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Abstract

Full waveform inversion (FWI) has the potential to provide high-resolution subsur-
face model estimations. However, due to limitations in observation, e.g., regional
noise, limited shots or receivers, and band-limited data, it is hard to obtain the
desired high-resolution model with FWI. To address this challenge, we propose a
new paradigm for FWI regularized by generative diffusion models. Specifically,
we pre-train a diffusion model in a fully unsupervised manner on a prior velocity
model distribution that represents our expectations of the subsurface and then
adapt it to the seismic observations by incorporating the FWI into the sampling
process of the generative diffusion models. What makes diffusion models uniquely
appropriate for such an implementation is that the generative process retains the
form and dimensions of the velocity model. Numerical examples demonstrate that
our method can outperform the conventional FWI with only negligible additional
computational cost. Even in cases of very sparse observations or observations with
strong noise, the proposed method could still reconstruct a high-quality subsurface
model. Thus, we can incorporate our prior expectations of the solutions in an
efficient manner. We further test this approach on field data, which demonstrates
the effectiveness of the proposed method.

1 Introduction

Full waveform inversion (FWI) plays a significant role in reconstructing high-resolution, subsurface
models by iteratively matching the observed seismic records and the simulated data governed by
the wave equation [Tarantola, 1984]. However, limited by imperfect observations, this non-linear
ill-posed problem can admit poor results at a high computational cost. To remedy this problem,
a classical and powerful way is to use prior information as regularization to guide the inversion.
Standard regularization methods, including Tikhonov [Aster et al., 2011] and total variation (TV)
regularizations [Alkhalifah et al., 2018], often push the inversion to models that are either smooth or
piecewise smooth, respectively. Recently, sparsity-promoting (or constrained) FWI has aroused a lot
of interest in the field of geophysical inversion problems. Curvelet or Seislet transforms can be used
to conduct FWI under the framework of sparse model constraints to obtain robust inversion results
[Aster et al., 2011, Li et al., 2012, Xue et al., 2017]. However, from the perspective of representation
theory, the sparsity of the model is also highly dependent on the basis function, that is, the sparse
representation of the model or data using the fixed basis functions cannot capture the special structural
information in the model. In order to better grasp the characteristics of representation parameters,
dictionary-based FWI [Zhu et al., 2016, 2017, Huang et al., 2019] methods were proposed to encode
velocity models effectively and succinctly in a learning way. However, these methods are sensitive to
the values of the hyperparameters used.
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With the recent popularity of deep learning algorithms in many fields, such as computer vision,
speech recognition, and natural language processing [LeCun et al., 2015], the trend in geophysical
inversion is also levitating towards using DNN to learn a map directly between the data and model
domains in a supervised way [Li et al., 2020] or using prior model information obtained by deep
learning methods from seismic velocity models, migration images or well information in regularizing
FWI, explicitly [Li et al., 2021]. Compared to the latter, the network in the former method needs to
be retrained using a sufficient amount of training pairs if the inference data are out of the distribution
of the original training data [Alkhalifah et al., 2022]. Alternatively, Mosser et al. [2020] adopt a
generative adversarial network (GAN) to represent the velocity prior distribution to regularize FWI,
implicitly, and update the velocity model in latent space. However, GANs are difficult to train and
their generative progress is not clear. On the other hand, diffusion models have shown state-of-the-art
performance both as generative models and as unsupervised generative priors to solving linear and
some nonlinear inverse problems by way of plug-and-play [Chung et al., 2022]. This can be attributed
to their stable training and ability to track the progress of the generative process from coarse to fine
details. Considering FWI is also an inverse problem often progressing from coarse to fine resolution,
diffusion models should be suitable and helpful in regularizing FWI.

To this end, we propose a novel diffusion FWI, which embeds the prior velocity distribution repre-
sented by the diffusion model into FWI as a regularization term. Specifically, we pre-train a diffusion
model on a prior distribution of the expected subsurface models, in a fully unsupervised manner
and then adapt it to the seismic observations by incorporating the FWI into the sampling process of
the generative diffusion models. By utilizing the background velocity information from well data
or a good initial model in generating the training set for the diffusion model, that information will
also act as a prior to the inversion process. On the other side, considering the generative diversity of
the diffusion model with different initializations and stochastic sampling, it also can be regarded as
conditional generative progress guided by the gradient of the data fidelity term.

To the best of our knowledge, our work is the first attempt to leverage diffusion models to enhance
the performance of FWI. We showcase the effectiveness of the proposed generative diffusion-based
FWI via numerical experiments, as well as field data. Specifically, the main contributions of this
paper can be summarized as follows:

• A novel diffusion FWI, which embeds the prior velocity distribution represented by the
diffusion model into FWI.

• Our approach provides new insights into incorporating the prior information into FWI, and
could be easily adapted to making use of multi-model prior and extended to 3D.

• We evaluate the effectiveness of the proposed method on synthetic and field data and
showcase its improvements in accuracy and resolution compared to conventional FWI.

The rest of the paper is organized as follows: we first introduce the diffusion model. To state our
method clearly, we focus on acoustic FWI inversion regularized by diffusion models. Then we show
the comparisons between conventional FWI and our method on synthetic data, considering situations
in which we have noise, sparse observations, and observations lacking low-frequency components.
We further demonstrate the effectiveness of the proposed method on field data. Finally, we share out
thoughts and summarize our developments in the discussion and conclusion.

2 Theory

The proposed FWI using diffusion models includes two steps: pretraining a diffusion model using
random velocity models and implementing FWI regularized by diffusion models.

2.1 Generative diffusion models

There are two important concepts in diffusion models: the forward data noising process (diffusion)
and the inverse process. For the forward process, the noise is gradually added to corrupt the image
until it becomes dominated by white Gaussian noise, while for the inverse process we train a
neural network to reverse the process gradually until the image is retained. A simple and excellent
variance-preserving diffusion model, denoising diffusion probabilistic models (DDPMs), have shown
promising performance in image synthesis. Song et al. [2020] unified it into a score-based generative
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modeling approach and defined the forward noising process of the data, from the perspective of score
matching, with a linear stochastic differential equation

dx = −β(t)

2
xdt+

√
β(t)dw, t ∈ [0, 1], (1)

where x(t = 0) (omitted as x0) are the samples from the data distribution, β(t) denotes the noise
schedule to make sure the final corrupted data x1 satisfies the pre-defined noise distribution (standard
Gaussian distribution), and w is the standard Wiener process (Brownian motion). The d in front of
these parameters describes the change in them as a function of the noising iteration (time). We set the
prior distribution of x as p(x) and xt ∼ pt(x) for time horizon t ∈ [0, 1]. Then the reverse process
is given by

dx =

[
−β(t)

2
x− β(t)∇x log pt (x)

]
dt+

√
β(t)dw, (2)

where ∇ denotes the gradient operation, ∇x log pt (x) is the score function Liu et al. [2016] of
distribution pt(x), and the w denotes a standard Wiener process in the reverse-time direction [Song
et al., 2020]. The workflow is shown in Figure 1. The key point here is to learn this score function

.  .  .

Forward progress

Reverse progress

dx = [− β(t)
2 x − β(t)∇xlog pt (x)] dt + β(t)dw

dx = − β(t)
2 xdt + β(t)dw

Figure 1: The workflow of the diffusion process and its reverse process.

via a neural network with the parameter θ. In practice, we use the denoising score matching to
approximate it:

θ∗ = argmin
θ

Et

{
Ex0

Ext|x0
[∥sθ(xt, t)

−∇xt
log p0t(xt | x0)∥22

]}
,

(3)

where p0t(xt | x0) denotes the transition distribution from x0 to xt and xt is sampled from
p0t(xt | x0). The theory behind denoising score matching ensures that sθ∗ (xt, t) can approximate
∇x log pt (x) well [Song et al., 2020].

The beauty of this approach is that once the neural network is trained, we can use sθ∗ (xt, t) in
equation 2, where we obtain

dx =

[
−β(t)

2
x− β(t)sθ∗ (xt, t)

]
dt+

√
β(t)dw = f(x, sθ∗ , t) +

√
β(t)dw, (4)

to sample x0 from the prior distribution p(x0) and then use it in inverse problems as a prior.
Specifically, as shown in Figure 2, the training progress of diffusion models includes the following
steps:

• Select a batch of random training samples;
• Generate Gaussian noise to corrupt the clean samples (velocity models), which is referred to

as the diffusion process over time t;
• Feed the noisy samples for different t into a U-Net to output an estimation of the added

noise ϵθ (xt, t);
• Measure the loss by taking the difference between the estimated and the reference noise and

then back propagate the difference to update the U-Net.
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This training procedure of the Unet is performed over training samples and noising iterations (time),
and thus, can be costly. However, we only need to train once for a specific velocity distribution, and
thus, the training process can be considered as an overhead cost. We will discuss this matter in detail
in the pretraining of the diffusion model section.

Step 1: Select an original image

Step 2: Generate Gaussian 

noise ϵ and time t randomly

Step 3: Corrupt original image


x0

xt

ϵ

Noise schedule t Step 4: Calculate loss, use

 gradient to update U-Net

xt

t

dx = − β(t)
2 xdt + β(t)dw

Loss = ϵ − ϵθ (xt, t)
2

Fully-connected layers

ϵ

ϵθ (xt, t)

Figure 2: The training pipeline of the diffusion models.

2.2 Diffusion regularized FWI

The objective function J of a classical FWI with a regularization term is described as follows:

J =
1

2
∥dobs − F(m)∥22 +R(m), (5)

where dobs is the observed data, m is the velocity model, F is the wave equation operator (like
that for the acoustic wave equation with constant density), and R denotes an implicit or explicit
regularization term on the velocity model. We can use the proximal operator of R, proxR, to solve
equation 5,

mk+1 = proxR

(
mk + αk

∂J

∂mk

)
= f

(
mk + αk

∂J

∂mk
, sθ∗ , t

)
+
√
β(t)dw,

(6)

where mk is the velocity model at the kth iteration and αk is the step length. The proximal operator
has the form of a Gaussian denoiser in a Maximum-a-posterior (MAP) sense. Inspired by this fact,
we choose f corresponding to a reverse diffusion step to replace it, then we obtain the right-hand side
term in equation 6. Unlike the traditional iterative FWI update per iteration, here we incorporate the
FWI process into the reverse progress (sampling) of the diffusion model, which we call diffusion
regularized FWI. The diagram of the diffusion regularized FWI is shown in Figure 3. For every
diffusion time step t, we do a few inner iterations of conventional FWI (could be 1, but in our case,
we choose 10) followed by the velocity update using equation f . Unlike in the case of unconditional
sampling, here we start from an initial velocity model for FWI.

3 The pretraining of denoising diffusion probabilistic models

The pretraining of diffusion models is essential in the proposed method as it is used to store the
distribution of the subsurface velocity models and provide prior information for FWI. In this section,
we will describe the parameters used to train the diffusion model based on the training steps described
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Figure 3: (Top) An overview of our method for the generative diffusion model-based FWI. The black
arrow represents the original unconditional inverse diffusion progress. The red and blue arrows jointly
represent the workflow of our diffusion FWI, where the red one represents a regular FWI iteration,
and the blue one denotes the inverse diffusion progress. Starting from a certain reverse diffusion time
step and an initial velocity model, we do a few inner iterations of conventional FWI followed by the
velocity update using the diffusion model. (Bottom) An illustration of how to update FWI using the
current velocity model and observed data. This also can be regarded as using the seismic observed
data to guide the generation of the velocity model from the diffusion process.

earlier. Here, we train the diffusion model on parts of the OpenFWI dataset [Deng et al., 2021] to
learn the distribution of these subsurface velocities as prior for the FWI.

We set the maximum timestep of the diffusion process to 500 and use a constantly increasing linear
scheduler (forward process variance) for noise schedule βt, where the starting β0 = 10−4 and the
final β1 = 0.02. As for the dataset, we extract 84000 velocity samples for training while testing on
the other unseen velocities, and the size of the velocity is cropped to 64×64. The backbone of the
proposed method is a UNet model with attention and timestep embedding. Our neural network model
uses four feature map resolutions (64×64 to 16×8) and includes two convolutional residual blocks.
The diffusion timestep t is added via the sinusoidal positional encoding into each residual block. We
train the model for 100 epochs using an Adam optimizer with a learning rate of 5e−4. Figure 4a
shows the generation progress of velocity models, where each column denotes the generated velocity
along the timestep of diffusion models (visualized every 8 timesteps from timestep 120 to 0, from
a total of 1000 steps), and each row denotes a different trajectory of sampling progress (targets to
different generated models). The generation of the velocity model is equal to the reverse process for
the diffusion on the true velocity model. Figure 4b represents some of the final generated velocity
models drawn from the same distribution as the training velocity models. We observe that various
velocity models can be sampled from the distribution stored in the diffusion model. Then with this
pretrained diffusion model, we can combine it with FWI to provide more accurate and high-resolution
inversion results.

4 Numerical Experiments

After the pertaining of diffusion models, given seismic data, and a wavefield modeling engine, we use
the proposed sampling method to reconstruct the subsurface velocity to demonstrate the effectiveness
of our method. As we mentioned before, we can directly apply this pre-trained model in FWI without
any retraining or adjustment. We use the velocity model (Figure 5a) with a resolution of 64×64 and
a spatial interval of 10 m in both x and z directions, from the same velocity distribution, but not
included in the training set, to demonstrate the performance of our proposed method for different
acquisition scenarios, including coarse recording and the presence of noise. We generated data by
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(a) (b)

Figure 4: The generative progress a) from left to right for 16 velocity model samples (rows) using the
diffusion model; b) shows 64 generated velocity models.

numerically solving the acoustic wave equation with a time sampling interval of 1 ms using a 15 Hz
Ricker wavelet with a total length of recording of 1.5 s.

We uniformly place 64 receivers and 32 shots on the surface. We smooth the true velocity model
to obtain the initial velocity for FWI (Figure 5b). Figures 6a and 6b are the clean and noisy data,
respectively. We first test the proposed and conventional FWI on clean data, with results shown
in Figure 7. Unlike the conventional FWI, whose resolution and accuracy are limited by the main
frequency of the data, the diffusion regularized FWI provides high-resolution results courtesy of the
prior. The details of the velocity model are reconstructed, which are hard to obtain using conventional
methods. That means our method can generate a velocity model, which is consistent with both the
prior distribution and measurements.

Figure 5: The true velocity model a) and the initial velocity model b).

Figure 6: Simulated synthetic shot gathers recorded at 320 m a), and the corresponding noisy data b).
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Figure 7: A comparison between the conventional FWI result (a) and the diffusion FWI result (b) for
the clean synthetic data, with a sample shot gather shown in Figure 6a.

As for the robustness against noise, as shown in Figure 8, the conventional FWI fails to converge
to an adequate solution and the inversion results are contaminated with noise while the proposed
method still inverts an accurate and high-resolution velocity model. The prior information stored in
the diffusion model helped guide FWI to a clean and more accurate result.

Figure 8: A comparison between the conventional FWI result (a) and the diffusion FWI result (b) for
the noisy data, with a sample shot gather shown in Figure 6b.

Besides noise recorded in shot gathers, it is common that we have only limited shots in field
data, which results in insufficient illumination and influences the inversion results. Thus, we test
our approach for the case of sparse acquisition, where we only use three shots (Figure 9a). The
inversion results are shown in Figures 9b and c. Due to the limited recorded data, the inversion of
the conventional FWI contains a lot of errors in the velocity estimation. In contrast, thanks to the
guidance of the prior information stored in the diffusion model, the inversion result using the proposed
method is quite good, and high-resolution details are still recovered. A few accurate measurements
could guide the diffusion model to sample the correct velocity, which is consistent with both the data
and the prior distribution.

Figure 9: A comparison between the conventional FWI b), and diffusion FWI c). a) is the true velocity
model where the red stars are the source locations of the 3 shots, and b) and c) are the corresponding
results for the 3 shot gathers.
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Finally, to further test the proposed method’s potential for field applications, we show the case where
the data lack low frequencies. Here, we smooth the initial model (Figure 5b) further to test on a
more challenging initial model (Figure 10a). We applied a highpass filter to remove recorded data
with frequencies under 5 Hz and then apply the FWIs. The results are shown in Figure 10. Even
though the result of our method (Figure 10b) is not as good as what we had before, it still has obvious
improvements over the one from the conventional FWI (Figure 10c).

Figure 10: A comparison between the conventional FWI b), and diffusion FWI c). a) is the initial
model, which is much smoother than that in Figure 5b, and b) and c) are the corresponding results
using conventional FWI and diffusion regularized FWI in case of data without low frequencies.

The above experiments on synthetic examples demonstrate the effectiveness of the proposed method
in terms of enhancing the accuracy and resolution of the inverted model and also show the potential
of the proposed method for field applications. Thus, we further test the approach on field data.

5 Field data application

Here, we use a 2D field marine dataset from North-Western Australia Continental shelf acquired by
CGG with a variable depth streamer to validate our method. Among the original 1824 shots with
an 18.75 m horizontal interval between them, we chose 116 shots with a 98.75 m interval to test the
inversion. Each shot gather includes 648 receivers at a 12.5 m spacing interval, and the corresponding
minimum and maximum offsets are 16.9 m and 8.256 km, respectively. The maximum recording
time is about 7 s with a 2 ms sampling interval. We use only 6 s of the recorded time, as shown in
Figure 11. The velocity model is designed to be 12.5 km long and 3.7 km deep, both with 12.5 m
grid intervals.

We first applied a low pass filter on the field data to maintain a maximum frequency of 8.0 Hz. We
estimate the source wavelet by inverting the near-offset early arrival seismograms with a constant
water velocity of 1500 m/s and then use the following sequences of processing steps, including a
brute-stack time-domain velocity analysis [Kalita and Alkhalifah, 2019] followed by an extended full
waveform inversion with matching filter [Li and Alkhalifah, 2021], to obtain a good initial model
(shown in Figure 13a).

For conventional FWI, we applied time-domain full waveform inversion using DeepWave package
[Richardson, 2022]. We use an Adam optimizer with a learning rate of 0.003 and executed 100
iterations. Then we applied the proposed FWI using the previous pre-trained model based on the
OpenFWI velocity models. Due to the poor performance of high dimensional diffusion models, we
do not directly use a resolution of 296×1000. Instead, we generated model patches with a resolution
of 152×152 and then merged them by means of a sliding window into the original velocity model
size.

The comparison of convergence histories (data misfit) between the conventional and diffusion FWI
methods is shown in Figure 12, and we found that the proposed method converges faster and yields
lower residuals. With the increasing impact of the diffusion models, the data residuals decrease faster.
It implies that in spite of using regularization, it managed to fit the data better, which reflects the
positive impact of our prior knowledge on the inversion.

The inverted velocities are shown in Figure 13, and we observe that with the storage of the high-
resolution information from the OpenFWI velocity models in our diffusion model, we can obtain a
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Figure 11: A raw shot gather from the field data for a source at a distance of 4.5 km.
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Regular FWI
Diffusion FWI by OpenFWI model

Figure 12: Convergence histories of the conventional FWI (black line) and the proposed diffusion
regularized FWI (red dash line).

higher-resolution inverted velocity model with higher wavenumber content in the vertical direction
compared to the result of conventional FWI. We extract the vertical profiles at the lateral locations of
2.5 km and 7.5 km and show them in Figure 14. Although the trend of the inverted velocity of the
conventional FWI is consistent with that using the proposed method, the diffusion regularized FWI
provides higher-wavenumber content and more details. This demonstrates the effectiveness of the
proposed method.

To further evaluate the accuracy of the inverted velocity models, we compare their simulated data
to the observed ones, as shown in Figure 15. In general, both simulated data match well with the
observed data, especially compared to those from the initial model. Nevertheless, the amplitude in
the near offset using the proposed method (Figure 15c) is closer to the observed data, and seismic
events are more continuous, especially for the parts denoted by the arrows. This is attributed to the
sharper interfaces in our inverted model using diffusion FWI.
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(a)

(b)

(c)

Figure 13: The inversion results of the field marine dataset. (a) The initial velocity, (b) the inverted
velocity with the conventional FWI, (c) the inverted velocity using our diffusion regularized FWI.

Although the inverted result of diffusion regularized FWI is better than that using the conventional
FWI, the results might not be as accurate as we would hope since our prior information stored in
the diffusion model is given by the OpenFWI dataset, which does not represent our expectations of
the subsurface underneath the observed data. It only provided, as we saw earlier, higher resolution
features. Thus, we repeat the process by retraining the diffusion model with random velocity models
guided by the well information and our expectations of the structure in the region, which we expect to
be smoother than that given by the OpenFWI dataset. Specifically, we generate 2000 random velocity
models guided by these priors using the exact implementation in [Kazei et al., 2021, Ovcharenko
et al., 2022] and train the diffusion model with this new set. As shown in Figure 16, the newly
generated models are piecewise smoother with less structure. The training settings are the same
as that used in the synthetic examples except for increasing the number of diffusion timesteps to
1000 and the epochs to 400. In this way, we could store the priors, e.g., geological priors or the
well-log velocity priors in the diffusion model, which is guided by the distribution of the random
models used in training. Again, due to the relatively poor performance of the DDPM method for high
dimensional images, here we also do not directly train the diffusion model with large (296×1000)
velocity models. In contrast, we train them with velocity models of 152×152 size, which are patches
extracted from the original downsampled velocity (with a downsampling factor of 2). The calculation
of the regular-size velocity models is the same as we described before.

Then we applied the diffusion regularized FWI, and the results are shown in Figure 17. We can see
that the model still maintains the higher resolution feature in the vertical direction, but the lateral
continuity is much better than the inverted result built on the pre-trained model with the OpenFWI
dataset and the inverted result using the conventional FWI. The artifacts at the right corner, due
to the limited illumination, are successfully mitigated. We extract vertical profiles (Figure 18).
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(a)

(b)

Figure 14: A comparison between vertical profiles at the lateral locations of 2.5 km (a) and 7.5 km (b),
where the black lines denote initial velocity, the red lines denote the inverted result using conventional
FWI, the blue lines denote that using the diffusion regularized FWI based on the pre-trained model
using OpenFWI velocity models.

With better prior information guidance, the diffusion regularized FWI allows for more reasonable
high-wavenumber details. As for the comparison of simulated data using the inverted velocities
to the observed data, there are obvious improvements denoted by the arrows in Figure 19. This
demonstrates that the better the prior information we have, the better the inverted results we obtain.

6 Discussions

The proposed method shows good performance in all settings with only a minor additional cost. The
computational cost comes from the sampling of the diffusion model, but it is practically instant. On
the other hand, the cost of training the diffusion model could be high, but, as mentioned earlier, that
can be considered as an overhead cost. Nevertheless, the training process is important to the success
of the inversion, so we will discuss possible concerns in this matter.

6.1 Determining the velocity models used in training

The quality of the reconstruction of our method highly depends on the distance between the target
subsurface model and the distribution of the training dataset. Taking the field data experiment as an
example, although we still obtained a result that is better than conventional FWI using the pre-trained
model on OpenFWI dataset, we ended up with less lateral continuity and variations in the bottom
right corner as compared to the result using the random velocities in Figure 16. The diffusion model
trained with improper prior will decrease the ability of the proposed method to mitigate artifacts, e.g.,
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(a) (b) (c)

Figure 15: A shot gather in which (a), (b) and (c) display interleaved predicted and observed data
using the initial velocity, (Figure 13a), the velocity model from conventional FWI (Figure 13b) and
the velocity model of our diffusion regularized FWI (Figure 13c), respectively. We intersperse 40
traces starting from the observed followed by predicted data.

due to the limited illumination, and may lead to unnatural inverted results. This demonstrates the
importance of a proper prior, which should be reasonably close to the inversion target, in training
FWI diffusion for accurate velocity estimation.

As mentioned earlier, we could use various open velocity models for training, e.g., Overthrust model
[Aminzadeh et al., 1996], Marmousi model [Brougois et al., 1990], and so on. Considering the
training cost and the complexity of the diffusion model, we can choose random velocity models,
guided by the well log information or geological information [Kazei et al., 2021], to train the diffusion
model, like what we have done in Section 5.

6.2 The training of diffusion models

To properly generate velocity models using the diffusion model, the dimension of the models involved
(the depth and width of the network) should be related to the amount of features in the velocity model
distribution we need to store. Unlike natural images, velocity models, especially those we generate
randomly, do not include the variety, details, and variations seen in natural images. So, we often need
smaller dimensional diffusion models to accommodate patches of the velocity model. This is actually
good as smaller diffusion models are cheaper to train. As mentioned earlier, the patches are extracted
from the model along the horizontal direction. We do that so all the patches experience the general
velocity variation trend with depth. For patches extracted along the vertical direction, the velocity
content of a shallow patch will be very different than that for a deeper patch. To address this issue of
the discrepancy in the distribution of shallow patches compared to deeper ones, as velocity generally
increases with depth, we can adapt the depth of the patch as an additional input to the network as in
[Li and Alkhalifah, 2022].

6.3 The resolution component of diffusion models

For velocity models, we observed that the high-resolution information is often stored in the U-net
model within the last few time steps of the reverse diffusion process. The reason for that is the fact
that the high-resolution components of an image are often the first to be diffused when we add noise
since these features (high wavenumbers) tend to have a low amplitude spectrum in velocity models
and even in natural images. This control of the resolution features in the diffusion model-based
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Figure 16: Samples of the generated random velocity models used for training the diffusion model,
which were guided by a well in the area and our prior knowledge of the subsurface there.
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Figure 17: The inverted velocity using the diffusion regularized FWI trained on velocity model
samples, some of which are shown in Figure 16.

generator is a unique attribute that is not provided by other generators, and it is especially beneficial
for FWI. As a result, we often only utilize the reverse diffusion (generator) time steps that correspond
to enhancing the resolution of the velocity model.

7 Conclusions

We proposed a new paradigm for regularized FWI using generative diffusion models. We use the
generative diffusion model to extract the features of velocity distribution in the training of the diffusion
model and tactfully fuse such features into FWI. Specifically, we pre-train a diffusion model on a prior
distribution of velocity models that represent what we expect of the subsurface, probably guided by a
well, in a fully unsupervised manner and then adapt it to the seismic observations, incorporating the
FWI into the sampling progress of the generative diffusion models. Numerical examples demonstrate
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(a)

(b)

Figure 18: A comparison between vertical profiles at lateral locations 2.5 km (a) and 7.5 km (b),
where the black lines denote the inverted result using the diffusion regularized FWI based on the
pre-trained model using OpenFWI velocity models, and the red lines denote that using the velocity
models in Figure 16.

(a) (b)

Figure 19: A shot gather in which (a) and (b) display interleaved predicted and observed data using
the velocity model of our diffusion regularized FWI (Figure 13c) and the velocity model in Figure 17,
respectively. We intersperse 40 traces, starting from the observed followed by predicted data.
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that our method can outperform the conventional FWI with only a small additional computational cost.
Even in cases of sparse observations or observations with strong noise, the proposed method could
still reconstruct a high-quality subsurface model. A further marine field data test also demonstrates
the effectiveness of the proposed method. With the reverse diffusion generative process, the higher
resolution components appear in the final time steps, which is favorable to FWI.
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