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TransY-Net: Learning Fully Transformer Networks
for Change Detection of Remote Sensing Images

Tianyu Yan, Zifu Wan, Pingping Zhang∗, Gong Cheng and Huchuan Lu

Abstract—In the remote sensing field, Change Detection (CD)
aims to identify and localize the changed regions from dual-
phase images over the same places. Recently, it has achieved
great progress with the advances of deep learning. However,
current methods generally deliver incomplete CD regions and
irregular CD boundaries due to the limited representation ability
of the extracted visual features. To relieve these issues, in this
work we propose a novel Transformer-based learning framework
named TransY-Net for remote sensing image CD, which improves
the feature extraction from a global view and combines multi-
level visual features in a pyramid manner. More specifically, the
proposed framework first utilizes the advantages of Transformers
in long-range dependency modeling. It can help to learn more dis-
criminative global-level features and obtain complete CD regions.
Then, we introduce a novel pyramid structure to aggregate multi-
level visual features from Transformers for feature enhancement.
The pyramid structure grafted with a Progressive Attention
Module (PAM) can improve the feature representation ability
with additional inter-dependencies through spatial and channel
attentions. Finally, to better train the whole framework, we
utilize the deeply-supervised learning with multiple boundary-
aware loss functions. Extensive experiments demonstrate that our
proposed method achieves a new state-of-the-art performance on
four optical and two SAR image CD benchmarks. The source
code is released at https://github.com/Drchip61/TransYNet.

Index Terms—Change Detection, Remote Sensing Image, Vi-
sion Transformer, Progressive Attention, Deep Learning.

I. INTRODUCTION

CHange Detection (CD) plays an important role in the
field of remote sensing. It aims to detect the key change

regions in dual-phase remote sensing images captured at differ-
ent times but over the same scene area. In fact, remote sensing
image CD has been used in many real-world applications, such
as land-use planning, urban expansion management, geological
disaster monitoring, ecological environment protection. How-
ever, due to the change regions can be any shapes in complex
scenarios, there are still many challenges for high-accuracy
CD. In addition, remote sensing image CD by handcrafted
methods is time-consuming and labor-intensive, thus there is
a great need for fully-automatic and highly-efficient CD.
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In recent years, deep learning has been widely used in
remote sensing image processing due to its powerful feature
representation capabilities, and has shown great potential in
CD. With Convolutional Neural Networks (CNN) [1] and
Transformers [2], [3], many CD methods extract more discrim-
inative features and have demonstrated good performances.
However, previous CD methods still have the following
shortcomings: 1) With the resolution improvement of remote
sensing images, rich semantic information contained in high-
resolution images is not fully utilized. As a result, current
CD methods are unable to distinguish pseudo changes such
as shadow, vegetation and sunshine in sensitive areas. 2)
Boundary information in complex remote sensing images is
often missing. In previous methods, the extracted changed
areas often have regional holes and their boundaries can be
very irregular, resulting in a poor visual effect [4]. 3) The
temporal information contained in dual-phase remote sensing
images is not fully utilized, which is also one of the reasons
for the low performance of current CD methods.

To tackle above issues, in this work we propose a novel
Transformer-based learning framework named TransY-Net for
remote sensing image CD, which improves the feature ex-
traction from a global view and combines multi-level visual
features in a pyramid manner. More specifically, the proposed
framework has a Y-shape structure whose input is a dual-phase
remote sensing image pair. We first utilize the advantages
of Transformers in long-range dependency modeling to learn
more discriminative global-level features. Then, to highlight
the change regions, the summation features and difference
features are generated by directly comparing the temporal
features of dual-phase remote sensing images. Thus, one
can obtain complete CD regions. To improve the boundary
perception ability, we further introduce a pyramid structure
to aggregate multi-level visual features from Transformers.
The pyramid structure grafted with a Progressive Attention
Module (PAM) can improve the feature representation ability
with additional inter-dependencies through spatial and channel
attentions. Finally, to better train the framework, we utilize
the deeply-supervised learning with multiple boundary-aware
loss functions. Extensive experiments show that our method
achieves a new state-of-the-art performance on four optical
and two SAR image CD benchmarks.

The main contributions are summarized as follows:
• We propose a Transformer-based learning framework

(i.e., TransY-Net) for remote sensing image CD, which
can improve the feature extraction from a global view and
combine multi-level visual features in a pyramid manner.

• We propose a novel pyramid structure grafted with a
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Progressive Attention Module (PAM) to further improve
the feature representation ability with additional inter-
dependencies through spatial and channel attentions.

• We introduce the deeply-supervised learning with multi-
ple boundary-aware loss functions, to address the irregu-
lar boundary problem in CD.

• Extensive experiments on four optical and two SAR
image CD benchmarks show that our framework attains
better performances than most state-of-the-art methods.

We note that this work is an extension of its previous
conference version [5] with some key improvements as fol-
lows: 1) We propose a more powerful PAM with joint spatial
and channel attentions. 2) We enhance the multi-level visual
features with multi-scale pooling. 3) We provide more discus-
sions with other Transformer-based methods. 4) We add more
experimental results to verify the effectiveness of the proposed
framework and modules.

II. RELATED WORK

A. Change Detection of Remote Sensing Images

Technically, the task of change detection takes dual-phase
remote sensing images as inputs, and predicts the change
regions of the same places. Before deep learning, direct
classification-based methods witness the great progress in
CD. For example, Change Vector Analysis (CVA) [6] is
powerful in extracting pixel-level features and is widely uti-
lized in CD. With the rapid improvement in image resolu-
tion, more details of objects have been recorded in remote
sensing images. Therefore, many object-aware methods are
proposed to improve the CD performance. For example, Tang
et al. [7] propose an object-oriented CD method based on the
Kolmogorov–Smirnov test. Li et al. [8] propose the object-
oriented CVA to reduce the number of pseudo detection pixels.
With multiple classifiers and multi-scale uncertainty analysis,
Tan et al. [9] build an object-based approach for complex
scene CD. Although above methods can generate CD maps
from dual-phase remote sensing images, they generally deliver
incomplete CD regions and irregular CD boundaries due to the
limited representation ability of the extracted visual features.

With the advances of deep learning, many works improve
the CD performance by extracting more discriminative fea-
tures. For example, Zhang et al. [10] utilize a Deep Belief
Network (DBN) to extract deep features and represent the
change regions by patch differences. Saha et al. [11] combine a
pre-trained deep CNN and traditional CVA to generate certain
change regions. Hou et al. [12] take the advantages of deep
features and introduce the low rank analysis to improve the CD
results. Peng et al. [13] utilize saliency detection analysis and
pre-trained deep networks to achieve unsupervised CD. Since
change regions may appear in any places, Lei et al. [14] in-
tegrate Stacked Denoising AutoEncoders (SDAE) with multi-
scale superpixel segmentation to realize superpixel-based CD.
Similarly, Lv et al. [15] utilize a Stacked Contractive Au-
toEncoder (SCAE) to extract temporal change features from
image superpixels, then adopt a clustering method to produce
accurate CD maps.

Meanwhile, some methods formulate the CD task as a
binary image segmentation task. Thus, CD can be finished
in a supervised manner. For example, Alcantarilla et al. [16]
first concatenate dual-phase images as one image with six
channels. Then, the six-channel image is fed into a Fully
Convolutional Network (FCN) to realize the CD. Similarly,
Peng et al. [17] combine bi-temporal remote sensing images
as one input for CD. Daudt et al. [18] utilize Siamese networks
to extract features for each remote sensing image, then predict
the CD maps with fused features. The experimental results
prove the efficiency of Siamese networks. Furthermore, Guo et
al. [19] use a fully convolutional Siamese network with a
contrastive loss to measure the change regions. Zhang et
al. [20] propose a deeply-supervised image fusion network
for CD. There are also some works focused on specific object
CD. For example, Liu et al. [4] propose a dual-task constrained
deep Siamese convolutional network for building CD. Jiang et
al. [21] propose a pyramid feature-based attention-guided
Siamese network for building CD. Lei et al. [22] propose
a hierarchical paired channel fusion network for street scene
CD. The aforementioned methods have shown great success
in feature learning for CD. However, these methods have
limited global representation capabilities and usually focus on
local regions of changed objects. We find that Transformers
have strong characteristics in extracting global features. Thus,
different from previous works, we take the advantages of
Transformers, and propose a new learning framework for more
discriminative feature representations.

B. Vision Transformers for Change Detection

Transformers [23] are firstly proposed for time series
tasks, such as natural language processing, speech genera-
tion. Recently, they have been applied to many computer
vision tasks, such as image classification [2], [3], person re-
identification [24], [25] and so on. Inspired by the extreme
effectiveness, Zhang et al. [26] deploy a Swin Transformer
structure [3] with a U-Net [27] for remote sensing image
CD. Zheng et al. [28] design a deep Multi-task Encoder-
Transformer-Decoder (METD) architecture for semantic CD.
Wang et al. [29] incorporate a Siamese Vision Transformer
(SViT) into a feature difference framework for CD. To take
the advantages of both Transformers and CNNs, Wang et
al. [30] propose to combine a Transformer and a CNN for
remote sensing image CD. Li et al. [31] propose an encoding-
decoding hybrid framework for CD, which has the advantages
of both Transformers and U-Net. Bandara et al. [32] unify
hierarchically structured Transformer encoders with Multi-
Layer Perception (MLP) decoders in a Siamese network to
efficiently render multi-scale long-range details for accurate
CD. Chen et al. [33] propose a Bitemporal Image Transformer
(BIT) to efficiently and effectively model contexts within the
spatial-temporal domain for CD. Ke et al. [34] propose a
hybrid Transformer with token aggregation for remote sens-
ing image CD. Song et al. [35] combine the multi-scale
Swin Transformer and a deeply-supervised network for CD.
All these methods have shown that Transformers can model
the inter-patch relations for strong feature representations.
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Fig. 1. The overall structure of our proposed framework (TransY-Net). Firstly, a typical Siamese Feature Extraction (SFE) network with shared Swin
Transformers are utilized to extract multi-level feature maps from dual-phase remote sensing images. Then, the Deep Feature Enhancement (DFE) is introduced
to highlight the change regions with summation features and difference features. Afterwards, the Progressive Change Prediction (PCP) is adopted to encode and
integrate multi-level features progressively for the final change map prediction. To improve the representation ability, a pyramid structure with a Progressive
Attention Module (PAM) is utilized with additional interdependencies through spatial and channel attentions. Finally, the Deep Supervison (DS) is utilized
with multiple boundary-aware loss functions to train the whole framework.

However, these CD methods do not take the full abilities
of Transformers in multi-level feature learning. Different
from existing Transformer-based CD methods, our proposed
approach handles incomplete CD regions and irregular CD
boundaries. Besides, we utilize a Siamese structure to process
dual-phase remote sensing images, and introduce a pyramid
structure to aggregate multi-level features from Transformers
for feature enhancement.

C. Feature Pyramid Methods in Remote Sensing

Multi-scale features play an important role in remote sens-
ing image processing, including change detection. As a typical
multi-scale feature fusion method, Feature Pyramid Network
(FPN) [36] is first proposed for object detection from natural
images, and it can aggregate multi-scale features in a coarse-
to-fine manner. Recently, it also shows great successes in
remote sensing tasks. For example, Yang et al. [37] propose a
multi-scale rotation dense FPN for automatic ship detection.
Li et al. [38] refine the FPN and multi-layer attention network
for arbitrary-oriented object detection of remote sensing im-
ages. Shamsolmoali et al. [39] utilize a multi-patch FPN for
weakly supervised object detection in optical remote sensing
images. Wang et al. [40] enhance the FPN with deep semantic
embedding for remote sensing scene classification. Gao et
al. [41] combine multiple FPNs for end-to-end road extraction.
Zhang et al. [42] introduce a Laplacian FPN for small object
detection. Zhang et al. [43] combine a FPN and pixel pair
matching for water-body segmentation. We note that our
work is indeed inspired by the classical FPN. However, our
work introduces advanced Transformers into the FPN, which
can capture more long-range contextual information. Besides,
our pyramid structure can improve the feature representation
ability with additional inter-dependencies through spatial and
channel attentions. They are different from the classical FPN.

III. PROPOSED APPROACH

As shown in Fig. 1, our proposed framework (TransY-Net)
has a Y-shape structure, and includes four key components,
i.e., Siamese Feature Extraction (SFE), Deep Feature Enhance-
ment (DFE), Progressive Change Prediction (PCP) and Deep
Supervision (DS). By taking dual-phase images as inputs, SFE
first extracts multi-level visual features through two weight-
shared Swin Transformers. Then, DFE utilizes the multi-level
visual features to generate summation features and difference
features, which highlight the change regions with temporal
information. Afterwards, by integrating all above features,
PCP introduces a pyramid structure grafted with a Progressive
Attention Module (PAM) for the final CD prediction. Finally,
to train our proposed framework, DS is introduced to achieve
the deeply-supervised learning with multiple boundary-aware
loss functions for each feature level. We will elaborate on these
key modules in the following subsections.

A. Siamese Feature Extraction

Following previous works, we introduce a Siamese structure
to extract multi-level features from the dual-phase remote
sensing images. More specifically, the Siamese structure con-
tains two encoder branches, which share learnable weights
and are used for the multi-level feature extraction of remote
sensing images at temporal phase 1 (T1) and temporal phase
2 (T2), respectively. As shown in the left part of Fig. 1,
we take the Swin Transformer [3] as the basic backbone
of the Siamese structure, which involves five stages in total.
Different from other typical Transformers [2], [23], the Swin
Transformer replaces the standard Multi-Head Self-Attention
(MHSA) with Window-based Multi-Head Self-Attention (W-
MHSA) and Shifted Window-based Multi-Head Self-Attention
(SW-MHSA), to reduce the computational complexity of the
global self-attention. To improve the representation ability, the
Swin Transformer also introduces the Multi-Layer Perception
(MLP), LayerNorm (LN) layers and residual connections.
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Fig. 2. The basic structure of the used Swin Transformer block.

Fig. 2 shows the basic structure of the Swin Transformer block
used in this work. Technically, the calculation formulas of all
the procedures are given as follows:

X̄l
= W-MHSA(LN(Xl−1)) + Xl−1, (1)

Xl = MLP(LN(X̄l
)) + X̄l

, (2)

X̄l+1
= SW-MHSA(LN(Xl)) + Xl, (3)

Xl+1 = MLP(LN(X̄l+1
)) + X̄l+1

, (4)

where X̄ is the output with the W-MHSA or SW-MHSA mod-
ule and X is the output with the MLP module. At each stage
of the original Swin Transformers, the feature resolution is
halved, while the channel dimension is doubled. More specif-
ically, the feature resolution is reduced from (H/4)× (W/4)
to (H/32)× (W/32), and the channel dimension is increased
from C to 8C. In order to take advantages of global-level
information, we introduce an additional Swin Transformer
block to enlarge the receptive field of the feature maps.
Besides, to reduce the computation, we uniformly change
the channel dimension to C, and generate encoded features
[E1

T1,E2
T1, ...,E5

T1] and [E1
T2,E2

T2, ...,E5
T2] for the T1 and T2

images, respectively. Based on the weight-shared Swin Trans-
formers, the multi-level features can be extracted. In general,
features in the high-level capture global semantic information,
while features in the low-level retain local detail information.
Both of them help the detection of change regions.

B. Deep Feature Enhancement

In complex scenarios, there are many visual challenges for
remote sensing image CD. Thus, only depending on the above
features is not enough. To highlight the change regions, we
propose to enhance the multi-level visual features with feature
summation and difference, as shown in the top part and bottom
part of Fig. 1. Here, we note that the difference operation is
a typical method for highlighting the changed regions. While
the summation operation is also a useful method for feature
fusion. When using the summation of two-stream features,
the common information is enhanced. It is very useful for the
change detection as verified in [44]. More specifically, we first

perform a point-wise feature summation and difference, then
introduce a contrast feature associated to each local feature.
The enhanced features can be represented as:

Ēk
S = ReLU(BN(Conv(Ek

T1 + Ek
T2))), (5)

Ēk,m
SC = Ēk

S − Poolm(Ēk
S), (6)

Ek
S = [Ēk

S , Ēk,3
SC , ..., Ēk,9

SC ], (7)

Ēk
D = ReLU(BN(Conv(Ek

T1 − Ek
T2))), (8)

Ēk,m
DC = Ēk

D − Poolm(Ēk
D), (9)

Ek
D = [Ēk

D, Ēk,3
DC , ..., Ēk,9

DC ], (10)

where Ek
S and Ek

D (k = 1, 2, ..., 5) are the enhanced features
with point-wise summation and difference, respectively. ReLU
is the rectified linear unit, BN is the batch normalization,
Conv is a 1× 1 convolution, and Poolm is a m×m average
pooling with appropriate paddings (m ∈ {3, 5, 7, 9}). [,]
is the feature concatenation in channel. In fact, Ēk,m

SC and
Ēk,m
DC capture contrast features, and can make change regions

stand out from their surrounding background. Meanwhile, in
most cases, keeping the original features shows better results
due to the rich contextual information. Thus, we concatenate
them with contrast features. Through the proposed DFE, more
information of change regions and boundaries are highlighted
with temporal information. Thus, the framework can make the
extracted features more discriminative and obtain better CD
results. We refer the readers to [45] for more insights.

C. Progressive Change Prediction

Since change regions can be any shapes and appear at any
scales, we should consider the CD predictions in various cases.
Inspired by the feature pyramid [36], we propose a progressive
change prediction method, as shown in the middle part of
Fig. 1. To improve the representation ability, a pyramid struc-
ture with a Progressive Attention Module (PAM) is utilized
with additional interdependencies through spatial and channel
attentions. The structure of the proposed PAM is illustrated
in Fig. 3. The PAM first takes the summation features and
difference features as inputs, then a Spatial-level Attention
(SA) and a Channel-level Attention (CA) are jointly applied
to enhance the features related to change regions. In addition,
as we all know, residual connections [1] are famous, popular
and efficient structures in current deep models. It alleviates
the vanishing gradient problem and accelerates the training
convergence. Thus, we further introduce a residual connection
to improve the learning ability. The final feature map can be
obtained by a 1 × 1 convolution. Formally, the PAM can be
represented as:

Fk = ReLU(BN(Conv([Ek
S ,Ek

D]))), (11)

Fk
SA = Fk ∗ σ(Conv(SAC(Fk))), (12)

Fk
CA = Fk ∗ σ(Conv(GAP(Fk))), (13)

Fk
A = Conv(Fk

SA + Fk
CA + Fk), (14)
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Fig. 3. The structure of our proposed Progressive Attention Module (PAM).

where σ is the Sigmoid function, SAC is the summation along
the channel, and GAP is the global average pooling.

To achieve the progressive change prediction, we build the
decoder pyramid grafted with a PAM as follows:

Fk
P =

{
Fk
A, k = 5,

UM(SwinBlockn(Fk+1
P ))) + Fk

A, 1 ≤ k < 5.
(15)

where UM is the patch unmerging block for feature upsam-
pling [3], and SwinBlockn is the Swin Transformer block with
n layers. From the above formula, one can see that our PCP
can make full use of the interdependencies within spatial and
channel, and progressively aggregate multi-level features to
improve the perception ability of the change regions. Here, we
note that the pyramid structure is complementary to residual
connections. Many previous works have already verified this
fact. Thus, it is reasonable to introduce residual connections
under the premise of a pyramid structure.

D. Loss Function

To optimize our framework, DS is utilized to achieve the
deeply-supervised learning [46]–[48] with multiple boundary-
aware loss functions for each feature level. The overall loss is
defined as the summation loss over all the side-outputs and the
final fusion prediction. Specifically, we first take the features
of the PCP, i.e., Fk

P (k = 1, 2, ..., 5), and use a deconvolutional
layer for the corresponding prediction Ps as side-outputs.
Then, we concatenate them for the final fusion prediction,

Pf = Conv[P1, ...,PS ]. (16)

All the side-outputs and the final fusion prediction are super-
vised by the proposed hybrid loss:

L = Lf +

S∑
s=1

αsLs, (17)

where Lf is the loss of the final fusion prediction and Ls is
the loss of the s-th side-output, respectively. S denotes the
total number of the side-outputs and αs is the weight for each
level loss. Our method includes five side-outputs, i.e., S = 5.

To obtain complete CD regions and regular CD boundaries,
we define Lf or Ls as a combined loss with three terms:

Lf/s = LWBCE + LSSIM + LSIoU , (18)

where LWBCE is the weighted binary cross-entropy loss,
LSSIM is the structural similarity loss and LSIoU is the
soft intersection over union loss. The LWBCE provides a
probabilistic measure of similarity between the prediction and
ground truth from a pixel-level view. The LSSIM captures
the structural information of change regions in patch-level.
The LSIoU is inspired by measuring the similarity of two
sets, and yields a global similarity in CD map-level. More
specifically, given the ground truth probability gl(x) and the
estimated probability pl(x) at pixel x belong to the class l, the
LWBCE loss function is defined as:

LWBCE = −
∑

x

w(x)gl(x)log(pl(x)). (19)

Here, we utilize weights w(x) to adapt the loss function to
the challenges that we have encountered in CD: the class
imbalance and the errors along CD boundaries. Given the
frequency fl of class l in the training data, the indicator
function I , the training prediction T , and the gradient operator
∇, then the weights are defined as:

w(x) =
∑
l

I(T (x == l))
median(f)

fl
+ w0I(|∇T (x)| > 0),

(20)
where f = [f1, ..., fL] is the vector of all class frequencies.
The first term models the median frequency balancing [49] and
compensates for the class imbalance problem by highlighting
classes with a low probability. The second term puts higher
weights on the CD boundaries to emphasize on the correct
detection of contours.

The LSSIM loss considers a local neighborhood of each
pixel [50]. Let x̂ = {xj : j = 1, ..., N2} and ŷ = {yj : j =
1, ..., N2} be the pixel values of two corresponding patches
(size: N ×N ) cropped from the prediction P and the ground
truth G respectively, the LSSIM loss is defined as:

LSSIM = 1− (2µxµx + ϵ)(2σxy + ϵ)

(µ2
x + µ2

y + ϵ)(σ2
x + σ2

y + ϵ)
, (21)

where µx, µy and σx, σy are the mean and standard deviations
of x̂ and ŷ respectively. σxy is their covariance. Here, ϵ = 10−4

is used to avoid dividing by zero.
In this work, one metric of interest at test time is the

Intersection over Union (IoU). Thus, we also introduce the
soft IoU loss [51], which is differentiable for model learning.
The LSIoU is defined as:

LSIoU = 1−
∑

x pl(x)gl(x)∑
x[pl(x) + gl(x)− pl(x)gl(x)]

. (22)

When utilizing all above losses, the LWBCE loss can relieve
the class imbalance problem for change pixels, the LSSIM

loss highlights the local structure of change boundaries, and
the LSIoU loss gives more focus on the overall change regions.
Thus, we can obtain better CD results and make the framework
easier to optimize.

IV. EXPERIMENTS

In this section, we perform extensive experiments to verify
the effectiveness of the proposed framework. We first intro-
duce the used datasets, evaluation metrics and implementation
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details. Then, we compare the proposed method with other
outstanding CD methods. Finally, we perform ablation studies
to verify the effectiveness of key modules with quantitative
and qualitative comparisons.

A. Datasets

LEVIR-CD [52] is a public large-scale remote sensing
CD dataset. It contains 637 image pairs with a 1024×1024
resolution (0.5m). We follow its default dataset split, and crop
original images into small patches of size 256×256 with no
overlapping. Therefore, we obtain 7120/1024/2048 pairs of
image patches for training/validation/test, respectively.

WHU-CD [53] is a public building CD dataset. It contains
one pair of high-resolution (0.075m) aerial images of size
32507×15354. As no pre-definite data split is widely-used, we
crop the original image into small patches of size 256×256
with no overlap and randomly split them into three parts:
6096/762/762 for training/validation/test, respectively.

SYSU-CD [54] is also a public building CD dataset. It
contains 20000 pairs of high-resolution (0.5m) images of size
256×256. We follow its default dataset split for experiments.
There are 12000/4000/4000 pairs of image patches for train-
ing/validation/test, respectively.

Google-CD [55] is a very recent and public CD dataset.
It contains 19 image pairs, originating from Google Earth
Map. The image resolutions range from 1006×1168 pixels
to 4936×5224 pixels. As WHU-CD, we also crop the original
images into small patches of size 256×256 with no overlap
and randomly split them into three parts: 2504/313/313 for
training/validation/test, respectively.

In addition, we adopt two SAR image CD datasets [56] to
verify the generalization of our method. These two datasets
were gathered from disaster-stricken environments, which are
related to flood and ice breakup situations, respectively. The
Ottawa dataset is captured by the RADARSAT SAR sensor
in May and August 1997 and changes are caused by floods.
The size of each image is 290×350 pixels. The Sulzberger
dataset is a part of Sulzberger Ice Shelf, which is provided by
the European Space Agency’s Envisat satellite. The size of the
image is 256×256 pixels. It clearly shows the breakup of an
ice shelf caused by a tsunami in March 2011.

B. Evaluation Metrics

To verify the performance of our framework and other
compared methods, we follow previous works [30], [32]–[34]
and utilize F1 and Intersection over Union (IoU) scores with
regard to the change-class as the primary evaluation metrics.
Additionally, we also report the precision and recall of the
change category, Overall Accuracy (OA) and Receiver Oper-
ating Characteristic (ROC) curve. To evaluate the performance
of regional boundaries, we follow previous works [57], [58]
and adopt the mean Boundary Accuracy (mBA) as the metric.

C. Implementation Details

We perform experiments with the PyTorch toolbox and one
NVIDIA A30 GPU. We use the mini-batch SGD algorithm

to train our framework with an initial learning rate 10−3,
moment 0.9 and weight decay 0.0005. The batch size is set to
6. For the Siamese feature extraction backbone, we adopt the
Swin Transformer pre-trained on ImageNet-22k classification
task [60]. To fit the input size of the pre-trained Swin Trans-
former, we uniformly resize image patches to 384×384. For
other layers, we randomly initialize them and set the learning
rate with 10 times than the initial learning rate. We train the
framework with 100 epochs. The learning rate decreases to
the 1/10 of the initial learning rate at every 20 epoch. To
improve the robustness, data augmentation is performed by
random rotation and flipping of the input images. For the
loss function in the model training, the weight parameters
of each level are set equally. We release the source code at
https://github.com/Drchip61/TransYNet.

D. Comparisons with State-of-the-arts

In this section, we compare the proposed method with other
outstanding methods four optical and two SAR image CD
datasets. These experimental results fully verify the effective-
ness of our proposed framework and modules.

Quantitative Comparisons. We present the comparative
results in Tab. I and Tab. II. The results clearly show that our
method delivers excellent performance. More specifically, our
method achieves the F1 and IoU scores of 91.90% and 83.64%
on the LEVIR-CD dataset, respectively. They are much
better than most of previous methods. Besides, compared
with other Transformer-based methods, such as BIT [33], H-
TransCD [34] and ChangeFormer [32], our method shows
consistent improvements in terms of all evaluation metrics.
When compared with our previous method FTN [5], the
method in this paper can achieve better results in almost all
metrics. On the WHU-CD dataset, our method shows signif-
icant improvements with the F1 and IoU scores of 93.38%
and 87.58%, respectively. In comparison with the second-best
method (FTN), our method improves the F1 and IoU scores
by 1.2% and 2.1%, respectively. On the SYSU-CD dataset,
our method achieves the F1 and IoU scores of 82.84% and
70.71%, respectively. The SYSU-CD dataset includes more
large-scale change regions. We believe that the improvements
are mainly based on the proposed DFE. On the Google-CD
dataset, our method shows much better results than other
compared methods. In fact, our method achieves the F1 and
IoU scores of 86.04% and 75.50%, respectively. We note that
the Google-CD dataset is recently proposed and it is much
challenging than other three datasets. We also note that the
performance of precision, recall and OA is not consistent in
all methods. Our method generally achieves better recall values
than most compared methods. The main reason may be that
our method gives higher confidences to the change regions.
To better illustrate the performance, we also present the ROC
curves of some typical methods in Fig. 4. It is observed that
our method achieves better results than other typical methods
on the WHU-CD dataset.

Qualitative Comparisons. To illustrate the visual effect, we
first display some typical CD results on the four optical image
CD datasets, as shown in Fig. 5-8. From the results, one can
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TABLE I
QUANTITATIVE COMPARISONS ON LEVIR-CD AND WHU-CD DATASETS. THE BEST AND THE SECOND BEST ARE IN BOLD AND UNDERLINE,

RESPECTIVELY. − MEANS THE RESULTS OF CORRESPONDING METHODS ARE MISSING.

Methods
LEVIR-CD WHU-CD

Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA
FC-EF [18] 86.91 80.17 83.40 71.53 98.39 71.63 67.25 69.37 53.11 97.61
FC-Siam-Diff [18] 89.53 83.31 86.31 75.92 98.67 47.33 77.66 58.81 41.66 95.63
FC-Siam-Conc [18] 91.99 76.77 83.69 71.96 98.49 60.88 73.58 66.63 49.95 97.04
BiDateNet [4] 85.65 89.98 87.76 78.19 98.52 78.28 71.59 74.79 59.73 81.92
U-Net++MSOF [17] 90.33 81.82 85.86 75.24 98.41 91.96 89.40 90.66 82.92 96.98
DTCDSCN [4] 88.53 86.83 87.67 78.05 98.77 63.92 82.30 71.95 56.19 97.42
DASNet [4] 80.76 79.53 79.91 74.65 94.32 68.14 73.03 70.50 54.41 97.29
STANet [52] 83.81 91.00 87.26 77.40 98.66 79.37 85.50 82.32 69.95 98.52
MSTDSNet [35] 85.52 90.84 88.10 78.73 98.56 —– —– —– —– —–
IFNet [20] 94.02 82.93 88.13 78.77 98.87 96.91 73.19 83.40 71.52 98.83
SNUNet [59] 89.18 87.17 88.16 78.83 98.82 85.60 81.49 83.50 71.67 98.71
BIT [33] 89.24 89.37 89.31 80.68 98.92 86.64 81.48 83.98 72.39 98.75
H-TransCD [34] 91.45 88.72 90.06 81.92 99.00 93.85 88.73 91.22 83.85 99.24
UVACD [30] 91.90 90.70 91.30 83.98 99.12 91.45 88.72 90.06 81.92 99.00
ChangeFormer [32] 92.05 88.80 90.40 82.48 99.04 91.83 88.02 89.88 81.63 99.12
FTN [5] 92.71 89.37 91.01 83.51 99.06 93.09 91.24 92.16 85.45 99.37
Ours 92.90 89.35 91.90 83.64 99.07 94.68 92.12 93.38 87.58 99.47

TABLE II
QUANTITATIVE COMPARISONS ON SYSU-CD AND GOOGLE-CD DATASETS. THE BEST AND THE SECOND BEST ARE IN BOLD AND UNDERLINE,

RESPECTIVELY. − MEANS THE RESULTS OF CORRESPONDING METHODS ARE MISSING.

Methods
SYSU-CD Google-CD

Pre. Rec. F1 IoU OA Pre. Rec. F1 IoU OA
FC-EF [18] 74.32 75.84 75.07 60.09 86.02 80.81 64.39 71.67 55.85 85.85
FC-Siam-Diff [18] 89.13 61.21 72.57 56.96 82.11 85.44 63.28 72.71 57.12 87.27
FC-Siam-Conc [18] 82.54 71.03 76.35 61.75 86.17 82.07 64.73 72.38 56.71 84.56
BiDateNet [4] 81.84 72.60 76.94 62.52 89.74 78.28 71.59 74.79 59.73 81.92
U-Net++MSOF [17] 81.36 75.39 78.26 62.14 86.39 91.21 57.60 70.61 54.57 95.21
DASNet [4] 68.14 70.01 69.14 60.65 80.14 71.01 44.85 54.98 37.91 90.87
STANet [52] 70.76 85.33 77.37 63.09 87.96 89.37 65.02 75.27 60.35 82.58
DSAMNet [20] 74.81 81.86 78.18 64.18 89.22 72.12 80.37 76.02 61.32 94.93
MSTDSNet [35] 79.91 80.76 80.33 67.13 90.67 —– —– —– —– —–
SRCDNet [55] 75.54 81.06 78.20 64.21 89.34 83.74 71.49 77.13 62.77 83.18
BIT [33] 82.18 74.49 78.15 64.13 90.18 92.04 72.03 80.82 67.81 96.59
H-TransCD [34] 83.05 77.40 80.13 66.84 90.95 85.93 81.73 83.78 72.08 97.64
FTN [5] 86.86 76.82 81.53 68.82 91.79 86.99 84.21 85.58 74.79 97.92
Ours 89.09 77.42 82.84 70.71 92.44 87.98 84.18 86.04 75.50 97.97
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Fig. 4. The ROC curves of some typical methods on the WHU-CD dataset.

see that our method generally shows best results. For example,
when change regions have multiple scales, our method can
correctly identify most of the change regions, as shown in
Fig. 5. When change objects cover most of the image regions,

most of current methods can not detect them. However, our
method can still detect them with clear boundaries, as shown in
Fig. 6. In addition, when the change regions appear in complex
scenes, our method can maintain the contour shape. While
most of compared methods fail, as shown in Fig. 7. When
distractors appear in the scene, our method can reduce the
effect and correctly detect the real change regions, as shown
in Fig. 8. From the above visual results, we can see that our
method shows superior performance than most methods.

To further verify the visual effect, we provide more hard
samples and failed results in Fig. 9. As can be seen, our
method performs better than most methods (1st row). Most of
current methods can not detect the two small change regions
in the center, while our method can accurately localize them.
Besides, we also show failed examples in the second row of
Fig. 9. As can be seen, all compared methods can not detect
all the change regions. However, our method shows a much
more reasonable result than other methods.

To verify the generalization of our method, Fig. 10 shows
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T1 Image T2 Image Ground Truth Ours FC-Conc FC-Diff DTCDSCN BIT

Fig. 5. Comparison of typical change detection results on the LEVIR-CD dataset. Best view by zooming in.

T1 Image T2 Image Ground Truth Ours FC-Conc FC-Diff STANet BIT

Fig. 6. Comparison of typical change detection results on the WHU-CD dataset. Best view by zooming in.

T1 Image T2 Image Ground Truth Ours FC-Conc FC-Diff STANet BiDateNet

Fig. 7. Comparison of typical change detection results on the SYSU-CD dataset. Best view by zooming in.

T1 Image T2 Image Ground Truth Ours FC-Conc FC-Diff STANet BiDateNet

Fig. 8. Comparison of typical change detection results on the Google-CD dataset. Best view by zooming in.
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T1 Image T2 Image Ground Truth Ours DTCDSCN IFNet CFormer

Fig. 9. Comparison of typical change detection results on more hard and failed samples. Best view by zooming in.

T1 Image T2 Image Ground Truth PCANet NR-ELM DBN DCNet MSAPNet DDNet Ours

Fig. 10. Comparison of typical change detection results on the Ottawa dataset (top) and Sulzberger dataset (bottom). Images are in disaster environments.
Best view by zooming in.

the change detection results on two SAR image CD datasets.
The other compared methods include the PCANet [61], NR-
ELM [62], DBN [63], DCNet [64], MSAPNet [65] and
DDNet [66]. It can be observed that our proposed method
shows better results of CD regions and boundaries. These
results also demonstrate the effectiveness of our method on
different types of remote sensing images and in disaster
environments, including flood and tsunami.

E. More Discussions

In order to better clarify the model performance, we plot the
dynamic results of our model during the training, validation
and testing phases (see Fig. 11). It can be observed that our
model performs better on the training data than the test data.
This is reasonable and practical since most of current deep
learning methods have similar trends.

Previous sections display the performance of changed re-
gions. To evaluate the performance of regional boundaries, we
list the boundary accuracy in Tab. III. It can be observed that
our method shows much better results than other outstanding
methods. It clearly demonstrates the effectiveness of our
proposed method in improving the boundary accuracy.

We note that Transformers (including Fully Transformer
Networks) are not new in current remote sensing and com-
puter vision fields. However, there are some key differences
between our work and previous methods: 1) As far as we
know, our work is the earliest Transformer-based one, which
explicitly handles incomplete regions and irregular bound-
aries for remote sensing image CD. 2) In our framework,
we utilize a Siamese structure to process dual-phase remote
sensing images. Besides, we introduce a pyramid structure to
aggregate multi-level visual features from Transformers for

Fig. 11. Dynamic results of our model on the WHU-CD dataset.

feature enhancement. These designs are totally different from
existing works, especially in [67] and [68], which mainly use
a simple encoder-decoder+U-Net structure for single image
feature extraction. In [67], the authors utilize a Pyramid Group
Transformer (PGT) as the encoder and propose a Feature
Pyramid Transformer as the decoder, which is largely based on
the typical FPN structure. Meanwhile, the work in [68] simply
stacks Spatial Pyramid Transformers (SPT) imitating the U-
Net structure. Both of them are taking single images as inputs
and using an encoder-decoder structure. While our framework
utilizes a Siamese structure to process dual-phase images.
3) We utilize the deeply-supervised learning with multiple
boundary-aware loss functions. These losses are very helpful
for more accurate CD. These facts make our framework more
convincing in the CD techniques.
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TABLE III
BOUNDARY ACCURACIES WITH DIFFERENT METHODS ON LEVIR-CD.

Methods Ours ChangeFormer BIT SNUNet STANet FC-Diff
mBA 71.6 68.7 65.8 65.2 63.3 60.4

F. Ablation Studies

In this subsection, we perform extensive ablation studies to
verify the effect of key components in our framework. The
experiments are conducted on LEVIR-CD dataset. However,
other datasets have similar performance trends.

Effects of different Siamese backbones. As shown in the
2-3 rows of Tab. IV, we introduce the VGGNet-16 [69] and
Swin Transformer as the Siamese backbones. To ensure a fair
comparison, we utilize the basic Feature Pyramid (FP) struc-
ture [36]. From the results, one can see that the performance
with the Swin Transformer can be consistently improved in
terms of Recall, F1, IoU and OA. The main reason is that the
Swin Transformer has a better ability of modeling long-range
dependency than VGGNet-16.

TABLE IV
PERFORMANCE COMPARISONS WITH DIFFERENT MODEL VARIANTS.

Models Pre. Rec. F1 IoU OA
(a) VGGNet-16+FP 91.98 82.65 87.06 77.09 98.75

(b) SwinT+FP 91.12 87.42 89.23 80.56 98.91
(c) SwinT+DFE+FP 91.73 88.43 90.05 81.89 99.00

(d) SwinT+DFE+PCP [5] 92.71 89.37 91.01 83.51 99.06
(e) SwinT+DFE+PCP 92.90 89.35 91.90 83.64 99.07

Effects of DFE. The fourth row of Tab. IV shows the
effect of our proposed DFE. When compared with the
Model(b) SwinT+FP , the DFE improves the F1 value from
89.23% to 90.05%, and the IoU value from 80.56% to 81.89%,
respectively. The main reason is that our DFE considers the
temporal information with feature summation and difference,
which highlight the change regions.

Effects of PCP. In order to better detect multi-scale change
regions, we introduce the PCP, which is a pyramid structure
grafted with a PAM. If we remove the PAM, the PCP will
reduce a basic FP. We compare it with FP. From the results in
the last two rows of Tab. IV, one can see that our PCP achieves
a significant improvement in all metrics. Besides, the improved
PCP in this work shows better performances. Furthermore,
adding the PCP also achieves a better visual effect, in which
the extracted change regions are complete and the boundaries
are regular, as shown in Fig. 12.

In addition, we also introduce the Swin Transformer blocks
into the PCP as shown in Eq. 11. To verify the effect of
different layers, we report the results in Tab. V. From the
results, one can see that the models show better results with
equal layers. The best results can be achieved with n = 4. With
more layers, the computation is larger and the performance
decreases in our framework.

Effects of different losses. In this work, we introduce
multiple losses to improve the CD results. To show the effects
of these losses, we adopt the network structure in [5]. Tab. VI
shows the results. It can be seen that using the WBCE loss
can improve the F1 score from 88.75% to 90.01% and the IoU

TABLE V
PERFORMANCE COMPARISONS WITH DIFFERENT DECODER LAYERS.

Layers Pre. Rec. F1 IoU OA
(2,2,2,2) 91.18 87.00 89.04 80.24 98.90
(4,4,4,4) 91.65 88.42 90.01 81.83 99.00
(6,6,6,6) 91.70 88.30 89.96 81.76 98.99
(8,8,8,8) 91.55 88.47 89.98 81.79 98.99
(2,4,6,8) 92.13 85.71 88.80 79.86 98.89

from 79.78% to 81.83%. Using the SSIM loss achieves the F1
score of 90.11% and the IoU of 82.27%. Using the SIoU loss
achieves the F1 score of 91.01% and the IoU of 83.51%.

TABLE VI
PERFORMANCE COMPARISONS WITH DIFFERENT LOSSES.

Losses Pre. Rec. F1 IoU OA
BCE 90.68 86.91 88.75 79.78 98.88

WBCE 91.65 88.42 90.01 81.83 99.00
WBCE+SSIM 91.71 88.57 90.11 82.27 99.01

WBCE+SSIM+SIoU 92.71 89.37 91.01 83.51 99.06

We also display some typical examples for the visual effects,
as shown in Fig. 13. From the results, one can see that using
the WBCE loss can help the model focus on the most change
regions. With the SSIM loss, the framework can improve
the structural information of the change regions. Using the
SIoU loss can ensure the global completeness. As a result,
combining all of them can achieve the best results, which
proves the effectiveness of all loss terms. This fact is consistent
with the quantitative results in Tab. VI.

Scaling to higher resolutions. Remote sensing images
always hold large resolutions. The resolution concern is very
valuable. In fact, our work can process a higher resolution with
SwinT-Base/Small/Tiny. However, we adopt a low resolution
(256×256), mainly considering the fairness. Most of compared
methods utilize cropping for generating input images. Thus,
we follow them and realize fair comparisons. Tab. VII shows
the performance analysis with different resolutions on LEVIR-
CD. One can see that our method can naturally scale to higher
resolutions and show slightly better results.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a new learning framework named
TranY-Net for change detection of dual-phase remote sensing
images. It improves the feature extraction from a global
view and combines multi-level visual features in a pyramid
manner. Technically, we first utilizes a Siamese network with
the pre-trained Swin Transformers to extract long-range de-
pendency information. Then, we introduce a pyramid struc-
ture to aggregate multi-level visual features, improving the

TABLE VII
PERFORMANCES WITH DIFFERENT INPUT RESOLUTIONS ON LEVIR-CD.

Resolution Pre. Rec. F1 IoU OA Flops(G)
256×256 92.90 89.35 91.90 83.64 99.07 48
384×384 93.01 90.11 92.12 84.20 99.10 151
512×512 93.23 90.35 92.25 85.10 99.32 201
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T1 Image T2 Image Model (b) Model (c) Model (d) Model (e) Ground Truth

Fig. 12. Visual comparisons of predicted change maps with different models. Best view by zooming in.

T1 Image T2 Image BCE WBCE WBCE+SSIM WBCE+SSIM+IOU Ground Truth

Fig. 13. Visual comparisons of predicted change maps with different losses. Best view by zooming in.

feature representation ability. Finally, we utilize the deeply-
supervised learning with multiple loss functions for model
training. Extensive experiments on four public CD benchmarks
demonstrate that our proposed framework shows better per-
formances than most state-of-the-art methods. However, our
methods have some shortcomings, such as high computation,
the need of image dense labeling, etc. In future works, we will
explore more efficient structures of Transformers to reduce the
computation. We will also develop unsupervised or weakly-
supervised methods to relieve the burden of remote sensing
image labeling. In addition, since our method takes dual-
phase images, it can be easily used for other similar multi-
modal/temporal tasks, such as RGB-D/T image segmentation,
MRI-CT image fusion, video segmentation, etc. We will verify
them in the computer vision field.
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