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Abstract—Most contemporary supervised Remote Sensing (RS)
image Change Detection (CD) approaches are customized for
equal-resolution bitemporal images. Real-world applications raise
the need for cross-resolution change detection, aka, CD based
on bitemporal images with different spatial resolutions. Given
training samples of a fixed bitemporal resolution difference
(ratio) between the high-resolution (HR) image and the low-
resolution (LR) one, current cross-resolution methods may fit
a certain ratio but lack adaptation to other resolution differ-
ences. Toward continuous cross-resolution CD, we propose scale-
invariant learning to enforce the model consistently predicting
HR results given synthesized samples of varying resolution
differences. Concretely, we synthesize blurred versions of the HR
image by random downsampled reconstructions to reduce the
gap between HR and LR images. We introduce coordinate-based
representations to decode per-pixel predictions by feeding the
coordinate query and corresponding multi-level embedding fea-
tures into an MLP that implicitly learns the shape of land cover
changes, therefore benefiting recognizing blurred objects in the
LR image. Moreover, considering that spatial resolution mainly
affects the local textures, we apply local-window self-attention to
align bitemporal features during the early stages of the encoder.
Extensive experiments on two synthesized and one real-world
different-resolution CD datasets verify the effectiveness of the
proposed method. Our method significantly outperforms several
vanilla CD methods and two cross-resolution CD methods on
the three datasets both in in-distribution and out-of-distribution
settings. The empirical results suggest that our method could
yield relatively consistent HR change predictions regardless of
varying bitemporal resolution ratios. Our code is available at
https://github.com/justchenhao/SILI CD.

Index Terms—High-resolution remote sensing image, Cross-
resolution change detection, Scale-invariant learning, Implicit
neural representation, Attention mechanism.

I. INTRODUCTION

The work was supported by the National Key Research and Development
Program of China (Grant No. 2022ZD0160401), the National Natural Science
Foundation of China under Grant 62125102, the Beijing Natural Science
Foundation under Grant JL23005, and the Fundamental Research Funds
for the Central Universities. (Corresponding Author: Zhenwei Shi (shizhen-
wei@buaa.edu.cn)).

Hao Chen, Haotian Zhang, Keyan Chen, Chenyao Zhou, and Zhenwei
Shi are with the Image Processing Center, School of Astronautics, Beihang
University, Beijing 100191, China, and with the Beijing Key Laboratory
of Digital Media, Beihang University, Beijing 100191, China, and with the
State Key Laboratory of Virtual Reality Technology and Systems, Beihang
University, Beijing 100191, China, and also with the Shanghai Artificial
Intelligence Laboratory, Shanghai 200232, China.

Song Chen is with the Department of Journalism and Communications,
Jeonuk National University, Jeonju-si 54896, South Korea.

Zhengxia Zou is with the Department of Guidance, Navigation and Control,
School of Astronautics, Beihang University, Beijing 100191, China, and also
with the Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China.

REMOTE sensing (RS) image change detection (CD)
refers to identifying changes of interest objects or

phenomena in the scene by comparing co-registered multi-
temporal RS images taken at different times in the same
geographical area [1]. Change detection could be applied
to various applications, e.g., urban planning [2], disaster
management [3], agricultural surveys [4], and environmental
monitoring [5].

The availability of high-resolution (HR) remote sensing
(RS) images enables monitoring changes on Earth’s surface
at a fine scale. Existing deep learning-based techniques, such
as convolutional neural networks (CNNs) [6] and vision
transformers [7], are widely applied in RS CD [8]. Despite
promising results, most existing supervised CD approaches are
customized for handling equal-resolution bitemporal images
and are insufficient to adapt to cross-resolution conditions,
where bitemporal images have different resolutions.

Real-world applications raise the need for change recog-
nition based on multi-temporal images across resolutions. We
identify roughly two scenarios: 1) the long-term CD task, with
a relatively low-resolution (LR) pre-event image and an HR
post-event one considering earlier satellite observations (e.g.,
decades before) have relatively lower spatial resolution than
those obtained by current satellite sensors; 2) the event/disaster
rapid response task, with an archived HR pre-event image of a
certain area and a relatively LR post-event image, considering
the lack of real-time availability of HR satellite data, due to its
smaller spatial coverage and longer revisit period, compared
to LR data.

To handle the cross-resolution RS CD, aka., change detec-
tion based on bitemporal images with different spatial resolu-
tions, most current methods [9–15] align the two inputs in the
image space, either by downsampling the HR image [12, 13]
or upsampling the LR image in a fixed (e.g., bilinear/cubic
interpolation) [11] or a learnable manner [9, 10]. Recent
attempts [14–16] align the bitemporal resolution differences
in the feature space, e.g., upsampling the feature map of the
LR image by considering that of the HR one [14].

Despite current progress in cross-resolution CD, a model [9–
15] trained with a fixed resolution difference (i.e., difference
ratio, e.g., 4 or 8) may work well for a certain condition,
but may not be suitable for situations of other resolution
differences, which limits its real-world applications. To fill this
gap, different from existing approaches that are specifically de-
signed for a fixed bitemporal resolution difference, we explore
a continuous cross-resolution CD method that enables a single
model to adapt arbitrary difference ratios between bitemporal
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Fig. 1. Illustration of continuous cross-resolution change detection, i.e., CD
towards varying resolution difference ratios between the HR image and the
relatively LR image.

images. Different from the traditional cross-resolution CD
task that applies a fixed resolution difference for assessment,
the continuous cross-resolution CD task evaluates the CD
model on validation/testing samples with varying bitemporal
resolution difference ratios that may be different from that of
the training samples. As shown in Fig. 1, given an HR image
and a relatively LR image, our goal is to obtain the HR change
map regardless of resolution difference ratios.

To achieve this, we propose a scale-invariant training
pipeline to learn an embedding space that is insensitive to
scale changes of input images. Given original training samples
with a fixed resolution ratio, we synthesize samples with
random resolution differences by downsampling HR images
and swapping bitemporal regions. We enforce the model
yielding HR predictions for these synthesized samples, thus
improving the ability to adapt different resolution ratios. We
then incorporate the coordinate-based method, namely implicit
neural representation (INR) [17], to decode pixel-wise change
information from the embedding space and corresponding
pixel positions. Specifically, a multi-level feature embedding
space is learned for a trade-off between semantic accuracy
and spatial details [18]. Different from existing CD methods
that employ sophisticated multi-level feature fusion (e.g., UNet
[5, 19–27] or FPN[28–30]) to yield HR predictions, our
coordinate-based approach implicitly learns land-cover shapes
that may benefit handling LR images with blurry low-quality
objects. Furthermore, we propose bitemporal interaction on
the early-level features to further fill the resolution gap by
applying transformers [31] to model correlations between
bitemporal pixels within the local windows on the feature
maps. Motivated by the fact that spatial resolution differences
directly affect the local textures and image details are locally
correlated without long-range dependency [32], only local
information of the LR and HR patches may be sufficient to
model correlations between cross-resolution pixels.

The contribution of our work can be summarised as follows:
• We propose a scale-invariant methodology whereby an

embedding space insensitive to scale changes is learned

for cross-resolution RS image CD. Unlike extant ap-
proaches that are tailored to specific difference ratios
between bitemporal resolutions, our method is capable
of adapting to continuous resolution difference ratios.

• We introduce coordinate-based representations to decode
the HR change mask from the embedding space by im-
plicitly learning the shape of objects of interest, therefore
benefiting recognizing blurred objects in the LR image.
Moreover, we incorporate local in-window interactions
between bitemporal features to equip the model to better
adapt to resolution disparities across bitemporal images.

• Extensive experiments on two synthetic and one real-
world cross-resolution CD datasets validate the effective-
ness of the proposed method. Our approach outperforms
several extant methods for cross-resolution CD as well
as vanilla CD methods in both in-distribution and out-of-
distribution settings.

The rest of this paper is organized as follows. Sec. II
introduces related work of existing methods of vanilla CD
and those handling bitemporal resolution differences. Sec. III
presents the proposed scale-invariant learning with implicit
neural networks. Experimental results are given in Sec. IV,
and the Conclusion is drawn in Sec. V.

II. RELATED WORK

A. Deep Learning-based optical RS Image CD

The past several years have witnessed remarkable progress
in supervised change detection for optical remote sensing
imagery using deep learning (DL) techniques. Advanced DL
techniques, e.g., CNNs [6], fully convolutional neural net-
works (FCN) [18], and transformers [31] have been widely
applied in the field of RS CD [8].

The predominant recent attempts have aimed to enhance
the discriminative capacity of CD models by incorporating
advanced network backbones (e.g., HRNet[33, 34], vision
transformers[35–38]) and network structures (e.g., dilated con-
volution [39, 40], deformable convolution [41, 42], attention
mechanism [2, 14, 22, 23, 26, 40, 43–55], and flow field-based
model [51, 56]), devising multi-level bitemporal feature fusion
strategies (e.g., UNet [5, 19–27] or FPN[28–30]), employing
multi-task learning (e.g., additional supervision of land-cover
maps for each temporal [23, 57–59], boundary supervision
of the change edge map [38, 60, 61]), combining generative
adversarial network (GAN) loss [21, 62], training with more
diverse synthetic data [27, 63, 64], and fine-tuning from a
pre-trained model (e.g., self-supervised pre-training [65, 66]
and supervised pre-training [67]). Note that the paper mainly
focuses on binary change detection. The additional supervi-
sion of land-cover maps for each temporal [59] could also
improve the binary change detection performance apart from
the purpose of identifying the semantic change categories.

Context modeling, encompassing both spatial context and
spatial-temporal context, is crucial for discerning changes of
relevance and filtering out extraneous changes across bitem-
poral images. Among the aforementioned attempts, atten-
tion mechanisms, including channel attention[22, 23, 40, 43–
46, 68], spatial attention [22, 23, 40, 43, 44], self-attention
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Fig. 2. Illustration of the overall pipeline of the proposed Scale-Invariant Learning with Implicit neural networks (SILI). We aim to learn a multi-level
embedding space invariant to resolution differences across bitemporal images by enforcing the model generating HR change masks for synthesized samples
with random resolution difference ratios. We leverage implicit neural representations that encapsulate the local mask shape to decode the HR mask from
dense coordinate queries and corresponding multi-level features, including learnable edge clues. Note that we calculate positional encoding (PE) of the relative
coordinate between the query and corresponding feature cell. The cell scale (CS) of each level is also fed into the decoder.

[2, 46, 52–54], and cross-attention [30, 55, 69–71], have
been extensively leveraged as conventional context modeling
techniques for the CD task. Early works that incorporate
spatial context have primarily focused on employing attention
mechanisms as feature enhancement modules, applying them
either separately to each temporal image [23, 72] or to fused
bitemporal features [22, 40, 43–45], lacking the exploit of
the temporal-related correlations. More recent works have
explicitly modeled spatial-temporal relations by employing
cross-attention [30, 70, 71] or self-attention/transformers on
bitemporal features [42, 47, 48, 50, 51, 53, 73–76]. For
instance, the Bitemporal Image Transformer (BIT) [53] applies
multi-head self-attention to sparse visual tokens extracted from
the per-pixel feature space of bitemporal images to efficiently
model their global spatial-temporal relations.

Different from existing context modeling approaches in
CD, we introduce local-window self-attention over bitemporal
pixels belonging to each small non-overlapping image window.
Our motivation stems from the notion that disparities in
spatial resolution reflect differences in local textural detail

within images. Comparing local regions between bitemporal
images of varying resolutions may therefore suffice to align
their features. Although Swin Transformer [77] whose core
is local-window self-attention has been applied in the CD
task [36, 37, 78], it is treated as the mere network backbone,
therefore processing bitemporal images independently without
modeling their temporal correlations.

Furthermore, most current CD methods have been princi-
pally formulated under the assumption of consistent spatial
resolution across the bitemporal images. They are thus in-
adequate for application to cross-resolution paradigms. Our
proposed model, in contradistinction, is specifically designed
to adapt to resolution differences across bitemporal images.

B. Handling Bitemporal Resolution Differences

In light of their real-world applicability, cross-resolution
change detection (also termed different-resolution change de-
tection), operable on remote sensing imagery of heterogeneous
resolution obtained through different sensors, has claimed
burgeoning interest [9–15]. This article mainly focuses on the
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supervised cross-resolution CD of optical RS images. Works
addressing heterogeneous image change detection [13, 16] for
synthetic aperture radar (SAR) and optical data fall outside
the purview of this article.

There exist two predominant categories of cross-resolution
CD techniques: those operating in image space and those
operating in feature space. 1) Image-space alignment [9–12]:
first calibrate the spatial scales of bitemporal images and then
apply conventional CD methods to the aligned images. The
simplest way is to upsample LR images to HR resolution via
bilinear/cubic interpolation [11] or down-sample HR images to
LR ones [12]. More recently, super-resolution techniques have
been deployed for low-to-high-resolution transformation in a
learnable fashion [9, 10]. 2) Feature-space alignment: align
feature representations via interpolation [14, 15]. One Recent
work [14] applies transformers to learn correlations between
the upsampled LR features and original HR ones, achieving
semantic alignment across resolutions.

Most existing methods have been formulated solely for
scenarios exhibiting a fixed resolution difference, thus inad-
equate when the resolution discrepancy between bitemporal
images varies. Towards more practical real-world applications,
we propose a method adaptable to variable resolution differ-
ences. Specifically, we learn a scale-invariant embedding space
insensitive to changes in resolution via enforcing the model
outputs HR CD results regardless of the downsampling factor
applied to input HR images. The synthetic reconstructions of
randomly downsampled HR images narrow the resolution gap
between HR and LR images, thereby achieving adaptability to
continuous resolution differences.

C. Implicit Neural Representation

Implicit Neural Representation (INR), also known as
coordinate-based neural representations, is essentially a contin-
uously differentiable function that facilitates transformations
from coordinates to signals [79]. Originally stemming from
the field of 3D reconstruction, INR is used to represent the
object shape [80] and 3D scenes [81] as a replacement for
explicit representations such as point clouds, meshes, or vox-
els. Thanks to the design of coordinate-based representation,
INR exhibits an ability to model images of variant resolu-
tions, thus being employed in image processing tasks such as
super-resolution [82, 83], semantic segmentation [84, 85], and
instance segmentation [86].

Recently, INR has been applied in the field of RS [87–
93], including 3D RS scene reconstruction [87] and seg-
mentation [88, 89], 2D RS image synthesis [90], and super-
resolution [91, 92]. However, the employment of INR for RS
2D image understanding remains limited, particularly for the
task of CD which has received scarce exploration. For the
task of cross-resolution CD, we incorporate INR to enhance
model adaptability to cross-temporal resolution differences.
Our motivation is that the INR may enable the implicit
encoding of the shape of change objects and extraction of
the corresponding HR change mask from latent space based
on coordinate queries, regardless of the resolution difference
across bitemporal images.

III. SCALE-INVARIANT LEARNING WITH IMPLICIT
NEURAL REPRESENTATIONS FOR CROSS-RESOLUTION

CHANGE DETECTION

In this section, we first give an overview of the proposed
scale-invariant cross-resolution method and then introduce its
three main components. Finally, implementation details are
given.

A. Overview

Cross-resolution change detection aims to obtain an HR
change mask based on bitemporal images with different resolu-
tions (i.e., an LR image and an HR image). Towards real-world
applications, here we propose Scale-Invariant Learning with
Implicit neural networks (SILI) for handling varying resolution
difference ratios across bitemporal images.

The essence of the proposed method is to learn a scale-
invariant embedding space regardless of the resolution dis-
crepancies between bitemporal images, and decode the high-
resolution change mask with dense coordinate queries and cor-
responding multi-level features by leveraging the implicit neu-
ral representations encapsulating the shape of local changes.

Fig. 2 illustrates the proposed SILI. It has three main
components, including random resolution image synthesis,
image encoder with feature-level bitemporal interaction, and
change decoder based on implicit neural representations.

1) Random resolution image synthesis. Rather than ma-
nipulating the original bitemporal images with a fixed res-
olution difference ratio, we perform random downscaling
reconstruction on the HR image (i.e., downsampling succeeded
by upsampling) to narrow the resolution gap between HR and
LR images. Moreover, we propose random bitemporal region
swapping to further improve the model adaptability to scale
variance. For more details see Sec. III-B.

2) Image encoder. Given synthesized bitemporal images, a
normal Siamese CNN backbone (e.g., ResNet-18 [6]) is em-
ployed to obtain multi-level image features for each temporal.
Bitemporal features of certain levels are interacted with each
other by leveraging local-window self-attention to reduce the
semantic gap caused by resolution differences. Details of the
bitemporal feature interaction see Sec. III-C

3) Change decoder. Instead of upsampling multi-level
bitemporal features to the target size with traditional inter-
polation, we incorporate coordinate-based representations to
decode the label for each position by feeding corresponding
multi-level features and position embeddings to a multilayer
perceptron (MLP) that implicitly learns the shape of local
changes. See Sec. III-D for more details.

B. Random Resolution Image Synthesis

In the training phase, we introduce scale-invariant learning
by compelling the change detection model to generate HR
change masks for synthesized bitemporal images subject to
random scale manipulation, thus enhancing the adaptation
capacity for handling continuous resolution difference ratios
across bitemporal images. Specifically, given bitemporal im-
ages (I lr ∈ RHlr×Wlr×3, Ihr ∈ RHhr×Whr×3) with resolution
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differences ratio (rd = Hhr/Hlr), we design three main steps:
1) upsampling the LR image to the same size as that of the
HR image, 2) perform random downsampling reconstruction
on the HR image, 3) random region swap between bitemporal
images. Note that the resolution differences ratio defines as the
ratio of the ground resolution of the LR image and that of the
HR image. For example, rd = 4 for bitemporal images with
ground resolution 0.5m/pixel and 2m/pixel. Fig. 3 illustrates
the overall process of random resolution image synthesis.

1) Upsampling LR image. We first upsample the LR image
I lr to the size of Ihr via bicubic interpolation. Instead of
learning upsampled LR images via training a super-resolution
reconstruction model, we aim to learn a scale-invariant CD
model that is able to handle degraded constructions with
essentially lower resolutions than the HR image. Formally,
The upsampled LR image I lr

u ∈ RHhr××Whr×3 is given by

I lr
u = upsampling(I lr, rd). (1)

2) Random downsampled reconstruction. To acclimatize
the model to various resolution differences, we synthesize
degraded variants of the HR image through downsampling
by a random ratio, thereafter rescaling to the initial size.
Formally, we randomly sample a ratio r from the Uniform
distribution r ∼ U [1, rd]. The downsampled reconstruction
version Ihr

d ∈ RHhr×Whr×3 can be given by

Ihr
d = upsampling(downsampling(Ihr, r), r), (2)

where bicubic interpolation is applied to implement upsample
and downsample.

3) Random bitemporal region swap. Considering that
simply downsampling the HR image may not wholely fill the
gap between the HR and the LR image captured by different
sensors, we further propose to swap a randomly selected region
between bitemporal images. Such operation can be viewed as
a form of image-level bitemporal interaction, allowing the CD
model to process LR and HR data concurrently, which may
benefit learning more scale-invariant representations. Formally,
the swapped bitemporal images Ihr

s , I
lr
s ∈ RHhr×Whr×3 are

given by

Ihr
s , I

lr
s = swap(Ihr

d , I
lr
u, u, v, crop size), (3)

where (u, v), u ∼ U [1,Whr − crop size], v ∼ U [1, Hhr −
crop size] is the coordinate of the upper-left point of the
cropped region and crop size is the size of the swapped region.
crop size is default set to half of Whr.

Note that in the inference/testing phase, we only perform
the first step, i.e., rescale the LR image to the size of the
HR image. In other words, we do not apply the random
downsampled reconstruction and random bitemporal region
swap in the testing phase.

C. Image Encoder with Bitemporal Local Interaction

Given synthesized bitemporal images, we employ an off-
the-shell Siamese CNN backbone (i.e., ResNet-18) for generat-
ing multi-level features Xi

j ∈ RHj×Wj×Cj for each temporal
image i ∈ {1, 2}. Note that j ∈ {1, 2, 3, 4} denotes the level
of the generated features with the size of Hj × Wj , Hj =

Hhr/2
(j+1),Wj = Whr/2

(j+1). Instead of encoding bitempo-
ral images independently without interaction, we supplement
feature interaction between bitemporal image features of a
certain level to refine them via modeling local spatial-temporal
correlations thus benefiting feature extraction at the next level.

Concretely, we introduce local-window self-attention [77]
over bitemporal pixels within each non-overlapping window
on the feature map of a certain level. Our incentive resides in
that discrepancies in spatial resolution between images may
predominantly mirror local texture variances in land cover and
thus leveraging local correlations may in turn benefit aligning
features of bitemporal images with different resolutions.

Fig. 4 illustrates the proposed bitemporal interaction
based on local-window self-attention. For bitemporal features
X1

j ,X
2
j of a certain level j, we evenly partition them into

non-overlapped windows. Let X1
j,n,X

2
j,n ∈ RWS×WS×Cj , n ∈

{1, ..., Nw} be bitemporal features within each window, where
WS is the window size, n denotes the window index in
Nw partitioned windows. We apply multi-head self-attention
(MSA) on bitemporal patches within each local window.
Formally, the refined bitemporal features X1∗

j,n,X
2∗
j,n of level

j are given by

X1∗
j,n,X

2∗
j,n = Transformer Encoder(X1

j,n,X
2
j,n), (4)

where a vanilla transformer encoder [31] is employed to
implement multi-head self-attention. Note that we apply shared
learnable local positional embeddings (PE) [31] for each win-
dow. The PE could encode temporal and local spatial position
information, thus helping model spatial-temporal relations.
The transformer encoder consists of Nte transformer layers.
Our empirical evidence (see Sec. IV-E) suggests local context
modeling at early layers is sufficient. Please refer to [31] for
more details on the transformer layer. Note that the calculation
of local-window self-attention for each window could be
processed in parallel in GPU.

After gleaning bitemporal multi-level features, we further
transform the output features to a uniform dimension C by
applying one 1× 1 convolution layer to each level. The trans-
formed bitemporal image features Z1

j ,Z
2
j ∈ RHhr××Whr×2C

of each level j are then fused via channel-wise concatenation.
The resulting multi-level features {Zj |j ∈ {1, 2, 3, 4}} are
given by

Zj = Concat(Z1
j ,Z

2
j ). (5)

Apart from the multi-level features from the vanilla back-
bone, we extract handcrafted low-level edges from bitemporal
images as spatial clues to obtain high-resolution change masks
in the subsequent change decoder. It is motivated by the
evidence [94–96] that the incorporation of handcrafted edge
features (e.g., Canny [97], Sobel, or Prewitt operator) within
the deep neural networks benefits the change detection perfor-
mance. As the Canny operator could obtain more clean and
accurate edges than the Sobel operator, we chose the Canny
operator to extract low-level edge clues. Here, we simply
utilize the Canny operator on each dimension of bitemporal
images to obtain handcrafted edge features which are then
fed into the change decoder. Formally, the edge features
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X0 ∈ RHhr××Whr×3 are given by the channel-wise summation
of that from each temporal image as follows:

X0 = Canny(Ihr
s ) + Canny(I lr

u). (6)

Note that for simplicity, we directly perform pixel-wise addi-
tion of bitemporal Canny features to obtain the edge clues.

Similarly, the handcrafted edge X0 goes through a relatively
large kernel (7×7) convolution layer to obtain the learned edge
clues Z0 ∈ RHhr××Whr×3 that are then fed into the subsequent
change decoder.

D. Change Decoder with Implicit Neural Representation
Given multi-level bitemporal image features and edge clues,

we aim to decode the HR change mask CM ∈ RHhr×Whr by

leveraging implicit neural representation (INR), viz. feeding
dense coordinates alongside corresponding image features
to a learnable MLP that implicitly represents the shape of
local changes. Our motivation is that the INR may assist in
reconstructing the detailed shape of the degraded land cover
of change from the LR image by leveraging fine features
from HR images. The key is to learn implicit neural networks
fθ (typically an MLP) over coarse resolution feature maps
to define continuous representations that could yield the HR
change mask according to the coordinate queries of the HR
grid.

Now, we define a continuous normalized 2D space S =
{x = (u, v)|u, v ∈ [0, 1]}. Images or feature maps of different
levels can be evenly distributed in the space S where each
cell in the grid is assigned a 2D coordinate according to its
center position. For instance, given a position indexed h-th,
w-th (h ∈ {0, 1, ...,H − 1}, w ∈ {0, 1, ...,W − 1}) in an
grid of size H × W , its coordinate in space S is (u, v) =
( 1
2H + h

H , 1
2W + w

W ).
Fig. 5 illustrates the coordinate relations between the HR

grid and a relatively LR grid with respect to the space S. We
only show one dimension (width direction) for a better view.
Here, the HR grid denotes the dense coordinate queries while
the LR grid denotes the feature map from a certain level.

Query features from relatively LR feature maps. Let xq

be the coordinate of point q in an HR grid with respect to S.
Given one query xq , we need first to collect corresponding
features on the coarse feature map Zj by calculating the
nearest cell to the query for each level j ∈ {1, 2, 3, 4}. The
matched coordinate x∗

q,j for Zj can be given by

x∗
q,j = (

1

2Hj
+

h∗

Hj
,

1

2Wj
+

w∗

Wj
), (7)

where (h∗, w∗) is the corresponding coordinate of the matched
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Fig. 5. Illustration of grid coordinates in the normalized space S. Here, the
HR grid denotes the dense coordinate queries and the LR grid denotes the
feature map from a certain level j. Only the width direction is shown for a
better view. We also demonstrate the coordinate matching between the query
(w-th) cell in the HR grid and its nearest (w∗-th) cell in the LR grid.

point in the discrete space of Zj . h∗, w∗ can be calculated as
follows:

h∗ = round(
Hj

Hhr
(
1

2
+ h)− 1

2
) (8)

w∗ = round(
Wj

Whr
(
1

2
+ w)− 1

2
), (9)

where h,w is the height/width index of q in the HR image,
respectively.

Because the feature map of level 0 has the same resolution
as the HR coordinate grid, the corresponding feature vector
Z0[xq] can be directly obtained by the query coordinate xq .
Note that for a tradeoff between accuracy and efficiency (see
IV-E), the input coordinate grid is downsampled by a factor
of 2 compared to the original HR image.

Relative positional encoding (PE). We further calculate the
relative coordinate encoding PEq,j ∈ RCpe for level j between
xq and x∗

q,j :

PEq,j = ϕ(δxq,j) = ϕ(xq − x∗
q,j), (10)

where ϕ(·) denotes the position encoding function [31] to
transform the 2D coordinate to high dimensional vectors that
are more capable of representing high-frequency signals. δxq,j

is the relative coordinate between the query and its nearest grid
cell center.

Encode cell scale. Considering that the grid cell of different
resolutions occupies different spatial scopes, to distinguish
features from different levels, we also combine cell scale, i.e.,
the absolute height and width of a cell with respect to the
continuous space S as follows:

CSq,j = [
1

Hj
,
1

Wj
], (11)

where CSq,j ∈ R2 is the cell scale for feature level j, j ∈
{1, 2, 3, 4}.

Decode change probability. As shown in Fig. 2, after
obtaining multi-level features and corresponding PEs and cell

scales, an MLP is employed to decode the change probability
for each query as follows:

P [xq] = fθ(Concat(Z0[xq], {Zj [x
∗
q,j ],PEq,j ,CSq,j}4j=1)),

(12)
where Concat(·) denotes to channel-wise concatenate the input
items. P ∈ RHhr××Whr×2 is the change score maps where the
2D vector for each position indicates the probability of change
or not.

E. Implementation Details

CNN backbone. We employ the off-the-shell ResNet-18
as the CNN backbone. Its intermediate multi-level features
(channel dimensions Cj are 64, 128, 256, 512, respectively for
level j ∈ {1, 2, 3, 4}) are transformed to the same dimension
C = 64 via one convolution layer. We apply the bitemporal
interaction with a local window size WS = 8 at level j =
1, 2, 3.

Change decoder. The channel dimension Cpe of the relative
positional encoding is set to 24. The implicit neural network
fθ is implemented by a three-layer MLP with BatchNorm and
ReLU in between. The output channel dimension of each MLP
is ”64, 64, 2”, respectively.

Loss function. In the training phase, we minimize the cross-
entropy loss between the predicted change probability map P
and ground truth to optimize the network parameters. In the
inference phase, the change mask can be obtained by per-pixel
Argmax operation on the channel dimension of P .

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the proposed cross-resolution CD model, we
conduct experiments on two synthesized cross-resolution CD
datasets (construct the LR image by downsampling), and one
real-world cross-resolution CD dataset (the LR and HR image
pair captured by different-resolution satellite sensors).

LEVIR-CD(4×). LEVIR-CD [2] is a widely used building
CD dataset, which contains 637 pairs of bitemporal VHR
(0.5m/pixel) images, each size of 1024 × 1024. We follow
the default dataset split [2], including 445/64/128 samples for
training/validation/testing, respectively. We further crop each
sample into small patches of size 256× 256 with no overlap.
To synthesize cross-resolution scenarios, we downsample the
post-event (t2) image for each sample by a ratio of 4. In this
way, we obtain the simulated LEVIR-CD(4×), where the post-
event image has a 4 times spatial resolution lower than that
of the pre-event (t1) image.

SV-CD(8×). Season-varying change detection (SV-CD)
[98] is another widely used binary CD dataset. It contains
11 pairs of VHR (0.031̃m/pixel) RGB images with sizes
ranging from 1900 × 1000 to 4725 × 2700 pixels. The
changes in buildings, cars, and roads are taken into consid-
eration. We follow the default dataset split, which contains
10000/3000/3000 cropped samples each size of 256 × 256
for training/validating/testing, respectively. For each sample,
we downsample the post-event image by a ratio of 8, thus
obtaining the synthesized SV-CD(8×).
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DE-CD(3.3×). DynamicEarthNet [99] is a multi-class land
use and land cover (LULC) segmentation and change detection
dataset for daily monitoring of Earth’s surface. It covers 75
areas of interest (AOIs) around the world and consists of
samples captured in the range from 2018-01-01 to 2019-
12-31. Each AOI provides high-time-frequency (daily) Planet
imagery (3m/pixel) and monthly LULC per-pixel annotations,
as well as monthly Sentinel-2 imagery (upsampled to match
the size of the Planet image) whose original spatial resolution
is 10m/pixel. Each sample has a size of 1024 × 1024. We
reorganize the original dataset for cross-resolution change
detection. We collect the time-aligned (monthly) image and
label data, where the Sentinel-2 data in each month in 2018
is for pre-event and the Planet data captured 1 year later than
the Sentinel-2 is for post-event. For simplicity, we only focus
on the changes in the land cover belonging to impervious
surfaces. We exclude those without changes of interest and
therefore obtain 506 samples, which are then randomly split
into 354/51/101 samples for training/validating/testing. In this
way, we have aggregated DE-CD(3.3×) where the bitemporal
resolution difference ratio is around 3.3. Similarly, we cropped
each sample into 256× 256 small patches with no overlap.

To evaluate the proposed method, we set the following
models for comparison:

1) Base. Our baseline consists of a CNN backbone (ResNet-
18) and a change decoder with the channel-wise concatenated
input of bitemporal transformed features (channel dimension
of 64) at each level (j ∈ {1, 2, 3, 4}) from the encoder. Similar
to our INR decoder, the baseline decoder has three-layer
convolutions (output dimensions of 64,64,2) with BatchNorm
and ReLU in between.

2) SILI. Our proposed SILI model with the random res-
olution image synthesis, a ResNet-18-based encoder with
bitemporal feature interactions, and a change decoder with
INR.

Training details. Data augmentation techniques, including
random flip, and Gaussian blur are applied. We employ SGD
with a batch size of 8, a momentum of 0.9, and a weight
decay of 0.0005. The initial learning rate is 0.01 and linearly
decays to 0 until 200 epochs. We evaluate the model using
the validating set at the end of each training epoch. The best
validating model is evaluated on the test set.

Evaluation Metrics. We use the F1-score regarding the
change category as the evaluation metrics. Precision, recall,
and Intersection over Union (IoU) belonging to the change
category are also reported. These indices can be defined by:

F1 =
2

recall−1 + precision−1

precision =
TP

TP + FP

recall =
TP

TP + FN

IoU =
TP

TP + FN + FP

(13)

where TP, FP, FN are the number of true positives, false
positives, and false negatives, respectively.

B. Overall Comparison

We make a comparison with several state-of-the-art con-
ventional change detection methods, including three pure
convolutional-based methods (FC-EF [20], FC-Siam-Diff
[20], FC-Siam-Conc [20]), and six attention-based methods
(STANet [2], IFNet [22], IFNet [22], SNUNet [68], BIT
[53], ICIFNet [47], DMINet [55]). We also compare two CD
methods (SUNet [15], SRCDNet [10]) specifically for the
scenario of different resolutions across bitemporal images.

• FC-EF [20]. Image-level fusion method where bitemporal
images are channel-wise concatenated to be fed into an
FCN.

• FC-Siam-Diff [20]. Feature-level fusion method where a
Siamese FCN is employed to obtain multi-level features
for each temporal image, then bitemporal feature differ-
encing is calculated for fusing temporal information.

• FC-Siam-Conc [20]. Feature-level fusion method where
channel-wise concatenation is used for fusing temporal
information.

• STANet [2]. Metric-based method, which incorporates
multi-scale self-attention to enhance the discriminative
capacity for bitemporal features.

• IFNet [22]. Feature-level concatenation method, which
employs channel/spatial attention on the concatenated
bitemporal features at each level of the decoder. Deep
supervision is applied on each level for better training of
the intermediate layers.

• SNUNet [68]. Feature-level concatenation method, which
employs NestedUNet [100] to extract multi-level bitem-
poral features. Channel attention and deep supervision are
applied on each level of the decoder.

• BIT [53]. Feature-level differencing method, which ex-
presses the input images into a few visual words (tokens),
and models spatiotemporal context in the token-based
space by transformers to efficiently benefit per-pixel
representations.

• ICIFNet [47]. Feature-level differencing method, which
integrates CNN and Transformer to parallelly extract
multi-level bitemporal features. Cross-attention is applied
to fuse parallel features at each level.

• DMINet [55]. Feature-level fusion method, which com-
bines self-attention and cross-attention on bitemporal
features of each level to perform temporal interactions,
and uses both feature differencing and concatenation par-
allelly to obtain the change information. Deep supervision
is also applied for better performance.

• SUNet [15]. Feature-space alignment method, which de-
signs an asymmetric convolutional network in the early
stage of the encoder to spatially align HR/LR images.
Handcrafted edge maps for each bitemporal image are
also fed into the model as auxiliary information. For a
fair comparison, we implement it by upsampling the LR
image to the size of the HR image to eliminate the loss
of small targets.

• SRCDNet [10]. Image-space alignment method, which
jointly optimizes a GAN-based image super-resolution
model and a change detection model. For a fair com-
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parison, due to the inaccessibility of the ground truth
HR version for the LR image, we use the pair of HR
images and their downsampled version to train the super-
resolution model and apply it to the LR image to obtain
the upsampled LR image in the inference phase.

We implement the above change detection models using
their public codes with default hyperparameters. Note that
for adapting these conventional CD methods to the cross-
resolution CD task, we resize the LR image to the size of
the HR image by cubic interpolation before feeding them into
the CD model.

Table I reports the overall comparison results on the LEVIR-
CD(4×), SV-CD(8×), and DE-CD(3.3×) test sets. In this
setting, each compared model is tested by the bitemporal
samples with fixed resolution difference ratios the same as in
the training phase. Quantitative results show that our proposed
method consistently outperforms the compared conventional
CD methods as well as cross-resolution CD methods in terms
of F1/IoU/OA scores across the three datasets. Note that as
the pure convolutional-based methods (FC-EF, FC-Siam-Conc,
and FC-Siam-Diff) fail to fit the DE-CD(3.3×) training set,
therefore their performance scores are omitted.

Comparison with conventional CD methods. We can
observe from Table I that the conventional change detection
models with feeding image-space aligned bitemporal inputs
by interpolating LR images to the size of HR images can be
viewed as strong counterparts in the cross-resolution setting.
For example, the recent transformer-based methods (e.g., BIT
and ICIFNet) could yield competitive even superior perfor-
mance over specially designed cross-resolution CD models
(SUNet and SRCDNet). It indicates that state-of-the-art con-
ventional CD models can be effectively adapted to the cross-
resolution change detection task via simple interpolation-
based image-level alignment. Despite the common design of
the model structure without sophisticated multi-scale feature
fusion strategies (e.g., UNet-based incremental aggregation
[22, 55, 68]), or transformer structures [47, 53], our proposed
method with the MLP-based change decoder could surpass
extant methods.

Comparison with cross-resolution CD methods. Quan-
titative results show that our proposed method significantly
precedes the compared cross-resolution methods on the three
datasets. Worth noting that our baseline is comparable or even
superior to our counterparts. It indicates the effectiveness yet
simpleness of our image-level alignment design that turns a
naive CD model adapting cross-resolution scenarios.

Visual comparison. Fig. 6 illustrates the visual results of
the compared change detection model on the LEVIR-CD(4×),
SV-CD(8×), and DE-CD(3.3×) test sets under the fixed cross-
resolution setting. We use different colors to denote TP
(white), TN (black), FP (red), and FN (green). Note that results
of some early pure-convolutional CD models (FC-EF, FC-
Siam-Conc, and FC-Siam-Diff) are not included for a better
view. We can observe that the proposed model could achieve
better predictions across the three datasets. For instance, as
shown in Fig. 6 (b) where three new build-ups appear on the
left of the region, conventional CD methods are struggling to
recognize these changes of interest due to their weak textures

caused by downsampling the post-event image. SUNet tends
to overestimate the change areas resulting in relatively lower
precision. Our method could yield relatively accurate results
despite blurred regions that occurred changes. It may be due to
our designed change decoder that learns implicitly the shape
of changes by using dense coordinate querying an INR MLP,
therefore recovering HR changes of interest even if given LR
degraded inputs.

Comparison of model efficiency. To a fair comparison,
all the models are trained and tested on a computing server
equipped with a single NVIDIA RTX 3090 GPU. Table II re-
ports the number of model parameters (Params.), floating-point
operations per second (FLOPs), and GPU training time of each
method. The input to the model has a size of 256× 256× 3.
The reported time corresponds to the duration required to
complete one epoch of training on the LEVIR-CD dataset
using a batch size of 8. The results show that the proposed
method outperforms the recent DMINet and ICIFNet with
smaller model parameters and less computational cost. From
Table II and Table I, we can observe that the proposed method
achieves significant accuracy improvement compared to our
baseline while utilizing a modest increase in model parameters
and maintaining acceptable computational consumption.

C. Handling Continuous Resolution Difference Ratios

To further verify the model adaptation ability for continuous
cross-resolution conditions, we feed samples of varying reso-
lution difference ratios (rd) across bitemporal images into the
CD model that are trained on a fixed difference ratio setting.
For a fair comparison, we apply image-space alignment by
interpolating the LR image to an HR reconstruction before
feeding it to each CD model.

Let rd0 be the original resolution difference ratio of the
training samples. rd0 equals 4, 8, and 3.3 for LEVIR-CD, SV-
CD, and DE-CD datasets, respectively. Based on the resolution
difference ratio in the validation/testing phase compared to that
during training, we primarily have two settings: in-distribution
and out-of-distribution settings. For simplicity, we denote
values between 1 to rd0 as in-distribution ratios, and those
larger than rd0 as out-of-distribution ratios. Given one HR
bitemporal sample from LEVIR-CD and SV-CD datasets, we
downsample the post-event HR image with different scales to
obtain samples with varying ratios. For the real-world DE-
CD dataset, because of the lack of real HR pre-event images,
we downsample the post-event HR image for in-distribution
conditions and further downsample the pre-event LR image
for out-of-distribution conditions.

Table III, Table IV, and Table V report the cross-resolution
performance of different CD models on the LEIVR-CD, SV-
CD, and DE-CD test sets, respectively. Quantitive results show
our proposed method not only consistently outperforms other
methods in terms of F1/IoU scores across the three datasets
in the in-distribution settings, but also exhibits significant
advantages in the out-of-distribution settings.

We can observe that most of the methods achieve optimal
results under a certain in-distribution ratio, while in the out-of-
distribution setting, as the resolution difference ratio increases,
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TABLE I
COMPARISON RESULTS ON THE THREE CD TEST SETS. THE BEST RESULTS ARE MARKED IN BOLD. ALL THE SCORES ARE DESCRIBED AS PERCENTAGES

(%).

LEVIR-CD(4×) SV-CD(8×) DE-CD(3.3×)
Pre. / Rec. / F1 / IoU / OA Pre. / Rec. / F1 / IoU / OA Pre. / Rec. / F1 / IoU / OA

FC-EF [20] 79.57 / 71.48 / 75.31 / 60.40 / 97.64 74.25 / 45.03 / 56.06 / 38.95 / 91.67 -
FC-Siam-Conc [20] 84.23 / 69.90 / 76.40 / 61.81 / 97.82 73.11 / 50.87 / 59.99 / 42.85 / 92.00 -
FC-Siam-Diff [20] 86.12 / 60.15 / 70.83 / 54.83 / 97.50 76.10 / 56.68 / 64.97 / 48.12 / 92.79 -

STANet [2] 57.87 / 45.47 / 50.93 / 34.16 / 95.58 83.06 / 70.73 / 76.41 / 61.82 / 94.85 11.80 / 46.89 / 18.85 / 10.41 / 97.61
IFNet [22] 86.81 / 80.85 / 83.73 / 72.01 / 98.41 94.94 / 79.62 / 86.61 / 76.38 / 97.09 26.20 / 52.64 / 34.98 / 21.20 / 98.84

SNUNet [68] 89.67 / 81.00 / 85.11 / 74.09 / 98.57 92.61 / 83.80 / 87.98 / 78.55 / 97.30 38.21 / 37.16 / 37.68 / 23.21 / 99.27
BIT [53] 89.57 / 82.11 / 85.68 / 74.94 / 98.61 97.09 / 84.80 / 90.53 / 82.69 / 97.91 62.05 / 33.38 / 43.41 / 27.72 / 99.48

ICIFNet [47] 87.84 / 84.62 / 86.20 / 75.75 / 98.63 95.68 / 90.56 / 93.05 / 87.00 / 98.40 63.50 / 25.04 / 35.92 / 21.89 / 99.47
DMINet [55] 89.66 / 84.28 / 86.89 / 76.82 / 98.72 97.77 / 89.76 / 93.60 / 87.96 / 98.55 71.47 / 33.84 / 45.93 / 29.81 / 99.53

SUNet [15] 64.12 / 93.54 / 76.08 / 61.40 / 97.03 63.55 / 97.98 / 77.10 / 62.73 / 93.13 32.60 / 71.00 / 44.68 / 28.77 / 98.96
SRCDNet [10] 66.29 / 84.18 / 74.17 / 58.94 / 97.04 91.30 / 91.89 / 91.59 / 84.49 / 98.01 39.62 / 33.22 / 36.13 / 22.05 / 99.30

Base 89.56 / 84.24 / 86.81 / 76.70 / 98.71 96.11 / 89.00 / 92.42 / 85.90 / 98.28 58.50 / 27.38 / 37.30 / 22.93 / 99.45
Ours 90.55 / 86.30 / 88.38 / 79.18 / 98.86 95.29 / 93.36 / 94.32 / 89.24 / 98.67 61.35 / 42.32 / 50.10 / 33.42 / 99.50

比较

HR Image (t1) LR Image (t2) Change Map STANet IFNet BITSNUNet ICIFNet DMINet SUNet SRCDNet Base Ours

(a)

(b)

(c)

(d)

(e)

(f)

(h)

(g)

(i)

LEVIR-CD (4×)

SV-CD (8×)

DE-CD (3.3×)

HR Image (t1) LR Image (t2)

LR Image (t1) HR Image (t2)

Fig. 6. Visual results of the compared methods on the three datasets. For a better view, we use white for true positive, black for true negative, red for false
positive, and green for false negative.
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TABLE II
COMPARISON OF MODEL EFFICIENCY. WE REPORT THE NUMBER OF

MODEL PARAMETERS (PARAMS.), FLOATING-POINT OPERATIONS PER
SECOND (FLOPS), AND TRAINING TIME FOR ONE EPOCH ON THE

LEVIR-CD TRAINING SET. THE INPUT IMAGE TO THE MODEL HAS A SIZE
OF 256× 256× 3. THE BATCH SIZE IS SET TO 8.

Model Params.(M) FLOPs (G) Training Time (s)

FC-EF [20] 1.35 7.14 52.33
FC-Siam-conc [20] 1.55 10.64 64.99
FC-Siam-diff [20] 1.35 9.44 63.21

STANet [2] 16.93 26.32 270.74
IFNet [22] 50.71 164.70 372.66

SNUNet [68] 12.03 109.76 305.82
BIT [53] 3.55 17.42 140.46

ICIFNet [47] 25.83 50.50 555.37
DMINet [55] 6.76 28.38 172.29

SUNet [15] 15.56 79.78 321.31
SRCDNet [10] 12.77 30.98 81.86

Base 11.97 11.42 53.18
Ours 13.06 17.5 103.81

the performance decreases. It is not surprising that the optimal
ratio of most methods is less than the difference ratio of the
training data. It is because these models train the Siamese
encoder to adapt to both HR and LR data, which may result
in a compromise of an in-between resolution. It is worth
noting that the proposed method exhibits nearly consistent
performance for each in-distribution setting, ranging from 1×
to 8×, on the SV-CD dataset, while our base model on the
1× setting is much inferior to (i.e., 1.3 points of the F1
score drops) that on the 8× setting. It may be attributed
to our design of the scale-invariant learning framework as
well as the change decoder which implicitly represents the
detailed shape of land covers of interest. We can also observe
that the proposed method achieves larger performance boosts
compared to other methods in the case of out-of-distribution
compared to in-distribution settings. For example, in the
LEVIR-CD test set, our method significantly outperforms the
counterpart (e.g., DMINet) by 16 points in terms of F1 score
in the out-of-distribution (8×) setting, compared to 1.3 points
in the in-distribution (4×) setting. Moreover, we can observe
that some early approaches, e.g., FC-EF, FC-Siam-Conc, FC-
Siam-Diff, and SUNet somehow exhibit relatively insufficient
yet stable performance across different resolution differences.
Some recent advanced CD methods such as DMINet and
ICIFNet deliver promising performance in scenarios with
small resolution differences but their performance declines
significantly in cases of the large resolution difference settings
(e.g., over 20 percent drops in terms of F1 score on the LEVIR-
CD dataset of 8× setting). It may be because these methods
tend to overfit the known patterns and struggle to adapt
to unseen ones. Overall, the proposed method demonstrates
a balanced performance, consistently outperforming others
across all cross-resolution settings.

To better illustrate the cross-resolution adaptability of our
method, we display the F1-score curve of different models
under varying resolution difference ratios on the LEVIR-CD,
SV-CD, and DE-CD test sets in Fig. 7. We can observe that our
method substantially shows more stability and better accuracy

than other methods.
Fig. 8, Fig. 9, and Fig. 10 also illustrate the visual results

of compared models on these datasets with varying bitemporal
resolution difference ratios. The visual comparison also veri-
fies the cross-resolution adaptability of the proposed method.
For instance, Fig. 9 shows some newly built ground facilities
on the left side of the region. Our method can obtain consistent
accurate predictions across varying difference ratios while
most other compared methods fail to recognize the change
of interest under the out-of-distribution ratios (e.g., 12×).

Apart from the setting of cross-resolution training/testing,
i.e., the model is trained on samples with fixed resolution
difference ratios and then validated on samples with different
cross-resolution conditions, we also perform the setting of
original-resolution training and cross-resolution testing, i.e.,
the model is trained on equal-resolution samples from the
original CD training set and then validated on those with
varying cross-resolution conditions.

Table VI reports the cross-resolution performance of dif-
ferent models on the LEVIR-CD dataset set. Each compared
model is trained on the HR training samples with equal
bitemporal resolution from the original LEVIR-CD dataset. In
the training phase, we perform random downsampled recon-
struction on the pre-event image by a ratio from Uniform dis-
tribution r ∼ U [1, 8]. Similarly, we downsample the post-event
HR image using different scales to obtain cross-resolution
samples in the testing phase. Quantitative results show that
the proposed method consistently outperforms other methods
in terms of F1/IoU scores on testing samples with different
cross-resolution ratios. We can observe from the results that
most methods achieve the best results when the ratio is equal
to 1, while the performance decreases when the ratio increases.
For instance, DMINet exhibits comparable performance to
our method when the ratio equals 1, but when the ratio
increases to 8, its performance is dramatically dropped by
nearly 90 percent, while our method could maintain acceptable
performance. The results further indicate the cross-resolution
adaptability of the proposed method.

D. Ablation Studies

We perform ablation experiments on the three critical com-
ponents of the proposed methods, i.e., Random Resolution
Synthesis (RRS), Implicit Neural Decoder (IND), and Bitem-
poral Local Interaction (BLI). We start from the baseline
(Base) and incrementally supplement the above three compo-
nents to evaluate their respective gains to the CD performance.

Table VII reports the ablation results of our method on
the LEVIR-CD(4×), SV-CD(8×), and DE-CD(3.3×) test sets.
The F1-score of each model is listed for comparison. Quantita-
tive results show that the three components of SILI bring con-
sistent performance improvements across different datasets.

Ablation on RRS. As shown in Table VII, compared to
baseline, random resolution synthesis brings in significant
improvements across the three datasets. It is not surprising
because such a design can be viewed as a data augmentation
approach, that synthesizes degraded reconstructions with vari-
ous intrinsic resolutions. For the cross-resolution CD task, our
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TABLE III
CROSS-RESOLUTION COMPARISON ON THE LEVIR-CD TEST SET WITH VARYING BITEMPORAL RESOLUTION DIFFERENCE RATIOS. WE SYNTHESIZE LR

IMAGES BY DOWNSAMPLING POST-EVENT IMAGES. THE BEST RESULTS FOR EACH CROSS-RESOLUTION SETTING ARE MARKED IN BOLD. ALL THE
SCORES ARE DESCRIBED AS PERCENTAGES (%). THESE MODELS ARE TRAINED ON THE SAMPLES FROM THE LEVIR-CD(4×) TRAINING SET.

In-distribution testing (F1 / IoU) Out-of-distribution testing (F1 / IoU)
1× 1.3× 2× 3× 4× 5× 6× 8×

FC-EF [20] 73.67 / 58.31 74.49 / 59.35 75.11 / 60.14 75.49 / 60.62 75.31 / 60.40 74.41 / 59.24 72.52 / 56.88 66.83 / 50.18
FC-Siam-Conc [20] 78.63 / 64.78 79.33 / 65.74 79.32 / 65.73 78.34 / 64.39 76.40 / 61.81 73.55 / 58.16 69.91 / 53.73 61.57 / 44.48
FC-Siam-Diff [20] 75.39 / 60.51 76.29 / 61.66 76.06 / 61.36 74.17 / 58.94 70.83 / 54.83 66.12 / 49.39 60.35 / 43.22 46.57 / 30.35

STANet [2] 42.03 / 26.61 47.96 / 31.54 55.75 / 38.64 57.77 / 40.62 50.93 / 34.16 36.49 / 22.32 17.22 / 9.42 3.97 / 2.02
IFNet [22] 74.24 / 59.03 77.77 / 63.62 81.02 / 68.10 83.48 / 71.65 83.73 / 72.01 82.10 / 69.64 78.39 / 64.47 66.24 / 49.52

SNUNet [68] 85.13 / 74.11 86.77 / 76.62 87.52 / 77.81 87.24 / 77.36 85.11 / 74.09 76.63 / 62.12 59.56 / 42.41 17.66 / 9.68
BIT [53] 86.28 / 75.86 86.42 / 76.09 86.66 / 76.47 86.67 / 76.48 85.68 / 74.94 81.06 / 68.16 70.40 / 54.33 28.73 / 16.78

ICIFNet [47] 86.24 / 75.80 86.44 / 76.11 86.78 / 76.65 86.84 / 76.75 86.20 / 75.75 83.63 / 71.87 78.95 / 65.22 59.26 / 42.10
DMINet [55] 86.28 / 75.87 86.49 / 76.20 86.85 / 76.75 86.96 / 76.93 86.89 / 76.82 83.78 / 72.08 79.10 / 65.43 57.40 / 40.26

SUNet [15] 75.51 / 60.65 75.53 / 60.69 75.67 / 60.86 75.98 / 61.27 76.08 / 61.40 75.70 / 60.90 75.01 / 60.02 69.96 / 53.80
SRCDNet [10] 75.87 / 61.12 76.46 / 61.89 76.77 / 62.30 76.30 / 61.68 74.17 / 58.94 69.38 / 53.12 60.13 / 42.99 29.23 / 17.12

Base 86.63 / 76.42 86.88 / 76.81 87.27 / 77.41 87.49 / 77.76 86.81 / 76.70 84.16 / 72.65 77.95 / 63.87 44.83 / 28.89
Ours 87.01 / 77.01 87.65 / 78.02 88.21 / 78.90 88.55 / 79.44 88.38 / 79.18 86.73 / 76.57 84.31 / 72.87 73.13 / 57.64

TABLE IV
CROSS-RESOLUTION COMPARISON ON THE SV-CD TEST SET WITH VARYING BITEMPORAL RESOLUTION DIFFERENCE RATIOS. WE SYNTHESIZE LR
IMAGES BY DOWNSAMPLING POST-EVENT IMAGES. THE BEST RESULTS FOR EACH CROSS-RESOLUTION SETTING ARE MARKED IN BOLD. ALL THE

SCORES ARE DESCRIBED AS PERCENTAGES (%). THESE MODELS ARE TRAINED ON THE SAMPLES FROM THE SV-CD(8×) TRAINING SET.

In-distribution testing (F1 / IoU) Out-of-distribution testing (F1 / IoU)
1× 2× 4× 5× 8× 9× 10× 12×

FC-EF [20] 55.88 / 38.77 55.88 / 38.77 55.96 / 38.85 55.99 / 38.88 56.06 / 38.95 56.06 / 38.94 56.06 / 38.95 56.03 / 38.92
FC-Siam-Conc [20] 64.31 / 47.39 64.52 / 47.62 63.97 / 47.03 63.35 / 46.36 59.99 / 42.85 58.39 / 41.23 56.84 / 39.70 53.88 / 36.87
FC-Siam-Diff [20] 67.35 / 50.77 67.41 / 50.84 67.09 / 50.48 66.86 / 50.22 64.97 / 48.12 63.54 / 46.56 61.84 / 44.76 58.51 / 41.35

STANet [2] 72.22 / 56.52 73.39 / 57.97 76.97 / 62.56 77.72 / 63.55 76.41 / 61.82 73.93 / 58.64 71.35 / 55.47 67.05 / 50.43
IFNet [22] 81.54 / 68.83 81.97 / 69.45 84.17 / 72.66 85.34 / 74.42 86.61 / 76.38 86.34 / 75.97 85.69 / 74.97 83.77 / 72.07

SNUNet [68] 75.08 / 60.10 79.29 / 65.69 87.77 / 78.21 89.62 / 81.20 87.98 / 78.55 85.54 / 74.74 83.45 / 71.60 80.04 / 66.73
BIT [53] 85.59 / 74.81 86.82 / 76.70 90.07 / 81.94 90.98 / 83.46 90.53 / 82.69 88.11 / 78.75 85.16 / 74.15 80.07 / 66.77

ICIFNet [47] 91.20 / 83.83 91.56 / 84.44 92.83 / 86.63 93.25 / 87.35 93.05 / 87.00 91.95 / 85.10 90.65 / 82.90 88.02 / 78.60
DMINet [55] 92.14 / 85.42 92.52 / 86.09 93.66 / 88.07 93.92 / 88.54 93.60 / 87.96 93.00 / 86.91 92.05 / 85.27 89.59 / 81.14

SUNet [15] 67.12 / 50.51 67.33 / 50.76 69.88 / 53.70 72.44 / 56.80 77.10 / 62.73 77.55 / 63.33 77.69 / 63.52 76.90 / 62.46
SRCDNet [10] 78.14 / 64.13 82.07 / 69.59 89.19 / 80.49 90.67 / 82.93 91.59 / 84.49 90.76 / 83.08 89.29 / 80.66 85.19 / 74.19

Base 91.12 / 83.69 91.47 / 84.28 92.51 / 86.06 92.87 / 86.68 92.42 / 85.90 90.64 / 82.88 88.09 / 78.71 82.32 / 69.96
Ours 94.07 / 88.80 94.11 / 88.88 94.26 / 89.14 94.30 / 89.22 94.32 / 89.24 93.55 / 87.87 92.80 / 86.57 90.50 / 82.65

TABLE V
CROSS-RESOLUTION COMPARISON ON THE DE-CD TEST SET WITH VARYING BITEMPORAL RESOLUTION DIFFERENCE RATIOS. FOR IN-DISTRIBUTION

TESTING, WE SYNTHESIZE RELATIVELY HR IMAGES COMPARED TO REAL PRE-EVENT LR IMAGES BY DOWNSAMPLING POST-EVENT IMAGES. FOR
OUT-OF-DISTRIBUTION TESTING, WE FURTHER DOWNSAMPLE PRE-EVENT IMAGES TO SYNTHESIZE LR IMAGES. THE BEST RESULTS FOR EACH

CROSS-RESOLUTION SETTING ARE MARKED IN BOLD. ALL THE SCORES ARE DESCRIBED AS PERCENTAGES (%). THESE MODELS ARE TRAINED ON THE
SAMPLES FROM THE DE-CD(3.3×) TRAINING SET.

In-distribution testing (F1 / IoU) Out-of-distribution testing (F1 / IoU)
1× 1.3× 2× 3× 3.3× 4× 5× 6×

STANet [2] 18.81 / 10.38 18.72 / 10.33 18.78 / 10.37 18.82 / 10.39 18.85 / 10.41 19.05 / 10.53 18.48 / 10.18 18.18 / 10.00
IFNet [22] 32.35 / 19.30 34.18 / 20.62 34.66 / 20.96 34.84 / 21.09 34.98 / 21.20 29.05 / 17.00 23.77 / 13.49 20.21 / 11.24

SNUNet [68] 32.49 / 19.40 35.76 / 21.77 37.43 / 23.02 37.69 / 23.22 37.68 / 23.21 27.88 / 16.20 22.68 / 12.79 18.45 / 10.16
BIT [53] 39.53 / 24.63 42.24 / 26.78 43.18 / 27.53 43.35 / 27.68 43.41 / 27.72 38.94 / 24.18 34.30 / 20.70 30.20 / 17.78

ICIFNet [47] 31.84 / 18.93 34.79 / 21.06 35.80 / 21.80 35.91 / 21.89 35.92 / 21.89 32.21 / 19.20 30.15 / 17.75 29.31 / 17.17
DMINet [55] 31.60 / 18.77 30.89 / 18.27 30.26 / 17.83 30.09 / 17.71 30.02 / 17.66 29.31 / 17.17 27.30 / 15.81 23.74 / 13.47

SUNet [15] 43.69 / 27.95 44.48 / 28.60 44.66 / 28.75 44.68 / 28.77 44.68 / 28.77 42.84 / 27.25 40.56 / 25.44 37.58 / 23.14
SRCDNet [10] 34.44 / 20.80 35.46 / 21.55 35.96 / 21.92 36.10 / 22.02 36.13 / 22.05 32.14 / 19.14 29.35 / 17.20 28.28 / 16.47

Base 32.96 / 19.73 35.97 / 21.93 37.09 / 22.76 37.28 / 22.91 37.30 / 22.93 36.02 / 21.97 33.56 / 20.16 30.65 / 18.10
Ours 47.88 / 31.48 49.86 / 33.21 50.23 / 33.54 50.15 / 33.54 50.09 / 33.42 48.45 / 31.97 45.45 / 29.41 41.71 / 26.35
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Fig. 7. F1-score comparison using varying bitemporal resolution difference ratios on the LEVIR-CD, SV-CD, and DE-CD test sets, respectively. The F1-score
is reported.
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Fig. 8. Visual comparison of different methods on the LEVIR-CD test set with varying bitemporal resolution difference ratios. We synthesize LR images by
downsampling with different scales the post-event image. For a better view, we use white for true positive, black for true negative, red for false positive, and
green for false negative.
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Fig. 9. Visual comparison of different methods on the SV-CD test set with varying bitemporal resolution difference ratios. We synthesize LR images by
downsampling with different scales the post-event image. For a better view, we use white for true positive, black for true negative, red for false positive, and
green for false negative.

TABLE VI
CROSS-RESOLUTION COMPARISON ON THE LEVIR-CD TEST SET. THESE MODELS ARE TRAINED ON THE SAMPLES FROM THE ORIGINAL (1×)

LEVIR-CD TRAINING SET AND ARE TESTED WITH SAMPLES WITH VARYING BITEMPORAL RESOLUTION DIFFERENCE RATIOS. WE SYNTHESIZE LR
IMAGES BY DOWNSAMPLING POST-EVENT IMAGES. THE F1-SCORE AND IOU ARE REPORTED.

1× 1.3× 2× 3× 4× 5× 6× 8×

FC-EF [20] 75.79 / 61.01 75.78 / 61.01 75.43 / 60.56 74.46 / 59.32 72.79 / 57.21 70.48 / 54.42 67.41 / 50.84 59.74 / 42.59
FC-Siam-Conc [20] 82.28 / 69.90 82.12 / 69.66 81.52 / 68.80 79.93 / 66.57 77.60 / 63.39 74.31 / 59.13 70.08 / 53.95 58.51 / 41.35
FC-Siam-Diff [20] 79.17 / 65.52 79.20 / 65.56 78.30 / 64.33 76.00 / 61.30 72.77 / 57.19 67.70 / 51.18 61.42 / 44.32 45.36 / 29.33

STANet [2] 87.27 / 77.41 86.70 / 76.53 85.14 / 74.12 72.79 / 57.22 40.43 / 25.34 16.45 / 8.96 9.10 / 4.77 7.00 / 3.62
IFNet [22] 88.11 / 78.75 88.06 / 78.67 87.42 / 77.65 85.31 / 74.39 80.95 / 68.00 73.35 / 57.91 59.29 / 42.13 21.01 / 11.74

SNUNet [68] 89.37 / 80.78 89.25 / 80.58 88.28 / 79.01 77.61 / 63.41 44.43 / 28.56 15.77 / 8.56 9.87 / 5.19 8.40 / 4.38
BIT [53] 88.54 / 79.44 88.57 / 79.48 88.23 / 78.94 86.03 / 75.49 78.66 / 64.83 61.00 / 43.88 33.69 / 20.26 7.84 / 4.08

ICIFNet [47] 88.20 / 78.89 88.18 / 78.86 87.92 / 78.44 86.48 / 76.19 82.01 / 69.50 72.62 / 57.01 54.95 / 37.88 15.92 / 8.65
DMINet [55] 89.56 / 81.09 89.45 / 80.91 89.01 / 80.20 87.29 / 77.45 82.64 / 70.42 70.60 / 54.55 48.92 / 32.38 11.01 / 5.83

SUNet [15] 78.32 / 64.37 78.21 / 64.22 77.94 / 63.85 77.41 / 63.14 76.69 / 62.19 75.42 / 60.53 73.40 / 57.97 61.83 / 44.75
SRCDNet [10] 76.66 / 62.15 76.38 / 61.78 75.91 / 61.17 73.31 / 57.87 64.78 / 47.91 51.14 / 34.35 30.15 / 17.75 7.25 / 3.76

Base 88.63 / 79.59 88.60 / 79.53 88.23 / 78.93 86.29 / 75.88 79.25 / 65.63 57.95 / 40.79 22.08 / 12.41 0.64 / 0.32
Ours 89.70 / 81.33 89.67 / 81.27 89.24 / 80.58 88.14 / 78.80 85.79 / 75.11 81.65 / 68.99 75.11 / 60.14 65.17 / 48.33
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Fig. 10. Visual comparison of different methods on the DE-CD test set with varying bitemporal resolution difference ratios. Due to lacking real HR pre-event
images, we synthesize relatively HR images by downsampling the post-event image, for in-distribution conditions. The real LR pre-event image is further
downsampled for out-of-distribution testing. For a better view, we use white for true positive, black for true negative, red for false positive, and green for
false negative.

data-level design synthesizing images with intermediate reso-
lutions between low- and high-resolution inputs may benefit
model learning by providing a progression of resolutions to
reduce the resolution gap across bitemporal images.

Ablation on IND. We can observe from Table VII that our
proposed INR-based change decoder could further consistently
improve the baseline on the three datasets, especially on the
DE(3.3×) dataset with relatively lower spatial resolution and
with smaller pixel numbers per change area. It indicates the
effectiveness of our IND in yielding the HR change mask from
multi-level features, especially for recovering small objects of
change. We further make a comparison to several conventional
multi-level feature fusion approaches, including FPN [101]
and UNet [102]. Those structures perform incremental aggre-
gation from coarse to fine for the multi-level features (level
1 to level 4) from each temporal image. The concatenated
bitemporal HR semantic features are then fed into three-layer
convolutions for change classification, similar to our baseline.
Quanuantive results in Table VIII suggest the effectiveness
of our IND for the cross-resolution CD task, compared with
counterparts. Note that each model in Table VIII is trained
with RRS for a fair comparison.

Ablation on BLI. Table VII demonstrates that our bitem-
poral local interaction produces consistent performance gains

across the three datasets. To further demonstrate the effec-
tiveness of BLI, we also compare the commonly used global
self-attention. For a fair comparison, we only replace the local-
window self-attention in BLI with the global self-attention.
Table X shows the comparison results on the three datasets.
Note that here we only add bitemporal interaction on the
features of level 1 from the encoder. Quantitative results show
that our method consistently outperforms the self-attention
counterpart, suggesting that local bitemporal interactions are
more effective for the cross-resolution CD task. It indicates
that modeling spatial-temporal correlations in the local regions
between cross-resolution bitemporal images may be sufficient
to align their semantic features.

E. Parametric Analysis

Effect of Random Bitemporal Region Swap. We propose
to swap a random region between bitemporal images with
different intrinsic spatial resolutions as a form of patch-level
data augmentation to benefit the learning of scale-invariant
features. The size of the swapped region, i.e., crop size, is
an important hyperparameter. To explore the impact of crop
size on CD performance, we perform ablation on different
crop sizes for bitemporal region swapping. Our Base model
is used as the baseline. Table IX reports the F1/IoU scores of
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TABLE VII
ABLATION STUDY OF OUR SILI ON THREE CD DATASETS. ABLATIONS
ARE PERFORMED ON THE RANDOM RESOLUTION SYNTHESIS (RRS),

IMPLICIT NEURAL DECODER (IND), AND BITEMPORAL LOCAL
INTERACTION (BLI). THE F1-SCORE IS REPORTED.

Model RRS IND BLI LEVIR(4×) SV(8×) DE(3.3×)

Base × × × 86.81 92.42 37.30

SILI ✓ × × 87.48 93.49 40.73
SILI ✓ ✓ × 88.04 94.16 48.86
SILI ✓ ✓ ✓ 88.38 94.32 50.17

TABLE VIII
EFFECT OF OUR INR-BASED CHANGE DECODER. WE REPLACE INR WITH
SEVERAL OFF-THE-SHELL MULTI-LEVEL FEATURE FUSION APPROACHES
FOR COMPARISON. THE F1/IOU SCORE OF EACH MODEL ON THREE CD

DATASETS IS REPORTED.

LEVIR(4×) SV(8×) DE(3.3×)
Decoder F1 / IoU F1 / IoU F1 / IoU

FPN 85.96 / 75.37 93.31 / 87.45 39.48 / 24.60
UNet 87.78 / 78.22 93.41 / 87.63 43.99 / 28.20
MLP 87.48 / 77.74 93.49 / 87.77 40.73 / 25.58

INR 88.04 / 78.64 94.16 / 89.87 48.86 / 32.33

TABLE IX
EFFECT OF RANDOM BITEMPORAL REGION SWAP ON THREE CD

DATASETS. WE ALSO PERFORM ABLATIONS ON THE SIZE OF THE SWAPPED
REGION. THE F1/IOU SCORES OF EACH MODEL ARE REPORTED. NOTE
THAT A CROP SIZE OF 0 DENOTES NOT PERFORMING REGION SWAP. A

CROP SIZE OF 256 MEANS TO SWAP THE BITEMPORAL IMAGE, I.E., THE
WHOLE REGION OF THE IMAGE. WE USE OUR BASE MODEL AS THE

BASELINE.

LEVIR(4×) SV(8×) DE(3.3×)
Crop size F1 / IoU F1 / IoU F1 / IoU

0 86.81 / 76.70 92.42 / 85.90 37.30 / 22.93

64 87.13 / 77.19 92.81 / 86.58 37.96 / 23.43
128 87.15 / 77.23 92.94 / 86.81 38.15 / 23.57
192 87.04 / 77.06 92.86 / 86.66 37.49 / 23.43

256 86.89 / 76.82 92.69 / 86.37 36.94 / 22.65

TABLE X
EFFECT OF THE LOCAL-WINDOW ATTENTION IN THE BITEMPORAL

FEATURE INTERACTION. WE REPLACE LOCAL ATTENTION WITH
NON-LOCAL SELF-ATTENTION FOR COMPARISON. NOTE THAT WE ONLY
APPLY INTERACTION ON THE BITEMPORAL FEATURES OF LEVEL 1 FROM

THE ENCODER. THE F1/IOU SCORE OF EACH MODEL ON THREE CD
DATASETS IS REPORTED.

LEVIR(4×) SV(8×) DE(3.3×)
interaction F1 / IoU F1 / IoU F1 / IoU

× 88.04 / 78.64 94.16 / 89.87 48.86 / 32.33

non-local 88.12 / 78.76 93.87 / 88.44 48.90 / 32.36
local 88.24 / 78.96 94.23 / 89.09 49.33 / 32.74

TABLE XI
EFFECT OF THE RESOLUTION OF DENSE COORDINATE QUERIES IN THE

CHANGE DECODER ON THREE CD DATASETS. WE ALSO PERFORM
ABLATIONS ON WHETHER TO INTRODUCE EDGE FEATURES. THE FLOPS
AND F1/IOU SCORES OF EACH MODEL ARE REPORTED. NOTE THAT DS
DENOTES THE DOWNSAMPLING RATE OF THE COORDINATE QUERY MAP

RELATED TO THE ORIGINAL HR IMAGE.

LEVIR(4×) SV(8×) DE(3.3×)
Edge (/ds) FLOPs (G) F1 / IoU F1 / IoU F1 / IoU

×(/4) 11.52 87.38 / 77.56 93.65 / 88.06 45.72 / 29.63
learn (/4) 11.54 87.60 / 77.93 93.81 / 88.33 45.25 / 29.24

✓(/4) 11.54 87.67 / 78.04 93.94 / 88.57 48.40 / 31.93
✓(/2) 17.20 88.04 / 78.64 94.16 / 89.87 48.86 / 32.33
✓(/1) 39.84 88.05 / 78.65 93.97 / 88.62 49.36 / 32.77

TABLE XII
EFFECT OF INTRODUCING BITEMPORAL INTERACTION AT DIFFERENT

STAGES (FROM LEVEL 1 TO LEVEL 4) OF THE ENCODER. THE F1-SCORE
OF EACH MODEL ON THREE CD DATASETS IS REPORTED.

1 2 3 4 LEVIR(4×) SV(8×) DE(3.3×)

× × × × 88.04 94.16 48.86

✓ × × × 88.24 94.23 49.33
✓ ✓ × × 88.34 94.18 49.41
✓ ✓ ✓ × 88.38 94.32 50.10
✓ ✓ ✓ ✓ 88.34 94.35 49.75

compared models with different crop sizes. Note that the crop
size of 0 denotes not applying the bitemporal region swap.
The crop size of 256 means to swap the entire image in the
temporal dimension, which is equivalent to not using region
swap because bitemporal images do not interact with each
other at the image level. Quantitative results show that the
model with random region swap significantly outperforms the
baseline. It indicates the effectiveness of the proposed random
bitemporal region swap. This approach can be regarded as a
form of patch-level data augmentation through the interaction
of bitemporal information. Notably, the optimal results are
attained with a crop size of 128, with a slight performance
decrease observed as the crop size increases to 192. This
reduction in performance with larger crop sizes is attributed to
the increased likelihood of foreground land covers appearing
at the swap area’s edges, introducing truncated and incomplete
land cover instances that can impede the model’s learning
process. Therefore, we set the crop size to 128.

Effect of the resolution of coordinate query map. Our
INR-based change decoder uses dense coordinate queries
alongside corresponding multi-level features to obtain the HR
change mask. The spatial resolution of the coordinate query
map is an important hyperparameter. Let ds be the down-
sampling factor of the coordinate query map relative to the
original HR image. Note that we directly bilinearly interpolate
the relatively LR change prediction from the decoder to match
the size of the HR ground truth when applying LR coordinate
queries. Table XI reports the floating-point operations per
second (FLOPs), and F1/IoU scores of compared models with
different ds. Note that here we use our SILI model without
BIL for experiments. From the last three rows of the table,
we can observe that when the resolution of queries increases,
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model performance on the three datasets improves overall,
yet with higher computational complexity. For a trade-off
between accuracy and efficiency, we set ds = 2. Additionally,
we also verified the effectiveness of introducing edge clues.
Quantitative results in Table XI manifest adding edge clues
can consistently improve the model performance on the three
datasets. To further validate the efficacy of incorporating
handicraft edge features, we conduct a comparison between
the models with and without these features. Note that we set
up two baselines, the first baseline model (i.e., ×(/4)) does not
receive any image edge features. The second baseline (i.e.,
learn (/4)) utilizes a learnable convolution layer to extract
edge features from each temporal image and subsequently
aggregate them to derive edge clues. For a fair comparison,
the second baseline has the same amount of additional con-
volution parameters as our model does. Quantitative results
in Table XI show that introducing additional edge features
could consistently improve the CD performance in the three
datasets. It indicates the effectiveness of the incorporation of
handicraft edge features and learnable features, which has
also been witnessed in some recent works [94–96]. It may
be because the introduction of handicraft edge features could
offer additional high-frequency information that may benefit
network optimization.

Which stages to introducing BLI. We introduce BLI on
bitemporal image features from a certain stage of the encoder.
Here, we explore which stages to introduce bitemporal in-
teractions. We choose our SILI model without any BLI as
the baseline and incrementally add bitemporal interactions
from level 1 to level 4. As shown in the table XII, as the
number of bitemporal interactions increases, the performance
of the model in terms of F1 score broadly progressively
improves. Concretely, BLI brings in significant performance
gains across the three datasets in the early stages of the
encoder, while in the last stage (level 4), introducing BLI
achieves relatively limited improvement, or even degrades the
performance. It may be because the feature discrepancy caused
by the difference in radiation and intrinsic resolution between
bitemporal images could be better aligned by BLI during the
early stages. Therefore, our SILI introduces interactions in
stages of level 1/2/3.

F. Feature Visualization

Here, we provide an example to visualize multi-level fea-
tures from our model to further demonstrate the effectiveness
of introducing BLI. We use a popular feature visualization
technique, class activation map (CAM) [103], to show what
our model learns in each stage of the encoder. CAM is
basically the channel-wise weighted sum of activation maps
from a certain layer in the model. We visualize the last layer
of each stage in the encoder.

Fig. 11 shows the CAM visualization of our models with
or without BLI. Red denotes high values while blue denotes
low values. The input sample is from LEVIR-CD (4×) test
set. We can observe from the CAM of each level that our
model can concentrate on land covers on interest (building).
Features from level 1 contain more spatial details, and those

from level 4 are more semantic information but lack location
precision while the intermediate levels (2/3) provide a bal-
anced representation that well localizes semantic elements. We
can also observe that our method with BLI has similar inten-
sities between bitemporal features of no-change regions. We
further show feature difference maps, i.e. absolute subtraction
between bitemporal unnormalized CAMs. We can observe that
positions with high bitemporal difference values of our model
are mainly distributed within the red box, while the model
without BLI may exhibit large difference values (e.g., level
2/4) outside the red box where contains no changes. It suggests
the effectiveness of BLI in aligning bitemporal semantic
features and yielding relatively lower feature differences in
regions of no change.

V. CONCLUSION

In this paper, we propose a scale-invariant method with im-
plicit neural networks to achieve continuous cross-resolution
RS image CD. The scale-invariant embedding space is learned
by enforcing our model predicting the HR change mask given
synthesized bitemporal images with random downsampling
and region swapping. Dense coordinate queries and corre-
sponding multi-level features are used for change recognition
by an MLP that implicitly represents the shape of changes.
Bitemporal local interaction is further introduced at early
levels of the encoder to align bitemporal feature intensities
regardless of resolution differences. Extensive experiments
on two synthesized and one real-world cross-resolution CD
datasets verify the effectiveness of the proposed method.
Our SILI significantly outperforms several conventional CD
methods and two specifically designed cross-resolution CD
methods on the three datasets in both in-distribution and
out-of-distribution settings. Our method could yield relatively
consistent HR change predictions regardless of the resolution
difference between bitemporal images. The empirical results
suggest that our method could well handle varying bitemporal
resolution difference ratios, towards real-world applications.
Future works include, 1) exploring more effective scale-
invariant change detection methods from the perspective of
model architecture by incorporating scale-invariant network
structures, rather than indirectly enhancing scale invariance
through multiscale data augmentation, 2) investigating more
advanced implicit neural representation techniques and their
integration into the change detection task to achieve resolution-
invariant change detection, 3) exploring the combination of
various handcrafted features such as LBP, HOG, with deep
learning models to evaluate their potential for improving CD
performance.
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