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Abstract—Building footprint extraction plays an important
role in the analysis of remote sensing images and has an extensive
range of applications. Obtaining precise boundaries of buildings
remains a challenge in existing building extraction methods.
Some previous works have made notable efforts to address this
concern. However, most of these methods require cumbersome
and expensive post-processing steps. Moreover, they ignored the
correlation between building semantics and contours, which we
believe is crucial for building footprint extraction. To mitigate this
issue, our paper presents an intuitive and effective framework
that explores semantic and contour cues of buildings and fully
excavates their correlation. Specifically, we construct an interac-
tive dual-stream decoder. The Intermediate connections within
this decoder interactively transmit features between branches,
contributing to learning correlations between semantics and con-
tours. We propose the Semantic Collaboration Module (SCM) to
strengthen the connection between the two branches. To further
boost performance, we build the Multi-Scale Semantic Context
Fusion Module (MSCF) to fuse semantic information from the
higher and lower layers of the network, allowing the network
to obtain superior feature representations. The experimental
results on the WHU, INRIA, and Massachusetts building datasets
demonstrate the superior performance of our method. The code
will be available at https://github.com/jilaizhizeanzhi/Building-
Segmentattion.

Index Terms—Building footprint extraction, deep learning,
interactive dual-stream decoder, Semantic and contour collab-
oration, Multi-Scale feature fusion.

I. INTRODUCTION

BUILDING footprint extraction aims at extracting a build-
ing footprint using pixel-based or object-based algo-

rithms [1], which is highly valuable for urban planning, urban
change monitoring, 3D modeling of remote sensing image
mapping, data acquisition of GIS and updating of urban spatial
database, etc. In the past decades, many researchers have made
significant efforts to automate building extraction algorithms.
Most of the early works are dedicated to defining single or
combined criteria [2], [3] that represent the characteristics of
a building’s appearance, such as uniform color [4], regular
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shapes [5], and neighboring shadows [6]. However, these man-
ually established criteria are poorly generalized and therefore
struggle to handle building footprint extraction in complex
scenes.

In recent years, convolutional neural networks (CNN) have
been widely practiced in remote sensing image applications.
Benefiting from the powerful feature representation capabili-
ties of CNN, many CNN-based building segmentation algo-
rithms [7]–[9] have emerged, treating building extraction as a
semantic segmentation challenge. In order to obtain superior
segmentation performance, these approaches incorporate atten-
tion mechanisms [10]–[13] within the segmentation network.
Alternatively, they construct fusion schemes of high and low-
level semantic features [14] or design feature memory modules
[15] to enhance the feature representation power.

Although CNN-based approaches mentioned above achieve
promising performance in building footprint extraction, they
fail to deal well with error predictions around buildings.
One main group of the follow-up effort attempts to learn
the polygonal contours of buildings [13], [16]–[19]. While
these methods significantly improve the prediction of building
boundaries, they either require laborious and costly post-
processing steps or elaborate additional parameters to control
the training process of their networks. Another line of work
draws on multi-task learning to improve the segmentation
of buildings [20]–[22]. Nevertheless, these methods primarily
apply boundary-related learning tasks in a straightforward
manner to enhance segmentation without delving into deeper
correlations. Consequently, the network is not sufficiently
efficient, causing limited improvement.

In this paper, we propose an intuitive but effective method
to obtain accurate building boundaries, thereby improving the
performance of building footprint extraction. We construct
an interactive dual-stream decoder consisting of a semantic
branch and a contour branch to explore semantic and contour
cues and their correlation. The semantic branch focuses on
acquiring superior semantic feature representations, while the
contour branch captures intricate local details of buildings.
The intermediate connections of the decoder (indicated by
the purple arrows in Fig. 1) allow these two branches to
interactively transmit the learned features to each other to learn
the correlation between semantics and contours. Although
the intermediate connections facilitates the collaboration of
semantic and contour information to some extent, the differ-
ent task-driven nature of these two branches leads to non-
negligible semantic inconsistencies of the features learned by
each. Besides, we believe the simple fusion operations (e.g.,
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Fig. 1. Illustration of the network structure of our proposed method. Our network employs an encoder-decoder pattern, with the decoder consisting of a
semantic branch and a contour branch. The intermediate connections of the decoder (purple arrows) interactively transfer the features learned in one branch
to the other branch forcing the network to learn the correlation between semantic and contour cues. The SCM strengthens the connection between the two
branches and the MSCF seamlessly integrates multi-scale semantic features.

addition or concatenation) are not optimally leveraging the
information from these two branches, and propose the Seman-
tic Collaboration Module (SCM) to strengthen the connection
between semantic and contour feature learning. It is widely
known that the high-level features tend to have rich semantic
information while lacking detailed information, which may
lead to incomplete segmentation of the buildings. We thus
propose the Multi-Scale Semantic Context Fusion Module
(MSCF) to aggregate contextual information of objects at
different scales and generate high-resolution features with
rich semantic information to alleviate the segmentation errors
caused by scale variations of buildings.

The contribution of this paper can be summarised as fol-
lows:

1. We propose an interactive dual-stream decoder to explore
the correlation between building semantics and contour cues.
The intermediate connections of the decoder enable both the
semantic and contour branches to interactively transmit their
learned features to each other, contributing to the learning of
correlations between semantics and contours.

2. We propose the Semantic Collaboration Module (SCM)
to build stronger connections between these two task-specific
branches and integrate the complementary information among
the two branches.

3. We propose the Multi-Scale Semantic Context Fusion
Module (MSCF) to seamlessly fuse high-level semantic fea-
tures with low-level ones, driving the network to obtain high-
resolution and strong semantic features to improve perfor-

mance further.
4. We propose an effective method to improve building

boundaries and experiments on the WHU, INRIA, and Mas-
sachusetts building datasets demonstrate the effectiveness of
our approach, achieving state-of-the-art performance.

II. RELATED WORK

A. Building extraction

In recent years CNN has been widely applied in building
footprint extraction tasks. One commonly adopted network
structure is the fully convolutional neural network (FCN). Zuo
et al. [23] achieved arbitrary scale and variable appearance
building footprint extraction by merging contextual informa-
tion from different convolutional layers. In order to obtain finer
building features to improve the segmentation performance,
MAP-Net [14] progressively extracts high-level semantic fea-
tures at a fixed resolution in each stage through multiple
parallel paths. MS-GeoNet [10] integrates the multi-scale
attention module CBAM [24] nested within the CNN network.
GCCINet [11] combines CBAM and the Dilated Convolution
[25] to design the feature fusion module in the network to
fuse high-level features and low-level features across layers.
Another prevalent architecture is the encoder-decoder frame-
work, such as the typical U-Net [26]. Ji et al. [27] proposed
a weight-sharing two-branch U-Net called Siamese U-Net to
combine segmentation prediction of the original image and
the corresponding down-sampled counterpart, which improved
the classification accuracy of large buildings. Khalel et al. [28]
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employed a cascaded U-Net structure to enhance the prediction
results of the network progressively. CrossGeoNet [12] applies
a Siamese U-net network with a cross-geolocation attention
module to achieve building segmentation. EMMGResUnet
[15] constructed a dynamically updated feature memory that
stores positive and negative sample features and enhances the
feature representation of the building with a form of non-local
attention.

In order to obtain sharper building boundaries, some work
is dedicated to extracting the polygonal contours of buildings.
Wei et al. [18] introduced multi-scale aggregation and two
post-processing strategies to obtain a segmentation map in
FCN, on which a polygon regularisation algorithm consist-
ing of coarse and fine adjustments was applied to refine
the building outlining. TDAC [19] combined convolutional
neural networks and Active Contour Models (ACMS) [29]
to construct a trainable and end-to-end framework to obtain
sharp contours of buildings. Girard et al. [13] proposed a
post-processing polygonization algorithm to improve building
boundaries by leveraging the output of a frame field addition-
ally learned by the network. However, these methods require
laborious post-processing steps or additional prior parameter
settings. Other works improve the segmentation of building
boundaries with the help of multi-task learning. DMBC-Net
[20] designed frameworks for semantic segmentation, direction
prediction, and distance estimation for three learning tasks
to assist the network in segmenting buildings. He et al.
[21] added a boundary learning task to the segmentation
network and improved the building extraction by combining
the predicted boundary mask with semantic features. CBR-Net
[22] combined the edge prediction to refine the boundaries
of buildings in a coarse-to-fine manner progressively and
improved the boundaries by perceiving the orientation of
pixels to the center of the nearest object in the network. In
contrast to these multi-task learning approaches, our method
improves the segmentation performance of building boundaries
by exploring the correlation between tasks.

B. Boundary for Segmentation

Mis-classification of pixels tends to occur at the boundaries
of objects. Many semantic segmentation-related works have
achieved remarkable performance by obtaining more accurate
object boundaries. BFP [30] learned edges as an additional
semantic category to guide the pixel-to-pixel connections of
recurrent undirected graph neural networks, increasing the
similarity of features between objects of the same category
while attenuating the strength of pixel connections between
objects of different categories. Gated-SCNN [31] explicitly
treated shape information as a separate stream and used a new
gating mechanism to connect the intermediate layers. Shape
streams collaborate with each other to obtain more precise
segmentation predictions. Li et al. [32] decomposed the feature
map into two parts, body features, and edge features, and
dealt with semantic segmentation by explicitly modeling body
consistency and edge preservation at the feature level and then
jointly optimizing them in a unified framework. SegFix [33]
proposed a novel model agnostic post-processing mechanism

by replacing the labels of boundary pixels with the labels
of the corresponding internal pixels to reduce the boundary
errors of the segmentation results. Unlike the above work,
in our framework, the constant interaction of contour cues
and semantic information during the decoding process leads
to stronger and more discriminative feature representations,
significantly reducing the misclassification of the background
and obtaining finer boundaries.

C. Multi-task Learning

Several existing works have confirmed the effectiveness of
jointly complementary multi-task learning [20] [21] [34] [35].
The Dual Super-Resolution Learning [36] (DSRL) framework
enhances the detailed information of features by incorporating
super-resolution task learning to obtain high-resolution rep-
resentations and performs well in semantic segmentation and
human pose estimation. Wu et al. [37] learned both semantic
categories and affinity relations of pixels to produce a stronger
feature representation, and the output affinity information
can also be applied to refining the original segmentation
predictions. In this paper, we combine boundary prediction
and semantic segmentation and utilize the relationship between
them to improve segmentation. Zhen et al. [38] propose a joint
multi-task learning framework by designing the iterative Pyra-
mid Context Module to couple semantic segmentation and se-
mantic boundary detection tasks. MCN [39] performs the three
basic tasks of object detection, semantic segmentation, and
human pose estimation simultaneously with a single network.
OmniDet [40] is aimed at a multitasking visual perception
system for circumferential fisheye lenses, integrating multiple
tasks of depth estimation, visual odometry, semantic and
motion segmentation, object detection, and lens contamination
detection. YOLOP [41] performs three tasks simultaneously:
traffic object detection, driveable area segmentation, and lane
detection.

III. METHODOLOGY

A. Overview

Many existing CNN-based building footprint extraction
methods have struggled to obtain accurate boundaries of
buildings, and the existing methods for improving building
boundaries are either complicated in modeling or insufficient
in information utilization. In this paper, we propose simple
yet effective methods to alleviate the problem of blurred
boundaries. Fig. 1 illustrates the overall structure of our
proposed method. Following the CNN-based building seg-
mentation method, our proposed network adopts the encoder-
decoder pattern, where ResNet50 [42] is employed as the
encoder, and the decoder only uses the last four stages of
ResNet to reduce the computational cost. The decoder consists
of two branches, a semantic branch aiming at capturing rich
semantic information to predict the segmentation map, and a
contour branch towards mining out local detail information to
predict the contour map. The intermediate connection of the
decoder allows interaction between the two cues, prompting
the network to learn the correlation between them. The two
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(a) (b)

Fig. 2. A comparison of our method with other multi-task learning ap-
proaches. Figures (a) and (b) show the learning patterns of the other methods
and our method respectively.

branches focus on learning distinct cues, resulting in the inher-
ent semantic inconsistency between the two learned features.
Therefore, we propose the Semantic Collaboration Module
(SCM) to enhance the network’s collaborative exploitation of
semantic and contour information. Semantic features from the
shallow layers carry more precise location information but
suffer from semantic noise. We further propose the Multi-
Scale Semantic Context Fusion Module (MSCF) to facilitate
the network fusing high-level semantic features and low-level
detail features. The proposed components seamlessly integrate
different semantic information in the network, which strikes a
common goal of the network to learn stronger discriminative
feature representations from semantic and contour cues.

B. Interactive Dual-Stream Decoder

In our decoder, the semantic and contour branches are re-
sponsible for learning corresponding features while supervised
by two distinct tasks: segmentation prediction and contour
detection. Instead of following the classical multi-task learning
approach [37] [21], where the two tasks are independently
learned and subsequently merged through a fusion module, our
decoder promotes interactive cooperation between these tasks.
We illustrate the distinctions between our interactive decoder
and other multi-task learning approaches, refer to Fig. 2. In
our approach, each branch of the decoder continuously trans-
mits its learned features to the other branch, facilitating the
interactive integration of information into the learning process
of both tasks. The interaction enhances the complementarity
between the features learned by each task and promotes the
correlation between the semantic and contour cues acquired
by the network. In Fig. 1, the purple arrows indicate the
interaction of information between the semantic and contour
branches.

We begin by describing the workflow of the decoder.
Initially, the feature maps from the last four stages of the
encoder undergo a 1× 1 convolution layer, which reduces the
number of channels to 256, resulting in the creation of the
feature Ai:

Ai = Conv1×1 (Ei) i=2, 3, 4, 5 (1)

Here, Ei denotes the feature maps from stage i of the encoder.
To transmit the learned features, the feature Si of the seman-

tic branch and Ci of the contour branch from stage i are passed
through a channel pooling layer, and a convolution layer to

Fig. 3. Illustration of the Multi-Scale Semantic Context Fusion Module
structure.

generate the intermediate features S′
i and C ′

i, respectively, as
well as to generate the corresponding prediction map:

S′
i = fsi(cp (Si)), P

s
i = fs′i (S

′
i) (2)

C ′
i = fci(cp (Ci)), P

c
i = fc′i (C

′
i) (3)

where the f∗ denotes the convolution operation, and the P s
i

and the P c
i denotes the segmentation prediction map and

contour prediction map for the current stage i, respectively.

cp(X) = collectj∈[0,m−1]

(
max

k∈[0, n
m−1]

Xj× n
m+k

)
(4)

where j and k are integers and n and m are the number of
the input and output channels of the features, respectively. The
channel pooling layer divides the n-dimensional channels of
the original feature map into m groups and takes the maximum
value of each group as the channel value of the output feature
map.

The intermediate semantic feature S′
i and contour feature

C ′
i from stage i are fed into the SCM to generate the primary

semantic features Zi:

Zi = SCM(S′
i, C

′
i) (5)

The feature Zi is fused with the encoder features Ai from the
lower layer by the MSCF to obtain the semantic features of
the subsequent stage i− 1:

Si−1 = MSCF (Zi, Ai−1) (6)

The intermediate semantic feature S′
i−1 is fed into the SCM

with contour features Ci from the subsequent stage i to learn
the required contour features of the stage i− 1:

Ci−1 = SCM
((
S′
i−1

)
, upsample(Ci)

)
(7)

We repeat the process described in Eq. (2)-(7) until we
obtain the semantic features S2 that are used to generate the
final network prediction.

It is important to note that while the intermediate con-
nections within the decoder utilize convolutional layers to
learn the correlation between semantics and contours, it is
inappropriate to equate correlation operations with traditional
convolution operations. This is because the proposed whole
network, including the intermediate connections and the Se-
mantic Collaboration Module, collaboratively facilitates the
model to learn and integrate semantic and contour correlation.
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Fig. 4. Illustration of the Semantic Collaboration Module structure.

C. Semantic Collaboration Module

Given that the two branches of the decoder are designed
to learn distinct cues, a notable semantic disparity naturally
emerges between these two sets of learned features. We
believe the information on the two features cannot be properly
exploited in a simple and straightforward fusion strategy. In
order to fully leverage the two different cues, we propose the
Semantic Collaborati on Module (SCM) to integrate the two
distinct features and strengthen the correlation between the
semantic branches and the contour branch.

In the following section, we begin to describe the workflow
of SCM. The semantic features S transform the learned seman-
tic features through successive convolutional layers and apply
residual connections to strengthen the correlated semantic
information, as shown in the upper branch of Fig. 4, which
can be represented by the following formula:

Sco = δ(β(Conv3×3(δ(β(Conv3×3(s))))))⊕ S (8)

where ⊕ denotes the element-wise addition and Conv denote
convolution operation, and δ and β denote ReLU activation
and batch normalization, respectively.

The contour feature C is processed through the lower branch
of the SCM module to process the contour information, which
is expressed by the following formula:

Cco = σ(GAP(δ(β(Conv3×3(C)⊕ C))))⊗ C (9)

where ⊗ denotes the element-wise multiplication, GAP de-
notes Global Average Pooling, and σ denotes the sigmoid
activation function.

Finally, the outputs of the two branches of the SCM module
are multiplied together and passed through a convolutional
layer as well as batch normalization layers and Rectified
Linear Unit to obtain the fused features Z:

Z = (δ(β(Conv3×3(Sco ⊗ Cco))))⊕ (Sco ⊗ Cco) (10)

D. Multi-Scale Semantic Context Fusion Module

A few networks [26] [43] [44] apply long skip connections
to bridging fine-detail features from the lower layers and
coarse-resolution high-level semantic features, we follow this
idea to help the network obtain high-resolution semantic fea-
tures. However, long skip connections impose cross-scale se-
mantic information, leading to misalignment between semantic

features at different scales. To mitigate the above problem, we
constructed the MSCF to promote the full exploitation of high
and low-level semantic information by the network.

MSCF first aggregates features from both high and low
scales and assigns weighting factors to features at each scale
through a multi-scale contextual aggregator, which works
through two paths: global contextual aggregation and local
contextual aggregation. Global context aggregation provides
contextual guidance cues from the overall perspective of
features, while local context aggregation obtains semantic con-
textual information from a local perspective. The contextual
guidance obtained from the two paths generates weighting
factors to adjust the semantic dependencies between features,
thus enabling the fusion of semantic features at different
scales. The specific process is as follows:

The feature Zi+1 from the higher stage is upsampled and
then summed with the encoder feature Ai from the current
stage by element-wise addition to obtain the composite feature
Vi :

V = Zi+1 ⊕A′
i (11)

The feature Vi is then fed into a multi-scale contextual
aggregator via a global contextual aggregation path and a local
contextual aggregation path, which can be represented by the
following formula:

fmsc (V ) = V ⊗ σ(L(V )⊕G(V )) (12)

where G(V ) is the global contextual aggregator and L(V )
is the local contextual aggregator. Specially, L(V ) can be
formulated as follows:

L(V ) = β (fPW2
(δ (β (fPW1

(V ))))) (13)

where fPW denotes point-wise convolution to obtain the
interaction of point-wise channels at each spatial location. The
kernel sizes for fPW1

and fPW2
are C

r × C × 1 × 1 and
C × C × 1 × 1 respectively, where r is the channel scaling
rate and C is the number of the input channels.

And G(V ) can be formulated as follows:

G(V ) = β (fPW2 (δ (β (fPW1(GAP (V )))))) (14)

Finally, we utilize the obtained multi-scale contextual in-
formation to adjust the semantic dependencies of the features
to obtain the integrated multi-scale semantic features M ,
represented by the following equation:

M = (fmsc (V )⊗ Zi+1)⊕ ((1− fmsc (V ))⊗Ai) (15)

Fig. 3 illustrates the structure of MSCF where the dashed
lines indicate the (1− fmsc (V ))⊗Ai.

E. Loss Function

Our decoder has two branches, e.g. the segmentation and
contour branches, and we use binary cross-entropy loss:

L =
5∑

i=2

LBCE (yi, ŷi) +
5∑

i=2

LBCE (ci, ĉi) (16)
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LBCE(x, y)=− 1

HW

HW∑
k=1

[yk log (xk)+(1−yk) log (1−xk)] (17)

where ŷ and ĉ denote the segmentation and contour pre-
diction maps of the network, y and c are the corresponding
Ground Truth of the segmentation outcome and the boundary.
During the network training process, for each segmentation
prediction map P s

i and contour prediction map P c
i in Eq.2

and Eq.3, it is supervised by the Ground Truth of the building
segmentation map and the boundary Ground Truth of the
building.

IV. EXPERIMENT AND ANALYSIS

A. Datasets

Our experiments are conducted on three publicly available
building footprint extraction datasets, including the WHU
building dataset [27], the INRIA dataset [45], and the Mas-
sachusetts buildings dataset [46].

The WHU building dataset includes aerial and satellite sub-
datasets along with the corresponding shape files and the raster
masks. In this experiment, we use the aerial data, including
more than 1870000 buildings with a resolution of 3cm and
covering a ground area of more than 450 km2. It contains
rural, residential, cultural, and industrial areas, with a variety
of building types, different colors, and sizes. The aerial image
set is seamlessly cropped into 8189 tiles of 512 × 512 pixels,
including 4736 tiles for the training set, 1036 tiles for the
validation set, and 2416 tiles for the test set.

The INRIA dataset consists of 360 orthorectified aerial
images of size 5000 × 5000 pixels with a spatial resolution
of 0.3 m/pixel. The training set of 180 images covers the
Austin, Chicago, Kitsap County, West Tyrol, and Vienna
regions, while the test set of 180 images covers Bellingham,
Bloomington, Innsbruck, San Francisco, and East Tyrol. The
data were obtained on different flights across the country,
covering different areas with different lighting characteristics,
and landscapes and settlements varying in shape, density, and
appearance, so the dataset provides a thorough assessment
of the generalization ability of the different models. For a
fair comparison, we split the training set according to the
guidelines shown in [45] and remove the top five images
of each region from the training set for validation. Because
the Ground Truth of the test set is agnostic, we only test the
algorithm on the validation set.

The Massachusetts buildings data set consists of 151 RGB
aerial images of the area at Boston, where each image has
1500 × 1500 pixels and covers an area of 2.25km2 with a
ground spatial resolution of 1 m/pixel. The entire dataset cov-
ers roughly 340 square kilometers. The dataset was randomly
divided into a training set, a validation set, and a test set with
137, 4, and 10 images, respectively.

B. Evaluation Metric
Since using a segmentation-based approach, we use pixel-

level evaluation methods such as IoU and F1-score which are

more suitable for evaluating our algorithm. The metrics are
calculated as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 =
2× Precision × Recall

Precision + Recall

IoU =
Precision × Recall

Precision + Recall − Precision × Recall

where TP is the number of positive samples correctly pre-
dicted, FP is the number of positive samples incorrectly
predicted and FN is the number of negative samples incorrectly
predicted. Precision is the proportion of the correctly identified
samples among those identified and Recall is the percentage
of the correctly identified samples among all the positive
samples. F1 is a weighted summation average of Precision and
Recall, taking into account the combination of completeness
and accuracy. The IoU is the ratio of the intersection of
the prediction with the Ground Truth and the union of the
prediction with the Ground Truth. To ensure a fair comparison,
we followed the established conventions by most previous
building extraction methods [11], [18], [20]–[22], [27], [47]–
[50], using Precision, Recall, F1, and IoU as metrics to
measure model performance. Following [46], we also use the
break-even point metric for the Massachusetts data set, where
the break-even point is the point on the precision-recall curve
where precision is the same as recall.

C. Implementation

Following previous CNN-based building segmentation
methods, the backbone used in our method is ResNet-50 for
all the experiments, which were pre-trained on ImageNet [51].
For all the experiments, these models were trained with the
SGD optimizer and with a ”poly” learning rate policy, where
the initial learning rate was set to 0.01 and multiplied by(
1− step

max−step

)power
with power = 0.9. We used synchronized

SGD over 2 GPUs with a total of 8 images per mini-batch (4
images per GPU), weight decay of 0.0001 and momentum of
0.9. The synchronized batch normalization was used for cross-
gpu communication of statistic in the batch normalization
layer. During training, the images are randomly transformed
in brightness and contrast with a probability of 0.5. The code
will be available at https://github.com/jilaizhizeanzhi/Building-
Segmentattion.

D. Comparison With Existing Methods

We would like to clarify that, in order to maintain fairness,
we have adhered to the convention established by previous
work [11], [14], [21], [22], [48]–[50] of solely visualizing
results through comparisons with state-of-the-art CNN-based
semantic segmentation methods, as shown in Fig. 5, 6, 7, and
8. This is because the source code of most previous building
extraction algorithms is not publicly available. In addition,
in order to demonstrate the effectiveness of our method
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(a) (b) (c) (d) (e) (f) (g)

Fig. 5. Exemplar results of PSPNet, Deeplabv3+, HRNet, UNet, and our method for detecting small buildings in the WHU building dataset. (a) Original
image, (b) PSPNet, (c) Deeplabv3+, (d) HRNet, (e) UNet, (f) Ours, and (g) Ground Truth.

(a) (b) (c) (d) (e) (f) (g)

Fig. 6. Exemplar results of PSPNet, Deeplabv3+, HRNet, UNet, and our method for detecting large buildings in the WHU building dataset. (a) Original
image, (b) PSPNet, (c) Deeplabv3+, (d) HRNet, (e) UNet, (f) Ours, and (g) Ground Truth.
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(a) (b) (c) (d) (e) (f) (g)

Fig. 7. Exemplar results of PSPNet, Deeplabv3+, HRNet, UNet, and our method for the INRIA building dataset. (a) Original image, (b) PSPNet, (c)
Deeplabv3+, (d) HRNet, (e) UNet, (f) Ours, and (g) Ground Truth.

(a) (b) (c) (d) (e) (f) (g)

Fig. 8. Exemplar results of PSPNet, Deeplabv3+, HRNet, UNet and our method for the Massachusetts building dataset. (a) Original image, (b) PSPNet, (c)
Deeplabv3+, (d) HRNet, (e) UNet, (f) Ours and (g) Ground Truth.
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Table I
COMPARISON OF THE STATE-OF-THE-ART METHODS AND

OURS ON THE WHU DATA SET

Method IoU(%) Precision(%) Recall(%) F1-score(%)

PSPNet 88.13 94.21 93.18 93.69
DeepLabV3+ 89.06 94.82 93.61 94.21

HRNet48 89.31 94.34 94.37 94.35
CU-Net 87.10 94.60 91.70 93.13
SiU-Net 88.40 93.80 93.90 93.85
SRI-Net 89.23 95.67 93.69 94.51
DE-Net 90.12 95.00 94.60 94.80
EU-Net 90.56 94.98 95.10 95.04

MA-FCN 90.70 95.20 95.10 95.15
MAP-Net 90.86 95.62 94.81 95.21
He et al 90.5 95.1 94.9 95.0
GCCINet 90.83 95.16 95.23 95.20
CBR-Net 91.4 95.31 95.7 95.51

DMBC-Net 91.66 96.15 95.16 95.65
UNet(Baseline) 88.62 93.97 93.96 93.96

Ours 91.94 96.24 95.37 95.80

more clearly, we also provide a comparison of the precision-
recall curves of these semantic segmentation methods and our
method on different datasets, as shown in Fig. 9. However, we
have conducted a comprehensive comparison of the numerical
outcomes.

1) Results on the WHU Buildings Dataset: Table I shows
the quantitative results of the WHU buildings dataset. UNet
is the baseline of our approach, which employs a symmetrical
encoder-decoder structure. PSPNet provides effective global
contextual priors by fusing pooling features at different scales
through the Pyramid Pooling Module (PPM), effectively ex-
panding the network’s field of attention. HRNet obtains high
resolution semantic feature maps by concatenating feature
maps of different resolutions and interacting between them.
DeepLabV3+ utilizes an Atrous Spatial Pyramid Pooling
(ASPP) module to obtain contextual information and merge
high and low-level features to obtain a discriminative feature
representation. It is clear from these tables that the perfor-
mance of our approach surpasses these advanced semantic
segmentation methods by a wide margin. This observation can
be attributed to the fact that these advanced semantic segmen-
tation methods are not designed for building characteristics.
In contrast, our approach takes into account both the semantic
and contour information of buildings and fully leverages these
two distinct characteristics. On the WHU dataset, the IoU of
our method exceeds UNet, PSPnet, Deeplabv3+, and HRNet
by 3.32%, 3.81%, 2.88%, 2.63%, and F1 scores by 1.84%,
2.11%, 1.59%, 1.45% respectively.

To validate the effectiveness of our method, we also present
a comparison of our method with the existing building foot-
print extraction methods on the WHU dataset, including CU-
Net [47], SiU-Net [27], SRI-Net [48], DE-Net [49], EU-Net
[50], MA-FCN [18], He et al. [21], CBR-Net [22], GCCINet
[11], DMBC-Net [20] and MAP-Net [14]. CU-Net introduces
the supervision of GT in the middle layer of the decoder
of UNet to constrain and optimize the network parameters.
SiU-Net employs a weight-sharing two-branch U-Net to com-
bine segmentation prediction of the original image and the
corresponding down-sampled counterpart. SRI-Net designs a
spatial residual inception module to progressively fuse features

Table II
COMPARISON OF THE STATE-OF-THE-ART METHODS AND

OURS ON THE INRIA DATASET.

Method IoU(%) Precision(%) Recall(%) F1-score(%)

PSPNet 77.33 88.57 85.91 87.22
DeepLabV3+ 77.19 89.19 85.15 87.13

HRNet48 77.98 88.47 86.80 87.63
SRI-Net 71.76 85.77 81.46 83.56

Sheng et al 77.2 83.5 91.1 87.1
EU-Net 80.50 90.28 88.14 89.20
MFCNN 79.35 88.58 87.91 88.38
DS-Net 80.73 - - -

DMBC-Net 80.74 89.94 88.77 89.35
GCCINet 78.88 89.09 87.31 88.19
CBR-Net 81.1 89.93 89.2 89.56

UNet(Baseline) 77.05 88.00 86.10 87.04
Ours 82.48 91.86 88.99 90.40

from multiple layers to produce multi-scale contexts. DE-Net
also utilizes the encoder-decoder architecture and introduces
some segmentation techniques to improve the segmentation
results. EU-Net designed the dense spatial pyramid pooling
(DSPP) module to acquire multi-scale features and optimize
the network with a focal loss. MA-FCN [18] first uses CNN
to segment the buildings and then converts the segmentation
maps into structured individual building polygons using an
empirical polygon regularisation. GCCINet [11] combines the
CBAM and the Dilated Convolution [25] to design the feature
fusion module fuse features across layers. He et al. [21]
introduced a boundary learning task by performing a spatial
variation operation on the segmentation map to assist the
network in maintaining the building boundaries. MAP-Net
extracted high-level semantic features with a fixed resolution at
each stage step-by-step through multiple parallel paths. CBR-
Net [22] combined the edge prediction to progressively refine
the boundaries of buildings in a coarse-to-fine manner.

It is clear from Table I that our approach achieves an IoU
of 91.94% and an F1 score of 95.80%, outperforming the
other state-of-the-art algorithms by a large margin. It is worth
noting that He et al. and DMBC-Net [20] also used boundary
learning as an auxiliary task to improve the boundaries, but
their method does not dig into and exploit the correlation
between building semantics and contours, therefore the IoU
of our method outperforms the IoU of He et al. and DMBC-
Net [20] 1.44% and 0.28%, respectively. Our method also
surpasses these Uet-based network structures, such as CU-Net,
SiU-Net, and DE-Net.

Fig. 5 vividly illustrates the effectiveness of our method
in detecting the boundaries of small buildings in the WHU
dataset. In the second row of Fig. 5, it becomes apparent
that for some tiny and densely clustered buildings, other
algorithms struggle to extract buildings with well-defined
contours. In contrast, our method excels by yielding distinctly
separated buildings with clear and continuous boundaries. In
the third and fourth rows of Fig. 5, whereas other segmentation
algorithms obtain uneven borders for the buildings with more
curved contours and abundant corners, our method can obtain
sharp boundaries due to the complementary information of
contour details. In Fig. 6, we show the performance of different
algorithms for large buildings in WHU. Boundary acquisition
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(a) WHU building dataset (b) INRIA building dataset (c) Massachusetts building dataset

Fig. 9. Figures a, b, and c depict the precision-recall curve comparisons of PSPNet, Deeplabv3+, HRNet, UNet, and our proposed method on the WHU,
INRIA, and Massachusetts buildings datasets.

Table III
COMPARISON OF THE STATE-OF-THE-ART METHODS AND

OURS ON THE MASSACHUSETTS DATASET.

Method Breakeven F1 Breakeven F1 IoU(%)
(ρ = 3) (ρ = 3) (ρ = 0) (ρ = 0)

PSPNet 0.9492 0.9438 0.8009 0.7970 66.25
DeepLabV3+ 0.9501 0.9495 0.8201 0.8200 69.49

HRNet48 0.9558 0.9530 0.8309 0.8271 70.52
Mnih et al. 0.9292 0.9092 0.7632 0.7407 -
Saito et al. 0.9528 0.9441 0.8082 0.7919 -
HF-FCN 0.9643 0.9620 0.8479 0.8373 -

Building-A-Nets 0.9677 0.9656 0.8503 0.8478 -
RA-FCN 0.9608 0.9605 0.8362 0.8340 -
DS-Net 0.9690 0.9672 0.8569 0.8549 -

UNet(Baseline) 0.9492 0.9540 0.8010 0.8256 70.30
Ours 0.9704 0.9704 0.8661 0.8694 76.89

for large buildings is relatively more accessible due to their
size. However, the outlined boundaries are blurred due to
the occlusion of trees, shadows, and interference from the
appearance of similar objects. We observe from Fig. 6 that the
contour information can better assist the network in solving
these problems.

2) Results on the INRIA Buildings Dataset: Methods of
using the INRIA datasets include SRI-Net [48], EU-Net [50],
MFCNN [52], DS-Net [53], CBR-Net [22], He et al. and
DMBC-Net [20]. MFCNN obtains a pixel-level segmentation
map using a fully convolutional neural network and then uses
morphological filtering to refine the building boundaries. DS-
Net captures local and long-range information using a two-
branch UNet structure with a shared encoder. DMBC-Net in-
troduces two auxiliary tasks, boundary prediction and distance
estimation, and designs two consistency losses to alleviate
the boundary ambiguity. As shown in Table II, our approach
achieves an IoU of 82.48% and an F1 score of 90.40% on
the INRA dataset, with an IoU metric of 3.13% higher and an
F1 score of 2.02% higher than that of MFCNN using morpho-
logical filtering to refine the boundaries. Although DMBC-Net
uses two auxiliary tasks to optimize the boundaries, it does not
take full advantage of the correlation between the tasks, and
our approach achieves much better performance than this due
to a more complementary learning approach. Compared with
the CNN-based semantic segmentation methods, the IoU of
our method exceeds UNet, PSPnet, Deeplabv3+, and HRNet
by 5.43%, 5.15%, 5.29%, 4.5%, and F1 scores by 3.36%,
3.18%, 3.27%, 2.77% respectively.

(a) (b)

Fig. 10. Figures (a) and (b) correspond to the precision-recall curves for
the WHU dataset and the Massachusetts building dataset under different
component configurations, respectively.

Fig. 7 shows an example of the results from the INRIA
dataset. In the INRIA dataset, buildings are heavily obscured
by vegetation (the fourth row of Fig. 7) and some densely
arranged buildings (the third row of Fig. 7), making it chal-
lenging to detect building boundaries. While the other methods
fail to extract buildings under such challenging conditions,
our method can still outline fairly complete buildings due to
the incorporation of building contour information. Notably,
when dealing with densely arranged buildings, our method
successfully separates individual buildings and delineates clear
and distinct boundaries, a feat that other methods fail to
achieve.

3) Results on the Massachusetts buildings dataset:
We followed the common evaluation metrics of the Mas-
sachusetts building dataset. For computing the Precision-
Recall breakeven point and F1 score, we employed a relaxed
version of precision and recall [46]. The relaxed precision is
defined as the proportion of predicted positive pixels that are
within ρ pixels of the Ground Truth positive pixels, whereas
the relaxed recall is defined as the proportion of Ground
Truth positive pixels that are within ρ pixels of predicted
positive pixels. The relaxed parameter ρ is typically set to 3.
These methods of using the Massachusetts dataset include HF-
FCN [23], Building-A-Nets [54], RA-FCN [55], DS-Net [53],
MTMS [56], GAN-SCA [57], Mnih et al. [46] and Saito et
al [58]. As can be seen from Table III, our method achieves
the best performance at the strictest setting (ρ = 0), with
F1 reaching 0.8694 and Break-even reaching 0.8661. With
the setting (ρ = 3), our algorithm also performs better than
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Table IV
EVALUATION RESULTS FOR OUR METHOD WITH DIFFERENT

COMPONENTS ON THE WHU DATASET AND MASSACHUSETTS
DATASET.

Component WHU MASSACHUSETTS
C IL SCM MSCF IoU(%) F1-score(%) IoU(%) F1-score(%)

88.62 93.96 70.3 82.56
✓ 89.26 94.33 70.89 82.97
✓ ✓ 90.66 95.10 72.24 83.88
✓ ✓ ✓ 91.15 95.37 74.99 85.17
✓ ✓ ✓ 91.81 95.73 75.90 86.30
✓ ✓ ✓ ✓ 91.94 95.80 76.89 86.94

the other algorithms. Compared with state-of-the-art CNN-
based semantic segmentation methods, the IoU of our method
exceeds UNet, PSPnet, Deeplabv3+, and HRNet by 6.59%,
10.64%, 7.40%, and 6.37% respectively.

It is seen from Figs. 5-8 that the building boundaries
extracted by our approach are much sharper compared to other
models, due to the full integration and utilization of building
contours and semantic information. Our approach not only
improves the relatively effortless boundaries of large buildings
but also obtains finer boundaries of smaller buildings. The
corners of the building contours are of details, resulting in a
more appealing visual appearance. In addition, the discrimi-
native feature representation learned by the network helps to
reduce false positives due to the full integration of multiple
cues.

E. Ablation Study

To explore the effectiveness of different components of our
proposed method, we randomly selected the WHU Buildings
dataset and the Massachusetts Buildings dataset for ablation
experiments. These components include dual stream decoders
for exploring semantics and contours, DSF, and SCM. The
quantitative results of the ablation experiments are shown
in Table IV. The baseline is the U-net. ”C” means that the
decoder of the network structure contains a semantic branch
and a contour branch, but there is no information interaction
between these two branches. As can be seen from the table,
simply incorporating the extraction of contour information
brings minimal improvement. To fully exploit both contour
and semantic information, we propose to interactively transfer
the learned features from both branches via an intermediate
connection of the decoder to explore and utilize the correlation
between the semantic and contour cues. As the second row of
Table IV shows, the performance of the network improved
by 2.04% and 1.94% of the IOU and 1.14% and 1.31% of
the F1 score on the WHU dataset and the Massachusetts
buildings dataset respectively, with ”IL” denoting the inter-
mediate connection of the two branches. We propose the
SCM to strengthen the connection between semantic and
contour feature learning, hence the performance of the network
is improved by 2.53% and 4.69% of the IoU and 1.41%
and the 2.61% of the F1 score on the WHU dataset and
the Massachusetts buildings dataset respectively compared
to the baseline. To enhance the communication of semantic
information between high and low layers in the network, we
propose the MSCF and the performance of the network is

improved by 3.15% and 5.6% of the IoU and 1.45% and 3.74%
of the F1 score on the WHU dataset and the Massachusetts
buildings dataset respectively compared to baseline. Finally,
by applying all the components proposed, the performance of
the network improved by 3.32% and 6.59 % of the IoU and
1.84% and 4.38% of the F1 score on the WHU dataset and the
Massachusetts buildings dataset respectively, demonstrating
the effectiveness of the network model in learning the semantic
and contour information of the objects, as well as the full
utilization of the correlation between them.

Fig. 11 shows the results of the ablation experiment, where
blue indicates false negatives and red indicates false positives.
The contour information learned by the network led to an
initial improvement in the building boundaries. It helped
the model obtain richer discrimination information and thus
reduce the number of false negatives and false positives, which
can be seen in the fourth column of Fig. 11. Nevertheless, such
improvements are limited, therefore the SCM is introduced
to facilitate the communication and integration of semantic
and contour information to improve the segmentation of the
network further. As can be seen in the fifth column of the
Fig. 11, the boundaries of the building segmentation prediction
map outlined by the yellow rectangle are neater than in the
third and fourth columns, demonstrating that the SCM incorpo-
rates contour and semantic information more effectively. The
sixth column of Fig. 11 shows the network predictions for
the interactive dual-stream decoder and MSCF components.
False negatives and positives are reduced compared to the
baseline, but some predictions are still unsatisfactory. Finally,
combining all the proposed components drives the model to
seamlessly integrate semantic and contour information and ex-
ploit the correlation between them to obtain a more favorable
performance, which can be seen in the penultimate column of
Fig. 11. To show comparisons of performance under different
configurations of the components of the model more clearly,
Fig. 10 demonstrates the magnitude variation of the proposed
components on the network performance. It is also noticeable
from Fig. 10 that each of the components, whether precision or
recall, has considerably improved performance of the baseline
algorithm.

We compared the model computational complexity and
parameter quantity of different methods, as shown in Fig. 12.
On the WHU dataset, our approach exhibits only a minimal
magnitude increase in model quantity compared to the baseline
model, but the performance is improved by a large margin.
When compared to state-of-the-art semantic segmentation al-
gorithms, our method demonstrates significant improvements
in both model parameter quantity and IoU. Although multi-
task learning leads to an increase in the number of model
parameters, we have mitigated this effect by reducing the
channel dimension of each decoder stage to 256. Additionally,
we introduced channel pooling layers to reduce the number
of model parameters further. To provide a comprehensive
evaluation, we also calculated the floating-point operations
(FLOPs) for different methods. FLOPs can be used to assess
the computational complexity of a model. From Fig .12, it can
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(a) Original image (b) B (c) B+C (d) B+C+IL (e) B+C+IL+SCM (f) B+C+IL+MSCF (g) Ours (h) Ground Truth

Fig. 11. Exemplar results of the different components of the proposed method for the WHU building dataset, where B denotes ”Baseline”.
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Fig. 12. Computational complexity and parameter quantity of different
methods.

be observed that due to the involvement of multitasking, our
method does not exhibit a significant advantage over other ad-
vanced semantic segmentation methods in this aspect. In future
work, we will focus on reducing the model’s computational
complexity while preserving accuracy as much as possible.

V. CONCLUSION

In order to extract precise buildings, this paper has presented
a simple and intuitive yet effective framework to explore
semantic and contour cues and the correlations between them.
We proposed an interactive dual-stream decoder consisting of
a semantic stream and a contour stream, where the semantic
stream learns advanced semantic information of objects, while
the contour stream captures more detailed boundary infor-
mation of the object, and intermediate connections between
the two branches interactively learns correlations between
semantics and contours. In order to strengthen the connection
between the two branches, we propose the SCM exploit
more thoroughly the correlation between the semantic and

contour cues. To further improve the building segmentation
performance, we propose the MSCF to fuse the contextual
information of buildings at different scales. Through the above
design, our model can efficiently learn and exploit semantic
and contour cues to obtain a stronger discriminative feature
representation and achieve accurate segmentation of buildings.
Experiments on the WHU, INRIA, and Massachusetts building
datasets have demonstrated that our approach outperformed
other state-of-the-art building segmentation methods by a
large margin. However, due to the involvement of multi-task
computation in our method, it does not have an advantage in
computational complexity. In future work, we will strive to
address this issue.
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