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Abstract—Vision-and-language pre-training (VLP) models
have experienced a surge in popularity recently. By fine-tuning
them on specific datasets, significant performance improvements
have been observed in various tasks. However, full fine-tuning
of VLP models not only consumes a significant amount of
computational resources but also has a significant environmental
impact. Moreover, as remote sensing (RS) data is constantly being
updated, full fine-tuning may not be practical for real-world
applications. To address this issue, in this work, we investigate
the parameter-efficient transfer learning (PETL) method to effec-
tively and efficiently transfer visual-language knowledge from the
natural domain to the RS domain on the image-text retrieval task.
To this end, we make the following contributions. 1) We construct
a novel and sophisticated PETL framework for the RS image-
text retrieval (RSITR) task, which includes the pretrained CLIP
model, a multimodal remote sensing adapter, and a hybrid multi-
modal contrastive (HMMC) learning objective; 2) To deal with
the problem of high intra-modal similarity in RS data, we design
a simple yet effective HMMC loss; 3) We provide comprehensive
empirical studies for PETL-based RS image-text retrieval. Our
results demonstrate that the proposed method is promising and
of great potential for practical applications. 4) We benchmark
extensive state-of-the-art PETL methods on the RSITR task. Our
proposed model only contains 0.16M training parameters, which
can achieve a parameter reduction of 98.9% compared to full
fine-tuning, resulting in substantial savings in training costs. Our
retrieval performance exceeds traditional methods by 7-13% and
achieves comparable or better performance than full fine-tuning.
This work can provide new ideas and useful insights for RS
vision-language tasks.

Index Terms—Parameter-Efficient Transfer Learning (PETL),
adapter, cross-modal, remote sensing image-text retrieval.

I. INTRODUCTION

W ITH the development of Earth observation technology
[1], remote sensing (RS) imagery is becoming more

and more accessible, improving human’s perception of the
Earth [2, 3]. However, how to efficiently convert RS imagery
into actionable information is still significant research [4–
7]. In order to fully exploit the potential of RS images in
human-computer interaction, RS vision-language (VL) tasks
have become a hot research topic in recent years. The different
granularity of VL multi-modal tasks have been introduced into
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Fig. 1. The matched natural image-text samples have the same vector direction
in the unit hypersphere space of the pre-trained CLIP model. The PETL
method learns specific knowledge of RS domain to get the adapted space.
In the original space of the natural scene domain, only the distance between
different modalities is paid attention to. However, in the RS domain, it is
necessary to consider samples with high intra-modal similarity to avoid the
problem of matching errors.

RS data, including image level [8–11], object level [12–14],
pixel level [15], and spatial-temporal level [16, 17]. These
technologies have promising applications in urban planning,
disaster monitoring, search and rescue activities, resource
detection, and agricultural production [18–23].

Large vision-and-language pre-training (VLP) models have
surged [24, 25] in recent years. In particular, contrastive
vision-language pre-training (CLIP) [26] has shown great po-
tential in multi-modal representations and can project natural
image and text modalities into a joint semantic subspace. As
shown in Fig. 1, the aligned image-text samples have the same
vector direction on the unit hypersphere. Fine-tuning large
VLP models has become a fundamental paradigm of research.
However, the research of transferring the knowledge learned
from image-text pairs in the natural domain to a more complex
RS domain is still under-explored.

Meanwhile, VLP models in the RS domain have not been
proposed due to the challenges of RS vision-language tasks.
Although there are a large number of publicly available RS
images, few of them are captioned and even fewer are multi-
captioned. The fully fine-tuned CLIP model has achieved en-
couraging performance for RS image classification1. However,

1https://github.com/arampacha/CLIP-rsicd
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this approach is not feasible due to the heavy computation,
memory storage, and excessive CO2 emissions. As RS images
are updated, it is impractical to adapt with constant full
fine-tuning on a daily basis. In this context, we explore a
new research paradigm of parameter-efficient transfer learning
(PETL) from the natural scene domain to the RS domain.
Due to the outstanding representational capability of CLIP in
VL, we use the CLIP model to study RS image-text retrieval
(RSITR). This leads to a new research task, namely PETL-
based RS image-text retrieval (PE-RSITR). The RSITR task
can verify the performance of the adapted space of the RS
domain, as shown in Fig. 1.

Nowadays, the mainstream methods of PETL are mainly
divided into adapter [27] and prompt learning [28, 29]. PETL
only fine-tunes a small number of parameters while keeping
the parameters of the CLIP unchanged, which greatly reduces
the computational cost while having comparable performance
to full fine-tuning. However, existing works typically focus
on downstream tasks from the same domain of the VLP
models. This creates a limit that a strong VLP model with
sufficient knowledge may not be available in an unknown
specific domain (e.g., remote sensing). Therefore, there are
still many challenges to exploring PE-RSITR.

First, CLIP is pre-trained in the natural scene domain, which
has domain gaps with the RS domain. To bridge the significant
domain gap, the knowledge of CLIP needs to be transferred
from ”VL of the natural scene” to ”VL of the RS”. John von
Neumann once said: with four parameters I can fit an elephant,
and with five I can make him wiggle his trunk. Therefore,
we attempt to design a method with a small number of
trained parameters to explore the new knowledge of RS image-
text efficiently while inheriting the prior knowledge structure
of the natural scene domain appropriately. In addition, the
RSITR task involves two modalities. If there is no cross-
modal interaction mechanism, only suboptimal results can be
obtained [30, 31]. Therefore, we further try to design a method
that does not increase parameters and can accomplish cross-
modal knowledge sharing. Finally, the RS image-text data is
very different from the data of the natural domain. The RS
images are collected by satellites from an overhead view and
the intra-class similarity is extremely high due to the earth’s
texture. The visualization results of the textual similarity in
the literature [10] show that the caption similarity is also high.
Since this is not fully considered by existing methods, RSITR
often results in the error of misalignment of similar RS images
or captions.

To tackle the above problems, we propose a novel and
sophisticated PE-RSITR framework. Although adapter-based
methods have been widely explored in prior works, it is still
non-trivial to design an effective adapter for the RSITR task.
Based on extensive experiments and explorations, we make
the following design decisions. 1) We design a more compact
multimodal remote sensing adapter (MRS-Adapter) that has no
skip connection and connects only once in parallel with the
transformer block. 2) Inspired by the Cross-Modal Adapter
[30], MRS-Adapter utilizes a linear layer for weight sharing.
The shared linear layer enables the fine-grained information of
RS image modality and text modality to interact, which can

enhance the RS vision language modality representation.
Furthermore, token-level data augmentation is designed to

construct intra-modal positive pairs for RS images and texts.
The method of data augmentation is to adopt the simple
random dropout. By devising a simple yet efficient loss
function of hybrid multi-modal contrastive constraints without
increasing parameters, the distance between the query image
(query text) and other similar images (similar texts) can be
pushed to avoid matching errors. We have conducted extensive
experiments on three commonly used datasets, i.e., RSICD
[11], RSITMD [10], and UCM [32]. First, we benchmark
many state-of-the-art (SOTA) methods on the PE-RSITR task,
and the adapter largely outperforms the prompt learning
method. Secondly, the trained parameter of our proposed
method is 0.16M, which can reduce 98.9% parameters of
full fine-tuning and greatly save the training cost. Finally,
our retrieval performance exceeds traditional methods by 7-
13% and achieves comparable or better than full fine-tuning.
Our PE-RSITR framework is both parameter-efficient and
effective.

In general, our contributions can be summarized in the
following aspects.

1) We propose a novel and sophisticated PETL framework
for the RS image-text retrieval task. Specifically, the
proposed framework consists of the pretrained CLIP
model, the MRS-Adapter, and a hybrid multi-modal
contrastive learning objective.

2) We design a simple yet effective loss function: the hybrid
multi-modal contrastive (HMMC) loss for PETL-based
RS image-text retrieval. Experimental results prove that
the proposed HMMC loss is effective in further im-
proving the performance on top of the proposed MRS-
Adapter.

3) We provide comprehensive empirical studies for the
PETL-based RS image-text retrieval task. Our qualitative
and quantitative results demonstrate that the proposed
method is promising and of great potential for practical
applications.

4) Extensive experiments show that our approach can
achieve a parameter reduction of 98.9% without per-
formance sacrifice compared to full fine-tuning. Our
performance exceeds traditional methods by 7-13%.
The comprehensive benchmark results are insightful for
future research.

This paper is organized as follows. We review the re-
lated work of RS image-text retrieval, the VLP model, and
parameter-efficient transfer learning in Section II. In Section
III, we present our proposed PE-RSITR framework. Evaluation
methods and extensive experiment results are shown in Section
IV. Finally, we conclude this work in Section V.

II. RELATED WORK

A. Remote Sensing Image-Text Retrieval

With the development of RS vision-language cross-modal
technology, RS image-text retrieval (RSITR) is becoming a
major interest. RSITR can effectively verify the performance
of VL modal representations. However, due to the complexity
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of RS image-text data, there have been limited related works.
Some works [33–36] employ CNN (e.g., VGG, ResNet) to
extract RS image features and RNN (e.g., LSTM, BiLSTM)
to extract text features. Hoxha et al. [34] first encoded
the RS image and converted it to a caption, and finally
calculates the similarity with the real captions to complete
the matching. Rahhal et al. [35] proposed an unsupervised
image-text retrieval method for RS imagery. To reduce the
occupancy and overhead of the retrieval algorithm, Yuan et al.
[9] proposed a lightweight RS multiscale crossmodal retrieval
model (LW-MCR), and designed distillation loss and semi-
supervised loss to enhance the retrieval performance. Yuan
et al. [10] also proposed an asymmetric multimodal multi-
source image retrieval method that uses the multiscale self-
attention module to extract salient features of RS images
and utilizes the features to guide the text representation. In
the RSITR framework based on global and local information
(GaLR), Yuan et al. [10] indicated that RSITR should focus
not only on the global features of RS images but also on
the local features reflecting object relationships and saliency.
Recently, multilanguage transformer [37] demonstrated that
loading CLIP pre-training model [26] can achieve promising
performance on RS image-text retrieval.

B. Vision-Language Pre-training Model

Large-scale VLP models are developing rapidly and have
shown encouraging results on various downstream tasks [24].
According to the encoder type, VLP models are mainly
classified into fusion encoder and dual encoder [25]. The
fusion encoder takes image and text features as input and uses
some fusion methods for VL interaction. The fusion encoder is
mainly classified into single-stream and dual-stream structures.
The single-stream structure (e.g., OSCAR [38], XGPT [39],
SimVLM [40]) concatenates multimodal features and uses
the transformer encoder in a unified framework. However,
the single-stream performs the self-attention directly on two
modalities, ignoring the inter-modal interaction. Therefore
the dual-stream structure (e.g., ViLBERT [41], ALBEF [42])
performs the cross-attention using the transformer decoder.
The fusion encoder relies on a large transformer for VL
interaction modeling but the inference process can be very
slow in solving matching tasks such as image-text retrieval.
In contrast, the dual encoder (e.g., CLIP [26], ALIGN [43])
uses some simple methods for VL interaction modeling and
calculates similarity scores after projecting the image and text
features into the same semantic subspace. This method is
more efficient for retrieval tasks, e.g. CLIP shows amazing
results for the image-text retrieval, but does not work well
when dealing with VL understanding tasks. The current pre-
training models for RS image research have also been greatly
developed [44]. Zhang et al. [45] proposes a transfer learning
method from natural scenes to the RS domain, which can
achieve good results in many tasks (e.g., scene classification,
object detection, and land cover classification). Unfortunately,
there is no sufficiently large and uniform RS image-text dataset
to support VLP models for the RS domain.

C. Parameter-Efficient Transfer Learning

Existing methods of PETL are broadly divided into two
families, i.e. prompt learning and adapter, and are summarized
in detail as follows.

1) Prompt Learning: Prompt learning [28, 29] was first
proposed in natural language processing (NLP). When fine-
tuning large language models, task-specific learnable vectors
are added to the input. Unlike full fine-tuning, prompt learning
can significantly reduce storage and computational costs and
can achieve comparable performance. Prompt learning has
been applied to computer vision (CV). Visual Prompt Tuning
[46] (VPT) can efficiently fine-tune large-scale transformer
models in vision. For CLIP-based image classification, Zhou
et al. [47] added continuous learnable prompts on text labels
for context optimization (CoOp) and then proposed to generate
prompts using image features for conditional context optimiza-
tion [48] (CoCoOp). Zang et al. [49] further combined the
advantages of text prompt learning and visual prompt learning
to propose a tiny network to jointly optimize prompt learning
for different modalities. MaPLe [50] used the V-L coupling
function to generate visual prompts on textual prompts to adapt
both language and vision branches simultaneously. However,
there are few prompt learning methods for multimodal tasks.
CPT [51] proposed a new prompt learning paradigm for
visual grounding by adding color prompts to text and images,
respectively. CPT used the color-masked token of the target
region and color text prompts to ground the object.

2) Adapter: Since Houlsby et al. [27] proposed the adapter
module to fine-tune large pretrained models in NLP, many
improved methods [52–55] have shown good performance on
NLP tasks. Adapter is a lightweight plug-and-play module.
The pre-trained model is frozen during fine-tuning and the
parameters of the adapter are updated. Recently, the adapter
is widely used to fine-tune pre-trained models in CV. Chen
et al. [56] proposed Conv-Adapter which replaces the original
linear layers with convolutional layers, making it possible to
efficiently fine-tune largescale ConvNets. Convpass [57] is also
composed of convolutional layers, but it is the adapter for
vision transformer. AdapterFormer [58] is the adapter based
on the original linear layers for vision transformer, and it
can adapt both image and video tasks efficiently. Pan et al.
[59] proposed a new Spatio-Temporal Adapter (ST-Adapter) to
accomplish PETL from image models to video tasks. With the
appearance of CLIP, the adapter combined with CLIP further
shows superior performance. CLIP-Adapter [60] employs an
additional bottleneck layer with residual connections at the end
of the image and text branches, respectively. Zhang et al. [61]
proposed a training-free Tip-Adapter for CLIP for few-shot
classification. SVL-Adapter [62] combines the complementary
advantages of CLIP and self-supervised representation learn-
ing for image classification that are significantly different from
common images. Previous works had focused on unimodal
tasks and less on multimodal tasks. Although VL-Adapter [63]
is proposed for image-text and video-text multimodal tasks,
it utilizes CLIP for image encoding and uses Adapter only
in the language model. The latest Cross-Modal Adapter [30]
and UniAdapter [31] both propose cross-modal interaction
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Fig. 2. Overall architecture of our proposed novel and sophisticated PE-RSITR framework. It mainly consists of three parts: the frozen CLIP pre-training
backbone, the multimodal remote sensing adapter (MRS-Adapter) with cross-modal interaction, and a hybrid multi-modal contrastive (HMMC) loss.

mechanism and have shown good performance in multimodal
tasks such as image/video text retrieval and visual question
answering.

III. METHODOLOGY

To capitalize a large VLP model of natural scenes for
RS vision-language tasks with domain differences, such as
RSITR, the intrinsic gap in different domains need to be filled.
This section illustrates our proposed PE-RSITR framework in
detail, and the overall framework is shown in Fig. 2.

A. Preliminary

In this subsection, we briefly describe how to process RS
images and caption embeddings through the CLIP pre-training
model and introduce the basic structure of the adapter.

Multimodal Encoder. We use the CLIP pre-training model
as the primary multimodal encoder, including two branches
of image encoder (ViT-B/32) and text encoder with the same
structure. Concretely, given a cross-modal RS image-query
dataset O = {(in, tn)}Nn=1, where there are N pairs of
image-text positive pairs (in, tn). To simplify the notations,
we denote I ∈ RH×W×3 and T = {wm}Mm=1 (M is the
sentence length) as single instances of RS image and query
text modality, respectively, where H ×W × 3 denotes the size
of the RS image and wm represents the m-th word. The
basic architecture of the image encoder is shown in the blue
background branch in Fig. 2. First, a convolution layer is used
to generate the patch tokens Ipatch ∈ RH

s ·Ws ×Dv , where s is
the stride of the backbone network and also the patch size. An
additional classification (CLS) token Icls ∈ R1×Dv is added
to the token sequence, and the vision transformer adds the
positional embedding Ipos ∈ RNv×Dv into each token. The
RS image tokens are defined as

I0 = [Icls; Ipatch] + Ipos, (1)

where I0 ∈ RNv×Dv , Nv = 1+ H
s · W

s , and Dv is the hidden
dimension of the vision transformer. Afterward, the RS image
tokens I0 pass through 12 layers of stacked transformer blocks.
The l-th transformer block can be represented as

Îl = MHA(LN(Il−1)) + Il−1, (2)

Il = MLP(LN(Îl)) + Îl, (3)

where Îl and Il respectively indicate the output of multi-head
attention (MHA) and feed-forward network (FNN) modules.
Finally, the CLS token is used as the global RS image em-
bedding v which is linearly projected into the D-dimensional
cross-modal semantic space and then L2 normalized.

The green background branch in Fig. 2 is the text encoder.
The text encoder performs token embedding similarly. First,
the caption is tokenized using lower-cased byte pair encoding
(BPE), denoted as Ttoken ∈ RNt×Dt . The token sequence for
each caption starts with a [BOS] token and ends with a [EOS]
token. Afterwards, the positional embedding Tpos ∈ RNt×Dt

is added to each token. The text tokens are defined as

T0 = Ttoken + Tpos, (4)

where T0 ∈ RNt×Dt and Dt is the hidden dimension of the
text transformer. After the word embedding, the tokens T0

are sent to 12 layers of stacked transformer blocks. The l-th
transformer block can be represented as

T̂l = MHA(LN(Tl−1)) + Tl−1, (5)

Tl = MLP(LN(T̂l)) + T̂l, (6)

where T̂l and Tl respectively indicate the output of MHA and
FNN modules. Finally, the highest layer of the transformer
at the [EOS] token is used as the global caption embedding
t which is linearly projected into the D-dimensional cross-
modal semantic space and then L2 normalized. The only
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difference between the image encoder and the text encoder
is that the hidden dimension Dv=768 while Dt=512.

Adapter. Inspired by the success of Adapter [27] in NLP,
more and more adapter-based methods have shown promising
performance in both CV and VL tasks. The adapter consists of
a bottleneck that contains few parameters relative to the orig-
inal pre-training model. Specifically, the adapter first uses a
down-projection linear layer with parameters Wdown ∈ Rd×d̂

(d̂ ≪ d) to project the input features onto a low-dimensional
representation. Then a non-linear activation function is used,
commonly the ReLU activation function. Finally, an up-
projection linear layer with parameters Wup ∈ Rd̂×d projects
the features back to the input size before adding the skip
connection. Formally, given an input feature X ∈ RNin×d,
the adapted feature X̃ ∈ RNin×d can be calculated as

Xdown = ReLU(X ·Wdown), (7)

Adapter(X) = X̃ = s ·Xdown ·Wup +X, (8)

where s is a scalar scale factor that controls the effect of the
adapter. The original adapter scheme is inserted sequentially
into the MHA and FFN of the transformer block. The feature
adaptation process at the l-th layer can be written as

X̂l = Adapter(MHA (LN (X))) +X, (9)

Xl = Adapter(MLP(LN(X̂l))) + X̂l. (10)

B. MRS-Adapter
Various CLIP-based adapter methods show great potential

for VL tasks. The core of extending CLIP to the RS domain to
accomplish RSITR lies in exploring the VL expert knowledge
in the RS domain efficiently while appropriately inheriting the
VL prior knowledge structure of the natural scene domain.
This work is still under-explored. If the adapter is directly
extended from NLP to both modalities of VL, it can only
lead to sub-optimal results due to the lack of cross-modal
interactions. This point was also verified in the recent works
[30, 31]. Therefore, we attempt to design an adapter that
can share knowledge between RS image modality and text
modality without increasing parameters. Finally, we found
that the same cross-modal interaction as Cross-Modal Adapter
is the most effective way and can reduce parameters. Our
MRS-Adapter is extremely similar to Cross-Modal Adapter,
but our scheme is more concise. MRS-Adapter has no skip
connection and is only connected in parallel with the FFN
module, which can further reduce the number of adapters. The
specific structure is shown in Fig. 3. Formally, the input of l-
th layer is the Îl ∈ RNv×Dv and T̂l ∈ RNt×Dt of the MHA
module output, and the adapted features can be obtained as
follows:

Îdown
l = ReLU(Îl ·W v

down), (11)

ÎMRS-Adapter
l = [Îdown

l ·W v
up; Îdown

l ·W share
up ], (12)

T̂ down
l = ReLU(T̂l ·W t

down), (13)

T̂MRS-Adapter
l = [T̂ down

l ·W t
up; T̂ down

l ·W share
up ], (14)

where d ≪ Dv , d ≪ Dt, 0 < r < Dv , 0 < r < Dt,
W v

down ∈ RDv×d and W t
down ∈ RDt×d are the modality-

specific down-projection weights of two branches, W share
up ∈

MLP
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Fig. 3. The implementation details of our MRS-Adapter. MRS-Adapter is
inserted in parallel with the FFN module and adds a modality-shared up-
projection to connect the original modality-specific up-projection linear layer
for cross-modal weight sharing.

Rd×r is modality-shared weights, and W v
up ∈ Rd×Dv−r

and W t
up ∈ Rd×Dt−r are the modality-specific up-projection

weights of two branches. Finally, the MRS-Adapter is con-
nected in parallel with the FFN module at each layer of both
branches, and the feature adaptation process at l-th layer can
be written as

Îl = MHA (LN (Il−1)) + Il−1, (15)

Il = MLP(LN(Îl)) + Îl + ÎMRS-Adapter
l , (16)

T̂l = MHA (LN (Tl−1)) + Tl−1, (17)

Tl = MLP(LN(T̂l)) + T̂l + T̂MRS-Adapter
l . (18)

MRS-Adapter adding an r-dimensional linear layer for
weight sharing can directly reduce d × r parameters. The
shared up-projection enables the fine-grained information of
RS image modality and text modality to interact, which
can enhance the RS vision language modality representation.
MRS-Adapter can learn the VL knowledge specific to the RS
domain and efficiently extend the natural scene domain to the
RS domain.

C. HMMC Learning Objective

In image-text retrieval tasks, the bi-directional triplet loss
established by Faghri et al. [64] has become the mainstream
loss function. The bi-directional triplet loss can pull the dis-
tance between this sample and the positive sample of another
modality closer while pushing the distance between it and
the negative sample of another modality farther. However,
this framework can only constrain the inter-modal samples
and does not consider the intra-modal samples. In particular,
RS images are characterized by extremely high intra-class
similarity, and the visualization results of the textual similarity
in the literature [10] show that the textual similarity is also
extremely high. Therefore, RSITR often results in the error
of retrieving misalignment of similar RS images or captions.
To cope with the problem, token-level data augmentation is
adopted to construct intra-modal positive pairs for RS images
and texts. We design a simple yet effective hybrid multi-modal
contrastive loss function. The framework of inter-modal and
intra-modal cooperative constraints is shown in Fig. 2. Inspired
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by contrastive learning [65], the method of data augmentation
is to adopt the simple random dropout.

Intra-Modal Constraints. The bi-directional triplet loss
with hard negatives is used, and the similarity between sample
pairs is measured by cosine similarity. For RS image modality,
data augmentation is performed after token embedding, and
a token-level positive pair (I0, I

+
0 ) is obtained for each RS

image I . The process is denoted as

I+
0 = random dropout (I0) . (19)

Then we perform the intra-modal constraint of the RS image
to pull the distance from the query image and other similar
images. We denote the final embedding of I+

0 as v+. For a
positive pair (v,v+), the intra-modal triplet loss we adopt is:

Lintra-v(v,v
+) =

∑
v̂+

[αv − cos(v,v+) + cos(v, v̂+)]+

+
∑
v̂

[αv − cos(v,v+) + cos(v̂,v+)]+,
(20)

where αv is the margin of the intra-modal constraint of the
RS image and [x]+ = max(x, 0). Similarly, the text branch
also uses random dropout to generate a token-level positive
pair (T0,T

+
0 ) for each caption T , calculated as follows:

T+
0 = random dropout (T0) . (21)

Then we perform the intra-modal constraint of the caption
text to pull the distance from the query caption and other
similar captions. We denote the final embedding of T+

0 as t+.
For a positive pair (t, t+), the intra-modal triplet loss is:

Lintra-t(t, t
+) =

∑
t̂+

[αt − cos(t, t+) + cos(t, t̂+)]+

+
∑
t̂

[αt − cos(t, t+) + cos(t̂, t+)]+,
(22)

where αt is the margin of the intra-modal constraint of the
caption text.

Cross-Modal Constraint. The multi-modal alignment of
RS image-text is promoted by relying on the global similarity
of RS image-text. We compute the cross-modal constraint loss
with

Lcross(v, t) =
∑
t̂

[λ− cos(v, t) + cos(v, t̂)]+

+
∑
v̂

[λ− cos(v, t) + cos(v̂, t)]+,
(23)

where λ is the margin of the cross-modal constraint.
Overall Objective. By combining hard-negative-based

intra-modal constraints loss with cross-modal constraints loss,
we obtain the HMMC loss:

L(v, t) = Lcross(v, t) + Lintra-v(v,v
+) + Lintra-t(t.t

+). (24)

IV. EXPERIMENTS

In this section, we first describe the dataset, evaluation
metrics, and experimental setup details in Section IV-A and
Section IV-B. Further, Section IV-C introduces the SOTA ap-
proaches and provides comparisons of retrieval performance.
Section IV-D conducts result analyses. In Section IV-E, we
perform sufficient ablation experiments. Finally, we present
some visualization results to further analyze in Section IV-F.

A. Dataset and Evaluation Metrics

We evaluate our proposed PE-RSITR framework on the
three widely used RS image-text datasets: RSICD [11],
RSITMD [10], and UCM [32]. RSICD is the dataset with
the largest number of samples, while RSITMD is the dataset
with more fine-grained captions and more challenges. UCM
requires the model to be robust because of the small numbers.

Two evaluation metrics Recall at K (R@K, K=1, 5, and 10)
and mean recall (mR) are exploited to assess our model. R@K
aims to calculate the ratio of queries that successfully retrieve
the ground truth as one of the first K results. mR represents
the average of R@K for both the text retrieval and image
retrieval, which evaluates the overall retrieval performance and
can be formulated in the equation below,

mR = (R@1 +R@5 +R@10︸ ︷︷ ︸
Text retrieval

+R@1 +R@5 +R@10︸ ︷︷ ︸
Image retrieval

)/6.

(25)

B. Implementation Details

All experiments in this work are conducted on one NVIDIA
RTX 3090 24GB GPU. We follow the data partitioning ap-
proach of Yuan et al. [10] and use 80%, 10%, and 10% of
the dataset as the training set, validation set, and test set,
respectively. For the RS image, we resize the image size to a
fixed size of 224×224 for training. We set the dimension d
and r to 64 and the probability of random dropout to 0.2. The
margin λ, αv , αt are set to 0.2 for the triplet loss calculation.
We set the initial learning rate of our network to 0.0002 for
trained parameters and weight decay by 0.7 every 20 epochs.
During training, we adopt the Adam optimizer to train our
network with a batch size of 16 for 30 epochs. To make the
experiment more convincing, we follow the works in GaLR [8]
and MCRN [66] to conduct the experiments and report results.
We leverage k-fold cross-validation to obtain an average result,
and k is set to 5.

C. Comparisons with State-of-the-art Methods

In this experiment, we comprehensively compare our pro-
posed method with traditional cross-modal retrieval methods
and CLIP-based methods.

Traditional methods: Following the previous literature, we
also compare the proposed method with the progressive image-
text retrieval models (VSE++ [64], SCAN [67], CAMP [68],
MTFN [69], LW-MCR [9], AMFMN [10], GaLR [8]) on three
RS image-text datasets. For these methods, we use the results
in three literature [8–10]. In addition, we have added two latest
RS image-text retrieval methods.
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(a) Prompt learning (b) Adapter tuning

Caption Query Text

Image

Adapters 

Caption Query TextTprompt

Image｝
Vprompt

Remote sensing 

image

Remote sensing image

Fig. 4. (a): Prepending a sequence of learnable prompt tokens to the input
tokens of the visual or text encoder. Only these added prompt tokens are
updated during fine-tuning; (b): Insert a lightweight adapter into the visual or
text encoder and update the parameters of the adapter during fine-tuning.

• MCRN [66]: MCRN constructs a multi-source cross-
modal retrieval network capable of image modality, text
modality, and audio modality alignment based on shared
networks of pattern memory and generative adversarial
theory.

• CABIR [70]: CABIR proposes a cross-attention model
based on region-level semantic features of RS images,
with textual semantics to allocate weights and filter
redundant features for image regions.

CLIP-based methods: Single-Language [37] is loaded
with CLIP pre-training parameters for training. In addition,
we benchmark extensive efficient and commonly used PETL
approaches in our PE-RSITR task. In order to assess the
merits of our proposed method, we report our performance
and compare it with the following methods.

• Zero-shot CLIP [26]: Testing directly on the sample of
the unseen RS domain.

• Linear Probe: Adding an extra linear layer on top of each
of the two branches of the backbone and freezing all the
parameters except the parameters in the linear layer.

• Full Fine-tuning: Fully updating all the parameters. In
the experiments of the RSICD dataset, Full Fine-tuning
utilizes the weight of the CLIP-rsicd model1.

• Prompt Learning: As shown in Fig. 4(a), prepending a
sequence of learnable prompt tokens to the input tokens,
and only these added prompt tokens are updated during
fine-tuning. Specifically, we compare CoOp [47] (added
in the text tokens) and VPT [46] (added in the visual
tokens). Following Jiang et al. [30], we applied both the
visual and text tokens, called VL-Prompt.

• Adapter Tuning: Adapter is a lightweight plug-and-play
module. The pre-trained model is frozen during fine-
tuning and the parameters of adapters are updated, as
shown in Fig. 4(b). CLIP-Adapter [60] employs an ad-
ditional bottleneck layer to learn new features and make
residual connections. Adapter [27] is for the language
transformer, Convpass [57] is the convolutional adapter
for ViT, and AdaptFormer [58] is for adapting ViT to dif-
ferent image and video tasks. UniAdapter [31] and Cross-
Modal Adapter [30] are multimodal adapters. UniAdapter
cannot be used directly due to the different dimensions of
the visual branch and text branch. We use a linear layer
to project visual features to 512 dimensions.

mR

i2t R@1

i2t R@5

i2t R@10 t2i R@1

t2i R@5

t2i R@10

mR

i2t R@1

i2t R@5

i2t R@10 t2i R@1

t2i R@10

RSICD: RSITMD:

Ours Full fine-tuning Traditional methodsOurs Full fine-tuning Traditional methods

Fig. 5. Comparison with the RSITR results of full fine-tuning and the best
results of traditional methods on RSICD and RSITMD datasets.

D. Results Analysis

Results on three datasets. Tables I, II, and III show the
test results on the three datasets: RSICD, RSITMD, and UCM.
We present results using various traditional methods and CLIP-
based fine-tuning methods. Fig. 5 shows the retrieval results of
full fine-tuning and the best results of traditional methods on
RSICD and RSITMD datasets. Our method outperforms the
traditional methods by 7-13% and even surpasses the full fine-
tuning. CLIP possesses a more complex and larger network
structure with a higher number of parameters. Compared
to traditional methods, PETL, based on CLIP, can achieve
significant performance gains by leveraging the powerful gen-
eralization ability and rich visual-linguistic prior knowledge
obtained through pre-training on massive datasets of natural
scenes.

We provide comprehensive empirical studies for PETL-
based RS image-text retrieval. We observe that our PE-RSITR
framework outperforms other works on the RSICD dataset.
Compared with full fine-tuning, our results are improved by
about 1%. Currently, the RSITMD dataset is the highest
fine-grained and most challenging RS image-text data. Our
approach can obtain optimal and suboptimal results, achieving
comparable results to full fine-tuning. The UCM dataset chal-
lenges the robustness of the model due to its small size. As the
results are shown in Table III, our method has the most optimal
results and exceeds the effect of full fine-tuning. This result
demonstrates the robustness of our PE-RSITR framework.

Single Language adopts the dual-transformer structure and
loads the pre-trained parameters of CLIP to train. It achieves
an average improvement of 8% in retrieval performance over
the best traditional methods on the three datasets. Zero-shot
CLIP, Linear probe, and Full fine-tuning serve as the funda-
mental baselines for PETL. Zero-shot CLIP directly employs
the pre-trained model for testing, resulting in the poorest
performance on the three datasets. Full fine-tuning updates all
parameters and theoretically yields optimal results. However,
due to the limited data size of UCM, full fine-tuning tends to
overfit and fails to achieve the best performance, as shown in
Table III.

Performance analysis on prompt learning. In prompt
learning, the VPT achieves superior performance, surpassing
traditional methods. The CoOp and VL-Prompt can only
achieve performance similar to traditional methods. Due to
the significant visual feature gaps between natural and RS
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TABLE I
THE RETRIEVAL PERFORMANCE OF STATE-OF-THE-ART METHODS ON RSICD TEST SET. THE BEST PERFORMANCE OF TRADITIONAL METHODS IS WITH

BOLD. RED AND BLUE REPRESENT THE BEST AND SECOND PERFORMANCE IN CLIP-BASED AND TRANSFER LEARNING METHODS.
Text retrieval Image retrievalMethods Reference Backbone (image/text) Params R@1 R@5 R@10 R@1 R@5 R@10 mR

Traditional methods
VSE++ [64] BMVC’18 ResNet18, GRU 15.78M 3.38 9.51 17.46 2.82 11.32 18.10 10.43
SCAN t-i [67] ECCV’18 Faster R-CNN, biGRU 13.68M 4.39 10.90 17.64 3.91 16.20 26.49 13.25
SCAN i-t [67] ECCV’18 Faster R-CNN, biGRU 13.68M 5.85 12.89 19.84 3.71 16.40 26.73 14.23
CAMP-triplet [68] ICCV’19 Faster R-CNN, biGRU 27.03M 5.12 12.89 21.12 4.15 15.23 27.81 14.39
CAMP-bce [68] ICCV’19 Faster R-CNN, biGRU 27.03M 4.20 10.24 15.45 2.72 12.76 22.89 11.38
MTFN [69] ACM MM’19 Faster R-CNN, biGRU 77.90M 5.02 12.52 19.74 4.90 17.17 29.49 14.81
LW-MCR-b [9] TGRS’22 SqueezeNet, - 1.65M 4.57 13.71 20.11 4.02 16.47 28.23 14.52
LW-MCR-d [9] TGRS’22 SqueezeNet, - 1.65M 3.29 12.52 19.93 4.66 17.51 30.02 14.66
LW-MCR-u [9] TGRS’22 SqueezeNet, - 1.65M 4.39 13.35 20.29 4.30 18.85 32.34 15.59
AMFMN-soft [10] TGRS’22 ResNet18, biGRU 35.94M 5.05 14.53 21.57 5.05 19.74 31.04 16.02
AMFMN-fusion [10] TGRS’22 ResNet18, biGRU 35.94M 5.39 15.08 23.40 4.90 18.28 31.44 16.42
AMFMN-sim [10] TGRS’22 ResNet18, biGRU 35.94M 5.21 14.72 21.57 4.08 17.00 30.60 15.53
MCRN [66] JAG’22 ResNet18, biGRU 52.35M 6.59 19.40 30.28 5.03 19.38 32.99 18.95
CABIR [70] AS’22 ResNet152, BERT+biGRU - 8.59 16.27 24.13 5.42 20.77 33.58 18.12
GaLR w/o MR [8] TGRS’22 ResNet18, biGRU 46.89M 6.50 18.91 29.70 5.11 19.57 31.92 18.62
GaLR with MR [8] TGRS’22 ResNet18, biGRU 46.89M 6.59 19.85 31.04 4.69 19.48 32.13 18.96

CLIP-based methods
Single Language [37] JSTARS’22 CLIP(ViT-B-32) 151M 10.70 29.64 41.53 9.14 28.96 44.59 27.42
Zero-shot CLIP [26] ICML’21 CLIP(ViT-B-32) 0.00M 6.77 15.37 23.15 5.01 15.75 24.21 15.04
Linear probe [26] ICML’21 CLIP(ViT-B-32) 1.05M 8.46 24.41 37.72 7.81 25.89 42.47 24.46
Full fine-tuning1 - CLIP(ViT-B-32) 151M 13.54 30.83 43.46 11.55 33.14 49.83 30.39
CoOp [47] IJCV’22 CLIP(ViT-B-32) 0.10M 6.32 15.89 27.60 4.31 17.89 31.73 17.29
VPT [46] ECCV’22 CLIP(ViT-B-32) 0.46M 7.23 19.40 30.77 6.94 25.26 40.73 21.72
VL-Prompt - CLIP(ViT-B-32) 0.47M 6.47 17.05 28.68 6.69 22.62 36.16 19.61
Adapter [27] ICML’19 CLIP(ViT-B-32) 0.17M 8.73 24.73 37.81 8.43 26.02 43.33 24.84
CLIP-Adapter [60] arXiv’21 CLIP(ViT-B-32) 0.52M 7.11 19.48 31.01 7.67 24.87 39.73 21.65
Convpass [57] arXiv’22 CLIP(ViT-B-32) 0.14M 6.54 19.67 32.78 7.03 23.08 39.15 21.38
AdaptFormer [58] NIPS’22 CLIP(ViT-B-32) 0.17M 12.46 28.49 41.86 9.09 29.89 46.81 28.10
Cross-Modal Adapter [30] arXiv’22 CLIP(ViT-B-32) 0.16M 11.18 27.31 40.62 9.57 30.74 48.36 27.96
UniAdapter [31] arXiv’23 CLIP(ViT-B-32) 0.55M 12.65 30.81 42.74 9.61 30.06 47.16 28.84
Ours - CLIP(ViT-B-32) 0.16M 14.13 31.51 44.78 11.63 33.92 50.73 31.12

TABLE II
THE RETRIEVAL PERFORMANCE OF STATE-OF-THE-ART METHODS ON RSITMD TESE SET. THE BEST PERFORMANCE OF TRADITIONAL METHODS IS

WITH BOLD. RED AND BLUE REPRESENT THE BEST AND SECOND PERFORMANCE IN CLIP-BASED AND TRANSFER LEARNING METHODS.
Text retrieval Image retrievalMethods Reference Backbone (image/text) Params R@1 R@5 R@10 R@1 R@5 R@10 mR

Traditional methods
VSE++ [64] BMVC’18 ResNet18, GRU 15.78M 10.38 27.65 39.60 7.79 24.87 38.67 24.83
SCAN t-i [67] ECCV’18 Faster R-CNN, biGRU 13.68M 10.18 28.53 38.49 10.10 28.98 43.53 26.64
SCAN i-t [67] ECCV’18 Faster R-CNN, biGRU 13.68M 11.06 25.88 39.38 9.82 29.38 42.12 26.28
CAMP-triplet [68] ICCV’19 Faster R-CNN, biGRU 27.03M 11.73 26.99 38.05 8.27 27.79 44.34 26.20
CAMP-bce [68] ICCV’19 Faster R-CNN, biGRU 27.03M 9.07 23.01 33.19 5.22 23.32 38.36 22.03
MTFN [69] ACM MM’19 Faster R-CNN, biGRU 77.90M 10.40 27.65 36.28 9.96 31.37 45.84 26.92
LW-MCR-b [9] TGRS’22 SqueezeNet, - 1.65M 9.07 22.79 38.05 6.11 27.74 49.56 25.55
LW-MCR-d [9] TGRS’22 SqueezeNet, - 1.65M 10.18 28.98 39.82 7.79 30.18 49.78 27.79
LW-MCR-u [9] TGRS’22 SqueezeNet, - 1.65M 9.73 26.77 37.61 9.25 34.07 54.03 28.58
AMFMN-soft [10] TGRS’22 ResNet18, biGRU 35.94M 11.06 25.88 39.82 9.82 33.94 51.90 28.74
AMFMN-fusion [10] TGRS’22 ResNet18, biGRU 35.94M 11.06 29.20 38.72 9.96 34.03 52.96 29.32
AMFMN-sim [10] TGRS’22 ResNet18, biGRU 35.94M 10.63 24.78 41.81 11.51 34.69 54.87 29.72
MCRN [66] JAG’22 ResNet18, biGRU 52.35M 13.27 29.42 41.59 9.42 35.53 52.74 30.33
GaLR w/o MR [8] TGRS’22 ResNet18, biGRU 46.89M 13.05 30.09 42.70 10.47 36.34 53.35 31.00
GaLR with MR [8] TGRS’22 ResNet18, biGRU 46.89M 14.82 31.64 42.48 11.15 36.68 51.68 31.41

CLIP-based methods
Single Language [37] JSTARS’22 CLIP(ViT-B-32) 151M 19.69 40.26 54.42 17.61 49.73 66.59 41.38
Zero-shot CLIP [26] ICML’21 CLIP(ViT-B-32) 0.00M 9.29 26.33 37.39 7.79 23.67 38.89 23.89
Linear probe [26] ICML’21 CLIP(ViT-B-32) 1.05M 17.02 33.12 48.35 13.33 41.80 63.89 36.25
Full fine-tuning - CLIP(ViT-B-32) 151M 24.16 47.12 61.28 20.40 50.53 68.54 45.33
CoOp [47] IJCV’22 CLIP(ViT-B-32) 0.10M 12.19 30.69 42.82 9.16 33.85 54.35 30.51
VPT [46] ECCV’22 CLIP(ViT-B-32) 0.46M 14.98 32.05 40.15 15.97 41.35 60.35 34.14
VL-Prompt - CLIP(ViT-B-32) 0.47M 12.81 31.28 42.64 12.61 36.20 58.84 32.40
Adapter [27] ICML’19 CLIP(ViT-B-32) 0.17M 13.75 27.64 39.96 12.89 40.09 59.91 32.37
CLIP-Adapter [60] arXiv’21 CLIP(ViT-B-32) 0.52M 12.83 28.84 39.05 13.30 40.20 60.06 32.38
Convpass [57] arXiv’22 CLIP(ViT-B-32) 0.14M 16.03 30.16 40.26 12.05 38.66 58.11 32.55
AdaptFormer [58] NIPS’22 CLIP(ViT-B-32) 0.17M 16.71 30.16 42.91 14.27 41.53 61.46 34.81
Cross-Modal Adapter [30] arXiv’22 CLIP(ViT-B-32) 0.16M 18.16 36.08 48.72 16.31 44.33 64.75 38.06
UniAdapter [31] arXiv’23 CLIP(ViT-B-32) 0.55M 19.86 36.32 51.28 17.54 44.89 65.46 39.23
Ours - CLIP(ViT-B-32) 0.16M 23.67 44.07 60.36 20.10 50.63 67.97 44.47
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TABLE III
THE RETRIEVAL PERFORMANCE OF STATE-OF-THE-ART METHODS ON UCM TESE SET. THE BEST PERFORMANCE OF TRADITIONAL METHODS IS WITH

BOLD. RED AND BLUE REPRESENT THE BEST AND SECOND PERFORMANCE IN CLIP-BASED AND TRANSFER LEARNING METHODS.
Text retrieval Image retrievalMethods Reference Backbone (image/text) Params R@1 R@5 R@10 R@1 R@5 R@10 mR

Traditional methods
VSE++ [64] BMVC’18 ResNet18, GRU 15.78M 12.38 44.76 65.71 10.10 31.80 56.85 36.93
SCAN t-i [67] ECCV’18 Faster R-CNN, biGRU 13.68M 14.29 45.71 67.62 12.76 50.38 77.24 44.67
SCAN i-t [67] ECCV’18 Faster R-CNN, biGRU 13.68M 12.85 47.14 69.52 12.48 46.86 71.71 43.43
CAMP-triplet [68] ICCV’19 Faster R-CNN, biGRU 27.03M 10.95 44.29 65.71 9.90 46.19 76.29 42.22
CAMP-bce [68] ICCV’19 Faster R-CNN, biGRU 27.03M 14.76 46.19 67.62 11.71 47.24 76.00 43.92
MTFN [69] ACM MM’19 Faster R-CNN, biGRU 77.90M 10.47 47.62 64.29 14.19 52.38 78.95 44.65
LW-MCR-b [9] TGRS’22 SqueezeNet, - 1.65M 12.38 43.81 59.52 12.00 46.38 72.48 41.10
LW-MCR-d [9] TGRS’22 SqueezeNet, - 1.65M 15.24 51.90 62.86 11.90 50.95 75.24 44.68
LW-MCR-u [9] TGRS’22 SqueezeNet, - 1.65M 18.10 47.14 63.81 13.14 50.38 79.52 45.35
AMFMN-soft [10] TGRS’22 ResNet18, biGRU 35.94M 12.86 51.90 66.67 14.19 51.71 78.48 45.97
AMFMN-fusion [10] TGRS’22 ResNet18, biGRU 35.94M 16.67 45.71 68.57 12.86 53.24 79.43 46.08
AMFMN-sim [10] TGRS’22 ResNet18, biGRU 35.94M 14.76 49.52 68.10 13.43 51.81 76.48 45.68
CABIR [70] AS’22 ResNet152, BERT+biGRU - 15.17 45.71 72.85 12.67 54.19 89.23 48.30

CLIP-based methods
Single Language [37] JSTARS’22 CLIP(ViT-B-32) 151M 19.04 53.33 77.61 19.33 64.00 91.42 54.12
Zero-shot CLIP [26] ICML’21 CLIP(ViT-B-32) 0.00M 10.95 34.76 55.71 7.33 35.14 54.57 33.08
Linear probe [26] ICML’21 CLIP(ViT-B-32) 1.05M 13.33 52.71 77.62 14.43 59.42 90.28 51.30
Full fine-tuning - CLIP(ViT-B-32) 151M 17.14 55.24 79.52 13.90 56.95 91.81 52.43
CoOp [47] IJCV’22 CLIP(ViT-B-32) 0.10M 7.19 42.76 74.19 9.78 48.34 87.41 44.95
VPT [46] ECCV’22 CLIP(ViT-B-32) 0.46M 8.86 47.81 78.62 13.64 55.61 94.05 49.77
VL-Prompt - CLIP(ViT-B-32) 0.47M 7.97 45.48 75.96 12.51 51.57 91.52 47.50
Adapter [27] ICML’19 CLIP(ViT-B-32) 0.17M 10.17 49.73 80.08 18.20 62.47 95.77 52.74
CLIP-Adapter [60] arXiv’21 CLIP(ViT-B-32) 0.52M 9.83 42.52 66.79 14.61 51.03 84.14 44.82
Convpass [57] arXiv’22 CLIP(ViT-B-32) 0.14M 16.46 54.79 78.78 14.24 58.67 94.51 52.91
AdaptFormer [58] NIPS’22 CLIP(ViT-B-32) 0.17M 16.92 54.39 77.46 18.74 63.49 91.16 53.69
Cross-Modal Adapter [30] arXiv’22 CLIP(ViT-B-32) 0.16M 13.77 50.57 81.41 17.43 61.45 95.48 53.62
UniAdapter [31] arXiv’23 CLIP(ViT-B-32) 0.55M 14.46 55.19 83.95 16.74 61.43 95.76 54.59
Ours - CLIP(ViT-B-32) 0.16M 22.71 55.81 80.33 18.82 62.84 93.72 55.71

Number of context words
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Fig. 6. Ablation on CoOp’s context length. We vary the number of the
context length for CoOp-end and CoOp-mid.
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Fig. 7. Ablation on VPT’s prompt length. We vary the number of prompts
for VPT-deep and VPT-shallow.

domains, adding learnable prompts into visual tokens (VPT)
results in a 3-5% higher retrieval performance compared to
text tokens (CoOp). However, the VL-Prompt directly adds
prompts to both modalities, without considering multimodal
interaction. The increase in prompts makes it more susceptible
to overfitting and reduces its generalization ability.

Prompt length is the only additional hyper-parameter needed

to tune for prompt learning compared to full fine-tuning. We
explore the impact of different prompt lengths on this task and
analyze the performance of prompt learning in detail. Specif-
ically, we follow the setting of CoOp [47] to vary the context
length from 4 to 8 to 16 on RSICD and RSITMD datasets.
“end” or “mid” means putting the learnable token in the end or
middle. The results are shown in Fig. 6, which shows that the
learnable token in the middle position is better than the end,
and more context tokens lead to better performance. However,
too many tokens may lead to overfitting. Likewise, we follow
the setting of VPT [46] to vary the prompt length from 1
to 100 to explore two variants: VPT-deep and VPT-shallow.
As shown in Fig. 7, VPT-deep significantly outperforms VPT-
shallow. The prompt length has a large impact on the VPT-
deep results and shows that the optimal prompt length is 50
for different datasets. More prompts will cause overfitting and
more resource consumption.

Performance analysis on adapter. Observing the results in
Tables I, II, and III, we analyze the performance of adapter
tuning. CLIP-Adapter [60] only adds a bottleneck layer at
the end of the CLIP, making the transfer to the RS domain
insufficient. The Adapter [27] for language models can only
tune textual features alone on the CLIP, and the methods
[57, 58] for vision models can only tune visual features
alone. Using the adapter to adapt the representation in a
single branch (image or text) of CLIP is sub-optimal because
it does not allow the flexibility to dynamically adapt both
representation spaces on the RSITR task. UniAdapter and
Cross-Modal Adapter are multimodal adapters that support
multimodal interaction. However, their structures are complex
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Fig. 8. Retrieval performance vs. the number of trainable parameters on the
RSITMD dataset. Left: Comparison with traditional retrieval methods. Right:
Comparison with CLIP-based methods.

and fail to consider the problem of high intra-class and inter-
class similarity in RS data. The Cross-Modal Adapter [30] for
multimodal tasks converges faster than UniAdapter [31], but
the performance of UniAdapter is 1-2% higher.

The retrieval performance of adapter tuning is 5.9%, 2.4%,
and 4.7% higher than that of prompt learning on the three
datasets. Prompt learning is an input-related method and
adapter tuning is a network-related method. Due to the sig-
nificant domain gap between the pre-training CLIP and the
RS domain, achieving efficient parameter transfer through
adding learnable prompts to the input is limited. To adapt
to the different knowledge structures of RS image-text and
natural image-text, the adapter can adjust the network structure
properly to align the RS image and text modality to obtain
significant performance gain.

Trained parameter efficiency. As shown in Fig. 8(a), our
method requires the smallest trainable parameters compared
to the traditional methods. Even the lightweight model LW-
MCR [9] requires 1.65 M parameters, our method requires
only 0.16 M to achieve SOTA performance. This suggests that
finetuning VL pre-training models in the natural domain have
great potential for tasks in the RS domain. For the RS image-
text retrieval task, our proposed PETL framework is both
parameter-efficient and effective. Among the various PETL
methods in Fig.8(b), the trainable parameters of our method
are not the smallest, but it achieves the optimal performance
with 98.9% reduction of the full fine-tuning parameters. Our
method (CLIP-B-32) achieves nearly the performance of full
fine-tuning on the RSITMD dataset and CLIP-B-16 exceeds
it. This shows that it is essential to design the adapter and the
PETL framework based on the high intra-modal similarity in
RS data, which can achieve better performance.

E. Ablation Study

We conduct detailed ablation experiments to validate the
effectiveness of the PE-RSITR framework. We systematically
analyze the influence of the CLIP backbone network, the
proposed MRS-Adapter, and the HMMC loss function on the
experiment results. In the following subsections, we conduct
experiments mainly on the RSITMD dataset. The performance
of T2I retrieval is measured by the sum of R@K (K=1, 5,
and 10) of text retrieval and I2T retrieval is measured by the
sum of R@K (K=1, 5, and 10) of image retrieval.

Vision backbones. Fig. 9 shows the results on the three
datasets for the two ViT backbones of CLIP, i.e., ViT-B/32

m
R

(%
)

RSICD RSITMD UCM

Fig. 9. Investigations with ViT-B/32 and ViT-B/16 backbones of CLIP.

TABLE IV
ABLATIONS OF MRS-ADAPTER OF VISUAL AND TEXTUAL BRANCHES.
Method Visual Textual T2I retrieval I2T retrieval mR

w/o Share ✓ 107.58 120.25 37.97
w/o Share ✓ 114.51 130.32 40.81
w/o Share ✓ ✓ 116.47 136.16 42.11

Ours ✓ ✓ 128.10 138.70 44.47

and ViT-B/16. The results are expected: the more advanced
the backbone, the better the performance.

MRS-Adapter. Since MRS-Adapter involves dual-modal
branches and cross-modal interaction, it is necessary to verify
that multimodal branches fine-tuned together are more suitable
for the task. We applied it to the visual or textual branch
alone or to both branches without the sharing mechanism as
comparison experiments. As shown in Table IV, the retrieval
performance of applying MRS-Adapter to a single branch is
particularly poor, because it cannot adapt the space of the RS
domain on both modalities at the same time. This result proves
that MRS-Adapter should be used in both visual and text
branches. When MRS-Adapter is applied to both branches, the
absence of the sharing mechanism can degrade performance.
The weight-sharing benefits the realignment of the VL feature
space of CLIP in the RSITR task and can reduce the trained
parameters. Specifically, MRS-Adapter reduces the parameters
of 0.1M. In summary, MRS-Adapter helps to release the power
of pre-trained CLIP models and improve RSITR performance.

Bottleneck dimension d. The bottleneck dimension d is
an important parameter of MRS-Adapter. We conduct exper-
iments with different sizes of bottleneck, as shown in Fig.
10(left). As the d increases, the parameters of MRS-Adapter
increase. The retrieval performance is poor when the d is less
than 64. It is possible that down-projection loses too much
information by projecting features to the lower dimensional
space. The best performance is achieved when the d is 64, and
the performance starts to decrease as the dimension increases
further. Therefore the d of MRS-Adapter is set to 64.

Weight-sharing dimension r. After the bottleneck dimen-
sion d is set to 64, we further explore the impact of the weight-
sharing dimension r. We conduct experiments with different
sizes of shared weights, as shown in Fig. 10(right). The overall
effect of the weight-sharing dimension on the results is small.
The poor retrieval performance when the r is small may be
due to less knowledge sharing between RS image modality and
text modality, which cannot fully facilitate modal alignment.
The best performance is achieved when the r is 64, and
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Fig. 10. Left: Ablations of the bottleneck dimension. Right: Ablations of the
weight-sharing dimension.

TABLE V
EXPERIMENT OF THE HMMC LOSS WITH DIFFERENT MARGINS λ AND α.

λ α=αv=αt T2I retrieval I2T retrieval mR
0.2 0.1 119.91 137.94 42.97
0.2 0.2 128.10 138.70 44.47
0.2 0.3 121.55 136.57 43.02
0.2 0.4 121.08 134.48 42.51
0.1 0.2 119.68 135.73 42.57
0.2 0.2 128.10 138.70 44.47
0.3 0.2 119.86 136.92 42.80
0.4 0.2 118.72 136.28 42.50

the performance starts to decrease as the dimension increases
further. Therefore the r of MRS-Adapter is set to 64.

Margins λ and α. In our HMMC learning objective,
the margin parameters serve as crucial hyper-parameters. To
observe the influence of parameters λ, αv , and αt on retrieval
results, we set up a series of experiments using a controlled
variable approach. Regarding the intra-modal constraint, we
set αv equal to αt. As shown in Table V, the results indicate
that the model achieves the best retrieval performance, as
measured by mR, when the margin parameters λ and α are
set to 0.2.

HMMC loss. We have carried out experiments on the hybrid
multi-modal contrastive loss, i.e., the inter-modal and intra-
modal cooperative constraint framework. We set up four sets of
comparisons to observe the effect of increasing the intra-modal
constraints on the results, as shown in Table VI. The result
shows that the retrieval performance is significantly improved
after adding the intra-modal constraints. However, when the
intra-modal constraint is added to the text branch only, text-to-
image retrieval becomes worse, while image retrieval has the
best result. Likewise, when the intra-modal constraint is added
to the visual modality only, image-to-text retrieval becomes
worse, while text retrieval has the best result. The RSITR task
requires both text retrieval and image retrieval. Only by adding
two intra-modal constraints can achieve a balanced result, and
the overall retrieval performance is optimal. This result proves
that the proposed HMMC loss is effective in further improving
the performance on top of the proposed MRS-Adapter.

TABLE VI
ABLATIONS OF THE HYBRID MULTI-MODAL CONTRASTIVE LOSS.
Lintra−v Lintra−t T2I retrieval I2T retrieval mR

113.29 132.14 40.91
✓ 121.76 141.02 43.80

✓ 128.47 134.81 43.88
✓ ✓ 128.10 138.70 44.47

F. Qualitative Results

To get an intuition of how the RS image and text are
aligned in the joint embedding space, we present a detailed
visualization in Fig. 11. Fig. 11 shows the detailed change
of RS image and text embeddings before and after PETL on
three datasets. We utilize the t-distributed stochastic neighbor
embedding (t-SNE) method to project the image and text
features obtained from the two encoders into a 2-D space.
Observing the first column of Fig. 11, the CLIP model of the
natural domain before transfer learning exhibits a complete
separation of RS image and text modalities due to the domain
gap. As shown in the visualization, RSICD has the highest
number of sample points. The RSITMD sample points are
most scattered and uniformly distributed, indicating the highest
fine-grained. The UCM has the lowest number of samples,
while different clustering centers indicate different RS scene
classes. The unaligned modal representations have semantic
inconsistency, thus a large number of errors are sure to occur
when Zero-shot CLIP computes the cross-modal similarity.

To tackle this problem, our MRS-Adapter aggregates the
embeddings of each modality into a common space, as shown
in the second column of Fig. 11. In addition, it attempts to
align image-text pairs separately according to remotely sensed
scene-level information to form finer and more discriminative
clusters. However, we observe some overlap in each modal
representation, which is caused by the great intra-class and
inter-class similarity. To couple up this problem, we perform
the HMMC loss function on top of the proposed MRS-
Adapter, as shown in the third column of Fig. 11. The com-
parison reveals that our method further spars the distribution
of multimodal embeddings. The sample points that originally
overlapped in a large number of clusters are now clearly
visible. In particular, the results of UCM originally had a lot of
text clusters without RS image samples next to them, but now
there are RS samples near each cluster of text samples. The
samples of different modalities are more accurately aligned,
alleviating the problem of sample overlap and providing a
good representation for cross-modal retrieval and matching.

To qualitatively validate the effectiveness of our PE-RSITR
method, we displayed several examples of T2I and I2T re-
trieval in Fig. 12. Based on these cross-modal retrieval results,
our model can accurately distinguish similar samples to re-
trieve the correct results. Based on these cross-modal retrieval
results, our model can accurately distinguish similar samples
to retrieve the correct results. The method can understand both
abstract phrases and complex long sentences and is robust in
the face of both simple and complex images. This is mainly
attributed to the fact that our designed PE-RSITR framework
not only learns the specific knowledge of RS domain, but
also exploits the powerful generalization ability and rich VL
knowledge structure of CLIP.

V. CONCLUSION AND FUTURE WORK

In this paper, we explore a new paradigm for the PETL-
based RSITR task, namely PE-RSITR, to bridge the differ-
ences between the RS domain and the natural domain. Our
proposed MRS-Adapter and the HMMC loss function are



12

First component

S
ec

o
n
d
 c

o
m

p
o
n
en

t

R
S

IC
D

 d
a
ta

se
t

S
ec

o
n
d
 c

o
m

p
o
n
en

t

First component First component

S
ec

o
n
d
 c

o
m

p
o
n
en

t

First component
S

ec
o
n
d
 c

o
m

p
o
n
en

t

R
S

IT
M

D
 d

a
ta

se
t

S
ec

o
n
d
 c

o
m

p
o
n
en

t

First component First component

S
ec

o
n
d
 c

o
m

p
o
n
en

t

First component

S
ec

o
n
d
 c

o
m

p
o
n
en

t

U
C

M
 d

a
ta

se
t

S
ec

o
n
d
 c

o
m

p
o
n
en

t

First component First component

S
ec

o
n
d
 c

o
m

p
o
n
en

t

Fig. 11. The detailed change of t-SNE visualizations of RS image and text embeddings before and after transfer learning on three datasets. The first column
shows the results of original CLIP before transfer learning, the second shows the results after transfer by MRS-Adapter only, and the third shows the results
after adding the framework of inter-modal and intra-modal cooperative constraints.

conceptually simple but can effectively expand CLIP to coarse-
grained VL tasks in the RS domain. Inserting a lightweight
MRS-Adapter into CLIP without modifying the inherent struc-
ture consumes only a little computational cost. It can make
the best use of the powerful generalization ability and rich
visual-language prior knowledge of the CLIP. Constructing
intra-modal positive pairs using random dropout and adding
intra-modal constraints can effectively avoid the retrieval inter-
ference of similar samples. Extensive experiments on RSITR
validate that our method can achieve comparable or even better
performance than full fine-tuning.

Manual selection of various dimension parameters is re-
quired for the MRS-Adapter. How to adaptively select the
parameters of the MRS-Adapter remains a challenging topic.
Our proposed method does not account for scale variations,
cluttered backgrounds, and sparse or dense distribution of
objects in RS imagery. In future work, we will extend our
method to other fine-grained perception tasks, such as RS
visual grounding (object level) and RS image change cap-
tioning (spatiotemporal level). In these tasks, it is essential
to extract fine-grained features or similarities from image-text
pairs. We hope our work will inspire future research to explore
more efficient PETL methods for more fine-grained RS visual-
language tasks.
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Fusion: Non-destructive task composition for transfer learning,” in Proc.
16th Conf. Eur. Chapter Assoc. Computat. Linguistics, 2021, pp. 487–
503.

[53] R. Karimi Mahabadi, J. Henderson, and S. Ruder, “Compacter: Efficient
low-rank hypercomplex adapter layers,” Adv. Neural Inf. Process. Syst.,
vol. 34, pp. 1022–1035, 2021.

[54] R. Karimi Mahabadi, S. Ruder, M. Dehghani, and J. Henderson,
“Parameter-efficient multi-task fine-tuning for transformers via shared
hypernetworks,” in Proc. 59th Annu. Meeting Assoc. Comput. Linguistics
11th Int. Joint Conf. Natural Lang. Process., 2021, pp. 565–576.
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