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GraSS: Contrastive Learning with Gradient Guided
Sampling Strategy for Remote Sensing Image

Semantic Segmentation
Zhaoyang Zhang, Zhen Ren, Chao Tao, Yunsheng Zhang, Chengli Peng, and Haifeng Li*

Abstract—Self-supervised contrastive learning (SSCL) has
achieved significant milestones in remote sensing image (RSI)
understanding. Its essence lies in designing an unsupervised
instance discrimination pretext task to extract image features
from a large number of unlabeled images that are beneficial
for downstream tasks. However, existing instance discrimination
based SSCL suffers from two limitations when applied to the
RSI semantic segmentation task: 1) Positive sample confounding
issue, SSCL treats different augmentations of the same RSI as
positive samples, but the richness, complexity, and imbalance
of RSI ground objects lead to the model actually pulling a
variety of different ground objects closer while pulling positive
samples closer, which confuse the feature of different ground
objects. 2) Feature adaptation bias, SSCL treats RSI patches
containing various ground objects as individual instances for
discrimination and obtains instance-level features, which are not
fully adapted to pixel-level or object-level semantic segmentation
tasks. To address the above limitations, we consider constructing
samples containing single ground objects to alleviate positive
sample confounding issue, and make the model obtain object-
level features from the contrastive between single ground objects.
Meanwhile, we observed that the discrimination information can
be mapped to specific regions in RSI through the gradient of
unsupervised contrastive loss, these specific regions tend to con-
tain single ground objects. Based on this, we propose contrastive
learning with Gradient guided Sampling Strategy (GraSS) for
RSI semantic segmentation. GraSS consists of two stages: 1)
the instance discrimination warm-up stage to provide initial
discrimination information to the contrastive loss gradients, 2) the
gradient guided sampling contrastive training stage to adaptively
construct samples containing more singular ground objects using
the discrimination information. Experimental results on three
open datasets demonstrate that GraSS effectively enhances the
performance of SSCL in high-resolution RSI semantic segmenta-
tion. Compared to eight baseline methods from six different types
of SSCL, GraSS achieves an average improvement of 1.57% and
a maximum improvement of 3.58% in terms of mean intersection
over the union. Additionally, we discovered that the unsupervised
contrastive loss gradients contain rich feature information, which
inspires us to utilize gradient information more extensively during
model training to attain additional model capacity. The source
code is available at https://github.com/GeoX-Lab/GraSS.

Index Terms—Self-supervised learning, contrastive loss, gradi-
ent guided, semantic segmentation, remote sensing image (RSI).
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Fig. 1. Example of the positive sample confounding issue and feature adaption
bias in self-supervised contrastive learning for RSI semantic segmentation. 1)
The richness, and complexity of RSI ground objects can result in positive sam-
ples containing different ground objects, self-supervised contrastive learning
(SSCL) lead to positive sample confounding issue when pulling these positive
samples closer in the feature space. 2) SSCL treats RSI patches containing
various ground objects as individual instances for discrimination, resulting in
feature representations at the instance level, it introduces a feature adaptation
bias when applied to semantic segmentation tasks that require pixel-level or
object-level features.

I. INTRODUCTION

SELF-supervised contrastive learning has achieved signifi-
cant success in various downstream tasks such as remote

sensing image (RSI) scene classification [1]–[5], hyperspec-
tral image classification [6]–[11], object detection [12], [13],
change detection [14], [15], and semantic segmentation [16]–
[18]. Its core idea is to learn effective image representations
by designing an unsupervised instance discrimination pretext
task [19]–[27].

However, there are two limitations of the unsupervised
instance discrimination pretext task when applied to the task of
RSI semantic segmentation that requires capturing features of
ground objects [16]–[18], [28], [29]. First, the positive sample
confounding issue. Positive sample confounding issue is one
aspect of the sample confounding issue (SCI) [18], [30]. Due
to the richness, complexity, and imbalance of ground objects
contained in RSIs [18], [31], [32], the sample confounding
issue in self-supervised contrastive learning models manifests
in two aspects: The first aspect is that for negative samples,
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the self-supervised contrastive learning model treats augmen-
tations of all different images as negative samples, which
leads the model to inevitably push away negative samples that
contain the same ground objects as the anchor sample, we
call this the negative sample confounding issue, which is also
often referred to as the false negative sample issue [18], [33],
[34]. The second aspect is that for positive samples, since
RSIs contain a variety of ground objects, the model actually
pulls a variety of different ground objects in positive samples
closer while pulling positive samples closer, which makes the
model confuse the features of different ground objects, we
call this the positive sample confounding issue (as shown in
Fig. 1). The positive sample confounding issue undermines
the identity assumption of self-supervised contrastive learning
[35]–[38], which is the focus of this study. Second, the feature
adaptation bias. Self-supervised contrastive learning treats
RSI patches containing various ground objects as individual
instances, focusing more on the relationship between instances
and ignoring the relationship between ground objects in RSIs
[16], [29]. It obtains features at the instance level, with
feature adaptation bias for RSI semantic segmentation tasks
that require pixel-level or object-level features [12], [13], [29],
[39]–[42].

To address the positive sample confounding issue, Con-
trastiveCrop [43] and Leopart [44] use the activation map
forwarded from the image to the feature layer to guide sam-
pling, and construct higher quality positive samples. However,
these methods ignore the gradient of the contrastive loss
backpropagated to the feature layer, and do not make full use
of the discriminative information contained in the contrastive
loss. Recent works such as LCR [45] add an additional
branch to align the feature activation map and the contrastive
loss gradient activation map, which effectively improves the
performance of self-supervised contrastive learning on fine-
grained visual recognition. However, this method only changes
the feature of the samples, and does not use the activation map
to reconstruct the positive samples. For the RSI semantic seg-
mentation task, the positive samples still contain a variety of
ground objects, which cannot effectively alleviate the positive
sample confounding issue.

To address the feature adaptation bias, DenseCL [28],
VADeR [29], and IndexNet [17] use dense contrastive ap-
proach to optimize the pixel-level contrastive loss between
the two views of the input image. However, for the semantic
segmentation task of high-resolution remote sensing images,
these approaches inevitably lead to higher contrastive learning
overhead. In addition, GLCNet [16] considers adding a local
contrastive module for decoder feature maps to the original
instance-level contrastive, but this requires the decoder struc-
ture for semantic segmentation to be specified in the self-
supervised pretraining stage, although the main target of the
pretraining stage is to obtain the encoder network.

Unlike the above methods, we observed that the discrim-
ination information contained in the contrastive loss can be
mapped to specific regions in RSI through the gradient of un-
supervised contrastive loss, these specific regions tend to con-
tain single ground objects. Therefore, we utilize the gradient
of the contrastive loss backpropagation to the feature layer to

guide sampling and iteratively construct positive and negative
samples that contain more singular ground objects during the
training process. The major difference between the proposed
GraSS and previous work is that the GraSS fully utilizes the
contrastive loss gradient to resample the RSI as input to the
model, without adding a dense contrastive module or local
contrastive module in the pretraining stage. The experimental
results indicate that can effectively alleviate the positive sam-
ple confounding issue caused by positive samples containing
various ground objects, and because the positive and negative
samples constructed contain more singular ground objects, our
approach will also make the instance-level contrastive closer to
the object-level contrastive, effectively mitigating the feature
adaptation bias of the instance discrimination pretext task to
the downstream semantic segmentation task.

The main contributions of this paper are:
1) We propose self-supervised contrastive learning with

Gradient guided Sampling Strategy (GraSS) for remote
sensing image semantic segmentation, which uses the
positive and negative sample discrimination information
from the contrastive loss gradient to guide the positive
and negative sample construction. It effectively allevi-
ates the positive sample confounding issue and feature
adaptation bias of the self-supervised contrastive learn-
ing for RSI semantic segmentation, without adding the
additional dense contrastive module or local contrastive
module.

2) We find that the positive and negative sample discrim-
ination information contained in the contrastive loss
gradient can be mapped to specific regions on the RSI,
which often contain more singular ground objects. This
indicates that the gradient of contrastive loss contains
rich feature information, which inspires us to make more
use of gradient information to obtain additional model
capability in the process of model training.

3) The experimental results on three open datasets, Pots-
dam, LoveDA Urban, and LoveDA Rural, show that
GraSS achieves the best performance compared with
eight self-supervised contrastive learning baseline meth-
ods from six different types of positive and negative
sample construction, and its improved by 1.57% on
average and 3.58% on maximum of mean intersection
over the union (mIoU).

II. RELATED WORK

A. Construction of Positive and Negative Samples

The construction of positive and negative samples is the
basis of self-supervised contrastive learning [2], [20], [35],
[38], [46], [47], which usually regards different data aug-
mentations of the same image as positive samples and data
augmentations of different images as negative samples [18],
[20], [23], [46]. The data augmentation method can be divided
into two categories according to the different image attributes
changed: one is spectral transformation, such as random color
distortion [16], Gaussian blur [48], and the other is spatial
change, such as random resize crop [20], [48], random flip
[48], [49]. Different data augmentation methods have different
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impacts on the self-supervised contrastive learning model
[3], [16], [20], [21], [50]. Among them, the augmentation
combination of random resize crop and color distortion has
been proven to bring greater performance improvement to the
self-supervised contrastive learning model [20]. In addition,
considering the spatio-temporal heterogeneity of RSIs, STICL
[3] and SeCo [50] make full use of the temporal-shifting
characteristics of RSIs to propose a positive and negative
sample construction method that is more adaptable to remote
sensing image processing.

However, due to the richness, complexity, and imbalance of
remote sensing images, the self-supervised contrastive learning
model for RSI semantic segmentation suffers from severe
sample confounding issue [18], [19], [27] : First, negative
sample confounding issue, which is often called false neg-
ative sample issue [18], [33], [34]. In order to solve the
false negative sample issue, FALSE [18] considers the self-
correcting signal based on positive samples and true negative
samples giving feedback to the model to guide the model to
improve the construction of negative samples and alleviate
the false negative sample issue, while IFND [34] and FNC
[33] considers the semantic structure of feature space to
dynamically detect false negative samples.

The second is the positive sample confounding issue, which
undermines the identity assumption of self-supervised con-
trastive learning [35]–[38] and is the focus of this paper.
In order to solve the positive sample confounding issue,
some recent research [43], [44] used the feature activation
maps of images to select specific regions from the original
images to generate positive samples. These approach aims to
obtain positive samples with semantic consistency guarantees
using the activation information forward propagated from the
image to the model feature layer. In addition, recent works
such as LCR [45] introduce the information of contrastive
loss gradient, and consider adding a GradCAM fitting branch
(GFB) [45] to the original contrastive learning model to align
the feature activation map and the contrastive loss gradient
activation map, which effectively improves the performance
of self-supervised contrastive learning on fine-grained visual
recognition. However, different from our proposed GraSS,
the LCR adds an additional branch and loss function, and
only changes the features of the sample, the activation map
is not used to guide the resampling. For the RSI semantic
segmentation, the positive samples still contain a variety of
ground objects, which makes it difficult to effectively alleviate
the positive sample confounding issue.

B. Dense Contrastive Learning

The instance discrimination pretext task of self-supervised
contrastive learning acquires image instance-level features,
which is naturally adapted to image-level downstream tasks
such as RSI scene classification [2], [12], [13], [16], [17],
[27], [39], but suffers from feature adaptation bias for RSI
semantic segmentation that requires object-level or pixel-level
[12], [13], [29], [39]–[41]. A natural idea for mitigating feature
adaptation bias is to optimize the pixel-level contrastive loss
between the two views of the input image by dense contrastive

approach, giving the model the ability to capture features at
the pixel-level or object-level of the image. Methods such as
IndexNet [17], DenseCL [28], and VADeR [29] add a dense
contrastive module to the original instance-level contrastive
and obtain stable performance gains in RSI semantic segmen-
tation and object detection, but this inevitably leads to higher
computational overhead.

In addition, GLCNet [16] considers adding a local con-
trastive module for semantic segmentation decoder feature
maps to the original instance-level contrastive, but this requires
the decoder structure for semantic segmentation to be specified
in the self-supervised pretraining stage.

III. METHOD

A. Overview

The core idea of the method is derived from the basic
characteristics of self-supervised contrastive learning models:
self-supervised contrastive learning constrains the model to
obtain image features by designing unsupervised instance dis-
crimination pretext task, which can be seen as an image clas-
sifier that treats each RSI sample as an independent category.
Inspired by the fact that deep network image classifiers tend to
rely on a major region of an instance and ignore information
about other regions when discriminating between different
image instances [51]–[53]: We expect to obtain the regions
of semantic consistency that the self-supervised contrastive
learning model focuses on during instance discrimination and
use the obtained semantic consistency regions to construct
positive and negative samples. We observe that the positive
and negative sample discrimination information contained in
the contrastive loss gradients can be mapped to specific regions
in RSI through the backpropagation of contrasive loss. These
specific areas tend to contain single ground objects. Extracting
these specific areas as positive and negative samples can
effectively solve the positive sample confounding issue and
feature adaptation bias of self-supervised contrastive learning
for RSI semantic segmentation.

Therefore, we designed two training stages: 1) instance
discrimination warm-up and 2) gradient guided sampling con-
trastive training. The overall framework of the GraSS is shown
in Fig. 2. The instance discrimination warm-up stage aims to
give the initial positive and negative sample discrimination
information to the contrastive loss gradient, which is used to
constrain the model to perform instance-level discrimination.
The gradient guided sampling contrastive training stage aims
to use the gradients of contrastive loss to obtain regions in RSI
patches that contain more singular ground objects, in order to
construct new positive and negative samples. In this stage, we
calculated the contrastive loss twice: the first calculation is to
obtain the gradient of the contrastive loss backpropagation to
the image feature layer and obtain the activation map. The
second calculation is to update the model parameters.

B. Instance Discrimination Warm Up

The purpose of the instance discrimination warm-up stage
is to train the model to acquire initial instance discrimination
capabilities, with contrastive loss at this stage used to constrain
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Fig. 2. Overview of contrastive learning with Gradient guided sampling strategy (GraSS) for remote sensing image semantic segmentation. A) is the Instance
Discrimination Warm Up, the original image is processed by the augmentation function T to obtain positive and negative samples, and the positive and
negative samples are input into the model to calculate the contrastive loss and update the model parameters; B) is Gradient Guided Sampling Contrastive
Training, the original image is processed by the augmentation function T to obtain positive and negative samples, and the positive and negative samples
are input into the model to calculate the gradient, and then the new samples obtained by gradient-guided sampling are input into the model to calculate the
contrastive loss and update the model parameters.

the model to perform instance discrimination. This stage
mainly includes the construction of positive and negative
sample, model feature extraction, calculation of contrastive
loss, and updating of model parameters.

1) Construction of Positive and Negative Samples: For the
RSI data set x = {xi}Ni=1, it is augmented by function T to get
N ·K sample instances x̃ = {x̃i}Ni=1, where x̃i = {x̃ij}Kj=1.
The function T consists of three operations: image copy
c(·), random spectral augmentation rc(·), and random spatial
augmentation rs(·). Therefore, this process can be described
as:

x̃ = T (x) = rs(rc(c(x))) (1)

x̃c
i = c(xi) = [x̃c

i1, x̃
c
i2, . . . , x̃

c
iK ] (2)

x̃Rc
i = rc(xc

i ) = [x̃Rc
i1 , x̃Rc

i2 , . . . , x̃Rc
iK ] (3)

x̃i = rs(xrc
i ) = [x̃i1, x̃i2, . . . , x̃iK ] (4)

where x̃c
i1 = x̃c

i2 = · · · = x̃c
iK = xi. All image instances x̃i

within any x̃ij are obtained from the same original image xi,
and they are positive samples of each other. Any two image
instances x̃p and x̃q (p ̸= q) are negative samples of each
other.

2) Model Feature Extraction and Contrastive Loss Calcu-
lation: For image sample instances x̃, we input them into
the encoder feature extraction network E(·) to obtain high-
dimensional features F , and further input high-dimensional
features F into the feature projection head P (·) to obtain low-
dimensional features f to calculate the contrastive loss L, and
iteratively update the model parameters. Specifically, for the
image instance x̃ij , model feature extraction and contrastive
loss calculation can be described as:

F ij = E(x̃ij) (5)

f ij = P (F ij) (6)

lij = −log(

∑K
n=1,n̸=j exp(sim(f ij ,f in)/τ)∑N

m=1,m ̸=i

∑K
n=1 exp(sim(f ij ,fmn)/τ)

) (7)

where K is typically 2, τ is the temperature parameter,
and sim(·, ·) usually uses cosine similarity. For each iterative
parameter update process, the contrastive loss is finally defined
as:

L =
1

N ·K

N∑
i=1

K∑
j=1

lij , (8)

C. Gradient Guided Sampling Contrastive Training

The gradient guided sampling contrastive training stage
aims to use the gradient of the contrastive loss to obtain regions
in RSI patches that contain more singular ground objects,
in order to reconstruct positive and negative samples. This
stage involves the construction of positive and negative sam-
ple instances, the acquisition of the Discrimination Attention
Region (DAR), the reconstruction samples, and the calculation
of contrastive loss and model parameter updates.

The settings for the construction of positive and negative
sample instances and calculation of contrastive loss are kept
consistent with the instance discrimination warm-up. More
details of the acquisition of the Discrimination Attention
Region (DAR), the reconstruction samples are shown in Fig.
3.

1) Acquisition of Discrimination Attention Region (DAR):
After the construction of positive and negative sample in-
stances using Eq. (1)-(4), we project the image instances to
the low-dimensional features f according to Eq. (5)-(6), and
calculate the contrastive loss using Eq. (7)-(8)) to characterize
the distribution of positive and negative sample instances in
the feature space. Then, we use backpropagation to calculate
the gradient of the contrastive loss to the high-dimensional
feature ∂L

∂F . For the image instance x̃ij , this process can be
described as:
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Fig. 3. Details of contrastive loss gradient guided sampling. The original
samples are input into the model to obtain features and calculate the
contrastive loss. Then, the contrastive loss is backpropagated to the feature
layer to obtain the gradient to generate the loss attention map. Finally, the
original samples were sampled according to the loss attention map to obtain
the gradient-guided sampling samples.

∂L

∂F ij
=

∂L

∂lij

∂lij
∂f ij

∂f ij

∂F ij
(9)

where ∂L
∂l = 1

N ·K only related to the amount of original
image data N and the number of copies K of the image copy
function c(·). Then, we calculate the average activation M for
the dot product of contrastive loss gradient and the feature F
and resize M to the same size as the image sample to obtain
the contrastive Loss Attention Map (LAM). For the image
instance x̃ij , this process can be described as:

M =
1

D

D∑
d=1

pooling(
∂L

∂F ij
)F d

ij , (10)

LAM = Resize
H=h,W=w

(M). (11)

In the Eq. (10), F d
ij denotes the d-th dimensional component

of the D-dimensional feature F ij . pooling(·) denotes the
global pooling operation applied to the gradients. Resize

H=h,W=w
(·)

represents the resizing of the activation M into a two-
dimensional activation map of height h and width w, where h
and w correspond to the height and width of the input image
instances.

Finally, we obtain the discriminative attention region (DAR)
based on the contrastive Loss Attention Map (LAM). Specif-
ically, we define the Discrimination Attention Region acqui-
sition function G(LAM; TA), where TA is the activation map
threshold for selecting DAR. We regard the regions in LAM
with a value higher than TA as the candidate discrimination
attention region R, calculate the maximum activation value of
all candidate discrimination attention regions R, and select the
candidate region with the highest maximum activation value
as the Discrimination Attention Region (DAR). The above
process can be described as:

DAR = G(LAM ;TA = t), (12)

R = {Ri} = (LAM > t), (13)

max(DAR) = max(max(Ri)), (14)

where Ri refers to the i-th 4-connected closed region in R.
The rules for the operation of the function G, as described in
Eq. (12), are defined by Eq. (13), and Eq. (14).

2) Reconstruction of Positive and Negative Samples: We
reconstructed positive and negative samples based on the DAR.
Specifically, we first obtain the coordinates of the centroid
(x, y), width w, and height h of the smallest outer rectangle
of the DAR corresponding to the original image sample.
Afterward, we crop the corresponding RSI region based on the
coordinates and resize it to the original image size to obtain a
new sample. We refer to the operation of cropping an image
based on the DAR as DACrop. The above process can be
described as:

x, y, h, w = Box(DARij), (15)

x̃
′

ij = DACrop
X=x,Y=y,H=h,W=w

(x̃ij). (16)

Finally, we input the updated image instance x̃ij into the
model to extract features, calculate the contrastive loss and
update the model parameters.

The proposed GraSS can be described in Algorithm 1.

Algorithm 1 Pseudocode for GraSS
Require: RSI dataset X; encoder E(·), project head P(·);

augmentation fucntion T(·); batch size N ; warm-up epoch
e, threshold t, current model training epoch ec

1: for batch x from X do
2: Data Augmentation: x̃ = T (x)
3: Get features: f ij = P (E(x̃))
4: Calculate contrastive loss L using Equation (7) and (8)

5: if ec ≤ e then
6: Update E(·) and P(·)
7: else
8: Get LAM using Equation (9), (10), and (11)
9: Get DAR: DAR = G(LAM ;TA = t)

10: Construct sample x̃
′

ij with DACrop using Equation
(15) and (16)

11: Get features: f
′

ij = P (E(x̃
′

ij))
12: Calculate contrastive loss L using Equation (7) and

(8)
13: Update E(·) and P(·)
14: end if
15: end for

IV. EXPERIMENT

A. Experimental Setup

1) Dataset: We selected three high-resolution RSI semantic
segmentation datasets Potsdam [54], LoveDA Urban, and
LoveDA Rural [55] to evaluate the semantic segmentation
performance of the self-supervised contrastive learning model
on high-resolution RSIs. TABLE I shows more detailed in-
formation about the Potsdam, LoveDA Urban, and LoveDA
Rural datasets.
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TABLE I
DETAIL INFORMATION OF POTSDAM, LOVEDA URBAN, AND LOVEDA RURAL DATASET.

Dataset Potsdam LoveDA Urban LoveDA Rural

Resolution (m) 0.05 0.3 0.3

Crop Size 256× 256 256× 256 256× 256

The amount of data for self-supervised pretraining 13824 18496 21856

The amount of data for semantic segmentation fine-tuning 138 184 218

The amount of data for semantic segmentation test dataset 8064 10832 15872

2) Baselines: We selected eight state-of-the-art methods
from six different types of positive and negative sample con-
struction as baselines to evaluate the performance of GraSS.

a) Original Contrastive Learning Method: We selected
the representative SimCLR [20] and MoCo v2 [24] as the
classical self-supervised contrastive learning baselines. Both
SimCLR [20] and MoCo v2 [24] use the typical positive
and negative sample construction methods, where different
augmentations of the same image are treated as positive
samples and augmentations of different images are treated as
negative samples. The difference is that SimCLR constructs
negative samples from other images in the same training batch,
which limits the number of negative samples by the batch
size [20], while MoCo v2 updates the negative samples by
maintaining a queue momentum, and the number of negative
samples is not limited by the number of samples in the training
batch [23], [24].

b) Contrastive Learning Method with Clustering: We
selected PCL [56] as a self-supervised contrastive learning
baseline that introduces clustering to build positive and nega-
tive samples. Unlike SimCLR and MoCo v2, PCL introduces
a clustering strategy to construct positive and negative samples
based on data augmentation, which treats cluster centers of the
same class of image clustering as positive samples and cluster
centers of different classes of clusters as negative samples [56].

c) Contrastive Learning Method without Negative Sam-
ples: We selected Barlow Twins [49] and BYOL [57] as self-
supervised contrastive learning baselines that do not construct
negative samples and only construct positive samples. To
avoid the model collapse caused by only bringing positive
samples closer, BYOL uses an asymmetric network structure
to project different augmentations of the same image into
different feature spaces for comparison, while Barlow Twins
does not directly pull positive samples closer, it only constrains
the dimensions of sample features to be relatively independent.

d) Negative Aware Contrastive Learning Method: We
selected FALSE [18] as a self-supervised negative aware
contrastive learning baseline. FALSE adds a determination
module to correct false negative samples into positive samples
based on the classical positive and negative sample construc-
tion method, the positive samples are not only derived from
different augmentations of the same image but also from
images that contain the same ground objects as the positive
samples [18].

e) Positive Aware Contrastive Learning Method: We
selected ContrastiveCrop [43] as a self-supervised positive
aware contrastive learning baseline. ContrastiveCrop uses the

activation information propagated forward from the image to
the feature layer of the model to construct positive samples
[43].

f) Dense Contrastive Learning Method: We selected
DenseCL [28] as a self-supervised contrastive learning base-
line with the dense contrastive module. DenseCL adds dense
feature contrastive constraints to the instance contrastive. It
gives the model the ability to capture certain object-level or
pixel-level features of the image [28].

3) Metrics: We selected three metrics, the mean
Intersection-over-Union (mIoU), the Overall Accuracy
(OA), and the mean class Accuracy (mAcc) to quantitatively
evaluate the performance of the self-supervised contrastive
model on the test dataset for the downstream semantic
segmentation task. The mIoU is a common metric for the
semantic segmentation task, and for a single ground object,
the intersection-over-Union (IoU) is defined by the following
equation:

IoU =
prediction ∩ target

prediction ∪ target
(17)

Where prediction refers to the predicted result of the model
for the ground object, and target refers to the ground truth of
the ground object. The mIoU is equal to the average of the
IoU of all objects.

The OA represents the overall accuracy of the predicted
result on the test dataset, which is defined by the following
equation:

OA =
TP

N
(18)

where the TP means the total number of pixels that are
correctly predicted, and the N means the total number of
pixels.

Slightly different from OA, mAcc is used to indicate the
average level of accuracy of the predicted result for each
ground object class. Specifically, the prediction Accuracy
(Acc) for a single ground object class can be defined by the
following equation:

Acc =
TP i

Ni
(19)

where the TPi means the number of correctly predicted
pixels for a specific ground object class and the Ni means the
number of pixels for a specific ground object class in ground
truth. The mAcc is the average of the Acc of all ground object
classes.
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TABLE II
QUANTITATIVE COMPARISON RESULTS WITH EIGHT STATE-OF-THE-ART SELF-SUPERVISED CONTRASTIVE LEARNING BASELINE METHODS AND

GLCNET.

Method Pretraining Module
Potsdam LoveDA Urban LoveDA Rural Time*

(Training/Test)OA mIoU mAcc OA mIoU mAcc OA mIoU mAcc

SimCLR Encoder 61.18 43.02 54.90 41.91 33.09 45.31 62.96 41.30 52.97 3.0h/12min

MoCo v2 Encoder 60.21 42.81 54.53 40.61 32.92 45.77 58.01 36.28 47.84 2.5h/12min

PCL Encoder 61.45 43.13 55.15 40.07 33.28 45.99 59.40 37.42 49.41 8.5h/12min

Barlow Twins Encoder 61.42 43.17 54.95 43.05 34.32 46.09 56.29 33.93 51.55 7.5h/12min

BYOL Encoder 61.54 43.93 55.73 35.18 28.49 39.94 60.21 37.39 48.34 5.0h/12min

FALSE Encoder 60.65 43.12 55.45 42.44 33.69 46.08 62.44 40.91 51.82 3.5h/12min

ContrastiveCrop Encoder 60.89 42.86 54.64 40.24 33.35 45.33 61.98 39.28 51.85 7.5h/12min

DenseCL Encoder 61.44 44.34 56.40 37.01 30.85 42.07 62.85 38.69 49.62 5.5h/12min

GraSS(Ours) Encoder 62.28 44.39 56.50 43.68 34.77 46.77 65.25 42.58 53.79 4.5h/12min

GLCNet Encoder+Decoder 77.91 60.57 75.26 50.78 41.26 56.55 63.36 40.41 53.36 8.5h/12min

GraSS(Ours) Encoder+Decoder 78.79 61.41 75.62 52.60 42.05 57.82 65.65 40.96 57.62 9.5h/12min
* The training time is measured on the Potsdam training dataset using an A800 GPU for 350 epochs, and the test time is measured on the

Potsdam test dataset using an RTX 3090 GPU for 150 epochs.

4) Implementation Details: For both the eight self-
supervised contrastive learning baselines and the proposed
GraSS, we used ResNet50 [58] as the backbone network.

In the self-supervised pretraining stage, we train 350 epochs
using the entire training dataset without labels, and the batch
size is set to 256. For each baseline method, we use the
data augmentation and optimization settings recommended in
the original paper, and all self-supervised pretraining methods
were used to train the feature extractor only. For the proposed
GraSS, the number of instance discrimination warm-up train-
ing epochs is also included in the total number of pretraining
epochs for a fair comparison with baselines.

In the RSI semantic segmentation fine-tuning stage, in order
to accurately evaluate the performance of the features extracted
from different self-supervised pretraining methods, we freeze
the weights of the entire backbone network and update only
the parameters of the feature decoder used to obtain the RSI
semantic segmentation results. We randomly select 1% of the
entire training dataset for fine-tuning training. For the eight
baseline methods and proposed GraSS, the randomly selected
fine-tuning data were kept consistent. We uniformly use the
Stochastic Gradient Descent (SGD) optimizer [59] for fine-
tuning training for 150 epochs with the batch size set to 16.

B. Experimental Result

In this section, we present five aspects of evaluation for the
proposed GraSS.

First is performance analysis, we compare the proposed
GraSS with six types, a total of eight self-supervised con-
trastive learning baseline methods on the Potsdam, LoveDA
Urban, and LoveDA Rural datasets, and provide both quan-
titative and qualitative analysis results. In order to explore
the applicability of the gradient guided sampling strategy,
unlike the eight baseline methods mentioned above that train
only the feature extractor in the pre-training stage, we also
compare with GLCNet [16], which requires a specified RSI

TABLE III
THE SEMANTIC SEGMENTATION RESULTS OF GLCNET WITH GRADIENT

GUIDED SAMPLING STRATEGY.

Dataset and Metric
GLCNet

w/o
Gradient Guided

w/
Gradient Guided

Potsdam

Kappa 71.77 72.79

OA 77.91 78.79

mIoU 60.57 61.41

mAcc 75.26 75.62

LoveDA Urban

Kappa 42.08 43.23

OA 50.78 52.60

mIoU 41.26 42.05

mAcc 56.55 57.82

LoveDA Rural

Kappa 49.22 50.45

OA 63.36 65.65

mIoU 40.41 40.96

mAcc 53.36 57.62

TABLE IV
COMPARISON OF SEMANTIC SEGMENTATION RESULTS BETWEEN GRASS

AND TWO STATE-OF-THE-ART SAMPLING METHOD.

Dataset and Metric
Sampling Method

Original ContrastiveCrop LCR Ours

Potsdam

OA 60.21 60.89 61.26 62.28

mIoU 42.81 42.86 43.88 44.39

mAcc 54.53 54.64 55.52 56.50

LoveDA Urban

OA 40.61 40.24 42.50 43.68

mIoU 32.92 33.35 33.53 34.77

mAcc 45.77 45.33 45.97 46.77

LoveDA Rural

OA 58.01 61.98 64.85 65.25

mIoU 36.28 39.28 40.39 42.58

mAcc 47.84 51.85 50.26 53.79
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Fig. 4. Qualitative comparison results with eight self-supervised contrastive learning baseline methods. Where the five RSIs in a) are from the test dataset of
Potsdam, the five RSIs in b) are from the test dataset of LoveDA Urban, and the five RSIs in c) are from the test dataset of LoveDA Rural.
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Fig. 5. Results of the ablation study exploring the effectiveness of each module of the proposed GraSS.

semantic segmentation decoder in the pre-training stage. In
addition, to further validate the performance of the proposed
GraSS, we also compare GraSS with two sampling methods,
ContrastiveCrop [43] and LCR [45].

Second is the ablation study, we perform ablation exper-
iments to verify the effectiveness of each module of the
proposed GraSS.

Third is performance sensitivity analysis, we examine the
effects of two hyperparameters corresponding to the two
training stages of GraSS: the instance discrimination warm-up
epoch and the threshold TA of the activation map for selecting
DAR on the RSI semantic segmentation performance of the
model. The instance discrimination warm-up epoch hyperpa-
rameter corresponds to the instance discrimination warm-up
stage, and the threshold of activation map hyperparameter cor-
responds to the gradient guided sampling contrastive training
stage.

Fourth is the analysis of the number of ground objects
contained in the sample. We quantitatively evaluated the
number of ground objects contained in the samples and found
that positive and negative samples obtained by GraSS contain
more singular ground object types compared to the samples
obtained by original self-supervised contrastive methods.

Finally is the visual analysis of the contrastive Loss At-
tention Map (LAM). We examined the effect of the warm-up
epoch and the ground objects contained in RSI on the LAM.

1) Performance analysis:
a) Quantitative Analysis: To evaluate the performance

of the proposed GraSS, we first compared it with six types,
a total of eight self-supervised contrastive learning baseline
methods and GLCNet [16], which requires a specified RSI
semantic segmentation decoder in the pre-training stage, and
the experiment results are shown in TABLE II. In addition,
in order to explore the applicability of the gradient guided
sampling strategy, we align the experimental conditions and
metrics of GraSS with GLCNet to show the performance
improvement of GLCNet with the gradient guided strategy, and
the experimental results are shown in TABLE III. Finally, in
order to further verify the performance of the proposed GraSS,
we also compared GraSS with the two sampling methods:
ContrastiveCrop [43] and Learning Common Rationale (LCR)
[45], and the experimental results are shown in TABLE IV.

TABLE II shows that GraSS achieves the best results on all
three metrics for the three datasets compared to the eight self-

supervised contrastive learning baseline methods of SimCLR,
MoCo v2, PCL, Barlow Twins, BYOL, FALSE, Contrastive-
Crop, and DenseCL. On the Potsdam dataset, GraSS performs
only slightly outperformed DenseCL, but on the LoveDA
Urban dataset, GraSS is 3.85% higher than DenseCL in terms
of mIoU, and on the LoveDA Rural dataset, GraSS is 3.89%
than DenseCL in terms of mIoU, this demonstrates the stable
semantic segmentation performance improvement of GraSS.

In addition, compared to the original self-supervised con-
trastive learning method SimCLR, we observed that MoCo v2,
PCL, Barlow Twins, BYOL, and DenseCL show significant
performance degradation on the LoveDA Rural dataset, with
DenseCL and BYOL also showing significant performance
degradation on the LoveDA Urban dataset, exhibiting unstable
semantic segmentation performance.

TABLE III shows the experimental results of using the
gradient guided sampling strategy for the GLCNet that re-
quires a specified semantic segmentation decoder in the self-
supervised pretraining stage. The experimental results indicate
that the gradient guided sampling strategy further improves the
semantic segmentation performance of the GLCNet. Mean-
while, It indicates that the gradient guided sampling strategy
is also applicable to the self-supervised contrastive learning
method that trains both the feature extractor and the semantic
segmentation decoder in the pretraining stage.

TABLE IV shows the comparison results of semantic seg-
mentation performance of the proposed GraSS with Original,
ContrastiveCrop, and LCR, where Original represents the orig-
inal self-supervised contrastive learning method. The experi-
mental results indicate that on Potsdam, LoveDA Urban, and
LoveDA Rural datasets, compared with Original, Contrastive-
Crop, and LCR, the GraSS achieves the best performance on
three indicators. Specifically, on the LoveDA Rural dataset, the
proposed GraSS improves the mIoU by 2.19% and the mAcc
by 3.53% compared with the best baseline.

b) Qualitative Analysis: We qualitatively analyzed the
visualization results of semantic segmentation of RSIs, and
the experimental results are shown in Fig. 4. The experimental
results show that the semantic segmentation results of GraSS
present richer details than the eight self-supervised contrastive
learning baselines, especially for small-scale ground objects in
the RSIs, which are difficult to be captured by the instance-
level self-supervised contrastive learning methods. In addition,
the GraSS also presents a more stable semantic segmentation
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effect for RSIs containing a large range of homogeneous
ground objects.

Quantitative and qualitative experimental results indicate
that the proposed GraSS effectively improves the performance
on RSI semantic segmentation tasks, and performs better in
both quantitative and qualitative aspects. This is because the
proposed GraSS fully utilizes the discriminative information
in the contrastive loss gradient to construct samples containing
more singular ground objects, which effectively alleviates the
positive sample confounding issue in the process of contrastive
learning. Meanwhile, the model can benefit from the con-
trastive of samples containing a single ground object, and
obtain more accurate features of ground objects.

Although the proposed GraSS effectively alleviates the pos-
itive sample confounding issue of self-supervised contrastive
learning in RSI semantic segmentation tasks compared with
other methods, since the process of constructing positive and
negative samples is unsupervised, the proposed GraSS cannot
absolutely guarantee that the obtained samples only contain a
single type of ground object, and cannot completely eliminate
the positive sample confounding issue.

2) Ablation study: In order to explore the effectiveness
of each module of the proposed GraSS, we conducted an
ablation study on three datasets: Potsdam, LoveDA Urban, and
LoveDA Rural. Three sets of experiments were conducted, the
first set of experiments used the complete GraSS, the second
set of experiments removed the gradient guided sampling
module on the basis of the proposed GraSS, and the third set
of experiments removed the instance discriminative warm-up
training module on the basis of the GraSS. The experimental
results are shown in Fig. 5.

The experimental results in Fig. 5 show that each module of
GraSS improves the model performance. Compared with com-
plete GraSS and the GraSS without gradient guided sampling,
GraSS without instance discrimination warm-up demonstrates
the worst performance on the above three datasets. This
indicates that it is necessary to conduct instance discrimination
warm up in the initial stage of the model training and train
the model to obtain the initial instance discrimination ability.
The instance discrimination warm up gives discriminative
information to the contrastive loss gradient, which can help the
gradient-guided sampling to further improve the performance
of the model.

In addition, compared with the complete GraSS, the per-
formance of the GraSS without gradient guided sampling
decreases in all indicators of the three datasets, which indicates
that the gradient guided sampling contrastive training can
effectively improve the semantic segmentation performance of
the model after the instance discrimination warm up.

3) Performance sensitivity analysis: In this section, we
examine the effects of two hyperparameters of GraSS: the
instance discrimination warm-up epochs and the threshold of
the activation map for selecting DAR on the performance of
semantic segmentation. The instance discrimination warm-up
epochs hyperparameter corresponds to the first training stage
of GraSS and the threshold of the activation map for selecting
the DAR hyperparameter corresponds to the second training
stage of GraSS.

a) Analysis of the Instance Discrimination Warm-Up
Epochs: The self-supervised contrastive learning methods
with gradient guided sampling rely on the instance discrimina-
tion ability of the model. Therefore, we analyze the impact of
the warm-up training epochs on the semantic segmentation
performance of the GraSS. We fixed the gradient guided
sampling training epochs to 150, and selected six instance
discrimination warm-up epochs of 0, 50, 100, 150, and 200
on the Potsdam, LoveDA Urban, and LoveDA Rural datasets
for comparison.

Fig. 6 shows the semantic segmentation results for the
GraSS with six different warm-up epochs. The experimental
results show that for the Potsdam, LoveDA Rural, and LoveDA
Urban datasets, when the instance discrimination warm-up
epoch is increased to 200, the semantic segmentation perfor-
mance of the GraSS still obtains an improvement, although
it fluctuates slightly. Among them, the semantic segmentation
performance of the LoveDA Urban dataset fluctuates signifi-
cantly, and for the Potsdam and LoveDA Rural datasets, the
best semantic segmentation OA was obtained when the warm-
up epoch is 200.

b) Analysis of the Threshold of the Activation Map for
Selecting DAR: To analyze the effect of the threshold TA of
the activation map for selecting DAR on the semantic segmen-
tation performance of the model, we selected five thresholds
of 0, 0.3, 0.5, 0.7 and 0.9 for comparison experiments on the
Potsdam, LoveDA Urban, and LoveDA Rural datasets.

The threshold of 0 indicates that no gradient guided sam-
pling is performed, and a larger threshold indicates that a
smaller sampling region is obtained. The results in Fig. 7 show
that gradient guided sampling effectively improves the seman-
tic segmentation performance of the contrastive learning model
and achieves the best semantic segmentation performance at a
threshold value of 0.5. However, too large threshold TA will
cause the model to select too small RSI regions, resulting in
the constructed samples containing too little or missing ground
object information, which causes a degradation of the semantic
segmentation performance.

4) Analysis of the Number of Ground Objects Contained
in the Sample: To analyze the number of ground objects
contained in the samples obtained by GraSS, we use the label
information to count the number of ground objects contained
in the sample by gradient guided sampling strategy (GraSS)
on Potsdam, LoveDA Urban, and LoveDA Rural datasets and
compared it with the original RSI sample and random resize
crop. In this analysis experiment, the batch size was set to 32,
and the gradient guided sampling training was started after
150 epochs of instance discrimination warm-up and continued
to be observed for 50 epochs. The experimental results are
shown in Fig. 8.

We first analyzed the number of ground objects contained
in the average single sample in the first batch of each training
epoch, and the experimental results are shown in the first
column of Fig. 8. The experimental results show that the
samples obtained by GraSS contain the lowest number of
ground objects compared to the original RSI and random resize
crop in the 50 observed epochs, which indicates that GraSS
effectively reduces the number of ground objects contained in
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Fig. 6. Semantic segmentation results with 6 different instance discriminationwarm-up epochs.

Fig. 7. Semantic segmentation results with 5 different threshold TA of the activation map for selecting DAR.

Fig. 8. Result of analysis of the Number of Ground Objects Contained in
the Sample. The first-row a) shows the results on the Potsdam dataset, the
second-row b) shows the results on the LoveDA Urban dataset, and the third-
row c) shows the results on the LoveDA Rural dataset.

the original RSI samples.
In addition, we also analyzed the number of samples

containing single ground objects in the first batch of each

training epoch, and the experimental results are shown in the
second column of Fig. 8. The experimental results show that
GraSS obtains the highest number of samples containing single
ground objects compared to the original RSI and the random
resize crop in the 50 observed epochs. For the Potsdam dataset,
GraSS obtained a maximum of 19 samples containing single
ground objects compared to the original RSI, for the LoveDA
Urban dataset, GraSS obtained a maximum of 18 samples
containing single ground objects compared to the original
RSI, and for the LoveDA Rural dataset, GraSS obtained a
maximum of 23 samples containing single ground objects
compared to the original RSI. This indicates that GraSS
can obtain more samples containing single ground objects,
effectively mitigating positive sample confounding issue and
feature adaptation bias.

5) Visual analysis of contrastive Loss Attention Map
(LAM):

a) Effect of Instance Discrimination Warm-Up Epoch
on the LAM: To explore the effect of instance discrimi-
nation warm-up epoch on the contrastive Loss Activation
Map (LAM), we visualized the LAM obtained from different
instance discrimination warm-up epochs, and the experimental
results are shown in Fig. 9.

We selected 5 instance discrimination warm-up epochs of
0, 50, 100, 150, and 200 for visualization and analysis of the
LAM. The experimental results show that as the instance dis-
crimination warm-up proceeds, the obtained LAMs gradually
focus on a certain region of the RSI, which tends to contain
more singular ground objects in RSI.

b) Effect of Ground Objects Contained in RSI on the
LAM: To explore the effect of ground objects contained in RSI
on LAM, we artificially constructed different batches of image
data and acquired LAM for visualization, and the batch size is
set to 8. Specifically, we first specify the anchor sample images
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Fig. 9. The result of the effect of instance discrimination warm-up Epoch on LAM. The first row indicates the original RSI, the white dashed box is the
cropped area obtained when the threshold TA is set to 0.5, the second row is the LAM corresponding to the RSI, the third row shows the superimposed results
of the RSI and the corresponding LAM, the fourth row is the samples reconstructed from GraSS after instance discrimination warm-up, and the number in
the last row indicates the corresponding instance discrimination warm-up epoch.

Fig. 10. The experiment result of the effect of ground objects contained in
RSI on LAM. Each row represents a batch of remote sensing images that are
input to the model. Among them, the anchor samples in the first three rows
are the same, and the negative samples are different. The anchor samples in
the last three rows are the same, and the negative samples are different.

and observe the changes in the anchor sample’s LAM by
replacing other images in the same batch. Where other images
in the same batch are considered as negative samples by self-
supervised contrastive learning, the experimental results are
shown in Fig. 10.

The experimental results show that the regions with higher
activation values in LAM tend to be concentrated on a rela-
tively large number of ground objects in the same batch. As
shown in the first to third rows of Fig. 10, for the same anchor
sample image, when other images in the same batch contain a
high number of grass or low vegetation, the regions with higher
activation values in the anchor sample’s LAM are concentrated
in the low vegetation area (as shown in the first row of Fig.
10). When other images in the same batch contain a high
number of clutter, the regions with higher activation values in
the anchor sample’s LAM are concentrated in the clutter area
(as shown in the second row of Fig. 10). When other images
in the same batch contain a high number of cars, the regions

with higher activation values in the anchor sample’s LAM are
concentrated in the car area (as shown in the third row of Fig.
10). And the fourth to sixth rows of Figure 9 show similar
results.

A possible explanation for such a result is that when ground
objects in the negative sample are close to those in the anchor
sample, a larger contrastive loss gradient will be generated,
which leads to a higher activation value of the image area
corresponding to the LAM obtained from the contrastive loss
gradients.

V. CONCLUSION

In this paper, we propose contrastive learning with Gradient
guided Sampling Strategy (GraSS) for RSI semantic segmenta-
tion. It uses the positive and negative sample discrimination in-
formation contained in the self-supervised contrastive loss gra-
dients to construct samples containing more singular ground
objects, alleviate the sample confounding issue of semantic
segmentation of RSIs for self-supervised contrastive learning,
and mitigate the feature adaptation bias between instance-level
pretext task and pixel-level RSI semantic segmentation tasks.
The experiments show that the GraSS effectively improves the
performance of the self-supervised contrastive learning model
for the RSI semantic segmentation task and outperforms a total
of eight self-supervised contrastive learning methods of six
types at present. In addition, we have conducted extensive ex-
periments and probes on the proposed GraSS and preliminarily
discussed the effects of two factors, the instance discrimination
warm-up epoch and the ground objects contained in RSI,
on the LAM obtained by contrastive loss gradients, which
is expected to deepen our understanding of self-supervised
contrastive learning models.

Although the current gradient guided sampling strategy
effectively mitigates the positive sample confounding issue
of self-supervised contrastive learning for the RSI semantic
segmentation task, since self-supervised contrastive learning
is essentially unsupervised, our proposed GraSS cannot ab-
solutely guarantee that the obtained sample contains only a
single type of ground objects.

In addition, we found that the contrastive loss gradient
contains rich feature information, which inspires us to make
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more use of the gradient information in the process of model
training to obtain additional model capabilities. However, we
currently lack a clear understanding of several factors that
affect the contrastive Loss Attention Map (LAM) obtained by
the contrastive loss gradients. In the future, we will further
explore the relationship between the contrastive loss gradient
and the spatio-temporal characteristics of RSI, which may
provide guidance for designing a self-supervised contrastive
learning model that can capture the features of RSIs more
effectively.
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