performance of S2ADet. (a) The baseline model treats some redundant background information as objects. (b) S2ADet can mitigate the omission problem of
the baseline model. For the analysis, we transformed the hyperspectral image into pseudo-color images for display.

3) Effectiveness of spectral-spatial aggregation module:
The objective of the SSA module in S2ADet is to aggregate

spectral and spatial information in the hyperspectral image.
To assess the effectiveness of the SSA module, we present an
analysis of the benefits of each internal component in Table VI.

The results indicate that the SSA module alone outperforms
SAM by 1.8% mAP. Moreover, the SSA module without SAM
achieves a 2.6% mAP improvement, indicating that detection
performance can be enhanced by utilizing complementary
information from spectral and spatial data. By employing
spectral-spatial aggregation, S2ADet can achieve a 3.5% mAP
performance improvement. Hence, the SSA and SAM modules
can complement each other to enhance detection performance
further. Our combined experiments demonstrate that the ben-
efits of each component of the two combinations consistently
improve the detection of HOD3K.

E. Qualitative analysis

We conducted a thorough qualitative evaluation of the
S2ADet algorithm on the HOD3K dataset, comparing its
performance with that of the baseline model and S2ADet. We
selected various scenarios to provide a comprehensive analy-
sis, as shown in Fig. 5. The first column displays the results
of the baseline model, while the second column presents the
performance of S2ADet.

Fig. 5 (a) demonstrates that S2ADet can detect objects
even in the presence of occlusion by utilizing contextual

information. In contrast, the baseline model struggles to
identify the objects due to occlusion. Additionally, S2ADet
effectively learns to differentiate between objects possessing
similar features that could be easily mistaken for one another
by extracting and combining spectral and spatially aggregated
data, resulting in the precise identification of each object
within the hyperspectral image.

Moreover, Fig. 5 (b) shows that S2ADet accurately distin-
guishes between object and background categories based on
the spectral aggregated information of the objects, mitigating
the issue of small object misdetection that the baseline model
encounters. The results demonstrate the effectiveness of the
S2ADet algorithm in detecting objects in challenging natural
scene environments.

The results of our qualitative evaluation indicate that the
S2ADet algorithm outperforms the baseline model in detecting
objects in natural scenes. By utilizing both spectral and spatial
aggregated information and contextual information, S2ADet
effectively addresses the limitations of the baseline model,
resulting in improved object detection accuracy.

F. Discussion and Visualization
To further demonstrate the effectiveness of the S2ADet

algorithm, we present additional detection results on the
HOD3K dataset in Fig. 6. The detection results showcase
the algorithm’s capability to accurately identify and localize
objects in various natural scene environments, such as urban
roads and campuses.
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Fig. 6. Visualize some object detection results. The categories of people, bikes, and cars are represented by blue, yellow, and red boxes, respectively. We
transformed the hyperspectral images into pseudo-color images for display.

Fig. 7. Visualize some shortcoming detection results.

The high accuracy of S2ADet is evident from the clear
and precise bounding boxes that accurately encompass each
object. These results substantiate the efficacy of the proposed
approach in hyperspectral and provide visual evidence of the
algorithm’s effectiveness in detecting objects in challenging
natural scene environments. The visualization results demon-
strate the superior performance of S2ADet over the baseline
model, reinforcing the importance of considering spectral and
spatial aggregated data and contextual information for object
detection in the hyperspectral image. Overall, the promising
performance of S2ADet on the HOD3K dataset highlights
its potential to advance the object detection field in the

hyperspectral image and opens up new avenues for future
research.

Furthermore, we showed the classification confusion matrix
for both datasets. As shown in Fig. 8 (a), on the HOD-3K
dataset, the pen-screen category tends to be misclassified as
a background category due to the small target size of people,
resulting in a classification accuracy of only 0.86. Conversely,
the pen-screen category on the HOD-1 dataset exhibits an ac-
curacy of merely 0.31, as shown in Fig. 8 (b), with the majority
being classified into the background category. Consequently,
the algorithm warrants further improvement in the realm of
fine-grained classification.

G. Limitations

Although the proposed S2ADet has made significant ad-
vances in hyperspectral object detection, addressing specific
challenges remains crucial for further performance enhance-
ment. Fig. 7 depicts representative failure instances from the
HOD-3K dataset, where prediction errors and missed detec-
tions by S2ADet are apparent. Notably, S2ADet is challenging
to predict overlapping target regions and manage small objects.

Nevertheless, the S2ADet algorithm achieved a classifica-
tion accuracy exceeding 0.9 for most categories. The advance-
ments delineated in Sections III and IV attest to the proposed
S2ANet’s proficiency in effectively tackling the most exigent
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(a)

(b)

Fig. 8. Illustration of the classification confusion matrix. (a) HOD3K dataset,
(b) HOD-1 dataset.

scenarios, surpassing state-of-the-art methods in hyperspectral
object detection tasks.

VI. CONCLUSION

In this paper, we propose a novel object detector S2ADet
for the hyperspectral image. The proposed framework re-
duces hyperspectral redundancy and aggregates spectral and
spatial information utilizing an HID module. A two-stream
feature extraction network is then used to extract spectral
and spatial features, and an SSA module is embedded in the
network to mine the complementary information of spectral
and spatial features using global sensory attention. Compre-
hensive experimental analysis verifies the effectiveness of the
proposed framework and its internal modules. Our approach
achieves state-of-the-art performance on two hyperspectral
object detection datasets compared to other methods. The
comprehensiveness of our proposed datasets and the robust

applicability of our method allows our work to contribute sig-
nificantly to the development of hyperspectral object detection.
Moreover, we present a large-scale object detection dataset of
3242 hyperspectral images from multiple scenes. This dataset
addresses the limitations of a single scene and small volume
data in existing hyperspectral object detection datasets, thus
facilitating the development of object detection. The HOD3K
dataset is expected to advance the development of reliable and
accurate hyperspectral detection systems.
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