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Abstract—Estimating oceanic wave fields from sparse observa-
tions has been a long-standing challenge in oceanography and an
important environmental metric desired for maritime operations.
The requirement for frequent real-time updates of the wave
field within the local area poses difficulties for data assimilation
approaches, as they can be computationally complex and rely on
external atmospheric forcing. The relationship between the wave
field and local sparse observations is embedded in reanalysis
or hindcast data. We propose a data-driven deep learning
model capable of estimating the local wave field using sparsely
distributed floating wave buoys. This novel model simultaneously
produces wave height, period, and direction, along with their
respective uncertainties. In a year-long test period within a local
fjord region characterized by complex wave patterns influenced
by intricate geography, the proposed model demonstrates re-
markable accuracy and efficiency in estimating wave fields. This
study demonstrates the promising potential of data-driven deep
learning models as an alternative to rapidly estimating the wave
field.

Index Terms—Ocean wave field estimation, wave buoys, neural
networks.

I. INTRODUCTION

Ocean waves are a critical factor that impacts all sea-related
activities, such as daily planning, energy management, and
transportation. Understanding the behavior of waves is critical
to maximize economic opportunities, ensure safety at sea,
and promote sustainable management of marine resources [1].
With the ongoing transformation toward digitization of ocean
space in local areas (as illustrated in Fig. 1), an array of
sophisticated sensors will be deployed for meticulous mon-
itoring. Obtaining accurate ocean information is particularly
important for guiding maritime activities, including fish farm
maintenance, efficient docking of ships in the harbor, etc.
To obtain precise ocean wave information in local areas,
floating wave buoys have become the primary method [2],
[3]. Although these buoys provide valuable wave statistics
at their specific locations, their considerable distance from
each other results in only point information for the entire
area. Acquiring information about the current ocean wave
field for the entire area can have numerous benefits over
making point estimates only. For instance, the ship can use
the ocean wave field information to plan routes and loading
operations, or perform optimal berthing operations, and fish
farms can schedule maintenance based on the ocean wave field
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Fig. 1. An illustration of possible future digitalization transformation of the
ocean in local areas. Various sensors will be placed in the local area to closely
monitor the ocean. Ocean waves are one of the important parameters in this
context, and frequent information on the entire ocean wave field will benefit
various applications.

information. This necessitates constructing ocean wave fields
from limited in-situ observations obtained from wave buoys
in the local area. The challenge is that localized areas may
involve complex geographies, and wave statistics vary widely
within about 200 m, requiring high-resolution and frequent
updates of ocean wave fields.

In weather forecasting, estimating weather conditions is
treated as a state estimation problem, where observations
are combined with numerical models and data assimilation
techniques to determine the current weather state and initiate
forecasts. Similarly, for ocean waves, widely used numerical
models like WaveWatch 3 [4] and SWAN [5] generate wave
forecasts based on wind and boundary wave conditions. Data
assimilation techniques refine these forecasts by incorporating
observations. These refined forecasts are an estimate of the
state of the ocean waves. The accuracy of numerical models
depends on grid resolution, which poses a computational
bottleneck that is challenging to overcome [6]. Standard data
assimilation methods, such as 4D-VAR [7], require iterative
solvers, making each iteration computationally intensive, sim-
ilar to running a complete numerical model. Consequently,
most operational wave models currently do not assimilate data
or use sequential methods [8]. Even with the implementation
of sequential data assimilation methods, real-time updates of
the wave field pose challenges for local ocean wave field. Lo-
cal areas are considered to be relatively small areas of around
25 km, and the local wave field is the wave information of this
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area. The area can involve complex geographical features, such
as rapid changes in water depth and potential obstruction to
wind flow by high mountains. It therefore necessitates a high
spatial resolution to accurately simulate intricate factors like
wave refraction. Furthermore, the evolution of ocean waves is
not solely an initial value problem. It also involves complex
atmospheric forcing and boundary wave conditions obtained
from global or regional simulations that may not be available.
Therefore, these high spatial resolution and external input
requirements pose challenges for local wavefield estimation
using data assimilation.

On the other hand, reanalysis [9] or hindcast [10] is used
to reconstruct historical ocean conditions. This process can be
conducted offline with high grid resolution, where boundary
wave conditions and atmospheric forces for the local area
are obtained from global or regional reanalysis products. The
availability of such high-resolution historical data enables the
establishment of a relationship between wave buoy observa-
tions and the local wave field. In this paper, we propose a novel
approach that employs deep neural networks to construct the
ocean wave field based on sparse wave buoy observations.
Neural network models learn the relationships between input
observations and output variables directly from data. The
objective is to learn a direct mapping from the wave buoys’
observations to the local wave field. In this case, wave buoy
observations serve as contextual information to generate a
wave field. Once trained, the model provides an extremely
fast way to generate wave fields that can be used for a range
of tasks as shown in Fig. 1. Furthermore, this process can be
inherently uncertain. Deep generative models offer a natural
approach to modeling uncertainty. Such models can provide
probabilistic outputs, which are valuable for decision-making
purposes compared to deterministic outputs [11].

In this paper, a deep generative model is employed to
construct the wave field. As demonstrated later, the model
effectively reconstructed the ocean wave field within a chal-
lenging fjord environment, despite the limited availability
of wave buoys. Waves are represented by three important
parameters, providing detailed wave conditions rather than a
single parameter in the literature. Importantly, it successfully
captured the intricate relationship between wave height and
periods. Additionally, the model demonstrated its capability
to characterize and quantify the uncertainty associated with
its outputs. Our findings highlight the remarkable potential of
deep generative models in reconstructing fields of complex
oceanic phenomena. The main contributions of this study are
as follows:

• A deep generative model is developed to estimate the
ocean wave field given sparse wave buoys’ observations.

• The uncertainty of the estimation is well-represented by
the model through a re-calibration procedure.

• The model provides rich wave information and captures
the joint distribution of wave height and period.

II. RELATED WORKS

A. Data assimilation
Data assimilation is commonly referred to as state estima-

tion theory in geosciences [7], which is closely related to

estimation theory and optimal control. Data assimilation takes
a forecast (usually from a numerical evolution model) and
applies a correction to the forecast based on observations. In
this way, the best estimate of the state of the system is ob-
tained. It is a standard practice in numerical weather prediction
systems, especially for atmospheric forecasting systems [12].
Commonly used data assimilation methods can be categorized
into variational approaches and sequential approaches. Varia-
tional methods [7], [12] are used to estimate the states that fit
all the observations best within a prescribed observing window.
It is formulated as an optimization problem to minimize
a scalar error. The state estimate at an arbitrary time is
therefore influenced by all observations within the prescribed
window. The four-dimensional variational method (4D-Var)
is one of the well-known methods that assumes a Gaussian
background and observation error and a perfect model to
establish the cost function. It is a standard practice today
in atmospheric modeling such as in the European Centre for
Medium-Range Weather Forecasts (ECMWF)1. The method
has also been investigated to assimilate oceanographic data
such as temperature, salinity, and currents [13], [14]. As for
ocean waves, attempts have been made but developing an
adjoint model is nontrivial due to the complex operators in
the spectral space [15]. Furthermore, variational techniques
require an iterative process to optimize the loss function, which
can be computationally expensive. Therefore, the assimilation
of ocean waves usually uses a sequential method [8]. The
sequential methods alternate the forecast step with updated
observations at each time step. By assuming Gaussian noise
and a linear forecast model, the Kalman filter can be used.
Smit et al. [8] used optimal interpolation (which can be
viewed as a simplified Kalman filter by assuming a stationary
covariance matrix) to perform data assimilation of the ocean
wave. However, only significant wave height is assimilated.
The same method is used to produce wave reanalysis products
in the Black Sea2, the Iberia-Biscay-Ireland area3 and the
Mediterranean Sea4. Similarly, Houghton et al. [16] applied
the optimal interpolation framework to assimilate the Fourier
coefficients of the wave spectrum at equidistant directions.
In this way, the wave spectrum instead of a single bulk
statistic is assimilated. In summary, data assimilation methods
can be used to obtain (1) the best estimate of the current
state to initialize forecasts; (2) the reanalysis of past data.
The first term is closely related to our problem but it is
usually performed at an interval of 6 hours, thus it is much
less frequent than we desired. Besides, the wave assimilation
problem is a mix of an initial value problem (swell) and a
forced problem (wind) [16], where the atmospheric forcing
field is needed. However, obtaining the atmospheric forcing
field at a high frequency is also a challenge.

1ECMWF, https://www.ecmwf.int/
2Black Sea Waves Reanalysis, https://data.marine.copernicus.eu/product/

BLKSEA MULTIYEAR WAV 007 006/description
3Atlantic -Iberian Biscay Irish- Ocean Wave Reanalysis, https://data.marine.

copernicus.eu/product/IBI MULTIYEAR WAV 005 006/description
4Mediterranean Sea Waves Analysis and Forecast, https://data.marine.

copernicus.eu/product/MEDSEA ANALYSISFORECAST WAV 006 017/
description
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B. Deep neural networks in geosciences

In recent years, geosciences have witnessed a major revo-
lution from being a data-poor field to a data-rich field [17]
and modern deep neural networks (DNN) have been inten-
sively investigated. DNNs are capable of automatically learn-
ing complex patterns and relationships from large datasets,
which can improve the accuracy of geoscientific models and
predictions. Shoji et al. [18] used a convolutional neural
network to classify volcanic ash particles according to their
shape. The class probabilities returned by the network are
used to determine the mixing ratio of ash particles with
complex shapes. Lv et al. [19] developed a convolutional
neural network to detect earthquakes from distributed acoustic
sensing technology. It can achieve a high accuracy with a
limited number of positive samples. Yao et al. [20] extended
the visual transformer for multimodal learning and showed
performance improvements on two remote sensing datasets.
Deep neural network models have also been widely applied
in hyperspectral image classification [21], [22], in which the
features from different levels can be easily fused with neural
network models. In addition to using DNNs for classification,
the most relevant to our research is using them to estimate or
predict weather variables. Ravuri et al. [11] performed high-
resolution precipitation nowcasting using DNNs and showed
that the model provides improved forecast quality, consistency,
and value from the meteorologist evaluation. Zhao et al. [23]
used a support vector machine for the hourly rainfall forecast.
Espeholt et al. [24] developed a model that uses radar, as-
similation, and geospatial features as input to produce twelve-
hour precipitation forecasts at 1km × 1km resolution. They
show that the model outperforms state-of-the-art physics-based
models currently operating in the Continental United States.
Chen et al. developed a model that uses observations from the
satellite and ground radar network as input to produce 12 hour
precipitation forecasts at 1km × 1km resolution. A similar
study has been performed for ocean wave forecasting. Kim
et al. [25] developed a DNNs-based ocean wave forecasting
model to predict three integrated wave parameters up to
48 hours. The above models are all based on the principle
that future predictions are generated by conditioning on past
observations. For wave estimation, the wave field is generated
by conditioning on the partial observations. Fablet et al. [26],
[27] reconstructed the ocean wave field, e.g., sea surface
temperature and sea surface height from satellite observations
by learning a DNN model. It is shown that the model is more
efficient and outperforms the optimal interpolation framework.
Similarly, our aim is to reconstruct the ocean wave field as
well, but we rely on sparser observations from wave buoys.

C. Deep generative models

Deep generative models are a type of model that can
resemble data distribution and can be used to generate prob-
abilistic outputs. These models learn a latent representation
to represent the data distribution. By sampling from the
latent representation, probabilistic outputs can be generated.
There are several types of deep generative models, including
variational autoencoders (VAEs) [28], generative adversarial
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Fig. 2. The relationship of 2D wave spectrum and the three integrated wave
parameters. The integrated parameters are used to represent the wave condition
in this paper.

networks (GANs) [29], and autoregressive models. These
models have been used in [11], [24] to produce probabilistic
precipitation forecasts. Probabilistic forecasting is expected
to provide greater economic and decision-making value than
deterministic ones. The same applies to wave field estimation.
In addition, reconstructing wave fields from very sparse buoys’
observations is a process that might involve large uncertainty,
and making probabilistic estimation is necessary.

III. DEEP GENERATIVE MODEL OF WAVE BUOYS

A. Problem formulation

The proposed model is a conditional generative model that
predicts the wave fields given past, or contextual, wave buoys’
observations. The model includes latent random vectors z and
can be described by:

pθ
(
Xt|x1:N

t−δt:t

)
=

∫
pθ

(
Xt|z, x1:N

t−δt:t

)
pθ

(
z|x1:N

t−δt:t

)
dz (1)

where Xt is the regional wave fields at time t. x1:N
t−δt:t are

the N wave buoys’ observations from time t − δt to time t.
θ is the parameters of the neural networks. z are the latent
variables and the integration over z ensures that the model
predictions are spatially dependent. For simplification, x1:N

t−δt:t

will be denoted as c (context) and Xt will be denoted as X .
Learning of the parameter θ is framed within the framework

of a conditional variational autoencoder with adversarial learn-
ing (CVAE-AL). Three consecutive wave buoys’ observations
(the past 20 min, wave buoys have an interval of 10 min) are
used as context for the decoder that allows the sampling of
multiple wave fields.

B. Ocean wave field representation

The ocean waves are represented by a 2D wave spectrum [3]
that is discretized in direction and frequency. Integrated wave
parameters are usually calculated from the 2D wave spectrum
to represent the statistical properties of the wave. Here, three
parameters are used to represent the wave condition at a
single point [30]: significant wave height hs, mean wave
period tm, and mean wave direction dirm. Fig. 2 shows the
relationship between the 2D wave spectrum and the integrated
wave parameters.

For mean wave direction dirm, 0◦ and 360◦ are
essentially the same. We therefore encode dirm into
(cos dirm, sin dirm). The dirm can be easily reconstructed
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Fig. 3. System diagram depicting training procedure and inference procedure.
The proposed model consists of an encoder, decoder, contextual encoder, and
discriminator. Note that only the contextual encoder and decoder are used in
the inference phase.

from (cos dirm, sin dirm). In this way, the size of the original
wave fields (3, 128, 128) is transformed into (4, 128, 128).

The cos dirm and sin dirm lie in the range of [-1, 1].
Similarly, the significant wave height hs and the mean wave
period tm are normalized to the range of [-1, 1].

C. Conditional variational autoencoder with adversarial
learning

The conditional variational autoencoder [31] is an extension
of variational autoencoders (VAE) [28] that provides control
over the VAE data generation process. CVAE consists of an
encoder qϕ(z|X, c) and a decoder pθ(X|z, c). The encoder
qϕ(z|X, c) transforms the sampled points X and context c
into the latent variables z. The decoder pθ(X|z, c) reconstructs
the sampled points x from latent variables z and context
c. Note that the encoder and decoder are modeled in the
structure of the neural network which is parametrized by ϕ
and θ, respectively. The objective of CVAE is to maximize
the variational lower bound, also called the evidence lower
bound (ELBO), of the intractable marginal log-likelihood of
data log pθ (X|c):

log pθ (X|c) ≥ E [log pθ(X|z, c)]−DKL (qϕ (z|X, c) ∥ pθ (z|c))
(2)

where DKL is the Kullback-Leibler (KL) divergence. Instead
of maximizing the ELBO, the negative ELBO is usually used
as the objective and the training is to minimize − log pθ (X|c).
The negative ELBO can be viewed as the sum of reconstruc-
tion loss and KL divergence.

Reconstruction loss. For the negative log-likelihood
−E [log pθ(X|z, c)]], we use mean square error (MSE):

lrec = ∥ X − E [pθ(X|qϕ (z|X, c) , c)] ∥2 (3)

Even though MSE is often used as the reconstruction loss
for VAE, it is problematic for maximum likelihood since it
could be over-regularized during training [32]. However, we

expect a large sample diversity and add a hyperparameter
to the KL loss to balance regularization and reconstruction.
Therefore, MSE is still used in this paper.

KL loss. The prior distribution pθ (z|c) is modelled as a stan-
dard multi-variate Gaussian distribution pθ (z|c) ∼ N (0, I).
The encoder qϕ (z|X, c) is a deep neural network that outputs
the mean and standard deviation of z, which is denoted as
µθ(X, c) and σ2

θ(X, c), respectively. Sampling from z ∼
qϕ (z|X, c) can be done using the reparameterization trick [28].
Therefore, the KL loss can be given by:

lkl =
1

d

∑ 1

2

[
µ2
θ(X, c) + σ2

θ(X, c)− 1− log σ2
θ(X, c)

]
(4)

where d is the the dimension of latent vector z.
a) Adversarial learning: To adopt adversarial training

in the learning framework, a discriminator that distinguishes
between the output generated by the decoder and the ground
truth wavefield is added. The adversarial loss in training the
generator and the discriminator are given by:

ladv−G = lbce

(
Dφ(X̂), 1

)
(5)

ladv−D =
1

2
lbce

(
Dφ(X̂), 0

)
+

1

2
lbce (Dφ(X), 1) (6)

where Dφ is the discriminator parametrized by φ. X̂ is the
reconstructed wave fields from the decoder. lbce is the binary
cross-entropy loss that is defined as lbce(ŷ, y) = y log ŷ+(1−
y) log(1− ŷ).

b) Training and inference framework: Fig. 3 shows the
training and inference procedures of our CVAE-AL frame-
work. The model contains a contextual encoder that encodes
the observations from the wave buoys into a contextual vector
c. The encoder and decoder follow the CVAE framework
that generates the latent vector and reconstructed wave fields
conditioning on the context vector c. The discriminator is used
for adversarial training.

The four modules, context encoder, encoder, decoder, and
discriminator, are parameterized by deep neural networks. The
detailed network architectures for these four modules can be
found in the supplementary materials. We consider 3 important
wave parameters: significant wave height, mean wave period,
and mean wave direction. In short, the estimated wave fields
have 3 dimensions instead of 1.

Training. The training of the generator (including a contex-
tual encoder, encoder, and decoder) and discriminator involves
the minimization of the following loss function, respectively:

lG = lrec + λkllkl + λadvladv−G (7)

lD = ladv−D (8)

where λkl and λadv are two hyperparameters to balance the
KL loss and adversarial loss, respectively. During training, we
alternate between one gradient descent step on lG, and then
one step on lD.
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Fig. 4. Detailed network architectures.

Inference. After the model is trained, only the contextual
encoder and decoder will be used in the inference phase. Wave
buoys’ observations are fed into the contextual encoder to
generate the context c. Then latent vector z is obtained by
sampling from the standard multivariate Gaussian distribution
N (0, I). The decoder outputs the wave field based on the
combination of the context c and latent vector z. Now we can
sample different wave fields by sampling the latent vector z.

D. Network architectures

This section introduces the network architecture. The model
follows a VAE structure and therefore involves an encoder
and a decoder for encoding the wave field into a latent
space and reconstructing it. A contextual encoder is designed
to encode the time series wave buoys’ measurement into a
conditional vector to guide the encoding and decoding process.
A discriminator is designed to enable adversarial training to
penalize high-level statistics to avoid blurry outputs.

a) Contextual encoder.: The primary objective of the
contextual encoder is to encode the observations from the wave
buoys into a compact vector c. The objective of the contextual

Buoy Period

A 2016.10.13 - 

B 2016.10.13 -

C 2017.04.27 -

D 2016.10.14 -

F 2017.11.29 -

Buoy measurement period

A

B
C

D

F

Fig. 5. Spatial distribution of the wave buoys in the Sulafjord.

encoder is to encode arbitrary number of wave buoys. As
illustrated in Fig. 4a, we employ a shared gated recurrent unit
(GRU) to encode the data from each wave buoy, resulting in
a buoy embedding. To ensure distinctiveness, we encode the
unique ID of each wave buoy into a positional embedding,
which is then concatenated with the corresponding observation
at each time step. All buoy embeddings are collectively
processed through a max pooling layer to generate the context
vector c. An essential advantage of this approach is that it
utilizes a shared GRU for all wave buoys and a symmetric max
pooling layer to aggregate information, thereby enabling the
contextual encoder to effectively handle an arbitrary number
of wave buoys.

b) Encoder.: The encoder adopts a deep convolutional
neural network architecture, incorporating modules in the form
of convolution-BatchNorm-ReLu, along with a max pooling
layer. The 4× 4 convolution is used to downsample the wave
field. As depicted in Fig. 4b, the encoder receives the 4-
dimensional wave field and context as input and produces the
mean and variance of the latent vector as output.

c) Decoder.: The decoder utilizes both the contextual
vector c and latent vector z to generate the wave field.
It shares a similar architecture with the deep convolutional
generative adversarial network [33]. In particular, the decoder
employs the 4 × 4 transposed convolution operator to carry
out the upsampling operations. For a comprehensive view of
the decoder’s architecture, refer to Fig. 4c.

d) Discriminator.: The discriminator also adopts a
deep convolutional neural network architecture, but with
LeakyReLu as the activation function, in contrast to ReLu. Its
input is the wave field, and its task is to discriminate between
real and decoder-generated wave fields. For a more detailed
view of the discriminator’s architecture, refer to Fig. 4d.
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IV. EXPERIMENTAL SETUP

A. Dataset

The dataset provided has been collected from the Norwegian
Meteorological Institute in Sulafjorden, Norway. Sulafjorden
is known for its dynamic water depth, resulting in a complex
wave pattern. The dataset encompasses a comprehensive col-
lection of data that spans three years, from January 1, 2017, to
February 29, 2020. The training dataset comprises the initial
two years of data, while the remaining one year of data serves
as the test dataset.

Observations from five wave buoys in this area are used.
The location of each wave buoy is shown in Fig. 5 and the
deployment date is also listed. The chosen area exemplifies a
typical fjord region characterized by an abundance of islands,
towering mountains, and deep waters. As a result, wind waves
and swells exist simultaneously in this area, giving rise to a
diverse and ever-changing wave pattern that exhibits consid-
erable spatial and temporal variations. Note that buoys C and
F are deployed after the starting date of the collected dataset.
They are filled with NaN values and the contextual encoder is
designed to be able to handle different numbers of wave buoys.
Raw measurements from wave buoys are inevitably affected
by various degradations, noise effects or variability. This effect
has been discussed in the literature for many different data
sources [34]. Here, the collected data has gone through quality
control. In addition, the erroneous observations, e.g. extremely
large values, are filtered out manually.

The wave field data are collected from a hindcast model
simulation with the wave model SWAN in a 250m grid and
has a time resolution of 1 hour. Even though it is hindcast
data rather than reanalysis data, it shows a good correlation
with actual observations. The original hindcast data covers the
geospatial region from latitude 62.0◦ to 62.6◦ and longitude
5.3◦ to 6.8◦. We extract only the region in the size of (128,
128) that are interesting to us.

Three parameters are selected to represent the wave con-
ditions: significant wave height hs, mean wave period tm,
and mean wave direction dirm. Therefore, only these three
parameters are extracted from wave buoys and hindcast data.

B. Evaluation metrics

Per-grid-cell metrics are computed over all target grid cells
in all examples in the test dataset. These target grid cells are
indexed by i. In the following, the model’s prediction for target
grid cell i will be denoted as Pi, while the corresponding
ground truth will be denoted as Oi. n denotes the number of
target grid cells in a single prediction.

a) Root mean square error (RMSE).: This metric gives
a continuous measure of the accuracy of deterministic predic-
tions:

RMSE =

√√√√ 1

n

n∑
i=1

(Pi −Oi)
2 (9)

b) Continuous ranked probability score (CRPS).: CRPS
is a measure of how good predictions are in matching observed
outcomes, which is widely used in forecasting groups to eval-
uate ensemble weather forecasting. The per-grid-cell CRPS is
defined as:

CRPSi = E |P −Oi| −
1

2
E |P − P ′| (10)

where P and P ′ are drawn independently from the predictive
distribution Pi. We compute the estimates of CRPSi with
the N = 10 ensemble members as samples. These per-grid-
cell CRPS are then averaged over all grid cells as CRPS =
1/n

∑n
i=1 CRPSi.

Note that for significant wave height hs and mean wave
period tm, we use the above two metrics directly. To properly
evaluate mean wave direction dirm, we replace |Pi − Oi| in
the above two metrics with min(|Pi − Oi|, 360 − |Pi − Oi|)
since 0◦ and 360◦ are essentially the same.

V. EXPERIMENTAL RESULTS

A. Accuracy during test period

The predicted wave parameters from DGWBNet versus the
hindcast wave parameters are calculated for all grid cells in
the one-year test period to obtain the histogram plots as shown
in Fig. 6. In general, the predicted wave parameters match the
hindcast wave parameters, especially in the low wave height
and wave period region. Conservative predictions are observed
when the wave height and period are large.

The temporal and spatial distribution of the RMSE of
the DGWBNet were calculated sample by sample from the
estimation errors at all grids during the test period of 1 year
and presented in Fig. 7 and Fig. 8, respectively. Analysis of
the data, depicted in Fig. 7a and Fig. 7b, reveals that the
RMSE of significant wave height and mean wave direction
exhibits a slight increase during winter compared to summer,
which might be due to the fact that rough sea conditions are
more prevalent during the winter season. Conversely, during
summer, the RMSE of the mean wave direction displays a
slight elevation, potentially due to the inherent challenges in
accurately observing wave direction in calm seas.

Referring to Fig. 8, it is evident that the RMSE for
significant wave height is notably higher in the open sea
area compared to other regions. This elevated RMSE can be
attributed to the considerable variability present in the open
sea, compounded by the significant distance between the wave
buoys and this particular area. Conversely, the RMSE for the
mean wave period exhibits a substantially higher value in the
vicinity of the coastal region. This disparity can be attributed to
various factors specific to the coastal dynamics. Furthermore,
the fjord region demonstrates a higher RMSE for the mean
wave direction, primarily owing to the predominant influence
of wind patterns in this particular area.

B. Joint distribution of wave height and period

To assess the model’s ability to capture the wave pattern,
scatter plots depicting the relationship between significant
wave height and mean wave direction are presented for six
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Fig. 6. Histogram plots of the hindcast data versus the outputs from the DGWBNet. Note that the histogram is in the log scale.
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Fig. 7. Temporal distribution of RMSE during the test period. The red line
represents the moving average of RMSE.

carefully chosen points within the region during the test period,
as illustrated in Fig. 9. Specifically, three points in the open
sea region and three points in the fjord region were selected for
analysis. As shown in Fig. 9b, the proposed model successfully
reconstructs the correlation between significant wave height
and mean wave period. However, it is worth noting that the
model’s distribution appears to be slightly tighter than that
of the observed data, suggesting that extreme cases may not
be fully captured by the model. Furthermore, a noticeable
distinction can be observed between the points located in
the open sea area and those situated within the fjord region.
This distinction becomes particularly evident when comparing
points 1 and 2 with points 5 and 6. The differentiation can be
attributed to the presence of swells and wind waves, with open
sea areas primarily influenced by waves originating from the
boundary, while fjord areas are predominantly impacted by
local wind patterns.

C. Uncertainty calibration

One of the key advantages of using a deep generative model
is its ability to capture and represent the inherent uncertainty
in wave estimation. To evaluate the prediction uncertainty of
our proposed model, we employed a procedure involving the
generation of 10 estimates for a given scenario. These esti-

mates were then used to approximate the mean and standard
deviation for each grid point. A held-out validation set was
maintained, and this procedure was repeated for all scenarios
within the validation set. Subsequently, we constructed an
α-prediction, aiming to encompass observed values α% of
the time. By iterating different values of α, we assessed the
proportion of validation data that fell within the prediction
interval. The calibration plot depicted in Fig. 10a shows the
predicted proportion of validation data expected to lie within
the interval on the x-axis, while the observed proportion of
validation data within the interval is represented on the y-axis.
However, it is worth noting that our proposed model exhibits
a slight tendency to be over-confident in its predictions. In
order to enhance our model’s ability to accurately represent
uncertainty, we performed a re-calibration process, inspired
by [11]. This involved scaling the variance of the latent
vector during the inference phase, specifically by sampling
from N (0, 2.5I) instead of the standard multivariate Gaussian
distribution N (0, I). This modification resulted in a superior
representation of uncertainty, as demonstrated in Fig. 10b,
yielding more reliable results.

Fig. 8 presents the estimated significant wave heights
obtained using the calibration model at four selected time
stamps. Notably, the model not only generates estimates but
also provides valuable information regarding the associated
uncertainties. It is observed that the uncertainty in the esti-
mates is predominantly concentrated in the upper left portion,
corresponding to the open-sea area. Furthermore, as the actual
wave height increases, the uncertainty in the estimates also
tends to rise.

D. Comparison with other models

To assess the model’s performance, we compute per-grid-
cell metrics for point prediction and then aggregate them to
derive full-grid metrics.

RMSE is employed to quantify the deviation between the
actual wave field and the estimated wave field. Since our
proposed model makes probabilistic predictions, we generate
10 samples from the probabilistic estimation and calculate
their mean to evaluate the RMSE effectively. For probabilistic
prediction assessment, we utilize CRPS, a proper scoring rule
for univariate distributions. CRPS enables us to score the
per-grid-cell marginals of the model’s predictive distribution



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, XX 2023 8

5.6 5.8 6.0 6.2
Longitude (°)

62.25

62.30

62.35

62.40

62.45
La

tit
ud

e 
(° )

0.1

0.2

0.3

0.4

0.5

(a) Significant wave height.

5.6 5.8 6.0 6.2
Longitude (°)

62.25

62.30

62.35

62.40

62.45

La
tit

ud
e 

(° )

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(b) Mean wave period.

5.6 5.8 6.0 6.2
Longitude (°)

62.25

62.30

62.35

62.40

62.45

La
tit

ud
e 

(° )

10

20

30

40

50

60

(c) Mean wave direction.
Fig. 8. Spatial distribution of RMSE during the test period.
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Fig. 9. Joint distribution of significant wave height and mean wave period
for 6 selected points.

against the actual wave field, providing a robust evaluation.
Table. I also presents the computational complexity of different
neural network models, measured by the number of parameters
and multiply-accumulate operations (MACs).

a) Baseline models: Four baselines are used in this
paper:

• MyWaveWAM 800m: As mentioned above, data assim-
ilation is usually not performed for ocean waves. One
of the best practices for knowing the wave field in a
particular area is to use a wave forecasting system. This
suggests that the current wave field is actually repre-
sented by forecasting hours ago. MyWaveWAM 800m
is the Norwegian coastal wave forecasting system from
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Fig. 10. Joint distribution of significant wave height and mean wave period
for 6 selected points.

the Meteorological Institute of Norway. The operational
numerical wave model is WAM and it is run on an 800-
meter grid. The model is run with ECMWF and AROME
atmospheric forcing. Note that this model has an 800-
meter grid and therefore we perform a linear interpolation
to downscale the result to our desired 200-meter grid.

• k-nearest neighbor (kNN): The second baseline is a k-
nearest neighbor approach. We save the wave field and
its corresponding wave buoys’ observations in a database.
Then in the inference phase, the distances between the
input wave buoys’ observations and those in the database
are calculated. the top k corresponding wave fields are
the estimated wave fields. We use k=10 for ensemble
estimation and k=1 for deterministic estimation.

• GRU-Conv: The model is implemented in an encoder-
decoder structure, where the GRU is used as the encoder
to compress the time series wave buoys’ observations and
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TABLE I
QUANTITATIVE RESULTS OF ALL THE METHODS ON THE DATASET.

Model MyWaveWAM 800m kNN-1 kNN-10 GRU-Conv Transformer-Conv DGWBNet

RMSE
hs(m) 0.192 0.217 0.175 0.204 0.234 0.157
tm(s) 3.017 0.688 0.538 0.651 0.667 0.526

dirm(◦) 83.46 27.20 36.81 30.66 27.06 21.25

CRPS
hs(m) - - 0.133 0.177 0.199 0.119
tm(s) - - 0.401 0.550 0.549 0.397

dirm(◦) - - 7.53 19.08 17.31 11.19
Params(M) - - - 20.34 22.70 28.75
MACs(G) - - - 2.43 2.46 2.49
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Fig. 11. Significant wave height estimation from four selected time stamps.

a convolutional neural network with transpose convolu-
tional operation is used as the decoder to output the wave
field. To produce probabilistic estimates, the output of the
network on each grid is assumed to follow a Gaussian
mixture model. The model is trained by minimizing the
negative log-likelihood.

• Transformer-Conv: The model is similar to GRU-Conv.
The transformer is used instead of GRU as the encoder
to summarize all information in the buoys’ observations.
Similarly, to produce probabilistic estimates, a Gaussian
mixture model is used for the output of the network on
each grid.

(a) Significant wave height.

(b) Mean wave period.

(c) Mean wave direction.
Fig. 12. Three randomly sampled wave fields and the estimates from different
approaches

b) Results: Table. I shows the overall performance of
our model compared with other baseline methods. The wave
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TABLE II
ABLATION STUDY OF THE DISCRIMINATOR.

DGWBNet w Discriminator w/o Discriminator

RMSE
hs(m) 0.157 0.172
tm(s) 0.526 0.557

dirm(◦) 21.25 23.35

CRPS
hs(m) 0.119 0.135
tm(s) 0.397 0.409

dirm(◦) 11.19 10.02

forecast model MyWaveWAM 800m can be found to provide
a reasonable error for significant wave height. However, it fails
to characterize the wave period and direction in this region.
All data-driven models are able to provide a low error in
wave period and direction. The proposed model provides the
least error in terms of RMSE and CRPS except for the CRPS
for mean wave direction, where the k-nearest neighbor model
with 10 neighbors gives the least error. The computational
complexity of the proposed model is slightly higher than the
two baseline models. However, performance is significantly
improved.

Fig. 12 shows the estimated significant wave height, mean
wave period, and mean wave direction of 3 random scenarios
in the test set of different methods, respectively. It can be
found that the MyWaveWAM 800m can reproduce the overall
distribution of wave heights, but lacks detail due to its low
resolution. In contrast, all learning-based methods are able to
reconstruct detailed wavefields. This conclusion is the same
for the mean wave period and the mean wave direction. The
proposed DGWBNet is able to provide accurate and detailed
sea state information.

E. Ablation study

To validate the design choice of the proposed model,
an ablation study is performed. In particular, we conducted
experiments by ablating the discriminator. Table II shows that
including the discriminator module improves all the perfor-
mance except the CRPS for mean wave direction.

VI. CONCLUSIONS

The ocean wave phenomenon plays a crucial role in in-
fluencing various activities taking place in marine environ-
ments. The rapid advancement of digitalization has highlighted
the need for fast and accurate wave field estimation within
local areas. Complex geographical features in local areas,
such as rapid changes in water depth and frequent land-
water interactions, demand high-resolution grids to accurately
characterize the wave field. Moreover, the lack of external
atmospheric forcing data adds to the challenges. In response,
we propose DGWGNet, a novel approach for estimating wave
fields in such intricate regions. The remarkable performance of
DGWBNet in reconstructing the wave field using sparse wave
buoy data, even under moderate and rough sea conditions, its
ability to estimate uncertainty and capture variations, as well
as its independence from physical simulations, underscore the
feasibility, effectiveness, and strong potential of deep learning
techniques in accurately estimating oceanic phenomena fields.

A deep learning model has the capability to generate highly
accurate wave field estimates with minimal prior information,
such as sparse wave buoy data, as demonstrated in our case.
Furthermore, the model can be easily adapted and imple-
mented in other areas of interest. The majority of the model’s
computational time is spent during the learning procedure
to optimize the adjustable weights. Once trained, the deep
learning model can efficiently generate forecasts without the
need for iterative processes, resulting in rapid and real-time
wave field predictions. In our study, it took only seconds to
generate the wave field for the local area, highlighting the
model’s computational efficiency. By providing accurate wave
fields quickly, a range of offshore applications can benefit,
such as the aforementioned fish farms, ship operations, and
garbage collection, which can all benefit from understanding
wave fields. Future work will consider using the full wave
spectrum as a representation rather than 3 integrated wave
parameters. Validation of the model in different dataset and
its integration with standard data assimilation methods, e.g.
using model outputs as initial conditions, will be investigated.
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