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Abstract—Synthetic Aperture Radar (SAR) image segmenta-
tion stands as a formidable research frontier within the domain
of SAR image interpretation. The fully convolutional network
(FCN) methods have recently brought remarkable improvements
in SAR image segmentation. Nevertheless, these methods do
not utilize the peculiarities of SAR images, leading to subop-
timal segmentation accuracy. To address this issue, we rethink
SAR image segmentation in terms of sequential information
of transformers and cross-modal features. We first discuss the
peculiarities of SAR images and extract the mean and texture
features utilized as auxiliary features. The extraction of auxiliary
features helps unearth the distinctive information in the SAR
images. Afterward, a feature-enhanced FCN with the transformer
encoder structure, termed FE-FCN, which can be extracted to
context-level and pixel-level features. In FE-FCN, the features
of a single-mode encoder are aligned and inserted into the
model to explore the potential correspondence between modes.
We also employ long skip connections to share each modality’s
distinguishing and particular features. Finally, we present the
connection-enhanced conditional random field (CE-CRF) to cap-
ture the connection information of the image pixels. Since the
CE-CRF utilizes the auxiliary features to enhance the reliability
of the connection information, the segmentation results of FE-
FCN are further optimized. Comparative experiments conducted
on the Fangchenggang (FCG), Pucheng (PC), and Gaofen (GF)
SAR datasets. Our method demonstrates superior segmentation
accuracy compared to other conventional image segmentation
methods, as confirmed by the experimental results.

Index Terms—Synthetic aperture radar, image segmentation,
fully convolutional network, cross-modality features, conditional
random field.
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SYNTHETIC aperture radar (SAR) is a high-resolution
ground observation radar with high-penetrating capability

[1]. It utilizes the pulse compression and the movement of
the radar platform to generate two-dimensional images [2].
The process of SAR image interpretation, which strives to
extract valuable insights from the images, primarily revolves
around image segmentation, target recognition and detection
[3], [4]. SAR image segmentation plays a crucial role in SAR
image interpretation by partitioning the images into distinct
regions based on their homogeneity [5], [6]. Effective SAR
image segmentation methods help improve the performance
of subsequent interpretation processes.

Traditional segmentation methods for SAR images involve
threshold, edge detection, sparse representation, and region
merging methods [7]–[9]. Nonetheless, the efficacy of these
methods relies on the efficacy of image features. The con-
volutional neural network (CNN) is extensively employed
in computer vision tasks due to its formidable capability
for extracting robust features [10], [11]. As a multi-layer
model, CNN automatically extracts the image features using
convolution, pooling, and fully connected layers. To enable
CNN in image segmentation tasks, Long et al. introduce
a significant modification to the traditional architecture by
replacing the fully connected layers with deconvolution layers,
thus pioneering the concept of the fully convolutional network
(FCN) [12]. The FCN incorporates both down-sampling and
up-sampling processes, where the former utilizes convolution
and pooling layers to extract essential image features. At
the same time, the latter improves image features’ resolution
through the deconvolution layers. Based on the work of Long,
various versions of FCN are proposed, effectively enhancing
the accuracy of image segmentation tasks [13]–[15]. Inspired
by the superiority of FCN models, the experts have applied
them in the SAR image segmentation and obtained satisfactory
results [16], [17].

Recently, a hot research topic in image segmentation has
been enhancing the model’s performance. The presence of
multi-scale objects increases the difficulty of image segmen-
tation [18]. Multi-scale feature extractors, such as the spatial
pyramid pooling module, have been designed to alleviate this
problem [19], [20]. Other improved models, such as PSPNet,
CCNet, and RefineNet, are also designed to extract contextual
information from images [21]–[23]. These approaches can
obtain texture and edge features of images but still cannot
change the nature of CNNs that have difficulty handling long-
range dependencies. Transformer networks [24] possess an
inherent advantage in extracting global information due to their
self-attention structure. By employing the scaled dot product
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attention mechanism to process features at different scales,
the model gains the ability to effectively capture and handle
spatial relationships in SAR images. Furthermore, it is crucial
to explore effective strategies for combining the strengths of
CNNs and Transformers. Other researchers improve the seg-
mentation performance by further optimizing the segmentation
results [25]. The commonly used method is the fully connected
CRF model, which mines the connection information of the
image pixels [26]. In the realm of SAR image segmentation,
particularly in scenarios involving complex scenes and noise,
CRF present a valuable approach for enhancing segmentation
accuracy. By leveraging the interdependencies between pixels
within an image, as well as the features of individual pixels
and their neighboring counterparts, CRF effectively captures
contextual relationships. Furthermore, CRF offer the potential
to enhance the accuracy of segmentation results by effectively
modeling the spatial and frequency domains of the image.

The segmentation performance of the SAR image can be
significantly improved through several key techniques, includ-
ing the extraction of multi-scale features, the utilization of
context information, and the adoption of fully connected CRF.
Enlightened by this, we present a new SAR image segmen-
tation method that mines the rich information in the images
from a novel perspective, cross-modality features fusion. In
this method, the initial step involves the segmentation of input
images into smaller slices. Then we adopt the mean and
Gabor filters to extract the SAR images’ auxiliary features.
The feature-enhanced fully convolutional network (FE-FCN)
is employed in this approach, leveraging auxiliary features to
enhance the segmentation results. In terms of model structures,
although extraordinary symbolic power can be obtained using
CNNs, convolutional operations typically exhibit limitations
in modeling direct long-range relationships. As a result, these
structures usually yield weaker performance, especially for
showing significant differences in texture, shape, and di-
mensions. To overcome this limitation, we provide a better
way to assist self-attention by adding Transformer blocks
[24] at the encoder for global contextual modeling of the
attended features. To guarantee structural integrity, the skip
connection is designed to align the single-modal information
and explore inter-modal correspondence. Finally, we propose
the connection-enhanced CRF (CE-CRF) model for optimizing
the segmentation results. These key innovations include:

(1) We propose the cross-modality features extraction for
mining the rich information in SAR images. Based on the
analysis of the peculiarities of SAR images, the mean and
texture features are adopted as auxiliary features.

(2) We present a new FE-FCN model to generate the
segmentation results. The FE-FCN contains feature fusion
module, hybrid CNN-Transformer architecture, and residual
alignment. The representation of SAR image features is en-
hanced by absorbing cross-modality features.

(3) A novel CE-CRF model is designed to post-process
the segmentation results. The CE-CRF simultaneously utilizes
the input images and additional features for extracting the
connection information of image pixels, which effectively
enhances the reliability of the connection information and
contributes to a higher segmentation accuracy.

II. RELATED WORK

A. Image Semantic Segmentation Using CNN

The FCN methods have become the mainstream method in
image segmentation. Both SegNet and UNet employ encoder-
decoder architectures, where the encoder extracts image fea-
tures and the decoder enhances feature resolution to generate
accurate segmentation results [27], [28]. Li et al. present
the gated fully fusion network (GFFNet), which adopts the
gates to fuse the multi-scale image features in a fully con-
nected manner [29]. During the feature fusion process, the
gates can effectively enhance the features’ useful information
while reducing the noise. The full-resolution residual network
(FRRNet) incorporates both pooling and residual streams to
effectively leverage abstract features and detailed information
simultaneously for image analysis [30]. The conducted exper-
iments serve as compelling evidence of the effectiveness of
the FRRNet in enhancing segmentation accuracy, particularly
in the challenging region boundaries.

Zhao et al. emphasize the importance of context information
in the images and propose the PSPNet [21]. The pyramid
pooling model (PPM) is embedded in the PSPNet, which
can extract the context information. To effectively extract the
context information from input images, the CCNet is designed
in [22]. By incorporating recurrent operations, the CCNet
allows each pixel to capture dependencies from the entire
image, enabling a comprehensive understanding of the contex-
tual information. The RefineNet uses the cascaded architecture
to generate high-resolution segmentation maps by combining
the multi-scale image features [23]. In addition, the chained
residual pooling model is embedded in the RefineNet to fuse
the pooling features, thereby capturing the background context
information.

These methods focus on the analytical adjustment of the
model structure, using convolutional neural networks to extract
the delicate spatial information of the image. However, further
emphasis should be placed on the comprehensive incorporation
of global contextual details pertaining to the image. Unlike
the above methods, we employ a hybrid CNN-Transformer
structure that embeds the transformer encoder into the FCN
model. The CNN’s high-resolution spatial information and the
transformer’s global context information are utilized to achieve
accurate localization.

B. SAR Image Segmentation

Due to the superiority of FCN models, they have been suc-
cessfully applied in SAR image segmentation. To accurately
distinguish the open water and sea ice in SAR images, Ren et
al. propose the dual-attention UNet (DAUNet), which employs
UNet as the backbone [31]. The dual-attention mechanism in
the DAUNet consists of channel attention and position atten-
tion modules, which are utilized to improve the representation
of SAR image features. The attention FCN (AFCN) model
leverages three strategies to enhance image features: spatial
attention, channel attention, and multi-scale feature [32]. Fur-
thermore, the segmentation results of the AFCN model are
further refined through the utilization of fully connected CRF.
Jing et al. present a new encoder–decoder method for building
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Fig. 1. The flowchart of our method.

segmentation [33]. This method’s decoder contains two stages:
the selective spatial pyramid dilated (SSPD) network and the
context balancing module (CBM) are utilized to fuse and
recover the multi-level features. Compared with the traditional
FCN models, the multi-path ResNet (MP-ResNet) extracts the
context information based on the parallel multi-scale branches
[34]. The decoder of MP-ResNet employs the feature fusion
mechanism for fusing the image features extracted by different
components.

In comparison to the aforementioned methods, our approach
explores the information present in SAR images from a novel
standpoint, that is, cross-modality feature fusion. We utilize the
mean and texture features as auxiliary features and design the
FE-FCN and CE-CRF models to promote the segmentation
performance. To the best of our knowledge, it is the first
time that the mean and texture features have been adopted
as cross-modality features for improving the performance of
FCN and CRF models. Concretely, the FE-FCN integrates the
depth features with the auxiliary features to enhance the SAR
image representation. The CE-CRF utilizes the input images
and auxiliary features to extract the connection information of
the image pixels, hence the segmentation results are further
optimized.

C. Self-Attention Mechanism

Self-attention mechanism [35], [36] is a technique that
enables the learning of correlations between different temporal
or spatial locations within an input sequence. It can help the
model understand the relationships in the input sequence and
capture the critical information, thus improving the model’s

performance. In CNN, the self-attention mechanism is primar-
ily employed for feature extraction. For example, in SeNet
[37], the self-attentive mechanism can automatically learn
the correlation between channels across different channels,
thus improving the feature representation. Moreover, the self-
attention mechanism possesses the remarkable capability to
autonomously discern and comprehend the intricate intercon-
nections among features spanning diverse scales. In object
detection models such as RetinaNet [38], the self-attentive
mechanism can automatically learn feature representations of
objects at different scales, thus improving detection accuracy.

The Transformer obtains global contextual information by
transforming pixels of an image or image block into a se-
quence and then applying a self-attentive mechanism. The
standard transformer block encompasses essential components,
including the multi-headed self-attentive (MSA) mechanism,
feed-forward neural network (FFN), and layer normalization
(LN). In medical image semantic segmentation, [39], [40]
design the swin transformer-based U-shaped encoder-decoder
framework. Specifically, the swin transformer-based dual en-
coder extracts feature representations at different semantic
scales. It has also been pointed out that the results of seg-
menting the network by Transformer alone could be better
because Transformer relies too much on the global modeling
of the image and needs more detail localization capability. As
a result, recent studies such as [41], [42] have attempted to
integrate a hybrid structure of CNN and Transformer. This
novel model architecture sequentially combines CNN and
Transformer layers to construct a new encoder structure, aim-
ing to leverage the strengths of both approaches. SETR [43]
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Fig. 2. The SAR images were obtained in Guangxi, China. The areas enclosed
by the yellow, green, and red rectangles are farmland, river, and urban regions.

combines ViT [44] feature extraction, multi-level feature fu-
sion, and traditional CNN level-by-level decoding to design a
high-precision semantic segmentation framework. SegFormer
[45] utilizes Mix-FFN instead of positional embedding and
uses Efficient Self-Attention to reduce the time complexity.
The authors also propose an overlapping patch segmentation
method to preserve local continuity. In recent years, there has
also been work to explore applications in remote sensing using
self-attentive mechanisms and transformer networks. Zhang et
al. [46] introduce a pure transformer network with a Siamese
U-shaped structure specifically tailored for addressing the
task of remote sensing image transformation detection. [47],
[48] attempt to model the global context of remote sensing
images by combining CNN with Transformer to enhance
feature representation. Hong et al. [49] rethought hyperspectral
image classification from the sequential perspective of the
Transformer to learn spectral local sequence information from
images and reduce the information loss during hierarchical
propagation.

Inspired by these excellent works, this study uses an aux-
iliary encoder of self-attentive mechanism blocks. It provides
global contextual information to the CNN-based encoder using
multi-level jump connections. In the decoder module, we
recover the width and height of the feature vector to match the
dimensions of the original image. This is accomplished solely
through the application of the conventional CNN.

III. THE PROPOSED METHOD

We have devised a novel FCN method for SAR image
segmentation that incorporates cross-modality features. The
flowchart illustrating the workflow of our method is presented
in Fig. 1. As can be seen, the proposed method consists of
pre-processing, auxiliary features extraction, segmentation re-
sults acquisition, and post-processing. We first pre-process the
original large-size SAR image and divide it into small slices,
facilitating the subsequent stages. In the auxiliary features
extraction, we adopt the mean and Gabor filters to extract
the mean and texture features. Consequently, the abundance
of valuable information encapsulated within SAR images is
effectively harnessed. Subsequently, we introduce the FE-FCN
model, which serves as a pivotal tool in generating highly
accurate segmentation results. Leveraging its capability to
assimilate cross-modality features, the FE-FCN significantly
enhances the representation of SAR image features. Then, we

have developed and implemented the CE-CRF, a sophisticated
algorithm meticulously designed to refine and optimize the
output. The CE-CRF extracts the connection information of
image pixels by simultaneously utilizing the input images
and auxiliary features, hence the reliability of the connection
information is enhanced. Next, we introduce our method’s
auxiliary features extraction, FE-FCN, and CE-CRF.

A. Auxiliary Features Extraction

We perform the auxiliary features extraction for mining
the rich information in the SAR images. As Fig. 1 shows,
the auxiliary features extraction consists of two branches: the
mean features extraction based on mean filters and the texture
features extraction based on Gabor filters.

1) Mean Features Extraction: The SAR images are ac-
quired based on the radar scattering echoes of ground targets.
Due to the distinction of the scattering echoes, the gray
values of different areas in the SAR images are different—the
greater the disparity in scattering echoes, the more pronounced
the variation in grey values. Fig. 2 shows the SAR images
obtained in Guangxi, China. The areas enclosed by the yellow,
green, and red rectangles in Fig. 2 are the farmland, river,
and urban regions. As can be seen, the grey values vary
significantly among different categories of areas. The grey
values in urban areas are the highest, whereas the grey values
in river areas are close to 0. The variation of grey values in
different categories of areas is an essential peculiarity of SAR
images. Consequently, we investigate the utilization of grey
value information within SAR images as a means to enhance
the accuracy of segmentation.

Statistical features have the capability to characterize the
grey value information present in SAR images. The commonly
used statistical features are the mean features extracted by the
mean filters. Given the input image I ∈ RH×W , where H
and W denote the height and width of the image. The mean
features are calculated by (1)

Fmean(x, y) =
1

(2w + 1)
2

w∑
i=−w

w∑
j=−w

I(x+ i, y + j) (1)

where Fmean(x, y) ∈ Fmean, I(x, y) ∈ I . 2w + 1 represents
the window size of the mean filter. We can obtain multi-scale
mean features by utilizing a set of mean filters with different
window sizes.

2) Texture Features Extraction: The texture information in
SAR images reflects the structure of ground targets. In Fig.
2, the texture of the river area is smooth and straightfor-
ward. However, the texture of the urban area could be more
coarse and complicated. Hence, the texture information is
conducive to distinguishing different areas in SAR images. The
texture features extraction methods for SAR images include
Markov random field, gray-level co-occurrence matrix, and
Gabor wavelet transform [50], [51]. The Markov random field
extracts texture features by capturing the spatial regularity
of adjacent pixels. In the gray-level co-occurrence matrix
method, the texture information is expressed by the gray-level
relationship of different pixels. The Gabor wavelet transform
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method utilizes the Gabor filters to process the images, ex-
tracting the texture features. The Gabor wavelet transform
method effectively extracts multi-orientation texture features
by employing a set of Gabor filters that are designed with
diverse orientations. Hence we adopt it in our approach.

The function of 2-D Gabor filter is expressed by (2)

G (x0, y0, θ, ω0) =

1
2πσ2 exp

(
−x2

0+y2
0

2σ2

) [
exp (jω0x0)− exp

(
−ω2

0σ
2

2

)] (2)

where x0 = x cos θ+y sin θ, y0 = −x sin θ + y cos θ. θ and
ω0 denote the orientation and center frequency of the filter,
respectively. σ is the standard deviation of Gauss function.
To extract the texture features F texture, we perform the
convolution operation on the input image and the Gabor filter.
Ftexture(x, y) ∈ F texture is calculated using (3)

Ftexture (x, y) = I (x, y)⊗G (x0, y0, θ, ω0) (3)

where ⊗ denotes the convolution operation.

B. Feature Enhanced FCN (FE-FCN)

In the pursuit of generating precise segmentation results,
we have developed a state-of-the-art model known as the FE-
FCN. This sophisticated architecture is specifically designed
to leverage cross-modal features, harnessing their power to
greatly enhance the representation of SAR image features.
The FE-FCN consists of convolution layers, up-sample layers,
down-sample layers, and spatial attention feature fusion mod-
ules. The model has two convolutional branches: the original
image and auxiliary feature branches. Both model components
have the same network structure in the encoder stage, except
for the difference in feature channels between the additional
features and the original inputs. We first extract the mean
features, whose shape is (1, h, w), by concatenating them
with the extracted contextual features (8, h, w) as auxiliary
features. The shape of this auxiliary feature is (9, h, w). For
the original SAR image, the shape of the input is (1, h, w). In
the initial step, both components (main and auxiliary features)
are individually inputted into a 7 × 7 convolutional layer with
a stride of 2. It is important to highlight that the auxiliary
features additionally pass through a 3 × 3 max-pooling layer
for further processing. Immediately afterward, the features are
input into several similar residual modules for down-sampling.
We designed three layers of residual units in the encoder
and embedded cross-modality features in different layers of
branches.

Unlike most existing improvement methods, our approach
introduces a self-attention mechanism into the encoder design
through the transformer architecture. Once the high-resolution
features are extracted using CNNs, they are subsequently
reshaped into a sequence of 2D patches. The vectorized
patches are mapped into the feature space using trainable
linear projections while adding location-specific embeddings
to ensure no location information is lost. Then, there are
fed into a ViT [44] with a 6-layer transformer block to
fully extract the global contextual detail input sequence. This

Fig. 3. Structure of the feature fusion module.

combined CNN-Transformer encoding method enhances the
image information with finer details.

In the decoder processes, all the up-sampling layers, except
for the final convolution layer, are implemented as residual
layers. The final convolution layer is implemented as a single
2 × 2 transpose convolution layer. Meanwhile, the feature maps
by the lower layers include detailed information, whereas the
higher layers generate feature maps with semantic information.
Hence, combining the feature maps using the skip connection
method helps optimize the image features.

In the feature fusion module, we propose a feature transfer
method. The shared and specific information of the fused
features is used efficiently by modeling the spatial attention
in the modalities to learn the information of the inter-modal
features. The structure of the feature fusion module is illus-
trated in Fig. 3. First, the original and auxiliary features are
computed separately for spatial attention. For each channel,
the weight of each position in that channel is calculated.
Specifically, the feature matrix of the channel is spread into a
vector, then dotted multiplied with a learnable weight vector
to obtain a weight matrix of the same size as the feature
matrix. The feature matrix in each channel is multiplied by
the corresponding weight matrix to obtain the weighted feature
matrix. Finally, the weighted feature matrices of all channels
are summed by channel direction to get the fused feature
matrix. These weight vectors and weight matrices are all
learnable parameters, so the back-propagation algorithm can
train them. During training, the model automatically learns
which positions are more critical for a particular task. We use
this soft attention-based approach to better utilize the spatial
information in the input images.

C. Connection Enhanced CRF (CE-CRF)

The pixels in SAR images are related to each other. For
instance, the pixels with close spatial distance and similar
gray values will likely share the same label. Therefore, the
connection information of image pixels helps improve the
segmentation accuracy. The image pixels are defined as nodes,
and the connection of different pixels is represented as edges.

To optimize the segmentation results obtained by FE-FCN,
we present the CE-CRF, which can extract the connection in-
formation of image pixels. During the extraction of connection
information, the traditional CRF only utilizes the input images,
whereas the CE-CRF simultaneously utilizes the input images
and auxiliary features. Since the auxiliary features also contain
rich information, the reliability of the connection information
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extracted by the CE-CRF is effectively enhanced. In the CE-
CRF, we also define the pixels and the connection of pixels as
nodes and edges, respectively. The energy function of CE-CRF
is determined by (4)

E(y) =
∑
i

ψ0(yi) +
∑
i,j

ψ1(yi, yj)+∑
i,j

ψ2(yi, yj) +
∑
i,j

ψ3(yi, yj)
(4)

where y denotes the predicted labels of the image pixels.
ψ0(yi) represents the unary potential function which is ex-
pressed in (5)

ψ0(yi) = − logP (yi) (5)

P (yi) is the label assignment probability of image pixels.
ψ1(yi, yj), ψ2(yi, yj), and ψ3(yi, yj) represent the pairwise
potential functions that utilize the input images, mean features,
and texture features to capture the connection information
of image pixels, respectively. The expressions of the three
functions are shown in (6)-(8).

ψ1(yi, yj) =

µ(yi, yj)(ω1e
(−|pi−pj |2

2θ21
−|Ii−Ij |2

2θ22
)
+ ω2e

(−|pi−pj |2
2θ23

)
)

(6)

ψ2(yi, yj) =

µ(yi, yj)(ω3e
(−|pi−pj |2

2θ24
−|Mi−Mj |2

2θ25
)
+ ω4e

(−|pi−pj |2
2θ26

)
)

(7)

ψ3(yi, yj) =

µ(yi, yj)(ω5e
(−|pi−pj |2

2θ27
−|T i−T j |2

2θ28
)
+ ω6e

(−|pi−pj |2
2θ29

)
)

(8)

As can be seen, the pairwise potential functions contain two
Gaussian kernel functions. pi represents the pixel positions, Ii
represents the gray value of the pixels. T i and M i respectively
denote the texture and mean feature vectors. {ω1, ω2, · · · , ω6}
are the weight coefficients, and {θ1, θ2, · · · , θ9} denote the
parameters that control the scale of Gaussian kernel functions.
µ(yi, yj) is the penalty function which is calculated by (9).

µ(yi, yj) =

{
1, ifyi ̸= yj
0, ifyi = yj

(9)

IV. EXPERIMENTS

In this section, the datasets, the detailed structure of the
proposed method, and the evaluation measures are introduced
first. Afterward, the segmentation performance of our approach
and other state-of-the-art methods is compared. Finally, several
ablation studies are designed in this study to evaluate the
effectiveness of the different components.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 4. The SAR images and corresponding ground-truth in FCG dataset.
(a)-(e) SAR images. (f)-(j) Ground-truth. The red, black, yellow, and blue
colors denote urban, river, farmland, and background areas, respectively.

TABLE I
NUMBERS OF PIXELS IN THE FCG TRAINING AND TESTING SETS

Urban Farmland River Background

Training set 0.94 M 0.63 M 1.02 M 2.23 M
Testing set 2.40 M 2.21 M 3.75 M 15.72 M

TABLE II
NUMBERS OF PIXELS IN THE PC TRAINING AND TESTING SETS

Urban Farmland

Training set 0.27 M 2.95 M
Testing set 4.58 M 24.32 M

A. Preliminary

1) Datasets: We adopt three SAR datasets in the exper-
iments: Fangchenggang (FCG), Pucheng (PC), and Gaofen
(GF) datasets. The SAR images in the FCG dataset are col-
lected in Fangchenggang, China. This dataset comprises a total
of 36 images, each having a resolution of 2 m and dimensions
of 875×883 pixels. Fig. 4 shows the FCG dataset, wherein the
red, yellow, black, and blue colors denote the urban, farmland,
river, and background areas, respectively. A total of 6 images
from the FCG dataset were selected as the training set, while
the remaining 30 images were allocated to form the testing set.
Each category should be included and contain sufficient image
pixels when selecting the training images. As Table I shows,
the number of pixels in different categories is imbalanced
(M denotes the abbreviation of million). For instance, the
urban area in the training set contains 0.94 million pixels,
whereas the background area contains 2.23 million pixels. This
imbalance increases the difficulty of the segmentation tasks.

The PC dataset is composed of 40 SAR images which are
acquired in Pucheng, China. The image resolution is 1 m,
and the image size is 850×850 pixels. Fig. 5 shows that two
categories of areas are contained in this dataset: the urban
and farmland areas. We choose 4 images in the PC dataset to
form the training set and the other 36 images are adopted as
the testing set. Table II shows the number of pixels contained
in the two categories. As can be seen, the farmland area has
much more pixels than the urban area.

The GF dataset is an open-access spaceborne SAR dataset
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TABLE III
NUMBERS OF PIXELS IN THE GF TRAINING AND TESTING SETS

River Vegetation Residential-area Industrial-area Bare-land Non-image Others

Training set 11.27 M 36.49 M 47.23 M 23.51 M 2.00 M 7.79 M 2.79 M
Testing set 3.01 M 7.49 M 34.71 M 22.90 M 1.63 M 5.24 M 3.66 M

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 5. The SAR images and corresponding ground-truth in PC dataset. (a)-
(e) SAR images. (f)-(j) Ground-truth. The red and yellow colors denote urban
and farmland areas, respectively.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 6. The SAR images and corresponding ground-truth in GF dataset. (a)-
(e) SAR images. (f)-(j) Ground-truth. The black, yellow, orange, cyan, pink,
blue, and red colors denote river, vegetation, residential-area, industrial-area,
bare-land, non-image, and other areas, respectively.

released in the 4th High-Resolution Remote Sensing Image
Interpretation Software Competition. The resolutions of the
images vary from 10 m to 30 m, and the image size is
512×512 pixels. The training and testing sets consist of 500
and 300 images. As Fig. 6 shows, the GF dataset includes
seven categories of areas: river, vegetation, residential-area,
industrial-area, bare-land, non-image, and others. The pixels
in each category are shown in Table III.

2) Detailed Structure: In the pre-processing, we divide
each image in the FCG and PC datasets into 16 small slices
with a step of 200 pixels and a size of 224×224 pixels. The
images in the GF dataset are partitioned into four smaller
patches with a step of 256 pixels and a size of 256×256 pixels.
We adopt two means and eight Gabor filters to extract the
mean and texture features in the auxiliary features extraction.
The two mean filters’ window sizes are set to 3 and 5. The
orientations of the eight Gabor filters range from 0 to π with
a step of π/8.

3) Evaluation Measures: The pixel accuracy (PA), mean
pixel accuracy (MPA), mean intersection over union (MIoU),
and frequency-weighted intersection over union (FWIoU) are
utilized to evaluate the segmentation methods. The PA, MPA,
MIoU, and FWIoU are calculated based on the confusion
matrix of the segmentation results. Suppose N denotes the
number of image pixels, and K denotes the number of area
categories. PA is obtained by calculating the proportion of
pixels that are correctly classified:

PA =
1

N

K−1∑
i=0

pii (10)

pii denotes the element of confusion matrix at coordinate (i, i).
MPA is the averaged PA of different categories:

MPA =
1

K

K−1∑
i=0

pii∑K−1
j=0 pij

(11)

MIoU represents the averaged IoU of different categories:

MIoU =
1

K

K−1∑
i=0

pii∑K−1
j=0 pij +

∑K−1
j=0 pji − pii

(12)

FWIoU takes into account the weights for different categories:

FWIoU =
1

N

K−1∑
i=0

(∑K−1
j=0 pij

)
pii∑K−1

j=0 pij +
∑K−1

j=0 pji − pii
(13)

B. Segmentation Performance Comparison

1) Experiments on the FCG Dataset: In this segment, a
rigorous evaluation is conducted to assess the segmentation
performance of various methodologies on the FCG dataset.
As part of this analysis, we carefully select state-of-the-art
techniques as the benchmark for comparison, including SegNet
[27], UNet [28], GFFNet [29], FRRNet [30], PSPNet [21],
CCNet [22], RefineNet [23], Swin-UNet [39], TransUNet
[41], Segnext [52] and PidNet [53]. The comparison methods
employ the same pre-processing manner as our method.

Table IV showcases the segmentation performance of var-
ious methods on the FCG dataset. Notably, our proposed
method achieves the highest scores in terms of MIoU, FWIoU,
PA, and MPA. Although some comparison methods (such as
GFFNet, RefineNet, and CCNet) extract the multi-scale fea-
tures or the context information in the images, their segmenta-
tion performance falls short compared to our approach. This is
because our method takes into account the peculiarities of SAR
images, which is conducive to mining the rich information
in the images. Besides, the FE-FCN model in our method
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TABLE IV
THE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE

FCG DATASET

Methods MIoU FWIoU PA MPA

SegNet 66.13% 76.23% 86.58% 74.25%
UNet 68.03% 77.21% 87.22% 75.76%

GFFNet 68.27% 77.61% 87.46% 75.89%
FRRNet 68.51% 77.66% 87.46% 76.14%
PSPNet 56.76% 70.40% 82.60% 65.12%
CCNet 58.33% 71.08% 83.09% 67.17%

RefineNet 65.54% 75.70% 86.25% 73.62%
Swin-UNet 67.42% 75.62% 87.58% 80.43%
TransUNet 69.33% 74.84% 85.91% 78.75%

Segnext 70.01% 76.87% 84.95% 79.47%
PidNet 67.14% 76.88% 87.36% 77.32%
Ours 72.36% 79.51% 89.53% 82.37%

enhances the representation of SAR image features by fusing
FCN features and auxiliary features. The comparison methods
utilize the CRF to optimize the segmentation results. At the
same time, the CE-CRF in this paper extracts more reliable
connection information by simultaneously utilizing the input
images and auxiliary features. Specifically, our method can
achieve 72.36% MIoU and 89.53% PA on the FCG dataset.
Compared to PSPNet, the method improves 15.6% MIoU and
6.93% PA, respectively. Compared to Segnext, our method
achieves 79.51% FWIoU and 82.37% MPA, which is 3.28%
and 8.12% improvement, respectively. The experiment was
also tested on Transformer-based methods, and the results
showed that none of them could achieve the same metrics
as the method in this paper, further proving the effectiveness
of cross-modal features.

Next, we will use the results visualization to compare the
differences in segmentation performance between the different
methods more visually and intuitively. For the purpose of
visual analysis, we have selectively chosen two images from
the FCG testing set. In Figures 7 and 8, we present the
visualization images that showcase the segmentation results
obtained from our methodology. Our method’s visual figures
match the ground truth better than the comparison methods.
Due to the superiority of FE-FCN and CE-CRF, our approach
can effectively distinguish the pixels of different categories.
Nevertheless, upon careful examination of the visual figures
from the comparison methods, it becomes apparent that numer-
ous misclassified pixels are present. These inaccuracies stem
from the comparatively weaker segmentation performance,
particularly evident in the visual figures associated with the
PSPNet and CCNet methods.

2) Experiments on the PC Dataset: Next, we compare
the performance of different methods on the PC dataset. As
Table V shows, our method demonstrates superior segmenta-
tion performance when compared to the other methods. For
instance, the PA of our approach reaches 96.21%, which is
superior to that of the comparison methods. Compared to
Segnext, our method improves the PA by 1.34%. Moreover,
our process yields an improvement of 7.68% MIoU compared
to CCNet (87.58% vs. 79.90%). Since our method mines the

TABLE V
THE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE

PC DATASET

Methods MIoU FWIoU PA MPA

SegNet 82.20% 90.14% 94.62% 89.26%
UNet 84.74% 91.51% 95.39% 91.74%

GFFNet 81.74% 89.85% 94.44% 89.15%
FRRNet 82.73% 90.63% 95.00% 88.01%
PSPNet 79.69% 88.42% 93.46% 89.38%
CCNet 79.90% 88.73% 93.73% 88.27%

RefineNet 84.12% 91.29% 95.31% 90.15%
Swin-UNet 83.47% 89.12% 95.32% 90.01%
TransUNet 84.99% 90.61% 95.70% 91.12%

Segnext 86.33% 91.78% 94.87% 90.83%
PidNet 82.69% 89.09% 94.24% 88.77%
Ours 87.58% 93.46% 96.21% 92.67%

rich information in the SAR images through the auxiliary
features extraction, the performance of FE-FCN and CE-
CRF is effectively enhanced, thereby contributing to a higher
segmentation accuracy.

In Figs. 9 and 10, we present the visual figures depicting
the segmentation results obtained by our method. It is evident
from the figures that our method effectively and accurately
classifies the pixels belonging to farmland and urban areas.
The number of misclassified pixels in the visual figures of
FRRNet, PSPNet, and CCNet methods are obviously more
significant than that of our approach. Especially in Figs. 9
(e)-(h), the farmland and urban areas must be clarified.

3) Experiments on the GF Dataset: The performance of
different methods on the GF dataset is shown in Table VI.
Compared with the PC dataset, the GF dataset contains seven
categories and the image scenes are more complex. Neverthe-
less, the performance of our method still ranks first among
these methods. The FWIoU of our approach is 87.03%, which
is much higher than that of the SegNet (74.12%) and UNet
(74.32%). In particular, when our method uses an encoder with
a self-attentive mechanism, this allows our method to perform
very well when processing high-resolution images from GF
datasets. For example, FE-FCN obtains 5.69% MIoU over
PidNet (82.73% vs. 77.04%). Although TransUNet has a better
and excellent global modeling capability, more than simply
stacking similar structures is required. Our method combines
features from different modalities of SAR images, which will
significantly improve the segmentation performance. Com-
pared with TransUNet, the segmentation accuracy of PA is
improved by 2.92%. In conclusion, our method demonstrates
competitive segmentation results even in complex SAR image
scenes.

We utilize visual figures to demonstrate the superiority of
our method. As shown in Figs. 11-13, it is clear that our
method classifies most of the pixels into correct categories.
Because of the complexity of image scenes, the segmen-
tation results of the comparison methods contain numerous
incorrectly classified pixels. For example, as Figs. 12 (c)-
(i) shows many pixels in the industrial area are incorrectly
classified as the residential area. In Fig. 13, the pixels in
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 7. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The red, black, yellow, and blue
colors denote urban, river, farmland, and background areas, respectively.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 8. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The red, black, yellow, and blue
colors denote urban, river, farmland, and background areas, respectively.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 9. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The red and yellow colors denote
urban and farmland areas, respectively.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 10. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The red and yellow colors denote
urban and farmland areas, respectively.

TABLE VI
THE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE

GF DATASET

Methods MIoU FWIoU PA MPA

SegNet 65.86% 74.12% 84.74% 76.94%
UNet 67.32% 74.32% 84.90% 77.96%

GFFNet 76.68% 81.31% 89.55% 84.94%
FRRNet 72.40% 78.98% 88.09% 80.21%
PSPNet 79.30% 83.56% 90.94% 86.86%
CCNet 80.91% 85.63% 92.14% 87.65%

RefineNet 72.12% 78.41% 87.63% 79.85%
Swin-UNet 74.63% 79.75% 88.15% 85.15%
TransUNet 76.91% 81.48% 89.63% 85.35%

Segnext 81.33% 85.12% 90.15% 86.88%
PidNet 77.04% 83.55% 89.93% 85.51%
Ours 82.73% 87.03% 92.55% 89.15%

the others category are hard for the comparison methods to
classify. This is because the training pixels of this category are
limited, which increases the classification difficulty. However,
our method correctly identifies most of the pixels in the other
category, proving its effectiveness despite the deficiency of
training pixels.

C. Discussion

1) Evaluation of the FE-FCN: The FE-FCN module em-
ployed in our method exhibits remarkable capabilities in
enhancing SAR image features through the fusion of mean and
texture features. To validate the effectiveness and reliability
of the FE-FCN, a series of experiments are conducted on the
FCG dataset. As shown in Table VII, the FCN without cross-
modality feature fusion module is adopted as the “Baseline1”.
“FE-FCN (mean)” and “FE-FCN (texture)” respectively de-
note the models which fuse the mean and texture features,
while the FE-FCN model fuses both the two types of features.
As can be seen, the MIoU, FWIoU, PA, and MPA of “FE-FCN
(mean)” and “FE-FCN (texture)” are superior to those of the

TABLE VII
THE EFFECTIVENESS EVALUATION OF FE-FCN

Models MIoU FWIoU PA MPA

Baseline1 69.18% 77.46% 86.99% 79.12%
FE-FCN (mean) 70.07% 78.23% 87.48% 80.88%

FE-FCN (texture) 70.93% 78.66% 87.91% 81.01%
FE-FCN 71.38% 78.83% 88.53% 81.74%

“Baseline1”, which verifies the effectiveness of the mean and
texture features. Moreover, the MIoU and MPA of FE-FCN
are 2.20% and 2.72% higher than those of the “Baseline1”,
respectively. Hence, simultaneously utilizing the two types of
auxiliary features further improves the segmentation perfor-
mance.

2) Evaluation of the CE-CRF: To optimize the segmenta-
tion results, we present the CE-CRF in the post-processing
stage. Compared with the CRF, the CE-CRF utilizes the input
images, mean features, and texture features to enhance the
reliability of the connection information of image pixels. This
section presents a meticulously designed set of experiments
conducted on the GF dataset to rigorously evaluate the effec-
tiveness of the CE-CRF algorithm. The segmentation results
generated by the FE-FCN are adopted as the “Baseline2”. The
CRF only uses the input images to capture the connection
information. Apart from the use of input images, the “CE-
CRF (mean)” and “CE-CRF (texture)” respectively adopt the
mean and texture features. As Table VIII shows, compared
with the “Baseline2”, the CRF post-processing effectively
optimizes the segmentation results. In addition, the MIoU of
“CE-CRF (mean)” reach 81.59%, which is higher than that
of CRF (80.76%). Therefore, the mean and texture features
are conducive to improving the segmentation performance and
generating better segmentation results. In addition, CE-CRF
obtains the best MIoU (82.73%) by utilizing both the mean and
texture features, which respectively outperforms “Baseline2”
and “CRF” by 2.80% and 1.97%.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 11. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The black, yellow, orange, cyan,
pink, blue, and red colors denote river, vegetation, residential-area, industrial-area, bare-land, non-image, and other areas, respectively.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 12. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The black, yellow, orange, cyan,
pink, blue, and red colors denote river, vegetation, residential-area, industrial-area, bare-land, non-image, and other areas, respectively.

(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)
Fig. 13. Visual figures of the segmentation results obtained by different methods. (a) Test image. (b) Ground-truth. (c) SegNet. (d) UNet. (e) GFFNet. (f)
FRRNet. (g) PSPNet. (h) CCNet. (i) RefineNet. (j) Swin-UNet. (k) TransUNet. (l) Segnext. (m) PidNet. (n) Our method. The black, yellow, orange, cyan,
pink, blue, and red colors denote river, vegetation, residential-area, industrial-area, bare-land, non-image, and other areas, respectively.
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TABLE VIII
THE EFFECTIVENESS EVALUATION OF CE-CRF

Models MIoU FWIoU PA MPA

Baseline2 79.93% 84.98% 91.61% 88.37%
CRF 80.76% 85.12% 91.87% 88.82%

CE-CRF (mean) 81.59% 85.47% 92.11% 88.97%
CE-CRF (texture) 81.53% 85.65% 92.23% 89.06%

CE-CRF 82.73% 87.03% 92.55% 89.15%

TABLE IX
THE EFFECTIVENESS EVALUATION OF MODEL STRUCTURE

Models MIoU FWIoU PA MPA

Variant 0 68.92% 76.22% 87.19% 79.76%
Variant 1 70.38% 78.54% 87.99% 81.32%
Variant 2 72.36% 79.51% 89.53% 82.37%

3) Ablation Study on the Model Structure: This section is
dedicated to conducting meticulous ablation experiments on
the FCG dataset, to evaluate and assess the effectiveness of
the FE-FCN model design. ” variant 0” is the model without
adding transformer encoder and long skip connection between
different resolution features. The ”variant 1” is the model
with the transformer encoder added. The ”variant 2” is the
complete FE-FCN. As Table IX shows, where the MIoU of
”variant 1” reaches 70.38%, which is higher than that of
”variant 0” (68.92%). This proves the effectiveness of the
hybrid CNN-Transformer encoder in the structure. Moreover,
FE-FCN, based on the CNN-Transformer design, obtains the
best MIoU (72.36%) by using long skip connections, which
is 1.52% higher than that of ”variant 1”. We firmly believe
that the integration of rich skip connections plays a pivotal
role in enhancing the finer segmentation details by effectively
recovering low-level spatial information.

V. CONCLUSION

This paper presents the FCN method based on cross-
modality features fusion for SAR image segmentation. In light
of the peculiarities of SAR images, we extract the auxiliary
features, including mean and texture features. Extracting the
auxiliary features is conducive to mining the information in
SAR images. To generate precise segmentation results for
input images, we introduce the FE-FCN framework as a
novel alternative to the traditional FCN-based SAR image
segmentation method. The key innovation of the FE-FCN
lies in its capability to enhance SAR image features through
the seamless integration of auxiliary features and features
extracted by the CNN. It encodes powerful global context
by treating image features as sequences through Transformer
and applies fusion structures to the encoder to merge depth
information. The CE-CRF is designed to optimize the segmen-
tation results by capturing the connection information of image
pixels. Since the auxiliary features are utilized in the CE-
CRF, the reliability of the connection information is enhanced,
further promoting our method’s segmentation performance. We
meticulously conduct a series of comprehensive experiments
on three prominent datasets, namely FCG, PC, and GF. The

segmentation results demonstrate the clear superiority of our
approach. For example, the pixel accuracy of our approach in
the GF testing set attains 92.55%, which outperforms that of
RefineNet, GFFNet, and FRRNet. Our future work includes
increasing the focus on the categories with fewer pixels to
alleviate the effect of category imbalance and improve the
overall segmentation accuracy.
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