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Abstract— Few-shot segmentation (FSS) is proposed to seg-
ment unknown class targets with just a few annotated samples.
Most current FSS methods follow the paradigm of mining the
semantics from the support images to guide the query image
segmentation. However, such a pattern of ‘learning from others’
struggles to handle the extreme intra-class variation, preventing
FSS from being directly generalized to remote sensing scenes. To
bridge the gap of intra-class variance, we develop a Dual-Mining
network named DMNet for cross-image mining and self-mining,
meaning that it no longer focuses solely on support images
but pays more attention to the query image itself. Specifically,
we propose a Class-public Region Mining (CPRM) module to
effectively suppress irrelevant feature pollution by capturing the
common semantics between the support-query image pair. The
Class-specific Region Mining (CSRM) module is then proposed
to continuously mine the class-specific semantics of the query
image itself in a ‘filtering’ and ‘purifying’ manner. In addition,
to prevent the co-existence of multiple classes in remote sensing
scenes from exacerbating the collapse of FSS generalization,
we also propose a new Known-class Meta Suppressor (KMS)
module to suppress the activation of known-class objects in the
sample. Extensive experiments on the iSAID and LoveDA remote
sensing datasets have demonstrated that our method sets the
state-of-the-art with a minimum number of model parameters.
Significantly, our model with the backbone of Resnet-50 achieves
the mIoU of 49.58% and 51.34% on iSAID under 1-shot and
5-shot settings, outperforming the state-of-the-art method by
1.8% and 1.12%, respectively. The code is publicly available at
https://github.com/HanboBizl/DMNet/.
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Remote Sensing, Semantic Segmentation, Prototype Learning.
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I. INTRODUCTION

SEMANTIC segmentation is an essential fundamental task
in the intelligent interpretation for remote sensing, aiming

at assigning each pixel to one of the pre-defined classes
of geographical targets [21], [22], [24], [110], [113]. It is
currently applied in a wide variety of fields, including urban
management [23], [35], land-use and land-cover mapping [5],
[25], environmental monitoring [40], change detection [9],
[11], and road extraction [6], [39].

Recently, semantic segmentation tasks have made encourag-
ing progress [47], [48], [56], [114] due to the growing wave
of deep learning [42], [43], particularly with the emergence
of convolutional neural networks (CNNs). Yet, the success
of classical CNNs relies heavily on large-scale labeled data,
and when labeled data is insufficient or novel (unknown)
classes arrive, their performance dramatically degrades [27].
Obtaining such large-scale labeled data is time-consuming and
labor-intensive, especially for remote sensing images that are
difficult to interpret [3], [4], [10]. Even though various meth-
ods have been suggested to alleviate the annotation problem,
such as semi-supervised and weakly supervised learning, a
need for extensive or weak annotations remains unchanged
[29], [30]. Furthermore, directly parsing unknown classes
tends to be ineffective due to limitations in training paradigms
and generalization capabilities, while fine-tuning for unknown
classes is time-consuming and laborious, preventing it from
satisfying the need for rapid deployment [31], [32].

Inspired by the ease with which humans can quickly identify
new concepts or patterns from just a few examples, some
researchers have suggested Few-shot learning (FSL) to address
the above challenges [74]. FSL methods typically follow the
training paradigm of meta-learning, i.e., learning transferable
meta-knowledge from known classes (training classes) and
generalizing to unknown classes with just a handful of anno-
tated samples. Few-shot segmentation (FSS) is an application
of FSL to the semantic segmentation task, which aims to
segment unknown class targets in query images utilizing just
a handful of annotated samples named support images. [87]–
[89], [92], [95]. Fig.1(a) illustrates the current mainstream
framework for FSS: they extract the feature representations
(i.e., support prototypes) of the target class from the support
images through the masked average pooling (MAP) operation
[88] and utilize the support prototypes in a certain way via
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Fig. 1. Comparison between existing framework and ours. Existing
methods are devoted to mining the support image but ignore the gap of intra-
class variance. We mine not only the semantics from the support image but
also the semantics from the query image itself for segmentation. In addition,
a novel suppressor is introduced to suppress the over-fitting of known classes
(e.g., ‘large vehicle’).

a meta-decoder to activate target regions in the query image
to complete the segmentation. Although remarkable progress
has been made in natural scenes, extreme intra-class variance
and multi-class co-existence prevent FSS from being directly
generalized to complex remote sensing scenarios, as shown in
Fig.2. (a) Large intra-class variance leads to inaccurate
activation. Extreme intra-class variation in remote sensing
scenes makes a huge difference between support and query
images (e.g., ‘roundabouts’ and ‘planes’), where the paradigm
of utilizing the support images to guide segmentation fails
to provide sufficiently effective guidance and hence is sub-
optimal. As shown in Fig.2(a), utilizing the support image
‘bombers’ to guide the query image ‘airliner’ only activates
the similar ‘fuselage’ parts, while the dissimilar ‘wing’ parts
fail. Meanwhile, the direct masked average pooling (MAP) op-
eration will inevitably introduce category semantics specific to
the support image itself, which is detrimental to the guidance,
i.e., the derived ‘wing’ semantics from the ‘bomber’ mismatch
the ‘airliner’. (b) Multi-class co-existence exacerbates the
collapse of generalization. Meta-training with a huge amount
of known class data will inevitably introduce the knowledge of
known classes and produce over-fitting, hindering generaliza-
tion to unknown classes. Such generalization collapse is more
likely to occur in remote sensing scenarios where multiple
classes are prone to co-exist in top-down camera angles (i.e.,
the existence of irrelevant categories), and such irrelevant
categories can easily be activated incorrectly due to the over-
fitting of known classes. For example, in Fig.2(b), the known
classes ‘small vehicles’ and ‘ships’ are incorrectly activated in
segmenting the unknown classes ‘ship’ and ‘harbor’, respec-

Fig. 2. The challenges faced by FSS in remote sensing scenarios.
(a) Large intra-class variations in the remote sensing scene can lead to
inaccurate activation, where the dotted line represents the difference between
the support-query image pair. (b) The co-existence of multi-class in the remote
sensing scene can exacerbate the collapse of the generalization, where the
solid line represents the false activation of irrelevant classes.

tively. To address the above two problems, we suggest a unique
Dual-Mining network named DMNet for cross-image mining
and self-mining, which consists of three efficient modules:
Class-public Region Mining (CPRM), Class-specific Region
Mining (CSRM), and Known-class Meta Suppressor (KMS).
Fig.1(b) briefly describes the roles of each module in DMNet.

Specifically, we argue that each image is unique and cannot
be achieved merely by ‘imitating’ and ‘borrowing’ from other
images, i.e., simply relying on the category semantics from
the support image to guide the segmentation is not sufficient;
one also needs to mine the query image itself. Following
this idea, the CPRM and CSRM modules are proposed to
capture the public semantics between the image pair and
specific semantics from the query image itself, respectively,
thus bridging the gap of intra-class variation. (a) Take its
essence and discard its dross. First, as with the previous
methods, we need to learn relevant knowledge from oth-
ers (support images) to benefit ourselves (query image). To
suppress useless semantic pollution introduced from support
images through the MAP operation, the CPRM module focuses
on capturing the bidirectional semantic associations between
the support-query image pair and activating semantics with
strong associations. Thus, common semantics between the
image pair are activated while inconsistent parts are weakened.
Compared with the support semantics that retain more specific
information about the support image, these activated common
semantics are closer to the query features in the semantic
space, which are named class-public semantics in this paper.
(b) Pay more attention to yourself. It is sub-optimal to
utilize the semantics of the support images to guide the query
image for segmentation when faced with complex remote
sensing scenarios, as it fails to truly bridge the gap of intra-
class variance. Thus, the CSRM module starts with itself,
mining the category semantics from the query image itself to
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guide its segmentation. We argue that there are latent category
semantics in the prediction result derived from segmenting
the query image by support images that can be mined and
exploited. Based on this, we propose to filter and purify the
prediction result to derive relevant category semantics and then
exploit them in a continuously guided manner to activate other
target semantics in the query image. Such category semantics
from the query image itself match the query image better in
the semantic space compared to the semantics in the support
image. In this paper, we name these category semantics from
the query image as class-specific semantics.

In addition, to address the generalization collapse for un-
known classes due to the meta-training paradigm in remote
sensing scenarios, we offer a unique meta-training strategy
and the corresponding Known-class Meta Suppressor (KMS).
Instead of focusing on how to minimize the bias toward knowl-
edge of known classes, we choose to exploit the knowledge to
suppress the activation of known classes in the query image.
In particular, unlike the traditional meta-training paradigm,
the proposed meta-training paradigm sets up an additional
branch to continuously learn the semantics of the known
classes and store them in a meta-memory in the form of
prototypes. During the testing phase, the KMS module utilizes
the representative prototypes of the known classes from the
meta-memory and the support prototypes of the target class
to guide the segmentation jointly. Concretely, we regard the
activated high-confidence regions of the known classes as the
background so as to achieve the suppression of known classes
in the query image. For example, the meta-activation map in
Fig.1(b) suppresses the activation of the known class ‘large
vehicle’.

Based on the three modules mentioned above, the proposed
DMNet can effectively handle complex remote sensing sce-
narios. Extensive experiments on two remote sensing datasets,
iSAID and LoveDA, have demonstrated that our DMNet
achieves new state-of-the-art performance under all settings.
The main contributions of our work can be summarized as
follows:

1) A novel FSS framework is suggested that no longer
focuses solely on the knowledge from the support im-
ages but pays more attention to the query image itself,
providing new insights for future work.

2) The proposed CPRM module explicitly captures the com-
mon semantics and weakens irrelevant semantics between
the image pair to suppress useless feature pollution from
the support images.

3) The proposed CSRM module focuses on mining the
specific semantics from the query image itself to guide its
segmentation, effectively bridging the gap of large intra-
class variance.

4) To alleviate the collapse of generalization in complex
remote sensing scenes, we construct a unique KMS
module that continuously learns knowledge of known
classes during the training phase to suppress the activation
of known-class objects in the sample.

II. RELATED WORK

A. Semantic Segmentation

Semantic segmentation aiming at predicting pixel-wise la-
bels in images is a fundamental task in computer vision [46].
The appearance of CNNs has made the semantic segmentation
task a hot topic. Full convolutional network (FCN) [47] was
the first approach to apply CNNs to semantic segmentation,
laying the foundation for subsequent research. Mining the
associations between contextual information in semantic seg-
mentation is necessary. Dilated convolution [48] was presented
to enlarge the receptive field of convolution to further capture
the contextual semantics. To mine multi-scale semantics, the
pyramid pooling module (PPM) was proposed by [50] to
merge feature representations between various scales and
regions. And the Astral Spatial Pyramid Pooling (ASPP) [49]
set various dilation rates for dilated convolution to capture
multi-scale contextual semantics. Meanwhile, [51] proposed
a multiplexed tuning network to exploit visual features at
different levels of low and high levels. In addition, several
attention mechanism methods have been proposed to aggre-
gate contextual semantics across long-range [52]–[55], [111].
Furthermore, to better capture details of the target (e.g., edges),
[56] utilized the encoder-decoder structure to merge low-level
features with high-level features to obtain richer spatial detail.

Although these methods can work well on large-scale data,
it’s hard to achieve the desired results when handling rare or
unknown data.

B. Few-Shot Learning

Recently, few-shot learning (FSL) has been proposed to
tackle the above issues, aiming at recognizing novel (un-
known) classes from just a few samples [78]. In gen-
eral, FSL methods could be divided into the following
three branches: (i) Data-augmentation-based methods [66],
[68], [69]. (ii) Transfer-learning-based methods [71]–[73].
(iii) Meta-learning-based methods [65], [74], [76]–[79], [83],
[109]. Data-augmentation-based methods utilize unlabelled
data or data synthesis methods to achieve data supplementa-
tion. And Transfer-learning-based methods pre-train models on
large-scale datasets while fine-tuning models on targeted small
datasets. However, both methods are limited by introducing
large amounts of noise interference and generating overfitting,
respectively. Meta-learning aims to learn to learn in order to
facilitate rapid adaptation to new tasks based on the acquisition
of existing knowledge, which is extremely well suited to Few-
shot tasks that utilize a few samples to parse an unknown class.

Therefore, the vast majority of FSL methods are designed
based on the meta-learning paradigm proposed by [65], which
expects learning transferable meta-knowledge derived from a
range of tasks (i.e., episodes) sampled from the base dataset
(training dataset) to generalize to new tasks. Based on this,
these meta-learning-based methods are further subdivided into
the following two branches: One branch is the parametric-
optimization-based method, which aims to learn the suitable
parameters so that the model can be quickly adapted to
new tasks [74], [76]–[78]. Another branch is the metric-
learning-based method, which performs relevance matching
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and comparison to tackle few-shot problems. [65], [79] learned
an embedding space and analyzed the degree of matching with
a non-parametric distance function.

Notably, prototype network [79] proposed a series of feature
vectors (i.e., prototypes) to store the semantics of different
categories, which could be well applied to pixel-wise segmen-
tation tasks. Chen et al. [83] also built on the prototype and
proposed a Siamese-prototype network (SPNet) to address the
limitations of Few-shot learning in remote sensing scenarios
with large intra-class variance and small inter-class variance.
Similarly, our work performs pixel-wise relevance matching in
the form of prototypes, where prototypes store representative
semantics of known classes and target classes.

C. Few-Shot Segmentation

Few-shot segmentation (FSS) is an extension of FSL that
deals with dense pixel-wise predictions with just a few sam-
ples. Shaban et al. [87] applied meta-learning to the task of
few-shot segmentation for the first time and discussed the ad-
vantages of meta-learning. Existing methods generally follow
their proposed meta-learning paradigm of learning transferable
category semantics from support images to guide query images
for segmentation. [88] then proposed to extract prototypes
(feature vectors) of the target class from the support images
to guide segmentation, which was widely adopted. To better
maintain the generalizability to new classes, many researchers
have attempted to fix the backbone network and instead focus
on implementing more efficient semantic interactions between
the image pairs [89], [92], [95]. For example, [89] utilized
the prototypes to concatenate with all positions of the query
image for comparison. Considering that a single prototype fails
to represent the entire target feature, [95] extracted multiple
prototypes with different roles from the support image for
guidance.

Recently some researchers have extended the Few-shot
segmentation task to remote sensing [2], [19], [31], [34],
[84]. Jiang et al. [19] applied metric learning to Few-shot
segmentation in remote sensing, thus solving the problem of
insufficient labeled data in remote sensing scenarios. Chen et
al. [2] employed a novel Few-shot segmentation framework to
better distinguish features by mining the latent novel classes
in the contexts via self-supervised learning. Also, Lang et al.
[84] proposed to mine the semantics between the image pairs
and between classes, in consideration of the characteristics of
remote sensing scenes with large intra-class differences and
low foreground-background contrast. Different from them, we
take inspiration from the human process of learning knowledge
and rethink the task of Few-shot segmentation, arguing that
not only do we need to learn from others but we also need
to focus on ourselves. i.e., in addition to mining the common
semantics between the support-query image pair, one can also
mine the specific semantics of the query image itself.

Furthermore, another reason that limits the performance
of Few-shot segmentation is the bias toward known classes.
[97] proposed to set up an additional learner to learn non-
target regions, thus aiding the main learner for target seg-
mentation. Meanwhile, [32] proposed a two-stage method to

learn knowledge from the base class to facilitate segmentation.
However, training an additional learner or performing two-
stage is time-consuming and inefficient. Instead, we propose
continuously learning the semantics of known classes during
the regular training phase and assisting in segmenting targets.
Significantly, our one-stage method is nearly parameter-free,
and no extra training is required.

III. PROBLEM DEFINITION

Unlike traditional semantic segmentation, which can only
segment targets of known classes (training classes), FSS aims
to segment unknown-class targets with just a few annotated
samples without additional training. Notably, FSS performs
single-class segmentation, i.e., only novel class (unknown
class) is segmented while other classes are considered as
background. Current FSS methods usually follow the meta-
learning paradigm for training models (i.e., episodic train-
ing), which can learn a generic segmentation capability to
generalize unknown classes in each episodic. Specifically, the
whole dataset is usually divided into two subsets, a training
set Dtrain with known classes Cknown and a testing set Dtest

with unknown classes Cunknown. Note that the categories of
these two sets are disjoint (i.e., Cknown ∩ Cunknown = ∅).
The FSS models learn transferable latent knowledge on Dtrain

with a sufficient amount of annotated samples and demonstrate
satisfactory generalization to Dtest with a small amount of
annotated samples. In particular, both sets Dtrain and Dtest

consist of a number of episodes, each containing a support set
S = {(Xs

i ,M
s
i )}

K
i=1 and a query set Q = {(Xq,Mq)}, where

X∗
i and M∗

i denote the original image and the binary mask
corresponding to a particular class c (both Xs and Xq contain
the category c), respectively. It is noteworthy that K represents
the number of support images given; following previous work
we only explore the FSS performance for K= 1 and K= 5 (i.e.,
1-shot and 5-shot). During each training episode, the model
mines the information in the support set S to segment the
relevant regions of category c in the query image Xq . After
the training is completed, the model evaluates the performance
in Dtest, at which point the parameters of the model are not
optimized. Significantly, the mask Mq in the query set Q is
provided only during the training phase.

IV. PROPOSED METHOD

A. Method Overview

As mentioned above, previous FSS methods are susceptible
to intra-class variation and suffer from the collapse of gener-
alization in remote sensing scenes. To this end, we propose
DMNet, a cross-image mining and self-information mining
network that contains Class-public Region Mining (CPRM),
Class-specific Region Mining (CSRM), and Known-class Meta
Suppressor (KMS) three important components as shown in
Fig.3, aiming at addressing these two problems.

Precisely, given a support-query image pair Xs and Xq , we
follow the previous approaches and leverage the pre-trained
CNN backbone to extract features to obtain both the support
feature F s and the query feature F q . The proposed CPRM
module then activates the class-public semantics between
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Fig. 3. The overall framework of the proposed network DMNet, consists of three significant modules, including Class-public Region Mining (CPRM),
Class-specific Region Mining (CSRM), and Known-class Meta Suppressor (KMS). PCRM represents the Position-based Class-public Region Mining Module
which captures spatial correlation based on category semantics in support features and query features and CCRM represents the Channel-based Class-public
Region Mining Module which is similar to PCRM for capturing channel correlation. Filter represents the Feature Filtering Module, and CPM represents the
Confusion-region Prototype Module.

F s and F q and weakens irrelevant semantics, which can
somewhat mitigate intra-class feature differences and suppress
useless feature pollution from MAP operations. In particular,
we utilize Position-based Class-public Region Mining (PCRM)
and Channel-based Class-public Region Mining (CCRM) to
model the semantic association of target categories between
features in the position and channel dimensions, respectively.
Thus, through the CPRM module, the activated common query
feature F s∩q

q and the support prototype P s∩q
s are derived.

Next, we expand P s∩q
s to match the size of the query feature

F s∩q
q and feed them together into the decoder to get the initial

prediction yq .
As the category semantics mined from the support image

cannot be fully matched to the query image, the proposed
CSRM module mines the category semantics of the query
image itself to guide its own segmentation. Concretely, the
module filters and purifies the prediction result yq by a
filter to derive the latent category semantics PMf

and PMb

of the query image. Then the Confusion-region Prototype
Module (CPM) exploits these semantics to activate other target
regions M

′

f and M
′

b in a continuously guided manner. More
importantly, the CPRM and CSRM modules complement each
other and work together, with the former providing sufficient
quality initial predictions and the latter capturing class-specific
semantics that the former can’t.

Besides, to alleviate the collapse of generalization to un-
known classes (over-fitting to irrelevant known classes) in

remote sensing scenarios, we design a unique meta-training
paradigm and a corresponding KMS module that introduces
an additional branch during the training phase to continuously
capture the representative semantics of known classes utilizing
a meta-memory Wf . The Known-class Suppression Module
then utilizes the captured known class prototypes Wf and the
target prototypes PH

f (PH
b ) to jointly suppress the activation

of known classes in the query image. A meta-activation map
MA with the known classes suppressed is thus obtained, while
it is also fed to the decoder for subsequent operations.

B. Class-public Region Mining

As mentioned in Section I, blindly migrating the class
semantics of support images to guide query image segmenta-
tion will inevitably introduce irrelevant semantics. We expect
to capture similar ‘fuselage’ semantics while filtering out
irrelevant ‘wing’ semantics. Inspired by the fact that self-
attention [52], [54] builds semantic associations between pixel
pairs well, capturing common category semantics between the
image pair with cross-attention is a natural choice. Thus, we
propose the Class-public Region Mining (CPRM) module,
which aims to capture bidirectional semantic associations
between the support-query image pair, thereby suppressing
semantics in the support image that are not useful for the query
image and locating the target region of the query image.

In detail, given the support feature Fs and query feature
F q ∈ RC×H×W , we perform a dot product operation on
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Fig. 4. The specific structure of PCRM and CCRM modules. Here F
′
s

represents the support feature that activates only the target category. Notably,
softmax(0) and softmax(1) represent the normalization by columns and rows
for convenience, respectively.

support feature Fs with its corresponding mask M s to activate
only the features of the target category, which can be formu-
lated as F

′

s = Fs ⊙ M s, where ⊙ denotes the dot product
operation. Remarkably, the subsequently mentioned support
features all represent the part of the support features that only
activate the target class region.

Then, as shown in Fig.4, the PCRM and CCRM modules are
proposed to capture bidirectional semantic associations in the
position dimension and the channel dimension, respectively.

1) Position-based Class-public Region Mining: We re-
shape Fq and F

′

s into two-dimensional features Wq and
Ws ∈ RC×HW while transposing Wq into W T

q ∈ RHW×C .
Then we compute the affinity matrix LP between W T

q and
Ws, which can be formulated as:

LP = W T
q WPWs (1)

where WP ∈ RC×C is used to balance the scales of the
features and its parameters are learnable. The LP (i, j) in the
affinity matrix LP represent the semantic similarity between
the ith position in W T

q and the jth position in Ws. Since the
F

′

s only activates the region of the target category, a higher
similarity score indicates that the pixel at ith position in the
query image is likelier to be the target category.

Then we normalize the affinity matrix LP by columns to
generate attention maps Aq for each position in Ws with
respect to Wq , and by rows to generate attention maps As

for each position in Wq with respect to Ws.

Next, we obtain the position-based semantic effects of sup-
port feature (query feature) on query feature (support feature)
based on the weighted aggregation of Ws(Wq) and As(Aq).

Finally, we design a learnable weight to fuse the common
semantics with the features, which can be formulated as:

F Ps∩q
q = Freshape(α1WsAs + λWq) (2)

F Ps∩q
s = Freshape(β1WqAq + λWs) (3)

where α1 and β1 represent the learnable fusion weights, their
initial values are set to 0.5. λ represents a fixed fusion weight,
which is set to 0.5. Here Freshape reshapes the size of input
sensor to C ×H ×W .

Therefore, we build a bidirectional semantic association
between support-query image pair to focus on the common
semantics (i.e., the target class region), thus alleviating the
gap of intra-class variance.

2) Channel-based Class-public Region Mining: Mean-
while, the CCRM module also builds bidirectional semantic
associations in the channel dimension to better focus on the
public semantics of the target, which is similar to PCRM.
Thus, we can obtain the channel-based class-public semantics
F

Cs∩q
q and F

Cs∩q
s .

3) Feature Aggregation: After mining the position-based
and channel-based class-public semantics, we perform feature
aggregation to obtain the final semantic features F s∩q

q and
F s∩q
s ∈ RC×H×W . Here, we perform MAP operation on

activated support features F s∩q
s to obtain a more representative

support prototype P s∩q
s ∈ RC×1×1, which can be formulated

as:

F s∩q
q = F1×1(F

Ps∩q
q + FCs∩q

q ) (4)

F s∩q
s = F1×1(F

Ps∩q
s + FCs∩q

s ) (5)
P s∩q

s = FMAP (F
s∩q
s ⊙M s) (6)

where F1×1 indicates a 1×1 convolution, FMAP indicates the
masked average pooling operation and ⊙ indicates dot product
operations.

Through the CPRM module, the query feature F s∩q
q ac-

tivates target category regions that share common attention
with the support feature while suppressing other non-target
regions. For the support feature F s∩q

s , the category semantics
representing the targets of the support image themselves are
suppressed, while the more generic public category semantics
are retained. Therefore, the more precise target regions in
query feature F s∩q

q are activated under the guidance of P s∩q
s .

Meanwhile, to more accurately locate the target regions,
we average the rows of the affinity matrix Pp in the PCRM
module in anticipation of obtaining the positional activation
map Mp of the query feature.

Thus, after the CPRM module, the initial prediction result
yq ∈ R2×H×W is derived through a simple decoder network
as follows:

yq = FDec(F
s∩q
q ⊕ P s∩q

s ⊕Mp) (7)

where P s∩q
s is expanded to the same shape as F s∩q

q and ⊕
represents the concatenation operation along channel dimen-
sion. FDec represents the decoder network, which consists of
several 3× 3, 1× 1 convolutional layers and ASPP [49].
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Fig. 5. The specific structure of Confusion-region Prototype Module (CPM).
Note that the dashed arrows represent the flow of iterative mining of the
confusion region.

C. Class-specific Region Mining

Many FSS methods end at this step, but bridging the gap of
intra-class variance by mining only the semantic associations
between support and query features is still hard. Therefore, it
may be good thinking to focus more on mining the query
image itself. We argue that even if there is some false
activation in the initial prediction result yq , there must be
latent category semantics specific to the query image itself
that can be captured and exploited. Based on this, we design
the Class-specific Region Mining (CSRM) module.

Specifically, given the initial predicted results yq ∈
R2×H×W which contains a foreground prediction yq

f ∈
R1×H×W and a background prediction yq

b ∈ R1×H×W . We
perform a semantic filter on yq: (i) Regard regions with
foreground prediction scores above a certain threshold as
foreground regions Mf containing richer target semantics of
the query image-self; (ii) Regard regions with background
prediction scores above a certain threshold as background
regions Mb containing richer background semantics of the
query image-self; (iii) We also consider the other regions
(i.e., regions with low scores in both the foreground and
background predictions) as confusion regions Mc that are
prone to confusion and false activation:

Mf = FIndicator

[
yq
f ≥ µ1

]
(8)

Mb = FIndicator [y
q
b ≥ µ2] (9)

Mc = FIndicator

[(
yq
f < µ1

)
∩ (yq

b < µ2)
]

(10)

where yq
f = softmax(yq)[1, :] and yq

b = softmax(yq)[0, :].
FIndicator denotes the indicator function which converts the
predicted probability result into a prediction mask. The thresh-
olds µ1 and µ2 indicate the filtering degree of the predicted
results yq , set to 0.7 and 0.6, respectively.

Thus, the foreground prototype PMf
and background pro-

totype PMb
of the target category are mined from Mf and

Mb by the MAP operation, respectively. We argue that it
is more effective to utilize these prototypes, containing rich
semantics specific to the query image itself, to guide its own
segmentation.

In addition to this, we expect that there are also rich
latent semantics of the target category in the confusion region

Mc and hence design a Confusion-region Prototype Module
(CPM) to capture. Specifically, as shown in Fig.5, we utilize
the mined PMf

and PMb
to activate the foreground and back-

ground regions in the confusion regions Mc in an associated
manner to generate the prediction yc ∈ R2×H×W :

yc = softmax(Fcosine(Fqc ,PMf
,PMb

)) (11)

where Fqc = Fq ⊙ Mc denotes the feature of confusion
regions Mc. Here we define a function Fcosine to calculate
the similarity between features and different prototypes to
obtain the prediction, i.e., Fcosine(Fqc ,PMf

,PMb
, · · · ) =

cosine(Fqc ,PMf
)⊕ cosine(Fqc ,PMb

)⊕ cosine(Fqc , · · · ).
After that, we filter and purify the prediction yc to ob-

tain the foreground region Mcf , background region Mcb ,
and confusion region Mcc in the confusion region Mc. We
expect a more representative foreground prototype PM

′
f

and a
background prototype PM

′
b

after fusing the foreground region
Mcf and the background region Mcb of the confusion region
Mc, which can be formulated as:

PM
′
f
= FMAP (Fq ⊙ (Mf +Mcf )) (12)

PM
′
b
= FMAP (Fq ⊙ (Mb +Mcb)) (13)

where Mcf and Mcb are derived from the execution of
Equation 8 and Equation 9 by yc.

It is worth noting that we repeat the above filtering process
several times with the new confusion regions to obtain the
final foreground (background) prototype, with the aim of
sufficiently mining the semantics in the confusion regions to
capture more category semantics from the query image itself.
In our experiments, we set 3 iterations. And in each filtering,
our confidence thresholds µ1 and µ2 are each gradually
reduced by 0.05 and 0.02 to derive more category semantics.

Subsequently, we weight the merging of prototypes
PM

′
f

(
PM

′
b

)
and PMf

(PMb
) to avoid the reduction in proto-

type expressiveness caused by errors in CPM filtering:

Pf = γ1PM
′
f
+ γ2PMf

,Pb = γ1PM
′
b
+ γ2PMb

(14)

where γ1 and γ2 are the integration weights and we set γ1 =
0.9 and γ2 = 0.1 in our experiments.

We then compute the cosine similarity between the aug-
mented prototypes Pf (Pb) and the query feature Fq to derive
the final segmentation prediction:

yFinal = softmax(Fcosine(Fq,Pf ,Pb)) (15)

where Fcosine represents the process of computing similarity
between the query feature Fq and Pf and Pb respectively to
generate the prediction result.

D. Known-class Meta Suppressor

The co-existence of multiple categories in remote sensing
scenarios can worsen the generalization to unknown cate-
gories, where irrelevant known classes will be activated in-
correctly. We argue that since it is inevitable to introduce
the knowledge of known classes, it is simply a matter of
capturing representative semantics of known classes during the
training phase and suppressing the activation of known classes
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Fig. 6. The specific structure of the Known-class Meta Suppressor (KMS) module during the training phase. The ‘target class’ refers to the target class
under the current episode, i.e., the class contained in both the support image and the query image. N represents the number of known classes during the
training phase. Note that N is set to 10 for the iSAID, 4 for the LoveDA, and 15 for the PASCAL-5i in the experiments. And Ck represents the number of
channels of the high-level feature. The numbers ‘1’ and ‘0’ in MA denote the foreground and background regions of the target class, respectively, and the
other numbers denote the foreground regions of other known classes (i.e., irrelevant regions).

in the query image with their help. Thus, we propose a unique
meta-training paradigm and corresponding Known-class Meta
Suppressor (KMS) module.

Since the model samples a series of episodes during the
training phase to mimic few-shot scenarios with unknown
classes, where these episodes are for known classes and
contain no unknown classes, the KMS module is set up
differently during the training and testing phases.

1) KMS during the training phase: To obtain the repre-
sentative semantics of known classes, a new meta-training
paradigm is designed, where an additional branch is introduced
during the training phase to learn the known-classes semantics
continuously. Specifically, we propose a Meta Prototype Mem-
ory that mines and stores the prototype semantics of the current
target class from the support image in each episode. Thus,
the prototypes of all training classes are stored in the meta-
memory after several episodes, where N denotes the number
of all training classes. Notably, we choose to mine the high-
level features since the semantics in the high-level features are
more class-specific than the mid-level features. In addition,
considering that there is some similarity and generality in the
background of the same category, we likewise mine the general
background semantics of known classes to distinguish them
better; thus the memory consists of two parts: the foreground
prototype memory Wf and the background prototype memory
Wb.

In particular, as shown in Fig.6, in each episode the Meta
Prototype Memory utilizes foreground PH

f and background
PH

b prototypes from high-level support features to update the
representative prototypes W i

f and W i
b of the current class in

the memory, which can be formulated as:

W i
f = ρW i

f + (1− ρ)PH
f ,W i

b = ρW i
b + (1− ρ)PH

b (16)

where PH
f = FMAP (F

H
s ⊙M s) and PH

b = FMAP (F
H
s ⊙

(1 − M s)). After several episodes, the Meta memory is
continuously updated to obtain representative prototypes for
all training categories (i.e., N representative prototypes). In
the experiment, ρ is set to 0.5.

It is easy to see that the more times the prototypes are
updated in the Meta Prototype Memory, the more represen-
tative they are (more prototypes are used to update). Instead
suppressing the activation of non-target regions in the query
image with the known class prototypes that are updated only a
few times will degrade the segmentation performance. There-
fore, we propose that the parameters of the model only start
to be updated after a certain number of training iterations, i.e.,
only the known-class prototypes in the memory are updated
during the first few epochs while the parameters of the model
are fixed. It is not until these prototypes have become more
representative that the parameters start to be updated.

We then select from memory the representative proto-
types of the foreground W i

f ∈ RCH×1×1 and background
W i

b ∈ RCH×1×1 of the current target class, and prototypes
W ∗

f ∈ R(N−1)×CH×1×1 of the foreground of remaining
known classes. Thus, (N + 1) representative semantic proto-
types compute the similarity with the high-level query feature
FH
q to obtain (N + 1) prediction maps Ak:

Ak = A0 ⊕A1 ⊕A2 ⊕ · · · ⊕AN

= Fcosine(F
H
q ,W i

f ,W
i
b ,W

∗
f )

(17)

where k ∈ [0,N ]. A0 denotes the prediction result of comput-
ing similarity with background semantics W i

b of the current
target class, A1 denotes the prediction result of computing
similarity with foreground semantics W i

f , while k taking other
values denotes the prediction result of other known classes
(i.e., non-target classes).

The maximum value and corresponding index value are then
calculated for each position in the query feature. Finally, we
suppress the regions activated by the prototypes of non-target
classes W ∗

f and the background prototype of current target
class W i

b to mitigate the effects of the other known classes:

K(m,n) = argmax
k

(A
(m,n)
k ) (18)

MA = FIndicator

[
K(m,n) = 1

]
A1 (19)
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where K(m,n) indicates the index value of the represen-
tative prototype which obtains maximum similarity score
(i.e., is activated) at the position (m,n) of the query feature.
FIndicator

[
K(m,n) = 1

]
denotes the activated foreground re-

gions of the current target class.
Thus we obtain a meta-activation map MA that suppresses

other known classes and background regions, and we feed it
together into the decoder, at which point Equation 7 becomes:

yp = FDec(F
s∩q
q ⊕ P s∩q

s ⊕Mp ⊕MA) (20)

2) KMS during the testing phase: As shown in Fig.3, we
have not to update the memory only to utilize the representa-
tive prototypes of the known classes in the memory during the
testing phase. It is worth noting that all known classes can be
considered interference objects during the testing phase, and
therefore all known classes appearing in the query image need
to be suppressed. Since there is some similarity in the back-
grounds of the same category, i.e. are category representative,
the background prototype of the support image can also be
employed to suppress the activation of the background (non-
target) regions in the query image, at which point Equation 17
will be updated to:

Ak = A0 ⊕A1 ⊕ · · · ⊕AN ⊕AN+1

= Fcosine(F
H
q ,PH

f ,PH
b ,Wf )

(21)

where Wf ∈ RN×CH×1×1 contains all known class represen-
tative prototypes and in this case k ∈ [0, (N + 1)]. Here A0

and A1 denote the similarity scores for the foreground and
background of the current target class, respectively, while Ak

(k ∈ [2,N + 1]) denotes the similarity scores of all known
classes.

We then exploit the Known-class Suppression Module to
suppress the activation of all known classes in the query image.
Thus we can obtain a corresponding meta-activation map MA

for the testing phase, which is also fed into the decoder for
subsequent operations.

E. Loss Function

To better optimize the parameters of the model during the
training phase, we employ two binary cross entropy (BCE)
losses Laux and Lmain to supervise the prediction results yq

and yFinal, which constitute the overall target segmentation
loss L:

L = Lmain + ηLaux

= BCE(yFinal,M q) + ηBCE(yq,M q)
(22)

where η is employed to balance the contributions of the two
losses, Lmain and Laux.

F. K-shot Setting

When one-shot is extended to the K-shot setting, FSS
models generally average support prototypes derived from
multiple support images and employ the averaged prototypes
to guide the query image for segmentation. This prototype
average approach simply assumes that each support image
contributes equally to the query image [92]. However, due

to the inconsistent feature differences between the different
support images and the query image, this prototype average
method is sub-optimal. Thus, We propose a new appearance
similarity-based Reweighted-Fusion mechanism to handle the
contributions of different support images.

In particular, we guide the query image using K different
support images to obtain K segmentation branches respec-
tively. As mentioned in Section IV-B, through the CPRM
module each branch obtains the affinity matrix Lj

P , where
j ∈ [1,K]. We believe that the obtained affinity matrix can
represent the appearance similarity between the support image
and the query image, so we efficiently compress the affinity
matrix as the appearance factor φj , which can be formulated
as:

φj = softmax( avg
m,n∈HW

(Lj
P (m,n))) (23)

where a larger value represents a greater contribution.
Finally, we perform a reweighted fusion of class prototypes

P j
f (P

j
b ) obtained by the CSRM module in each support

branch with appearance factor φj , and use the fused prototypes
to predict the final result, at which point Equation 15 becomes:

yFinal = softmax(Fcosine(Fq,

K∑
j=1

φjP
j
f ,

K∑
j=1

φjP
j
b )) (24)

V. EXPERIMENTS

First, we describe the setting of the experiment, including
the experimental dataset, implementation details, and evalua-
tion metrics in Section V-A. To demonstrate the effectiveness
of our method, extensive comparative experiments are then
performed with existing methods in Section V-B. And in
Section V-C, we perform ablation experiments to analyze our
DMNet. Then, we also provide statistical analyses in terms of
different categories and scales in Section V-D. Finally, some
failure cases are described in Section V-E.

A. Experimental Setting

1) Datasets: To better validate the generalizability of the
model to unknown classes, we prefer to choose the datasets
with more classes. Therefore, We evaluate the proposed ap-
proach on two publicly available remote sensing semantic
segmentation datasets(i.e., iSAID [98] and LoveDA [100]) and
a widely used FSS dataset namely PASCAL-5i [87].

The iSAID dataset is a large-scale dataset for evaluating
instance segmentation and semantic segmentation algorithms,
which contains 655,451 object instances from 2,806 high-
resolution images. The iSAID contains 15 object categories
such as ‘ship’, ‘baseball diamond’, and ‘plane’. Following
[34], we split the 15 classes into three folds, each fold contains
10 training classes and 5 testing classes, with the training
and testing classes in each fold not intersecting to simulate
the known and unknown classes. With this cross-division,
the dataset can be fully utilized to validate generalization to
unknown classes. The details of the class splits (Fold-i) are
given in Table I. We randomly crop the original image into
a 256×256 size to further enlarge the number of annotated
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TABLE I
THE CLASS SPLIT SETTINGS OF ISAID AND LOVEDA

Datasets Fold-i Training classes Testing classes

Fold-0
ground track field, bridge, large vehicle, small vehicle, helicopter

swimming pool, roundabout, soccer ball field, plane, harbor
ship, storage tank, baseball diamond,

tennis court, basketball court

iSAID Fold-1
ship, storage tank, baseball diamond, tennis court, basketball court

swimming pool, roundabout, soccer ball field, plane, harbor
ground track field, bridge, large vehicle,

small vehicle, helicopter

Fold-2
ship, storage tank, baseball diamond, tennis court, basketball court
ground track field, bridge, large vehicle, small vehicle, helicopter

swimming pool, roundabout,
soccer ball field, plane, harbor

LoveDA
Fold-0 water, barren, forest, agriculture building, road
Fold-1 building, road, forest, agriculture water, barren
Fold-2 building, road,water, barren forest, agriculture

samples. Following the BAM [97], We remove the training
images containing the category targets of the testing set to
avoid information leakage from the testing set. For each fold,
we randomly select 1000 support-query image pairs for the
performance evaluation during the testing phase.

The LoveDA dataset is an urban-rural domain adaptive
ground cover dataset for evaluating semantic segmentation and
unsupervised domain adaptation algorithms which contains
166,768 semantic objects from three distinct cities along with
5987 high-resolution images. There are 7 kinds of object cate-
gories in LoveDA including ‘road’, ‘water’, ‘barren’, ‘forest’,
etc. We consider experiments on this dataset because the cross-
domain scenario is more challenging and potentially applicable
for FSS. In our experiments, we ignore the background cat-
egory and use only the last 6 categories. Similar to iSAID,
for LoveDA, we split the 6 classes into 3 folds. We randomly
crop the original image into a 473×473 size and remove some
training images that contain testing classes.

The PASCAL-5i dataset consists of the PASCAL VOC
2012 [17] and additional SDS datasets [18]. Following the
BAM [97], the 20 classes are divided into four folds and each
containing 5 classes.

2) Implementation Details: The proposed model is imple-
mented using the Pytorch [101] framework on NVIDIA RTX
2080Ti GPUs. The model is trained end-to-end by the SGD
optimizer, where the weight decay is set to 0.0001 and the
momentum is set to 0.9. And we employ poly [49] strategy
to adjust the learning rate during the training phase. For
experiments on iSAID, the images are resized to 256×256,
and we set batch size, the total number of epochs, and the
initial learning rate to 8, 200, and 0.005, respectively. For
experiments on LoveDA, the images are resized to 473×473,
and we set batch size, the total number of epochs, and
the initial learning rate to 8, 200, and 0.003, respectively.
For experiments on PASCAL-5i, the images are resized to
473×473, and we set batch size, the number of epochs, and
the initial learning rate to 8, 200, and 0.005, respectively.

The baseline of our model consists of the baseline of
PFENet [92] and ASPP [49], which aims to enhance the adapt-
ability for multi-scale scenes of remote sensing images. For
comprehensive comparisons of performance, three backbone
networks, VGG-16, ResNet-50, and ResNet-101 [102], [103]
are selected for experiments. Following PFENet [92], all of
these backbones are pre-trained on ImageNet [104], and these

network parameters are fixed during the training phase to
maintain a degree of generalizability. For the hyperparameters
λ, µ1, and µ2 of the proposed model, we set them to 0.8, 0.7,
and 0.6. A detailed discussion of the hyper-parameter settings
is shown in the subsequent ablation study.

Considering the paucity of FSS models for remote sensing
scenes, we have selected several models that have worked well
in natural scenes in recent years for comparison. To maintain
a fair experimental environment, we use a consistent data
enhancement strategy, number of training epochs, number of
random seeds, and batch size.

3) Evaluation Metrics: As a subclass of semantic segmen-
tation (single-class segmentation), we choose the generic and
representative class mean intersection over union (mIoU) as an
evaluation metric. For each class, the IoU can be calculated
by IoU = ( TP

TP+FP+FN
), where TP, FP, and FN denote the

number of positive samples with true predictions, positive
samples with false predictions, and negative samples with false
predictions, respectively. The formulation of mIoU follows
mIoU = 1

n

∑n
i=1 IoUi, where n is the number of classes

in each fold (i.e., n = 5 for iSAID, n = 2 for LoveDA and
n=5 for PASCAL-5i). And In addition, following [7], [8], we
also adopt the foreground-background IoU (FB-IoU) as an
evaluation metric, which ignores image classes and calculates
the mean of foreground IoU and background IoU for all
test images. Thus, the formulation of FB-IoU follows FB-
IoU = 1

2

∑2
i=1 IoUi, where n =2. We take the average of

results on all folds as the final mIoU / FB-IoU. In addition,
for a comprehensive comparison, Accuracy (Acc) is used as a
measure of the number of correctly categorized pixels in the
result. We averaged the accuracy for each category to obtain
the final result (mAcc). Due to its objectivity and comprehen-
siveness, we take the mIoU as the leading evaluation indicator.

B. Comparison with State-of-the-arts

In this section, we compare existing FSS methods on two
remote sensing datasets and a widely used FSS dataset namely
PASCAL-5i. Table II-V detail the performance. We then
qualitatively analyze the existing methods and our DMNet,
with the comparative results in Fig.7 and 8.

1) Quantitative Analysis:
iSAID: Table II provides the performance between our

DMNet and several representative methods on iSAID under
the 1-shot and 5-shot settings. It is noticeable that methods
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Fig. 7. Qualitative results of our DMNet and some comparative models under the 1-shot setting. The left side column shows the results for iSAID, and the
right side column shows the results for LoveDA. Each row from top to bottom : (a) support images with the ground-truth(GT) (blue), (b) query images with
the ground-truth(GT) (red), (c) results of DCPNet (red), (d) results of PFENet (red), (e) results of NTRENet (red), (f) results of our model (red).

that perform good performance in natural scenarios fail to
continue to lead in remote sensing scenarios. A large part of
the reason is that there are huge differences between remote
sensing scenes and natural scenes. Compared with natural
scenes, remote sensing scenes have the characteristics of large
intra-class variance, and there are many complex scenes with
dense small-size targets and multiple similar targets.

Nevertheless, our method addresses these problems better,
outperforming other FSS methods by a significant margin, and
setting new state-of-the-arts under all settings. Specifically,
with the backbone of Resnet-50, our method achieves the
averaged mIoU scores of 49.58% and 51.35% under the 1-shot
setting and 5-shot setting, respectively, surpassing the state-
of-the-art results by 1.8% and 1.12%. With the backbone of
ResNet-101, we reach 1.48% and 2.04% mIoU improvements
over CyCTR (2nd best in 1-shot and 5-shot), respectively,
indicating the effectiveness and superiority of the DMNet, with
similar advantageous results in the backbone of VGG-16.

Meanwhile, in terms of FB-IoU, our model on three back-
bones achieves 1.6%, 1.12%, and 0.78% increments over the
previous best results under the 1-shot setting, respectively, with
similar advantageous results under the 5-shot setting. More-
over, our model has the least number of learnable parameters
due to the parameter-free module design, with only 7.4M using
the backbone of ResNet-50 (one-fifth of that of DCPNet). In
addition, as shown in Table V, our model with the ResNet-

50 achieves 77.47% mAcc under the 1-shot setting, surpassing
the state-of-the-art results by 1.09%, which fully demonstrates
the effectiveness.

LoveDA: Table III presents the 1-shot and 5-shot results on
LoveDA. It can be found that the mIoU metrics are generally
low, which indicates that there are more false activation
and incomplete predictions. Part of the reason is that this
challenging multi-domain dataset expects better generalization
of the model, which conflicts with the general over-fitting
of FSS towards known classes, especially in remote sensing
scenarios with multi-class coexistence and large intra-class
variance.

Despite that, our model still performs excellent perfor-
mance. Our model with the backbone of ResNet-50 beats
the other best results by a considerable margin of 3.51% and
3.51% mIoU under the 1-shot and 5-shot setting, respectively,
achieving similar benefits in other backbone networks. More
surprisingly, for the FB-IoU metric, our model on three back-
bones achieves 13.29%, 8.22%, and 14.12% increments over
the previous best results under the 5-shot setting, respectively.
This excellent performance illustrates that the proposed model
has sufficient generalization capability to accommodate cross-
domain scenarios. The incremental results ‘∆’ from 1-shot to
5-shot show that with more samples, our model better captures
the potential category representation information.

PASCAL-5i: Table IV presents the 1-shot and 5-shot



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE II
PERFORMANCE COMPARISON ON ISAID IN TERMS OF CLASS MIOU AND FB-IOU(%). THE ‘MEAN’ DENOTES THE AVERAGED CLASS MIOU SCORES FOR
ALL THREE FOLDS AND THE ‘FB-IOU’ DENOTES THE AVERAGED CLASS FB-IOU SCORES FOR ALL THREE FOLDS. ‘PARAMS’ DENOTES THE NUMBER OF

LEARNABLE PARAMETERS. BOLD AND UNDERLINE DENOTE THE BEST AND SECOND-BEST RESULTS, RESPECTIVELY.

Backbone Methond
1shot 5shot

Params
Fold-0 Fold-1 Fold-2 Mean FB-IoU Fold-0 Fold-1 Fold-2 Mean FB-IoU

VGG-16

SADMNet [34] 29.24 20.80 34.73 28.26 - 36.33 27.98 42.39 35.57 - -
Jiang et al [19] 33.40 35.13 43.28 37.27 57.72 37.33 36.08 44.52 39.31 59.01 14.7M
SCLNet [105] 46.88 31.74 44.64 41.09 60.88 47.75 31.98 43.45 41.06 60.69 11.5M
PFENet [92] 46.99 35.33 49.52 43.95 60.81 53.34 38.55 50.61 47.50 62.94 10.4M
ASGNet [94] 45.12 32.25 43.30 40.22 59.68 51.88 33.93 50.96 45.59 63.07 10.2M
DCPNet [95] 47.44 33.91 48.08 43.14 60.43 48.16 36.07 49.25 44.49 62.03 25.3M

NTRENet [106] 47.96 36.21 51.22 45.13 61.50 49.05 37.66 52.33 46.35 62.24 20.5M
DMNet 50.64 38.59 46.32 45.18 63.10 52.09 40.54 50.39 47.67 63.70 6.0M

ResNet-50

SADMNet [34] 34.29 22.25 35.62 30.72 - 39.88 30.59 45.70 38.72 - -
Jiang et al [19] 35.11 37.06 42.24 38.14 58.28 38.19 37.77 43.94 39.97 59.13 25.6M

SCL [105] 49.08 35.61 48.15 44.28 61.66 50.69 35.64 48.72 45.02 62.63 11.9M
PFENet [92] 51.34 38.79 52.26 47.46 63.34 54.71 41.51 54.45 50.22 64.99 10.8M
ASGNet [94] 48.59 36.82 46.65 44.02 62.36 53.01 37.44 52.18 47.54 64.63 10.4M
CyCTR [108] 51.15 38.40 53.79 47.78 62.86 51.91 39.01 54.83 48.58 63.81 7.5M
DCPNet [95] 48.43 37.59 52.09 46.04 62.76 50.34 40.75 51.33 47.47 64.10 35.0M

NTRENet [106] 49.52 38.66 51.87 46.68 62.84 50.60 40.99 55.07 48.89 63.74 20.8M
DMNet 54.45 40.68 53.60 49.58 64.46 57.67 41.06 55.28 51.34 65.81 7.4M

ResNet-101

SCL [105] 47.59 36.90 45.21 43.23 61.71 48.94 38.01 46.21 44.39 60.93 11.9M
PFENet [92] 50.69 38.37 52.85 47.30 62.46 54.40 41.55 50.55 48.83 64.57 10.8M
ASGNet [94] 47.55 38.47 49.28 45.10 62.03 53.54 38.24 53.20 48.33 65.35 10.4M
CyCTR [108] 50.89 38.89 52.22 47.73 62.35 52.15 40.28 55.32 49.25 64.45 7.5M
DCPNet [95] 47.63 38.80 49.34 45.26 62.56 50.68 40.02 54.52 48.41 62.96 54.0M

NTRENet [106] 50.33 38.73 51.23 46.76 63.25 53.24 41.87 51.53 48.88 64.16 20.8M
DMNet 54.01 40.04 53.57 49.21 64.03 55.70 41.69 56.47 51.29 65.88 7.4M

results on PASCAL-5i. It can be found that meta-learning-
based methods have strong advantages compared to fine-
tuning. Even though our proposed method is designed for
remote sensing scenarios, it shows competitiveness on visual
datasets as well. Specifically, our model with the backbone
of ResNet-50 achieves 64.10% mIoU and beats the other best
results under the 1-shot setting. And under the 5-shot setting,
our proposed DMNet is equally competitive. Moreover, we
simply perform ablation experiments and the results show
that our method achieves 6.04% and 6.17% mIoU increments
under the 1-shot and 5-shot settings, respectively, compared
to the baseline, which well illustrates the effectiveness and
generalization of the proposed method.

Comparative study of model complexity: In addition,
we make a comparison of the complexity of the models in
terms of the number of learnable parameters, GPU memory,
and inference speed to the full extent. We used ResNet-50 as
the backbone to conduct experiments under the 1-shot setting
on iSAID, and to ensure a fair comparison, the Batch Size is
uniformly set to 8 for all methods. As can be seen in Table V,
the proposed method has the least number of learnable param-
eters (one-fifth of DCPNet). In addition, the proposed method
is not of high computational complexity, and it occupies 2.95
GB memory during the training phase and achieves 12.58
FPS inference speed, which is 1.79 GB memory decreased
and 2.22 FPS improved compared to CyCTR (2nd best on
mIoU). Although there is a certain gap compared to PFENet
which has the fastest inference speed, the proposed method has
great superiority in segmentation performance and learnable
parameters. In summary, the proposed method achieves the

best segmentation accuracy with good model complexity.
2) Qualitative Analysis:
Comparison with other models: To better analyze and

comprehend the effect of models, we additionally visualize
the corresponding segmentation results during the testing
phase. We select some scenes with significant remote sensing
characteristics (e.g., dense small-size targets, large intra-class
variance, and multiple similar targets) for display, as shown in
Fig.7.

It can be found that advanced FSS models for natural scenes
fail to predict effectively when faced with remote sensing
scenes. In particular, for the ‘baseball field’ (1st column)
and ‘ship’ (2th column), where the scale properties between
the query image and the support image differ significantly,
these models can only obtain incomplete prediction results.
The reason is that the category information captured by
these models from the support images is not representative
and general enough to guide segmentation well. And there
is a large number of missed detection for the dense small
size ‘plane’ (4th column) and ‘small vehicle’ (6th column).
Moreover, for the ‘building’ scenes (8th column) containing
other similar categories (e.g., ‘forest’) and ‘barren’ scenes
(9th column) containing other similar categories (e.g., ‘agri-
culture’), these models have a large number of false activation
pixels. This is caused by the poor differentiation of the target
class information captured by the model from other classes. In
other words, the phenomenon of model bias towards known
classes leads to wrong class activation.

According to the last row of visualization results, our
proposed model has good prediction results in different remote
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TABLE III
PERFORMANCE COMPARISON ON LOVEDA IN TERMS OF CLASS MIOU AND FB-IOU(%). THE ‘MEAN’ DENOTES THE AVERAGED CLASS MIOU SCORES
FOR ALL THREE FOLDS. AND THE ‘FB-IOU’ DENOTES THE AVERAGED CLASS FB-IOU SCORES FOR ALL THREE FOLDS. ‘∆’ REPRESENTS THE FB-IOU
INCREMENT OF SEGMENTATION PERFORMANCE UNDER THE 5-SHOT SETTING OVER THE 1-SHOT SETTING. BOLD AND UNDERLINE DENOTE THE BEST

AND SECOND-BEST RESULTS, RESPECTIVELY.

Backbone Methond
1-shot 5-shot

∆
Fold-0 Fold-1 Fold-2 Mean FB-IOU Fold-0 Fold-1 Fold-2 Mean FB-IOU

VGG-16

SCL [105] 15.31 21.43 23.89 20.21 29.56 14.84 22.39 20.85 19.36 29.22 -0.34
PFENet [92] 16.14 24.35 31.57 24.02 34.72 15.08 26.82 30.18 24.03 38.40 3.68
ASGNet [94] 15.93 21.60 29.08 22.20 39.79 17.33 26.24 35.75 26.44 38.41 -1.38
DCPNet [95] 15.22 22.58 31.83 23.21 34.97 15.94 26.38 31.37 24.56 36.24 1.27

NTRENet [106] 15.07 23.17 28.68 22.31 36.18 15.30 25.12 30.95 23.79 35.06 -1.12
DMNet 19.71 26.23 30.43 25.46 45.78 25.02 35.51 33.62 31.38 51.70 5.92

ResNet-50

SCL [105] 15.14 20.45 25.00 20.20 24.60 14.25 21.09 23.65 19.66 24.69 0.09
PFENet [92] 17.13 22.20 26.49 21.94 33.48 15.83 25.73 24.74 22.10 34.77 1.29
ASGNet [94] 15.91 20.21 22.33 19.48 36.39 18.38 26.29 36.34 27.00 39.59 3.20
CyCTR [108] 13.17 23.43 21.99 19.53 38.47 13.81 27.4 26.15 22.45 42.71 4.24
DCPNet [95] 16.67 23.10 24.44 21.40 36.36 13.43 25.59 28.06 22.36 33.89 -2.47

NTRENet [106] 16.05 22.69 21.87 20.20 32.67 15.79 24.94 23.42 21.38 31.79 -0.88
DMNet 19.29 25.52 31.53 25.45 43.40 24.62 33.80 33.12 30.51 50.93 7.53

ResNet-101

SCL [105] 15.62 17.87 25.54 19.68 31.03 14.96 20.26 24.02 19.75 31.57 0.54
PFENet [92] 15.83 25.73 24.74 22.10 35.65 15.62 24.37 26.64 22.21 36.08 0.43
ASGNet [94] 14.65 19.90 25.43 19.99 30.89 18.00 25.43 36.00 26.48 39.26 8.37
CyCTR [108] 13.16 20.63 20.55 18.11 38.94 15.40 25.27 22.01 20.89 36.03 -2.91
DCPNet [95] 16.52 20.20 33.61 23.44 36.57 16.97 25.08 25.10 22.38 35.71 -0.86

NTRENet [106] 15.51 19.65 30.07 21.74 33.68 15.18 23.50 31.83 23.50 32.16 -1.52
DMNet 21.18 24.57 28.74 24.83 47.47 24.65 33.97 36.89 31.84 53.38 5.91

TABLE IV
PERFORMANCE COMPARISON ON PASCAL-5i IN TERMS OF CLASS MIOU (%) WITH THE BACKBONE OF RESNET-50. THE ‘MEAN’ DENOTES THE
AVERAGED CLASS MIOU SCORES FOR ALL FOUR FOLDS. BOLD AND UNDERLINE DENOTE THE BEST AND SECOND-BEST RESULTS, RESPECTIVELY.

Methond
1shot 5shot

Fold-0 Fold-1 Fold-2 Fold-3 Mean Fold-0 Fold-1 Fold-2 Fold-3 Mean
Finetuning [87] 24.90 38.80 36.50 30.10 32.60 - - - - -
OSLSM [87] 33.60 55.30 40.90 33.50 40.80 35.90 58.10 42.70 39.10 43.90

Chen Y et al [2] 53.60 62.90 57.80 51.30 56.40 65.30 71.20 71.30 63.20 67.75
ASGNet [94] 58.84 67.86 56.79 53.66 59.29 63.66 70.55 64.17 57.38 63.94
PFENet [92] 61.70 69.50 55.40 56.30 60.73 63.10 70.70 55.80 57.90 61.88
CyCTR [108] 65.70 71.00 59.50 59.70 63.98 69.30 73.50 63.80 63.50 67.53
DCPNet [95] 63.81 70.54 61.16 55.69 62.80 67.19 73.15 66.39 64.48 67.80

Baseline 58.61 69.49 54.02 50.13 58.06 61.66 70.72 54.61 56.71 60.93
DMNet 64.55 72.52 61.50 57.82 64.10 67.39 74.01 64.93 62.08 67.10

TABLE V
COMPARATIVE STUDY OF MODEL COMPLEXITY

Method mIoU mAcc
Params
(MB)

GPU Memory
(GB)

Inference Speed
(FPS)

SCL [105] 44.28 75.71 11.9 3.82 10.59
PFENet [92] 47.46 75.88 10.8 2.40 16.08
ASGNet [94] 44.02 74.00 10.4 2.26 14.06
CyCTR [108] 47.78 76.11 7.5 4.74 10.36
DCPNet [95] 46.04 74.63 35.0 2.62 15.48

NERTNet [106] 46.68 76.38 20.8 2.82 13.83
DMNet 49.58 77.47 7.4 2.95 12.58

sensing scenarios with more accurate target mask boundaries
and less false activation. We are able to segment nicely the
‘baseball field’ and the ‘storage tanks’ with full boundaries,
all the ‘ships’, ‘planes’, and ‘vehicles’. This indicates that
our model is insensitive to support samples and captures
representative category information well from various support
samples. At the same time, our model can predict ‘waters’,
‘buildings’, and ‘barren’ while generating fewer false category

pixel activation. This shows that our model can effectively
tackle the problems faced by FSS in remote sensing scenarios
and demonstrates strong generalization and adaptability.

5-shot: Furthermore, we also visualized the effect of the
5-shot setting on the segmentation results as shown in Fig.8.
For the dense ‘small vehicles’, the model under the 1-shot
setting has some missed detection (the area enlarged in the
2nd row), while the model can segment the target pixels better
under the 5-shot setting. And for ‘soccer fields’ where similar
non-target pixels exist, the model can produce fewer false
pixel activation under the 5-shot setting. It can be found that
the proposed DMNet is able to capture more representative
potential information of the target category given multiple
support images.

C. Ablation Studies

A series of ablation studies are performed in this section
to explore the effect of each module on segmentation perfor-
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Fig. 8. Comparison of 1-shot and 5-shot segmentation results. With more
samples, our model produces more precise activation (more complete mask
boundaries and fewer false activation).

TABLE VI
ABLATION STUDIES OF DMNET ON ISAID UNDER THE 1-SHOT SETTING.

‘CPRM’ DENOTES THE CLASS-PUBLIC REGION MINING. ‘CSRM’
DENOTES THE CLASS-SPECIFIC REGION MINING. ‘KMS’ DENOTES THE
KNOWN-CLASS META SUPPRESSOR. ‘PARAMS’ MEANS THE NUMBER OF

LEARNABLE PARAMETERS. ‘∆’ REPRESENTS THE INCREMENT OF
VARIANTS OF DMNET OVER THE BASELINE (MIOU)

CPRM CSRM KMS mIoU FB-IoU Params ∆

45.71 61.73 6.2M -
✓ 47.47 63.81 7.4M 1.76

✓ 47.37 63.30 6.2M 1.66
✓ 47.12 62.73 6.2M 1.41

✓ ✓ 48.52 62.98 7.4M 2.81
✓ ✓ 47.60 63.15 7.4M 1.89

✓ ✓ 48.59 64.42 6.2M 2.88

✓ ✓ ✓ 49.58 64.46 7.4M 3.87

mance. Unless otherwise stated, the experiments are conducted
on iSAID with the ResNet-50 backbone in this section.

1) Overview: As shown in Table VI, it can be found that
the baseline with the CPRM module, CSRM module, and
KMS module have different degrees of improvement compared
to the baseline, showing that all three proposed components
facilitate the segmentation. Additionally, the performance of
the model improves when any two components are used, sug-
gesting that our modules promote each other and work together
to obtain better segmentation results rather than constrain each
other. According to 5th to 8th rows, performance deteriorates
in the absence of one of three modules, demonstrating the
necessity of three modules for prediction.

Our model ultimately achieves results of 49.58% mIoU
and 64.46% FB-IoU by integrating three modules. Notably,
the CSRM module does not use any learnable parameters,
while the KMS module only needs to store the known class
foreground and background prototypes (roughly 60KB) during
the training phase. This allows our model to obtain a 3.87%
mIoU improvement by adding only 2.2M parameters.

We visualize the results for the variants of DMNet and
baseline under the 1-shot setting, as shown in Fig.9. It’s

TABLE VII
ABLATION STUDY OF DIFFERENT STRUCTURES IN THE CPRM MODULE

UNDER THE 1-SHOT SETTING. ‘POTISION’ DENOTES THE POSITION-BASED
CLASS-PUBLIC REGION MINING MODULE (PCRM) AND ‘CHANNEL’

DENOTES THE CHANNEL-BASED CLASS-PUBLIC REGION MINING
MODULE (CCRM).

Position Channel mIoU FB-IoU Params

✓ 49.29 63.76 6.3M
✓ 46.99 63.81 7.3M

✓ ✓ 49.58 64.46 7.4M

remarkable that the baseline approach incorrectly activates
some regions that are easily confused or belong to known
classes, producing incomplete masks.

However, the proposed DMNet produces more accurate
predicted masks and fewer false activation than the baseline,
suggesting that our model can capture representative class
information and alleviate model bias toward known classes.
More details on the effects of each module are provided in
Section V-C2-V-C4.

2) The effect of CPRM module: This section focuses on the
effectiveness of the CPRM module first, visualized as shown
in Fig.10. Then we analyze the effect of different structures
on performance, with the experimental results shown in Table
VII.

According to Section IV-B, the CPRM module captures the
bidirectional semantic association between the support-query
image pair to reduce the distance between the image pair in the
semantic space. As shown in the 3th row in Fig.9, compared
with the baseline, the CPRM module can segment a more
complete ‘swimming pool’ and produce almost no false pixel
activation (yellow rectangular box area). This shows how well
the module can handle the problem of large intra-class variance
in remote sensing scenes. The 1.76% increment of mIoU in
Table VI also verifies the effectiveness from the results.

To further understand the functionality of the module, we
visualize the query image passing through the CPRM module
as shown in Fig.10. It can be found that after the module,
the query image tends to activate the regions of the target
category and suppress other regions, such as ‘storage tanks’,
‘ships’, and even for dense small-size ‘ships’, all can be well
activated.

We also perform ablation studies of the CPRM module
with different structures as shown in Table VII. It can be
found that mining the class-public semantic only on position or
on channel reduces mIoU by 0.29% and 2.59%, respectively,
which indirectly explains the necessity of both PCRM and
CCRM. It also shows that the category information is more
concentrated on the positions than the channels, which is also
consistent with the fact that people prefer to judge whether
two objects are similar by their shapes. The results validate
that the CPRM module can activate class-public regions in the
query image similar to the target of the support image.

3) The effect of CSRM module: The discussion first focuses
on the effectiveness of the CSRM module, as shown in Fig.11.
The effect of different filter thresholds on performance is then
explored, with the results presented in Table VIII. Moreover,
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Fig. 9. Qualitative visualization results of baseline and the variants of DMNet. From left to right: (a) support images with the ground-truth(GT) masks
(blue), (b) the results of the baseline (red), (c) the results of utilizing CPRM (red), (d) the results of utilizing CPRM+CSRM (red), (e) the results of utilizing
CPRM+CSRM+KMS (i.e., DMNet) (red), (f) query images with the ground-truth(GT) masks (red). The yellow rectangular box indicates the typical region
in the segmentation result.

Fig. 10. The visualization result (activation map) of the query feature through
the CPRM module. Red in the activation map means important, and blue
means unimportant. From left to right: (a) storage tank, (b) ships, (c) plane,
(d) tennis court, (e) harbor, and (f) dense small-size ships.

the generalisability of the CSRM module in other methods is
discussed in Table IX.

As mentioned in Section IV-C, the CSRM module aims to
mine the category semantics of the query image itself to cross

TABLE VIII
ABLATION STUDY OF THE CSRM MODULE UNDER THE 1-SHOT SETTING.

µ1 AND µ2 DENOTE CONFIDENCE THRESHOLDS FOR FOREGROUND
PROTOTYPES AND BACKGROUND PROTOTYPES, RESPECTIVELY. ‘CPM’

DENOTES THE CONFUSION-REGION PROTOTYPE MODULE(CPM).

µ1 µ2 CPM mIoU FB-IoU

0.6 0.6 ✓ 48.70 64.26
0.7 0.6 48.60 63.96
0.7 0.6 ✓ 49.58 64.46
0.8 0.6 ✓ 49.41 64.51
0.8 0.7 ✓ 49.03 64.32
0.9 0.7 ✓ 48.28 62.93
0.9 0.8 ✓ 48.62 63.75

the intra-class variance gap. According to the 4th and 6th rows
of Table VI, it can be found that the module can improve
the segmentation accuracy without using any parameters. To
qualitatively analyze the role of the module, we visualize the
results as shown in Fig.11. It can be found that more accurate
target regions are obtained, such as the ‘planes’ with extremely
accurate activation areas, ‘tennis courts’ and ‘storage tanks’
with less false activation areas, which is a good indication of
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Fig. 11. The visualization result of the CSRM module. (a) Query image
(red represents the target area), (b) Activation map without CSRM module,
(c) Prediction result without CSRM module, (d) Activation map with CSRM
module, (e) Prediction result with CSRM module.

TABLE IX
GENERALISABILITY STUDY OF THE CSRM MODULE IN OTHER METHODS
UNDER THE 1-SHOT SETTING. BLUE COLOR INDICATES THE INCREMENTS

AFTER CONNECTING THE CSRM MODULE IN SERIES.

Method mIoU FB-IoU
SCL [105] 44.28 61.66

SCL+CSRM 46.25(+1.97) 63.11(+1.45)

PFENet [92] 47.46 63.34
PFENet+CSRM 48.48(+1.02) 64.23(+0.89)

Baseline 45.71 61.73
Baseline+CSRM 47.37(+1.66) 63.30(+1.57)

the importance and effectiveness of mining the semantics from
the query image itself.

We explore the ablation studies of the CSRM module as
shown in Table VIII. µ1 and µ2 control the selection of
foreground and background prototypes of the query image.
A higher threshold value means a higher confidence level for
the selected features. Although we expect to select foreground
prototypes with features of high confidence, the CPM module
can improve the representation of prototypes by mining class-
specific semantics from low confidence features, so the choice
of µ1 is not sensitive to the results. And since the background
features in the query image are cluttered and complex, it
is logical to tolerate more noise and choose a threshold
with lower confidence. Based on the experimental results, we
believe that threshold µ1 and µ2 of 0.7 and 0.6, respectively,
are appropriate choices.

In addition, due to its plug-and-play nature, the CSRM
module can be well integrated with other methods. Table IX
demonstrates the generalisability of the CSRM module in other
methods. It can be found that after connecting the CSRM mod-
ule in series, SCLNet and PFENet obtain 1.97% and 1.02%
mIoU improvement, respectively, which fully demonstrates the
generality and effectiveness of the CSRM module.

Fig. 12. The visualization result of the KMS module. The KMS module
enables better activation of the regions of unknown class while suppressing
known class (e.g., ‘ship’, ‘small vehicle’, and ‘harbor’).

Fig. 13. The visualization results for different levels of features (activation
map). Query: query image, M-F: Middle-level feature, H-F: High-level
feature. High-level features reveal more accurate regions of interest for target
categories than mid-level features.

4) The effect of KMS module : Firstly, we focus on the ef-
fectiveness of the KMS module, with the results demonstrated
in Fig.12. Subsequently, we perform the ablation studies of
different layers and sources of the category features captured
during the training phase, whose results are presented in
Fig.13 and Table X. Finally, we explore the impact of hyper-
parameter settings in the module.

To alleviate the generalization breakdown of unknown
classes, we propose the Known-class Meta Suppressor (KMS)
module by capturing the representative semantics of known
classes and using them to suppress the activation of known
classes in the query image. As shown in column 5th in Fig.9,
the KMS module almost suppresses the activation of the cat-
egory ‘harbor’, significantly alleviating the model bias toward
known classes. We also visualize the activation maps of the
KMS module as shown in Fig.12, which nicely demonstrates
the role of the module in suppressing the activation of training
known classes. As shown in column 5th of Table VI, the
mIoU and FB-IoU of the model decreased by 1.06% and
1.48%, respectively, after removing the module, which also
quantitatively proves the effectiveness from the results.

Fig.13 demonstrates that the high-level features are more
class-specific and can locate more accurate target category
regions than the mid-level features, hence the choice to mine
high-level features instead of mid-level features. Table X also
shows that better segmentation performance is obtained using
higher-level features in terms of both mIoU and FB-IoU
metrics.
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TABLE X
ABLATION STUDY OF THE KMS MODULE UNDER THE 1-SHOT SETTING.

‘FP’ AND ‘BP’ REPRESENT THE FOREGROUND PROTOTYPES AND
BACKGROUND PROTOTYPES OF THE UNKNOWN CLASSES IN THE SUPPORT

IMAGES, RESPECTIVELY. ‘BLOCK’ REPRESENTS THE SOURCE OF THE
CAPTURED FEATURE INFORMATION (MID-LEVEL OR HIGH-LEVEL).

FP BP Block mIoU FB-IoU

✓ Middle 48.66 63.27
✓ ✓ Middle 49.06 63.82
✓ High 49.09 64.33
✓ ✓ High 49.58 64.46

Fig. 14. Study of the impact of the number of iterations of model start updates
on performance in the KMS module. λ represents that the model starts to
update at the number of iterations of a certain epoch. For example, if the λ is
0.2, and there are 1000 iterations in 1epoch, the model starts gradient update
at 0.2*1000 iterations. Special note, here λ is 0 means the KMS module is
not used. The pink dashed line represents the segmentation accuracy without
using the KMS module.

Meanwhile, Table X also shows the effect of different
sources for class prototypes on performance. It can be found
that additionally using the background prototype of the support
image in the Known-class Suppression Module to suppress
the activation of non-target regions can lead to an increase in
mIoU and FB-IoU by 0.49% and 0.13%, respectively. This is a
good indication that there is some similarity in the background
semantics in images of the same category, which can assist in
activating the target regions of the novel class.

As mentioned in Section IV-D1, the parameters of the
model are updated only after a certain number of iterations
to ensure the expressiveness of the known-class prototypes.
We analyze the impact of the number of iterations the model
starts to update on performance as shown in Fig.14. It can
be found that the model undergoes more iterations (λ from
0.1 to 0.8) to obtain better known-class prototypes and thus
better segmentation performance, while the model undergoes
few iterations to reduce the segmentation performance, which
is basically consistent with our hypothesis. Also, when λ
continues to increase to 1 there is a certain decrease in
the segmentation, which we believe that adopting a frozen
backbone network for feature extraction will contain a certain
amount of noise. After a certain number of iterations, some
noise and errors may accumulate in the prototype and affect
the incorrect prototype distribution. Therefore, based on the

experimental results we set the hyper-parameter λ to 0.8.

TABLE XI
ABLATION STUDIES OF PRE-TRAINED VISUAL MODELS ON ISAID IN

MIOU AND FB-IOU.

Backbone
1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU
VGG-16 45.18 63.10 47.67 63.70

ResNet-50 49.58 64.46 51.34 65.81
ResNet-101 49.21 64.03 51.29 65.88

ViT-B/16 46.84 61.91 48.96 62.46
Swin-B 49.45 62.18 52.91 64.69

TABLE XII
ABLATION STUDIES OF FINE-TUNING DIFFERENT LAYERS OF THE

BACKBONE IN THE BASELINE ON ISAID DATASET

Method Layer
1-shot 5-shot

mIoU FB-IoU mIoU FB-IoU

Fully finetune 0,1,2,3,4 39.61(−6.10) 59.74 43.62(−5.27) 61.64

Part finetune
1,2,3,4 40.80(−4.91) 59.22 45.87(−3.02) 62.27

2,3,4 42.27(−3.44) 60.09 45.98(−2.91) 62.99

3,4 43.02(−2.69) 59.48 47.76(−1.13) 62.83

Fix - 45.71 61.73 48.89 63.70

5) The effect of the backbone setting: In this section, we
discuss the study of segmentation performance with different
backbone settings.

Firstly, we perform an ablation study on different pre-
trained visual models. The experimental results are shown in
Table XI, it can be noticed that the performance with the
backbone of ResNet-50 is instead better than the ResNet-
101. Similar experimental findings were reported by PFENet
[92] in their study. We argue that the adopted paradigm of
freezing the backbone network may have inhibited the feature
extraction effect of the deeper network. Moreover, considering
that pre-trained large visual models have good generalization,
we also explore their combination with FSS methods. Two
transformers, Swin Transformer [12] and Vision Transformer
[15] are chosen for validation. Following the existing training
paradigm, we replace the previous CNN backbone with two
pre-trained transformers and freeze them during the training
phase to maintain a degree of generality. It can be seen that
there is no expected additional gain after replacing the pre-
trained large visual model compared to the previous CNN
backbone, instead the performance decreases in most of the
cases. Zhang et al. [14] also failed to achieve the expected
performance gain by using ViT [15] and Deit [13] as Backbone
for CyCTR [108] and PFENet [92] in their transformer-based
FSS study. Based on this phenomenon, we believe that the pre-
trained large visual model may not match the current training
paradigm of freezing backbone networks commonly adopted
in FSS, and blindly selecting stronger backbone networks does
not necessarily yield desirable results.

We then conduct a study of different fine-tuning strategies
for the backbone. As shown in Table XII, we adopt different
fine-tuning strategies for ResNet-50 in the baseline, including
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Fig. 15. Performance comparison of DMNet and baseline in different
categories.

full fine-tuning and part-fine-tuning. It is worth noting that
i = 0, 1, 2, 3, 4 represents the fine-tuning of the ith layer
parameter. It can be found that the more parameters of the
backbone that are fine-tuned, the more severe the performance
degradation compared to freezing the backbone, especially
when fully fine-tuned, the mIoU scores decrease by 6.10%
and 5.27% under the 1-shot and 5-shot settings, respectively.
Similar conclusions were achieved by Sun et al. [85] in their
experiments to fine-tune different backbone layers on Pascal-
5i. It shows that for the Few-Shot segmentation task, blindly
fine-tuning the backbone can lead to bias toward known
classes and affect the performance for segmenting unknown
classes. Therefore, we choose to fix the backbone parameters
to maintain a certain level of generalization.

D. Statistical Analysis

To further explore the detailed impact mechanisms of our
method, we statistically analyze the performance of our DM-
Net for different categories and different-scale objects in this
section.

1) The performance in different categories: Firstly, we
compared the performance of the proposed DMNet with the
baseline on different categories. Fig.15 presents the results of
experiments on the iSAID dataset. It can be found that the
proposed DMNet achieves a good performance gain in each
category. Among them, the ‘storage tank’, ‘baseball diamond’,
‘bridge’, and ‘plane’ categories gain more than 5% mIoU
increment. It is observed that the inter-class variance of these
classes is large and varies greatly in the potential feature space,
in which case the CPRM and CSRM modules in our DMNet
can address the problem well from different perspectives.

In addition, the baseline tends to confuse ‘ship’ with ‘har-
bor’, ’large vehicle’ with ’small vehicle’, and this over-fitting
problem due to the model bias towards known classes can be
well mitigated by the KMS module.

2) The performance in different scales: To analyze the
performance of the model for objects of different scales, we
randomly sample 3000 query images of different classes in the
iSAID dataset for 1-shot evaluation. Based on the sampling

Fig. 16. Performance comparison of DMNet and baseline in different scale
objects. Here we consider the number of pixels in the target area as the object
size (image size is 512×512). It is clearly found that the proposed DMNet
obtains a higher mIoU score compared to the baseline (the blue horizontal
dashed line is above the purple horizontal dashed line).

Fig. 17. Some typical failure cases of the model. Specific false negatives and
false positives are marked with green color and yellow circles.

statistics of the object scales of the iSAID dataset as shown in
Fig.16, we can see that most of the object scales are around
10,000 (the vertical dashed line represents the mean value
of the scales). Subsequently, we analyze the segmentation
performance and find that compared with the baseline; our
DMNet obtains a higher mIoU (the horizontal dashed line
represents the mIoU score), a larger number of high-quality
segmentation results (top of the figure), and a smaller number
of low-quality segmentation results (bottom left of the figure).
These satisfactory results show that our model is strongly
robust to object scale and can handle scale variations between
the query and support images well, i.e., it can solve large
intra-class variation problems.

E. Failure case analysis

Comparative experiments, ablation studies, and statistical
analyses show that the proposed method achieves the best
segmentation performance in two remote sensing datasets,
iSAID and LoveDA. However, there are some issues that
need to be addressed. As shown in Fig.17, when the target
and background are extremely similar due to color, contrast,
etc., there will be some false segmentation, e.g. the road in
Fig.17(a) and the green pond in Fig.17(b) marked by the
yellow circle. In addition, when there are multiple objects of
the same class with large differences in appearance, texture,
and color in the image, the proposed method is unable to
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focus on all the targets and has some misses, such as the
targets marked by the green circle in Fig.17(b). We propose
some thoughts that may help to solve these failures: (1) The
proposed DMNet uses pixel-level cosine similarity computa-
tion to obtain predictions while ignoring local associations,
and adding local semantic associations may be able to solve
the failures. (2) Introducing a representative category prior to
facilitating the model to better focus on the target region, e.g.,
semantically representative textual prompts. (3) Applying the
foundation model with strong generalization performance to
Few-shot tasks to better achieve Few-shot learning in remote
sensing scenarios.

VI. CONCLUSION

This paper proposes a DMNet network for few-shot seg-
mentation in remote sensing scenes that no longer focuses
solely on support images but pays more attention to the query
image itself. To cross the intra-class variance gap, we propose
the CPRM module and CSRM module to mine the public
semantics of the target category and the target semantics
specific to the query image itself, respectively, with both of
them contributing to each other to jointly guide the segmen-
tation. In addition, it is necessary to address the over-fitting
of the model to the known classes. A unique meta-training
paradigm is proposed to continuously learn the knowledge
of known classes in a meta-memory, while the KMS module
correspondingly utilizes the learned knowledge to suppress the
activation of known class regions in unknown class samples.
Extensive experiments on iSAID and LoveDA have validated
the remarkable performance of DMNet, which outperforms
previous approaches in achieving state-of-the-art performance
with the minimum number of learnable parameters. In future
work, we are committed to exploring the potential and feasi-
bility of FSS in the multi-modal domain.

REFERENCES

[1] M. D. Hossain and D. Chen, “Segmentation for object-based image
analysis (obia): A review of algorithms and challenges from remote
sensing perspective,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 150, pp. 115–134, 2019.

[2] Y. Chen, C. Wei, D. Wang, C. Ji, and B. Li, “Semi-supervised con-
trastive learning for few-shot segmentation of remote sensing images,”
Remote Sensing, vol. 14, no. 17, p. 4254, 2022.

[3] J. Wang, W. Li, Y. Gao, M. Zhang, R. Tao, and Q. Du, “Hyperspectral
and sar image classification via multiscale interactive fusion network,”
IEEE Transactions on Neural Networks and Learning Systems, 2022.

[4] W. Li, J. Wang, Y. Gao, M. Zhang, R. Tao, and B. Zhang, “Graph-
feature-enhanced selective assignment network for hyperspectral and
multispectral data classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 60, pp. 1–14, 2022.

[5] Y. Gui, W. Li, X.-G. Xia, R. Tao, and A. Yue, “Infrared attention net-
work for woodland segmentation using multispectral satellite images,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp.
1–14, 2022.

[6] Y. Wang, Y. Peng, W. Li, G. C. Alexandropoulos, J. Yu, D. Ge, and
W. Xiang, “Ddu-net: Dual-decoder-u-net for road extraction using high-
resolution remote sensing images,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 60, pp. 1–12, 2022.

[7] N. Dong and E. P. Xing, “Few-shot semantic segmentation with
prototype learning.” in BMVC, vol. 3, no. 4, 2018.

[8] K. Rakelly, E. Shelhamer, T. Darrell, A. Efros, and S. Levine, “Con-
ditional networks for few-shot semantic segmentation,” 2018.

[9] J. Wang, F. Gao, J. Dong, Q. Du, and H.-C. Li, “Change detection from
synthetic aperture radar images via dual path denoising network,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 15, pp. 2667–2680, 2022.

[10] J. Wang, F. Gao, J. Dong, and Q. Du, “Adaptive dropblock-enhanced
generative adversarial networks for hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 6,
pp. 5040–5053, 2020.

[11] J. Wang, F. Gao, J. Dong, S. Zhang, and Q. Du, “Change detection
from synthetic aperture radar images via graph-based knowledge sup-
plement network,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 15, pp. 1823–1836, 2022.

[12] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted win-
dows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[13] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[14] J.-W. Zhang, Y. Sun, Y. Yang, and W. Chen, “Feature-proxy trans-
former for few-shot segmentation,” Advances in Neural Information
Processing Systems, vol. 35, pp. 6575–6588, 2022.

[15] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[16] Y. Liu, X. Zhang, S. Zhang, and X. He, “Part-aware prototype net-
work for few-shot semantic segmentation,” in Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IX 16. Springer, 2020, pp. 142–158.

[17] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisser-
man, “The pascal visual object classes (voc) challenge,” International
journal of computer vision, vol. 88, pp. 303–338, 2010.
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