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Abstract

The accurate representation of 3D building models in urban environments is significantly hin-
dered by challenges such as texture occlusion, blurring, and missing details, which are difficult
to mitigate through standard photogrammetric texture mapping pipelines. Current image com-
pletion methods often struggle to produce structured results and effectively handle the intricate
nature of highly-structured fagade textures with diverse architectural styles. Furthermore, ex-
isting image synthesis methods encounter difficulties in preserving high-frequency details and
artificial regular structures, which are essential for achieving realistic fagade texture synthesis.
To address these challenges, we introduce a novel approach for synthesizing facade texture im-
ages that authentically reflect the architectural style from a structured label map, guided by a
ground-truth fagade image. In order to preserve fine details and regular structures, we propose
a regularity-aware multi-domain method that capitalizes on frequency information and corner
maps. We also incorporate SEAN blocks into our generator to enable versatile style transfer. To
generate plausible structured images without undesirable regions, we employ image completion
techniques to remove occlusions according to semantics prior to image inference. Our proposed
method is also capable of synthesizing texture images with specific styles for fagades that lack
pre-existing textures, using manually annotated labels. Experimental results on publicly avail-
able facade image and 3D model datasets demonstrate that our method yields superior results
and effectively addresses issues associated with flawed textures. The code and datasets will be
made publicly available for further research and development.

Keywords: Oblique Photogrammetry, 3D Building Model, Texture Mapping, Image
Translation, Generative Adversarial Network (GAN)

1. Introduction

Three-dimensional (3D) building models are fundamental to the development of digital cities,
serving as a crucial component in high-precision mapping, autonomous driving, and urban plan-
ning (Lin et al., 2013; Tao and Qi, 2019). The realism of 3D models is conveyed through their
geometry and texture (Chen et al., 2020; Buyukdemircioglu and Kocaman, 2020). At present,
high-precision building models are predominantly created manually, while textures are primarily
sourced from various imagery. However, in densely populated urban areas, aerial imagery is often
obstructed by building occlusions, and ground-level photography is impeded by adjacent objects,
such as vegetation and billboards. As a result, acquiring unobstructed imagery from any angle
and distance proves challenging, rendering traditional texture mapping pipelines inadequate for
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processing or de-occluding building fagade images (Zhou et al., 2020; Zhu et al., 2021a; Zhang
et al., 2021; Li et al., 2023). As depicted in Figure 1, defective textures are prevalent in various
realistic building models.

Current models frequently utilize occluded textures directly or substitute them with manually
crafted repetitive textures. In certain cases, textures are selected from pre-existing material
libraries. These processing techniques substantially constrain the visualization quality of models
(Li et al., 2023). To improve the visual fidelity of realistic 3D building models, it is crucial to
tackle the issue of defective textures. As a result, this paper concentrates on repairing defective
textures in realistic 3D building models to facilitate high-precision urban 3D reconstruction
and advanced applications. Although there have been advancements in texture processing and
occlusion removal, a number of outstanding challenges still need to be addressed.

(a) Occlussions of SWJTU model. (b) Texture missing of London model.

Figure 1: Defective textures of 3D building models. The red rectangles denote enlarged regions.

1) Inaccessible fagade textures in built-up areas. Multi-view aerial camera systems, mobile
measurement systems (MMS), and handheld cameras are widely employed and effectively inte-
grated in urban realistic 3D modeling for tasks such as feature matching and texture mapping
(Remondino and Gerke, 2015; Zhu et al., 2020b, 2021b). However, there remain many areas
that are inaccessible to these sensors, particularly buildings in built-up areas. Some researchers
have attempted to mitigate occlusions by selecting optimal pixels from various aerial images for
texture remapping, but this approach is limited to areas that are not fully occluded (Zhou et al.,
2020; Yang et al., 2021). A mesh completion method has been proposed in previous work, which
processes 3D textures in 2D space and employs image completion methods to repair textures in
occluded road areas. Nevertheless, this method cannot handle unseen pixels or generate textures
from scratch, which is a frequent issue in built-up areas (Zhu et al., 2021b). Moreover, we ob-
serve that recovering the semantics of occluded buildings is considerably more manageable than
completing textures. As such, synthesizing textures from recovered or specified semantic labels
presents a practical solution.

2) Highly structured and diverse styles of building facades. Windows, doors, balconies, and
other components on fagades contribute to the textures of buildings. An ideal building fagade
texture should exhibit structured man-made components and a realistic style with details. How-
ever, neither data-driven nor patch-based methods possess sufficient generalization for different
buildings with various styles, and they cannot generate highly structured de-occluded or synthe-
sized textures (Criminisi et al., 2004; Zhu et al., 2021b). Moreover, the results of existing image
synthesis methods lack texture details, such as bricks and window frames, which are crucial for
building facades (Cai et al., 2021). The regularization and generalization of current methods



cannot fulfill the requirements of building fagade texture repair. As such, one viable solution is
to first recover or provide the semantics of facades to control regularization, and then translate
the semantic label map into textures by combining patch-based and data-based methods.

To address the issues outlined above, we propose a method for repairing building facade
textures to enhance the realism of 3D building models. Our method involves synthesizing realistic
fagade textures by using unoccluded semantic labels and ground-truth facade images, a process
also known as image translation (Isola et al., 2017). Our approach is capable of handling both
occluded and missing fagade textures. The difference in processing occlusion and missing fagade
textures lies primarily in the acquisition of semantic labels. For occlusion, we use an image
completion algorithm to recover the semantics of occluded regions. For missing textures, we
manually annotate the semantics of the corresponding fagade. We then utilize the semantic
labels as content and the ground-truth facade images as style to train a generative adversarial
network (GAN) to synthesize pseudo fagade textures (Goodfellow et al., 2020). If the wall style
is too structured to be synthesized by the GAN, our method falls back on image quilting to
generate more regular results (Efros and Freeman, 2001).

In summary, this paper offers the following two contributions to repairing defective textures
of building fagades: 1) a practical solution for texture occlusion or missing building facades
through image translation from unoccluded semantic labels, and 2) a novel arbitrary label-
to-image translation method with rich details and regular structures. The rest of this paper is
organized as follows: Section 2 provides a brief review of related work. Section 3.1 introduces the
workflow of the proposed facade image synthesis approach. Sections 3.2, 3.3, and 3.4 elaborate
on the details of the proposed method. Experimental evaluations are presented in Section 4.
Finally, Section 5 concludes the paper.

2. Related work

In the following, we only discuss the most relevant literature, including 1) texture mapping
and de-occlusion, 2) semantic recovery and 3) image translation.

1) Texture mapping and de-occlusion. Significant progress has been made in bundle adjustment
(Verykokou and Toannidis, 2018) and dense image matching (Hirschmuller, 2007; Hu et al., 2016),
enabling realistic urban modeling. To further advance applications such as autopilot, researchers
have obtained monolithic building models using parametric (Kelly et al., 2017, 2018) or interac-
tive modeling (Vanegas et al., 2012; Kelly and Wonka, 2011) approaches. These models achieve
realism through texture mapping of images acquired from different platforms. The concept of tex-
ture mapping was first proposed by Catmull (1974), and subsequent studies by Sinha et al. (2008)
and Tan et al. (2008) realized texture mapping for 3D models through interactive approaches.
One approach to automated texture mapping is to use a Markov Random Field (MRF) energy
function to select optimal images for each facet, as demonstrated by Lempitsky and Ivanov (2007)
and Waechter et al. (2014). Gal et al. (2010) further improved upon this method by introducing
clarity measurement and translation vectors to achieve a smoother textured mesh. However,
these single-view-based methods have limitations in terms of texture alignment with geometric
structures. In contrast, multi-view-based methods fuse multiple images to obtain more consis-
tent textures for each facet (Callieri et al., 2008; Grammatikopoulos et al., 2007). However, these
methods have strict requirements on reconstruction accuracy and image resolution, and their low
efficiency limits their widespread application (Waechter et al., 2014).

Removing occlusions for 3D models with discontinuous textures is a challenging problem.
While Grammatikopoulos et al. (2007) addressed this issue by automatically filtering out texture
outliers using statistical tests, and Yu et al. (2019); Yang et al. (2021) used deep-learning-based



target detection methods to detect occlusions and remap textures to eliminate some of them,
these methods cannot solve the inherent problem embedded in the texture mapping pipeline of
multi-view images, which lacks imagination for invisible areas (Zhu et al., 2021b). Our previous
work (Zhu et al., 2021b) successfully solved this problem for road areas using offscreen render-
ing and image completion, but this method has limitations when applied to building fagades.
Specifically, it cannot generate highly structured textures like those found in building facades
and lacks generalization ability for different architectural styles, e.g., Bauhaus and Baroque (Zhu
et al., 2021b). To overcome these limitations, we propose a practical approach to de-occlusion
by synthesizing texture from semantic labels and ground-truth images using GAN (Goodfellow
et al., 2020). Here, semantic labels control the structure of synthetic content, while ground-truth
images specify the style (Isola et al., 2017).

2) Semantic recovery. Building facades always exhibit a highly structured character, which was
exploited by Stiny (1975); Ripperda and Brenner (2009) to parse building fagades for recon-
struction. Koutsourakis et al. (2009) proposed a fagade parsing method guided by MRF, and
subsequent work by Teboul et al. (2011) and Cao et al. (2017) improved upon this method to
achieve better results with higher efficiency. While this approach is less susceptible to occlusion,
it is also complex and difficult to apply to different architectural styles. To address this limi-
tation, researchers have turned to supervised learning methods for facade parsing using labeled
data (Martinovic and Van Gool, 2013; Gadde et al., 2017; Dehbi et al., 2017). However, these
methods struggle with the complexity of fagades with varying styles. To alleviate this issue, re-
searchers have explored the use of repeating patterns in buildings (Miiller et al., 2007; Friedman
and Stamos, 2012; Zhang et al., 2013; Fan et al., 2014; Cohen et al., 2017).

In recent years, deep learning-based object detection has revolutionized the field of computer
vision, with R-CNN (Girshick et al., 2014) being a pioneering method. Mask R-CNN (He et al.,
2017) extended Faster R-CNN (Ren et al., 2015) by adding a mask prediction branch, enabling
semantic segmentation. While these methods have shown promising results in building fagade
annotation, they are still limited by occlusions. To address this issue, Lin et al. (2019) and Hu
et al. (2020) utilized multi-source data, such as infrared or panorama data, to alleviate occlusion
using semantic segmentation methods. However, the cost of acquiring multi-source data is often
high, and there may still be areas that are inaccessible to sensors.

We have observed that most de-occlusion requirements are for reconstructed textured models.
Semantic labels can be easily and accurately captured by existing methods or through manual
annotation, and the semantics of occlusions are easy to determine. Therefore, we propose gener-
ating masks based on label maps, and then recovering the masked regions using image completion
to achieve the goal of de-occlusion.

Image inpainting and completion techniques are commonly used to fill in missing or undesir-
able parts of an image with plausible pixels. Traditional methods for this task include partial
differential equations (PDEs) and sampling-based approaches (Bertalmio et al., 2000; Criminisi
et al., 2004). PDE-based approaches lack attention to global information and cannot fill large
holes (Zhu et al., 2021b). On the other hand, sampling-based approaches fill in the void regions
by using global similar patches, which are translated and rotated, and can repair large regions.
The patch matching algorithm proposed by Barnes et al. (2009) significantly accelerated the
search for similar patches and made sampling-based methods state-of-the-art. Subsequently, He
and Sun (2012), Huang et al. (2014), and Zhu et al. (2021b) improved the patch-match based
methods by incorporating offsets statistics, affine deformation, and linear patterns, respectively.
While GAN-based approaches have shown impressive results on benchmark datasets, they rely
on massive labeled data such as the ffhq-dataset (Karras et al., 2019). However, unlike other
easily accessible datasets, building facade images require complex processing such as geometric



deformation correction, making it difficult to obtain massive training data (Zhu et al., 2020a).
Moreover, the complexity of semantic labels for building facades is much lower than that of
photorealistic images. Therefore, in this paper, we choose the patch-match based algorithm for
the semantic recovery of occluded regions.

3) Image translation. GANs employ an adversarial strategy to train two networks: a generator
that simulates the probability distribution of training data from random signals and a discrim-
inator that discerns whether the generated samples are real or fake (Goodfellow et al., 2020).
Unlike CNNs, GANs use a zero-sum game between the generator and discriminator to reach
Nash equilibrium, thereby enhancing the generator’s ability (Goodfellow et al., 2020). Vanilla
GAN generates sharper samples from random signals than Variational Auto Encoder (VAE)
(Pu et al., 2016), paving the way for a new image synthesis approach (Goodfellow et al., 2020).
DCGAN introduces CNN structure for stable training (Radford et al., 2015). WGAN replaces
the Kullback-Leibler (KL) and Jensen-Shannon (JS) divergence with Wasserstein distance for
measurement, solving the vanishing gradient problem (Arjovsky et al., 2017). LSGAN sets the
objective function to the squared difference form, resulting in a more stable training process
and better results (Mao et al., 2017). PGAN adopts a progressive training strategy to generate
higher-resolution images (Karras et al., 2017).

Controlling the inference process can be challenging since GANs generate results from random
input signals. Conditional GANs, designed to address this issue, modify the random inputs into
conditional maps (Mirza and Osindero, 2014). In this paper, semantic labels are used as the
conditional maps. Pix2Pix introduces PatchGAN, which evaluates generated results with a
patch-based discriminator (Isola et al., 2017). Additionally, Isola et al. (2017) designs a U-Net
(Ronneberger et al., 2015) generator, improving performance on several benchmark datasets.
Pix2PixHD (Wang et al., 2018) builds on Pix2Pix by designing a multi-scale network to generate
higher resolution images and adding perceptual (Johnson et al., 2016) and feature matching
(Wang et al., 2018) loss to control the style of generated images by learning in the latent space.
The network is also trained with boundary maps to obtain clearer results.

For generating realistic and plausible facade images, consistency with real images at a high
level and accurate capture of low-level details are crucial. Style transfer is useful in this context as
it adapts the style of a content image to match another image’s style, acting as a form of domain
adaptation for a single image (Jing et al., 2019). Early style transfer methods, such as the one
proposed by Gatys et al. (2016), used deep features extracted through a DCNN and represented
content and style using the Mean Squared Error (MSE) of the feature map and its Gram Matrix.
However, this method only supported single style transfer. To address this limitation, StyleBank
(Chen et al., 2017) was developed to train multiple styles simultaneously, but it still couldn’t
transfer inputs to arbitrary styles outside the training dataset. Instance Normalization (IN)
(Ulyanov et al., 2016) and Adaptive Instance Normalization (AdaIN) (Huang and Belongie,
2017) were introduced to enable arbitrary style transfer. StyleGAN (Karras et al., 2019) built on
this idea by injecting style information as AdalN into the network, achieving impressive results
on face datasets. Another approach by Li et al. (2018) used a whitening and coloring transform
for arbitrary style transfer, operating in the feature space extracted by a pre-training network
(encoder) and requiring only a few reconstruction networks (decoder) for good transfer results.

In recent years, the combination of image translation and style transfer has seen remarkable
results. SPADE (SPatially-Adaptive DE-normalization) (Park et al., 2019) treated style transfer
as a process of de-normalization and designed a SPADE ResBlk module to replace the ResBlk
in Pix2PixHD (Wang et al., 2018), injecting style information extracted by a trainable encoder.
SEAN (Zhu et al., 2020) improved SPADE by performing style transfer separately for different
classes, achieving state-of-the-art performance. In this paper, we consider frequency and regular



structure information to enhance the texture details and regularity of SEAN, meeting the fagade
texture mapping needs of photorealistic building models. However, GANs may not be effective
on all datasets due to their data-based implicit probability density estimation nature. To address
this issue, the proposed algorithm falls back to image quilting in regions annotated as walls when
deep learning methods are ineffective (Efros and Freeman, 2001).

3. Structured realistic image synthesis method for building facades

3.1. Overview and problem setup
3.1.1. Overview of the approach
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Figure 2: Workflow of proposed approach. Rectangles with different colors denote different phases, i.e. training
or inference, and black rectangles denote the shared parts of these phases.

To address the challenges of building facade texture occlusion and missing problems in built-
up areas, we develop a label-to-image deep neural network that utilizes the ground-truth image
as an additional input for style. This approach enables the generation of realistic facade texture
images from complete semantic labels. In addition to employing universal losses, such as GAN
loss, L1 loss, and perceptual loss, we propose regularity loss and detail loss from multiple domains
to enhance the regularity and detail of the results. Furthermore, we apply image completion to
recover occluded semantics and use image quilting when the generation capacity of the trained
network is insufficient. The overall workflow, consisting of training and inference phases, is
illustrated in Figure 2.

Training. During each step of the training phase, we use a ground-truth image and its cor-
responding semantic label as inputs, providing style and content information, respectively. A
trainable style encoder processes these inputs, extracting style vectors that represent different
label styles. We then feed the semantic label and style vectors into a trainable image generator
to synthesize a stylized image. To enhance the regularity and detail of the generated images,
we transform both input and output images into frequency maps, spectrum maps, and corner
maps. We calculate regularity loss and detail loss separately based on these maps during the
back-propagation optimization. As in vanilla GANSs, we also train a discriminator to compete
with the generator (Goodfellow et al., 2020).

Inference. During the inference phase, our approach can address both texture occlusion and
missing problems, with the primary differences arising from the acquisition of semantic labels
fed into the image generator. For the occlusion problem, we identify occluded regions based
on semantics and apply an image completion algorithm to recover semantics. For the missing



problem, we manually provide a semantic label map to specify the content of the synthetic image.
In this paper, the image used to specify style is set to an occluded facade image for the occlusion
problem and a desirable style image for the missing problem. Following a similar process to
the first half of the training phase, we feed de-occluded or manually annotated semantic maps
and style vectors into the trained image generator to synthesize realistic facade textures with
the actual style. Finally, if the generated result is not satisfactory, our approach employs image
quilting to composite wall textures, improving the overall quality of the final result.

3.1.2. Problem setup

As illustrated in Figure 2, our approach consists of three trainable components: the style
encoder E, the generator GG, and the discriminator D. The overall objective of our study is
more formally presented in Equation 1.

min V(R',R) (1)

where V denotes the measurement between two samples. R/ € REXWx3 and R € REXWx3 de-
note the generated image and ground-truth image respectively. R’ can be expressed as G (S, M’),
where S € REXWX3XN g the style vectors calculated by equation S = E(R,M). In E(R,M),
R and M € B#*WX3 are the most primitive inputs of network, specifically, the ground-truth
sample and its corresponding semantic label. M/ € B *Wx3 ig the inputted semantic label map
of generator G (M’ = M in training phase).

3.2. Direction guided semantics completion

Due to the difficulty in obtaining structured results through direct image completion, the
semantic label map of a building facade, particularly manually labeled semantic maps, provides
a highly structured alternative that can be easily used to synthesize a desirable fagade image.
However, to achieve de-occlusion through image translation from the label map, the first challenge
is semantics recovery. We identify the occluded regions in the label map based on predefined
semantics, and then intuitively employ an image restoration method for semantics completion.
As label maps are simpler than natural images and data-driven methods are excessive, we opt for
a patch-based algorithm to accomplish our image restoration goal. The pipeline of the proposed
semantics completion is illustrated in Figure 3.
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Figure 3: Workflow of direction guided semantics completion.

Our objective for semantics completion is to recover the pixels of the void region in R,,,
which is generated from occluded or missing semantics. The algorithm establishes a pyramid to



progressively complete the image by searching for the best nearest neighbor field (NNF) A. The
algorithm adopts a scanline-based expansion strategy in the patch match of each level (Barnes
et al., 2009). For each pixel p in R,,, we optimize the NNF N (p) using an improved strategy
guided by the direction © (Zhu et al., 2021b).

3.2.1. Similarity measure of patches
For efficiency without sacrificing accuracy, the vanilla patch-match algorithm compares the
similarity between the current pixel p and its four neighbors at offset v = N (p). More specifically,

I}

T(p) = {Re(p+s)|s € [- %, 5] x [- %,
S(p,v) =T(p+v)

vl

(2)

where T" and S are pixel patches centered on p and p 4+ v in the target and source domains,
respectively. The target domain and the source domain correspond to the void and known regions
in R,,, as well as the occluded and unoccluded regions in R. During the random expansion
introduced in 3.2.2, v can be either N'(p) or its four neighbors Ny(p). The input label map size
in this paper is 256 x 256, and in order to balance effect and efficiency, we set the patch-size
W to 7. Based on our previous research, the measurement F of pixel similarity in this paper is

shown in equation 3.
E=E,+ME,+ XEy (3)

The terms E,, E,, and E4 represent appearance, proximity, and direction costs, respectively,
and will be detailed in the following paragraphs. Additionally, A\; and Ao are empirically set to
5 x 10~* and 0.5, respectively.

1) Appearance cost. We measure the appearance similarity between patches using the following
equation 4 which computes a Gaussian weighted sum of the absolute value difference. Here, w;
is an isotropic weight generated from a Gaussian kernel (Huang et al., 2014).

Eq(p,v) = Zwim(p) —Ti(p+v))| (4)

2) Proximity cost. Researchers have shown that better pixels tend to appear in closer patches.
Proximity cost is used to penalize the selection of nearby pixels and is shown in equation 5.

_ P
Ep(Pa v) = W (5)

where 04(+) calculate the minimum distance from the current pixel to the void region boundary,
and o, = max(w, h)/8 (Zhu et al., 2021b).

3) Direction cost. The building fagade textures are corrected orthophotos with horizontally or
vertically distributed components. Thus, we can utilize this pattern to evaluate the selected
pixels for better results. This can be formulated as the following equation:

E.(v) = I@Iéiél cos(f, — 0) (6)

where 6,, denotes the direction of current offset v, 6 is the element of © = {w/2,7}.



3.2.2. Direction guided expansion

The optimization of the NNF N (p) is an iterative process of random expansion. In a single
iteration, for every pixel p € Q, we compare E(p, N (p)) to E(p,N(q)) twice. The first time,
g comes from N4(p), which are the four neighbors of the current pixel p. Subsequently, g
comes from a set of random pixels R(p). The elements of R(p) are selected from the pixels
distributed in the known regions within a radius r centered on p. The value of r is initialized
with max(w, h) and is halved per iteration until it reaches 1 or other predetermined stopping
conditions. Additionally, we constrain the areas of random expansion by the rectangular buffer
generated along the direction ©, as we did in our previous work (Zhu et al., 2021b).

3.3. Regularity-aware multi-domain universal image translation

Buildings are artificial objects, and their facades have regularly distributed components.
While previous data-driven deep learning image synthesis or translation methods have made great
progress on many datasets, these methods usually aim at non-artificial images, such as faces and
natural scenes, which do not require clear boundaries (Karras et al., 2019). They have limitations
on images with highly structured, man-made objects, including building fagades. Additionally,
existing methods cannot preserve enough high-frequency details on synthesized results, which
affects the expression of architectural style and realism (Cai et al., 2021). Therefore, to address
these issues, we use frequency and corner information from the pixel and spectral domains to
improve the synthesized results. Moreover, due to the different styles of buildings, this paper also
utilizes a style encoder to specify the style and embeds the SEAN module (Zhu et al., 2020) in the
generator to achieve the fagade texture translation of arbitrary style buildings from a semantic
label. The objective of our network can be formally summarized by the following equations.

minmaxY (E, D, G) (7)
E.G D

where E, D, G are trainable style encoder, discriminator and generator respectively. T is the
measurement of difference between ground-truth images and synthetic images. The meaning of
T is shown in Equation 8.

T(Ev Da G) = VGAN + Vdetail + Vregularity (8)

T comprises of Vaan, Vdetai, and Vyegularity, which measure the dissimilarity between the
synthesized image and the ground-truth image from different perspectives. Vgan denotes the
conventional GAN measurement, while Vgetqir and Vyeguiarity €nhance the synthetic results by en-
riching details and improving regularity, respectively. Their specific forms are shown in Equation
9.

9)

Vdetail =V (]: (Rl) ?]:(R))
Vregularity =V (C (Rl) 7C(R))

where V denotes the difference between two samples; F(-) and C(-) are frequency transformation
and corner map extraction respectively. F(-) is calculated in multiple domains by Equation 13

(pixel domain) and 20 (spectral domain). Equations 14 to 18 are the specific calculation process
of C().

3.8.1. Network architecture

Figure 4 depicts the architecture of our image translation network, which takes different
inputs during training and inference phases. In the training phase, the inputs are a fagade image
R with its corresponding semantic label map M. In the inference phase, another semantic label
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Figure 4: Network architecture.

map M’ is required to provide the synthesis content. The network comprises a trainable style
encoder E, generator GG, and discriminator D. E encodes the fagade image into a style vector S
for every class based on the semantic label map. G synthesizes an image from the input label map
M, which is equivalent to M during training. D is utilized to implicitly evaluate the synthesized
result. The structure of the generator and discriminator is shown in Figure 4. The employed
generator, with residual blocks, and the multi-scale discriminator follow the SPADE (Park et al.,
2019) and Pix2PixHD (Wang et al., 2018) architectures, respectively. SPADE manipulates style
transfer at the feature space, considering the statistical characteristics of the feature map as style
and the normalized feature map as content (Park et al., 2019). Specifically, this approach first
encodes the style image to a vector and then uses its statistical characteristics to de-normalize the
input Gaussian-distributed vector of the generator, achieving state-of-the-art synthesized results
with given styles. Our paper adopts this method to achieve universal image translation.

Semantic de-normalization. As shown in Figure 4, we employ the SEAN module (Zhu et al.,
2020) which is an improved version of SPADE (Park et al., 2019). The structure of the SEAN
module is shown in Figure 5. It embeds style and semantics in the generator through de-
normalization operation. As depicted in Figure 5, the SEAN module consists of two parts. The
upper part embeds image style into the network to generate images of the same style, while
the lower part uses the SPADE structure to embed semantic information into the generation
network to improve image generation quality (Park et al., 2019). Specifically, the activation
value at position (n € N,c € C,y € H,x € W) is calculated by Equation 10:

hn,c, Tz He
Ve (S, M) =225 4 B, (S, M) (10)

c

where h is the activation value before normalization, p and o are the mean and variance of the
activation value on channel ¢, v and 3 are calculated by Equation 11:

{%,y,as, M) = a8, .(S) + (1 — ay) 12, . (M)
507%%(87 M) = O‘ﬁ/@g,y,x(s) + (1 - 04,3) /Bg,y,x(M)

where a, and ag are the trainable parameters. v*, 3° are obtained from convolution with style
vector S as input, and v°, 5° are obtained from semantic label map M after convolution.

(11)

10
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Style encoder. The encoder in Figure 4 takes an input image to extract deep features using three
convolution layers with leaky rectified linear unit (LReLU) activation and down-sampling. A
transpose convolution layer and a Tanh activation layer are then employed to reconstruct the
image. The activated feature map is then region-wise average pooled according to the semantic
label map corresponding to the input style image. The output is a set of vectors, each containing
style information of its corresponding semantic category, which can be utilized for style transfer.

Generator. The generator in Figure 4 employs the structure of the Pix2PixHD generator (Wang
et al., 2018) and replaces the residual module with the SEAN module to achieve style embedding
with semantic information. A 3 x 3 convolution is used first, followed by seven SEAN ResBlks
(shown in Figure 5), and a Tanh activation layer to obtain the output. Upsampling is performed
before each SEAN ResBlk. The style vector extracted by the E encoder is injected into the first
six SEAN ResBlks. The input and output of the generator G are the semantic label map M and
the synthesized image R/, respectively (Zhu et al., 2020).

Discriminator. To determine whether the high-resolution synthesized image is real or fake, a
discriminator with a large receptive field is needed. However, using a larger convolution kernel
and a deeper network will increase unnecessary computing costs and may lead to overfitting.
Therefore, we employ a multi-scale discriminator with instance normalization (IN) and LReLU
activation. The structure of each discriminator is shown in Figure 4. Two discriminators are
used, and GAN loss is calculated by referring to PatchGAN (Wang et al., 2018), which improves
the discriminator by enlarging the receptive field without increasing the network parameters. The
inputs of the discriminators are the concatenation of the image and its corresponding semantic
label, and the output is an estimation of the true and fake probability of the generated samples.

3.3.2. Multi-domain losses

In order to solve the problem that image translation cannot retain the structural features of
source domain, a frequency domain adaptation approach is proposed (Cai et al., 2021). This
method can preserve the high-frequency details of the source domain for better results in several
tasks. Although our paper combines image translation with style transfer, the lack of source
domain structural features is still inevitable. Thus, we use the frequency domain adaptation
method to calculate and extract the frequency map (gradient map) and spectrum map corre-
sponding to the image, and retain the consistency between the synthesized result and the real
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image in both pixel space and Fourier spectral space to ensure that the generated result maintains
more details.

Furthermore, we observe that fagade textures have obvious structural characteristics and
artificial rules. The optimization of frequency domain adaptation can only enrich the texture
details, and is powerless in terms of structural information. Therefore, our paper proposes a
regular optimization method that utilizes corner information in the pixel domain to reflect the
regular structure of building fagades. This regular optimization method allows us to achieve
regular optimization of image synthesis in the training process.

Overall, the multi-domain approach of our proposed method is illustrated in Figure 6. We
measure and minimize the distance between synthesized images and input images in both pixel
and spectral domains to optimize the network for better details and regularities in the results.

Pixel Domain Pixel Domain

ool il i

JE E @ W T T ED:I |:> |:> G EE W E
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Corner Map Image R Label Map M Synthesized Image R Corner Map

Spectral Domain

e e
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Figure 6: Multi-domain of proposed method. Pixel domain consists of original image and synthesized image, as
well as their corresponding frequency maps and corner maps. Spectral domain is the spectrum maps of original
image and synthesized image. The frequency maps and spectrum maps are obtained using the frequency domain
adaptation method (Cai et al., 2021), while the corner maps are calculated using an improved Harris detector
(Harris et al., 1988).

1)Pizel domain.

Frequency map. We first perform low-pass filtering on the ground-truth image and synthetic
image to obtain correspondence low-frequency information expressed in pixel domain. Then, the
original images are converted into grayscale images and make difference with the low-frequency
images to obtain the high-frequency information expressed in pixel domain. The network weights
are optimized by comparing the difference of frequency information in pixel domain between the
synthesized result and the ground-truth image, so that to retain more details in generated image.
More formally, this paper adopts Gaussian kernel to do low-pass filtering, the specific form is as

follows: ) .

. _1 (2447

koli, j] = o2 H5H) (12)

where [i, j] denotes the pixel location, o is standard deviation of Gaussian function. By using

the Gaussian low-pass filter, we can get the frequency maps corresponding to the input image

that can express high and low frequency information. The specific method is shown in following
equation:

Ip=k®I1

13

{IH:QG)—IL (13)
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where I, I}, and I denote the image and its correspondence low and high frequency map respec-
tively. k is Gaussian kernel and ® is convolution operation. G is the function that can convert
an image from RGB color space to grayscale space.

Corner map. Traditional corner detection methods usually first calculate the gradient map of
the horizontal and vertical direction and then determine whether the pixel is a corner point by
using a threshold value. However, this process is not differentiable, which can pose a serious
problem for backpropagation optimization in deep convolutional networks. To address this issue,
we propose an optimized Harris detector (Harris et al., 1988) that is differentiable and suitable
for use in deep learning methods.

As shown in Equation 14, we use Sobel operator S, and S, to extract gradient information
in horizontal and vertical direction of the image I.

L,=1I®S,
{ I,=1®5, (14)
where I, and I, are the gradient maps in two different directions. The product between the two
directional gradients and their squares is then calculated, as shown in the following equation.

2=1,01,
=10l (15)
LI, =101,

where o denotes the pixel-wise product. After that, we calculate the Gaussian weighted sum for
2, 112/ and I.I,.

2 Il
M = E wG(xay) |: I ? IZy :| (16)
-ty Y
(z,y)eW

where wg is the window function, which is set to Gaussian kernel function in this paper. W
denotes the current sliding window being processed. Subsquently, we can get corner response
matrix R by Equation 17.

R = det M — k(traceM) (17)

where det and trace denote the determinant and trace of matrix M. According to Harris et al.
(1988), pixels with R values greater than, equal to, and less than zero are considered corner
points, flat areas, and edges, respectively. In this paper, we use a differentiable rectified linear
unit (ReLU) function to remove negative and zero values that are not relevant, and obtain
an equivalent expression of corner information through scaling. The specific form is shown in
Equation 18.

R* =w-ReLU(R) (18)

where w = 100000 is the scaling factor, and as shown in Figure 7, R* is the final value matrix
that represents the corner information in the pixel domain.
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(a) Fagade image (b) Visualized R*

Figure 7: Facade images and their corresponding visualized R*.

2)Spectral domain.

Spectrum map. The pixel domain information is presented in the form of coordinates, and global
information cannot be considered. The calculation of each position in the Fourier spatial spec-
trum map needs to use the information of all pixels, so it can reflect the global features of the
image. Therefore, in addition to pixel domain optimization, this paper also uses Fast Fourier
Transform (FFT) to convert image I from pixel domain to Fourier spectral domain. The neural
network weights are optimized by comparing the spectrum difference between the synthesized
result and ground-truth facade image, thus further retaining the consistency globally. The Dis-
crete Fourier Transform (DFT) applied to a single image I can be formally expressed as follows:

H-1W-1

FI)(x,y) = ﬁ Z Z e 2mi U 2T -I(h,w) (19)

h=0 w=0

where (z,y) denotes the pixel location in image I € R#*W . Since the values of F(I) are complex
numbers, we use Equation 20 to transform them into a field of real numbers.

FR(I)(x.y) = log (1 VIFO@ P IFEO@ )P + ) (20)

where Fr(I) and F;(I) denote the real and imaginary parts of F(I). € is an additional term of
numerical stability, this paper is set to 1 x 1078 (Cai et al., 2021). F%(I) is the final spectrum
map of I to be compared during training.

8)Overall loss. The overall loss function can be formally expressed by following equation:

win | | max k§2 Loan | + M k;g Lry +XLp +X3Lp + LR (21)
where the five terms represent GAN loss, feature matching loss, perceptual loss, detail loss and
regularity loss respectively. These terms are introduced in detail in the following paragraphs.
D; and D denote two PatchGAN discriminators. The weights to balance the different losses
are set to Ay = Ay = A3 = Ay = 10 and A5 = 5 x 1076.

GAN loss. The form of the GAN loss function in this paper is shown in Equation 22. The
optimization is to minimize the loss of style encoder E and generator G, and maximize the loss
of discriminators D1, D2. The main objective is to train generator G to generate high-quality
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images that can deceive discriminator D, making the discriminator unable to distinguish between
real and synthesized images.

min max kg:Q Lcan (E, G, D) (22)

The Hinge loss function used for Lgan in this paper is defined as follows:
Lean = E[max(0,1 — Dx(R,M))] + E[max(0,1 —Dy(G(S,M), M))] (23)
Refer to section 3.1.2 for the meaning of parameters in the formula.

Feature matching loss. The feature matching loss evaluates the difference between the feature
maps of the ground-truth image and the synthetic image at different levels, which are extracted
from the discriminator network. Optimizing the network weights according to the feature match-
ing loss can achieve better consistency at the feature level, resulting in better results. The
definition of the feature matching loss is shown as follows:

Lry = EZ [IID( (R, M) ~D{(G(S, M), M) 1] (24)

where D,(:) and N; denote the feature map outputted from the i-th layer of the k-th discriminator
and the number of corresponding elements. T is the total layer numbers of discriminator (Mirza
and Osindero, 2014).

Perceptual loss. Perceptual loss measures the difference between two images by comparing the
features extracted from the network pre-trained on large datasets, e.g. pre-trained VGG-16 is
used in this paper. Specifically, perceptual loss can be calculated using the following equation:

Lp= ]EZ [HF DR (i)(G(S,M))HJ (25)

where N is the layer number of pre-trained network, F(9 and M; denote the feature map ex-
tracted from i-th layer of pre-trained network and the number of corresponding elements (Johnson
et al., 2016).

Detail loss. Detail loss is shown in Equation 3, and consists of two parts, i.e., Lp . and Lp

pix spectral *

Lp=~Lp,.,+Lp (26)

spectral

where Lp,,, and Lp denote the different detail losses, they come from frequency infor-
mation in pixel and spectral domain respectively, they are calculated by following equations:

spectral

Lp,. =E[|R — (G(S,M)p)|l; +[Ru — (G(S,M)n)l,] (27)

where Ry, and Ry denote the low and high frequency map of ground-truth image, G(S, M), and
G(S,M)y are the low and high frequency map of generated image. Frequency map is obtained
from Equation 13.

pix

Lp =E[|F*R) - FHG(S,M))|,] (28)

spectral

where F® refers to the FFT and real number operation using Equation 19 and 20.
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Regularity loss. The regularity loss is obtained by calculating the difference of corner maps
between the generated image and the ground-truth image. The specific form is shown in Equation
29.

Lr =E[C(R) - C(G(S,M))]]] (29)

where C(-) is the corner map calculation introduced in paragraph 3.3.2.

3.4. Image quilting
Because deep learning-based image synthesis methods rely on massive training data, they
may not be able to generalize well to data that has not been seen. While embedding image styles
can alleviate this problem, there is still a significant gap between the generated results and actual
images, particularly for highly structured repetitive textures. Therefore, when the generation
ability of deep learning methods is insufficient, this paper applies a sample-based image quilting
algorithm to the wall region to compensate for this limitation. This process can be expressed as
follows:
{R’ =R V(R/,R) < threshold (30)

R =R @-m'®d9R)om’ VR, R)>threshold

R’ denotes the synthetic image of generator G' on the right side of the equation, and the final
result on the left side of the equation. m’ € B¥*W is a subset of M’ which specifies the wall
region in synthetic image. Q denotes image quilting which generates repetitive textures by
stitching together small patches of un-occluded regions (Efros and Freeman, 2001). Next, we
will provide a detailed introduction to the image quilting algorithm Q.

We begin the image quilting process by selecting a source pixel patch S from the synthetic
image R’. During image quilting, all pixels are sampled from S. Firstly, we sample all N x N
pixel patches S(p) from S to form the set Sp. Next, we randomly select a patch R(Sp) and
define this patch as B;. Subsequently, the algorithm iterates by a sequence ) which contains
the center position p of all patches in raster scanning order. The moving step during scanning
is v, which denotes the overlapping width. In this paper, the offset v is set to (5,0) in the first
row, (0,5) in the first column, and (5,5) for the rest of the positions. During iteration, we first
find pixel patch Bs from Sp by measuring its similarity with B;. The overlapping regions in
By and Bj are represented by B}, and B2, respectively. Next, we find a boundary I around
the center line of the overlapping region by using the Dijkstra algorithm D, based on the error
E(BL, — B%)* < t, where t = 0.1 denotes the minimum tolerance. After that, we update the
pixel patches T (p) and T (p + v) by stitching By and By using the minimum error boundary I.
After the iteration process, we obtain the texture synthesized result 7 of image quilting.
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Algorithm 1 Image quilting algorithm.

procedure IMAGEQUILTING(S, T, Q, t,v)

2: Sp + {S(p),Vp e S} > Random Initialization
Bl <— R(SB)
4: for p e Q do > Raster Scanning

BQ — V(Bl,SB)

6: Bgv’Bgv <« B1 NBsy
while (B, — B2,)> <t do > Minimum Error Boundary Cut
8: l D(B;v, Bgv)
end while
10: T(p), T(p+v) + Q(B1, Bz,1) > Pixel Patch Quilting
Bl — BQ
12: end for

end procedure

4. Experimental evaluation and analysis

4.1. Dataset description

To verify the effectiveness of the proposed approach in this paper, we used two public urban
textured 3D building datasets in .skp format from different countries as shown in Figure 8. The
first dataset was collected from central London, including several landmarks such as London
Bridge. We selected some buildings with missing texture in this dataset for the experiment.
The second dataset is from Pipitea South of Wellington, New Zealand, and we selected a typical
block (Wellington train station) consisting of a series of buildings with occluded fagade textures
to evaluate our approach. Moreover, we trained our proposed network using the Large Scale
Architectural Asset (LSAA) dataset for performance evaluation. The LSAA dataset contains
199,723 facade images of different styles extracted from large-scale rectified panoramas (Zhu
et al., 2020).

(a) London dataset (b) Wellington dataset

Figure 8: Datasets for experiment. London dataset is rendered in SketchUp with its own base map, and Wellington
dataset is rendered in ArcGIS with public world imagery base map.They both are skp format which is modeled
by SketchUp. The textures and base map of London dataset are the manual production of model creator. Due
to the mutual occlusions between buildings, some building facades have no texture. Unlike London dataset, the
textures of Wellington dataset come from realistic scene, that contain several inevitable occlusions.

4.2. Results

4.2.1. Semantics completion of building facade

To solve the problem caused by frequent occlusions of building facade in built-up areas, we
first recover the semantics of occluded regions. Figure 9 and 10 show two different experiments to
validate our semantics completion method. As shown in Figure 9, we first consider non-occluded
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fagade images and their correspondence semantics as reference, then manually or randomly re-
move some regions of semantic label maps, finally adopt proposed method to recover the missing
semantics. It can be seen that, except for the first group of experiments in the third row, the
other experiments have obtained desirable results compared to the reference.

(a) Ground-truth (b) Incomplete semantic map & semantics completion results

Figure 9: Hypothetical experiment of proposed semantics completion method. (a) Ground-truth non-occluded
fagde images and their correspondence semantic label maps. (b) The hypothetical incomplete images and se-
mantics completion results recovered by proposed method. Different colors in (b) denote different semantics, i.e.
window, wall and door.

Figure 10 shows experiments on building facades with occluded realistic textures, and reason-
able results are obtained except for Figure 10(b). By combining the experiments shown in Figure
9 and 10, the proposed method demonstrates good performance on small occlusions. However,
when the occlusion area is too large, achieving satisfactory recovery results may be challenging.
Fortunately, by using the approach proposed in this paper, people can also manually annotate
the semantics of building facades for final texture synthesis. Moreover, the colors of different
semantics are predetermined, so obtaining the label map with standard colors through simple

correction after image completion is possible.

a) Building facade of Wellington train station (b) Building fagade in Wellington
(c) Building fagade in London (d) Building fagade in Australia

Figure 10: Semantics completion experiment on building facades with occluded realistic textures. In each sub-
figure, the occlusion texture and its corresponding semantic label image, mask image and recovery result are
displayed from left to right. Different colors denote different semantics in label map, including window, wall,
door, vegetation and cornice.
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4.2.2. Fagade texture repair of 3D building

Figure 11 showcases the building models before and after applying the proposed repair
method. The details of the repaired building facades are presented in Figure 12 and 13. For in-
stance, the Wellington train station building fagade textures have numerous occlusions, resulting
in the model having visible defects. To tackle this problem, we first annotate the semantics of the
occluded regions and employ the proposed semantics completion method to repair the semantics
of those regions. We then manually annotate the semantics of facades with large occlusions,
which can hardly yield satisfactory semantics completion results. Afterwards, we feed the labels
recovered manually and automatically and style images with their corresponding semantic labels
(12 (a) set in this paper) to the proposed GAN network to synthesize plausible textures. Finally,
we map the synthetic images to the respective facades to obtain the final repaired model. More-
over, Figure 13 demonstrates the effectiveness of our approach in handling missing textures. We
select several buildings in the London dataset with incomplete fadade textures and apply the
same process as the Wellington experiment. This experiment also highlights the repair ability of
the proposed approach on different architectural styles.

(¢) Unrepaired London model (d) Repaired London model

Figure 11: Repaired results of Wellington and London model. (a) Original model of Wellington train station,
it has many occlusions on several building fagades. (b) The Wellington train station model after repaired, we
de-occluded most occlusions by proposed approach. (c) Original building model which has many missing textures
of London. (d) Repaired London model with complete textures synthesized by proposed approach.
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Figure 12: Details of Wellington train station model experiment. All sub-experiments consider (a) as style input.
Besides, (a) and (e) use semantics completion results as input labels, others use manual annotated labels as inputs.
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Figure 13: Details of London model experiment.

4.8. Comparison of image translation
4.8.1. Qualitative comparison

To evaluate the proposed image translation method, we adopt SPADE, SEAN and our method
on LSAA dataset to do a series of experiments. Figure 14 shows some synthesized results
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of different methods. The first row in every sub-figure denotes the inputs, that specify style
and content to synthetic images. The next three rows are the synthesized results of different
methods mentioned above, and the red rectangles indicate the obviously differences between
different methods. SPADE only considers semantic label map as input and cannot specify the
style of result, consequently it is far different from ground-truth. Comparing the results of
SEAN and proposed method, it can be seen from Figure 14 (a), (b), (¢), (d) that the proposed
method has better texture details than SEAN; especially in Figure 14 (c¢) and (d), the results of
proposed method have much more clear and regular details on balustrade areas highlighted by red
rectangles. In addition to this, our method has better regular structures generation ability. More
specifically, proposed method can synthesizes windows with clear regular structures in Figure 14
(e), (g), (j), (k) and (1), on the contrary, SEAN even cannot generate any structures of windows
in the experiments of Figure 14 (j), (k), (1). Besides, it also can be seen from Figure 14 (f), (h)
and (i), that the synthesized facade components of proposed methods are more horizontal and
vertical, which is more similar to the ground-truth.
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Figure 14: Image translation results of different methods. For each sub-figure, from top to bottom, it is the
ground-truth, results of SPADE, results of SEAN and results of proposed method. The red rectangles indicate
the areas with differences for synthetic images of different methods.
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As shown in Figure 15, proposed image translation method still doesn’t have enough ability
on image synthesis of unseen highly structured styles. Thus, we use image quilting algorithm to
eliminate the impact of this deficiency on the results. Figure 15 (d) shows the finally result after
the replacement of image quilting texture.

(a) Input (b) Synthesized image (c) Quilted texture (d) Finally result

Figure 15: Result after image quilting. (a) Inputs of GAN network, including an ground-truth image with its
semantic label map, the red rectangle is the selected input of image quilting algorithm. (b) Synthesized facade
image of proposed network. (c) Synthesized texture of wall region from the pixel patch highlighted in (a). (d)
Finally result after replacing wall region with quilted texture.

4.8.2. Quantitative comparison
Peak signal-to-noise ratio (PSNR) and Structural similarity (SSIM) are wildly used indexes
for image quality evaluation. PSNR can be formally expressed as Equation 31.
MSE = HR, - R||22/N (31)

PSNR = 10log;, (M2/ MSE )

where MSE denotes mean square error, M is the range of the data type of R and R/. SSIM can
be calculated by Equation 32.

N
ur pr + C1) 2or'R + C2)

1
SSIM = —
N ; (1d, + pi +C1) (0k, +0f + Co)

(32)

where N is the total number of pixels of images R’ and R. ur/, Ur, or’, or and or'r are
the local means, standard deviations, and cross-covariance for R’ and R. And in this paper,
C1 = (0.01 x 255)2, Cy = (0.03 x 255)% and C3 = (0.03 x 255)?/2. SSIM evaluates similarities
between two images from luminance, contrast and structure.

PSNR and SSIM evaluate the differences between synthesized image and ground-truth image
from different perspectives. The higher their values are, more similar the synthesized image is
to the ground-truth image, which also means that the method is better.

Learned Perceptual Image Patch Similarity (LPIPS), also named perceptual loss, is a metric
that measure the differences between two images on feature level by using pre-trained network,
e.g. pre-trained AlexNet in this paper. It is more similar to human perception than PSNR and
SSIM, and the lower value denotes better synthesis results.
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Table 1: Quantitative comparison of 3 different methods on LSAA. The best results are highlighted in bold.

Method
WJ SPADE SEAN  proposed

PSNR 1 13.77 16.76 17.13
SSIM 1 0.291 0.489 0.502
LPIPS | 0.644 0.555 0.550

We trained SPADE; SEAN and proposed method on LSAA training dataset (28494 fagade
images with semantic labels) with 4 x NVIDIA 3090. These trained models are applied to
LSAA testing dataset, which contains 1000 fagade images with semantic labels, that never be
seen during training. The quantitative results of the comparison are presented in Table 1, where
the proposed method outperformed SPADE and SEAN in all three quality assessment metrics
on the LSAA dataset.

4.4. Analysis of detail and regularity losses

The proposed image translation method enriches details and regularizes the structures of
synthesized results by multi-domain losses. In order to prove the availability of our innovation,
we conducted ablation experiment on LSAA testing dataset by setting different losses during
training. Figure 16 shows several typical results synthesized by different settings of proposed
method.

Focusing on the red rectangles in Figure 16, it can be concluded that both detail loss and
regularity loss proposed by us are effective for the improvement of synthesis results. As we
can see the vegetation regions in Figure 16 (a) and (e), detail loss can make the synthesized
textures be more natural with vivid details. Comparing the balustrade areas in Figure 16 (b)
and (c), we can find out that the results with detail loss have more clear structures in details.
Unfortunately, its regularity maintenance capacity is still not enough for some highly structured
fagade components synthesis, and the regularity loss can reinforces it to a certain degree. The
window frames in Figure 16 (d), (e) and (f) are not plausible enough when synthesized by the
model without regularity and detail losses. However, as shown in Figure 16 (d), when detail loss
is added, the results have distinct difference in window areas. In addition, Figure 16 (e), () also
have significant improvement when combining regularity loss with detail loss.
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Figure 16: Ablation experiments on LSAA dataset, and the baseline is SEAN. From top to bottom in every
sub-figure, it is ground-truth, w/o. both, w/o. regularity loss, w/o. detail loss, and proposed. Red rectangles
indicate regions that have differences with each others.

Table 2 shows the evaluation of synthesized results under different loss settings by quality
assessment indexes. It is demonstrated that detail loss and regularity loss are valid for fagade
images synthesis which are always highly structured, and their combination will make the results
better and more realistic than their own.

Table 2: Quantitative evaluation of results under different settings on proposed method, baseline is SEAN (Zhu
et al., 2020). The best results are highlighted in bold.

Method . .
m} w/o. both w/o. detail loss w/o. regularity loss proposed

PSNR 1 16.76 17.02 16.96 17.13
SSIM 1 0.489 0.500 0.496 0.502
LPIPS | 0.555 0.551 0.553 0.550
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4.5. Discussion and limitations

The proposed approach for repairing defective building facade textures yields plausible re-
sults, addressing the problem of texture occlusion or missing in 3D realistic building models.
The repaired models exhibit reasonable textures and can be used for model exhibition. The
proposed semantics completion method also produces desirable results for occlusions, improv-
ing the automation of the texture repair approach. Moreover, the regularity-aware multi-domain
universal image translation method has demonstrated the ability to synthesize more detailed and
structured building fagade textures through qualitative experiments. Quantitative comparisons
also show the superiority of the proposed image translation method compared to others.

Despite the better results of fagade texture repair and image translation, there are still limi-
tations. The resolution and definition of style images affect the final synthesis results. For higher
resolution, we can resolve this problem by simple down-sampling. However, for lower resolution,
it is hard to realize a plausible result by up-sampling. In addition to this, GAN based methods
are hardly to train and too computation-consuming to synthesis higher resolution images. Future
research will explore the combination of image translation and super-resolution techniques.

5. CONCLUSION

3D building model is the fundamental of digital city, live navigation and smart driving, its
realism usually comes from photogrammetric textures. However, there are inevitable occlusions in
built-up areas, the vegetation near buildings also makes it difficult to acquire un-occluded fagade
textures by handheld camera. The above problems eventually lead to the inaccessible areas of
photogrammetry, which is cannot deal with in traditional texture mapping pipeline. To solve this
problem, this paper proposed a deep learning based approach to repair fagade defect textures
from easily accessible semantic label map. Specifically, we proposed a semantics recovery method
by using image completion algorithm to improve automation of de-occlusion. A regularity-aware
multi-domain universal image translation method is used to synthesize building fagade textures
of arbitrary styles. This method achieves better results by enriching the details and improving
the regularity of synthesized images. Overall, the proposed texture repair approach not only
can de-occlusion, but also can generate realistic fagade textures which have actual architectural
style from nothing. Future directions on the building models processing may include: (1) de-
occlusion of other regions by proposed approach; (2) high-resolution texture synthesis under
limited computation resources; (3) deep learning based geometry generation of 3D model.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China
(Project No. 42230102, 42071355, 41871291) and the National Key Research and Development
Program of China (Project No. 2022YFF0904400).

References

Arjovsky, M., Chintala, S., Bottou, L., 2017. Wasserstein generative adversarial networks, in:
International conference on machine learning, PMLR. pp. 214-223.

Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.; 2009. Patchmatch: A randomized
correspondence algorithm for structural image editing. ACM Trans. Graph. 28, 24.

Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C., 2000. Image inpainting, in: Proceedings of
the 27th annual conference on Computer graphics and interactive techniques, pp. 417-424.

26



Buyukdemircioglu, M., Kocaman, S., 2020. Reconstruction and efficient visualization of hetero-
geneous 3d city models. Remote Sensing 12, 2128.

Cai, M., Zhang, H., Huang, H., Geng, Q., Li, Y., Huang, G., 2021. Frequency domain image
translation: More photo-realistic, better identity-preserving, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 13930-13940.

Callieri, M., Cignoni, P., Corsini, M., Scopigno, R., 2008. Masked photo blending: Mapping
dense photographic data set on high-resolution sampled 3d models. Computers & Graphics
32, 464-473.

Cao, J., Metzmacher, H., O’Donnell, J., Frisch, J., Bazjanac, V., Kobbelt, L., van Treeck, C.,
2017. Facade geometry generation from low-resolution aerial photographs for building energy
modeling. Building and Environment 123, 601-624.

Catmull, E.E.,; 1974. A subdivision algorithm for computer display of curved surfaces. The
University of Utah.

Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G., 2017. Stylebank: An explicit representation for
neural image style transfer, in: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1897-1906.

Chen, S., Zhang, W., Wong, N.H., Ignatius, M., 2020. Combining citygml files and data-driven
models for microclimate simulations in a tropical city. Building and Environment 185, 107314.

Cohen, A., Oswald, M.R., Liu, Y., Pollefeys, M., 2017. Symmetry-aware facade parsing with
occlusions, in: 2017 International Conference on 3D Vision (3DV), IEEE. pp. 393—401.

Criminisi, A., Pérez, P., Toyama, K., 2004. Region filling and object removal by exemplar-based
image inpainting. IEEE Transactions on image processing 13, 1200-1212.

Dehbi, Y., Hadiji, F., Groger, G., Kersting, K., Plimer, L., 2017. Statistical relational learning
of grammar rules for 3d building reconstruction. Transactions in GIS 21, 134-150.

Efros, A.A., Freeman, W.T., 2001. Image quilting for texture synthesis and transfer, in: Pro-
ceedings of the 28th annual conference on Computer graphics and interactive techniques, pp.
341-346.

Fan, L., Musialski, P., Liu, L., Wonka, P., 2014. Structure completion for facade layouts. ACM
Trans. Graph. 33, 210-1.

Friedman, S., Stamos, 1., 2012. Online facade reconstruction from dominant frequencies in
structured point clouds, in: 2012 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops, IEEE. pp. 1-8.

Gadde, R., Jampani, V., Marlet, R., Gehler, P.V., 2017. Efficient 2d and 3d facade segmentation
using auto-context. IEEE transactions on pattern analysis and machine intelligence 40, 1273~
1280.

Gal, R., Wexler, Y., Ofek, E., Hoppe, H., Cohen-Or, D., 2010. Seamless montage for texturing
models, in: Computer Graphics Forum, Wiley Online Library. pp. 479-486.

Gatys, L.A., Ecker, A.S., Bethge, M., 2016. Image style transfer using convolutional neural
networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp- 2414-2423.

27



Girshick, R., Donahue, J., Darrell, T., Malik, J., 2014. Rich feature hierarchies for accurate object
detection and semantic segmentation, in: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 580-587.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
Bengio, Y., 2020. Generative adversarial networks. Communications of the ACM 63, 139-144.

Grammatikopoulos, L., Kalisperakis, 1., Karras, G., Petsa, E., 2007. Automatic multi-view
texture mapping of 3d surface projections, in: Proceedings of the 2nd ISPRS International
Workshop 3D-ARCH, Citeseer. pp. 1-6.

Harris, C., Stephens, M., et al., 1988. A combined corner and edge detector, in: Alvey vision
conference, Citeseer. pp. 10-5244.

He, K., Gkioxari, G., Dollar, P., Girshick, R., 2017. Mask r-cnn, in: Proceedings of the IEEE
international conference on computer vision, pp. 2961-2969.

He, K., Sun, J., 2012. Statistics of patch offsets for image completion, in: European conference
on computer vision, Springer. pp. 16-29.

Hirschmuller, H., 2007. Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on pattern analysis and machine intelligence 30, 328-341.

Hu, H., Ding, Y., Zhu, Q., Wu, B., Xie, L., Chen, M., 2016. Stable least-squares matching
for oblique images using bound constrained optimization and a robust loss function. ISPRS
journal of photogrammetry and remote sensing 118, 53—67.

Hu, H., Wang, L., Zhang, M., Ding, Y., Zhu, Q., 2020. Fast and regularized reconstruction
of building fa\c {c} ades from street-view images using binary integer programming. arXiv
preprint arXiv:2002.08549 .

Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J., 2014. Image completion using planar structure
guidance. ACM Transactions on graphics (TOG) 33, 1-10.

Huang, X., Belongie, S., 2017. Arbitrary style transfer in real-time with adaptive instance
normalization, in: Proceedings of the IEEE international conference on computer vision, pp.
1501-1510.

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image translation with conditional
adversarial networks, in: Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 1125-1134.

Jing, Y., Yang, Y., Feng, Z., Ye, J., Yu, Y., Song, M., 2019. Neural style transfer: A review.
IEEE transactions on visualization and computer graphics 26, 3365-3385.

Johnson, J., Alahi, A., Fei-Fei, L., 2016. Perceptual losses for real-time style transfer and super-
resolution, in: European conference on computer vision, Springer. pp. 694-711.

Karras, T., Aila, T., Laine, S., Lehtinen, J., 2017. Progressive growing of gans for improved
quality, stability, and variation. arXiv preprint arXiv:1710.10196 .

Karras, T., Laine, S., Aila, T., 2019. A style-based generator architecture for generative adver-
sarial networks, in: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4401-4410.

28



Kelly, T., Femiani, J., Wonka, P., Mitra, N.J., 2017. Bigsur: large-scale structured urban
reconstruction. ACM Transactions on Graphics 36.

Kelly, T., Guerrero, P., Steed, A., Wonka, P., Mitra, N.J., 2018. Frankengan: guided detail syn-
thesis for building mass-models using style-synchonized gans. arXiv preprint arXiv:1806.07179

Kelly, T., Wonka, P., 2011. Interactive architectural modeling with procedural extrusions. ACM
Transactions on Graphics (TOG) 30, 1-15.

Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G., Paragios, N., 2009. Single view recon-
struction using shape grammars for urban environments, in: 2009 IEEE 12th international
conference on computer vision, IEEE. pp. 1795-1802.

Lempitsky, V., Ivanov, D., 2007. Seamless mosaicing of image-based texture maps, in: 2007
IEEE conference on computer vision and pattern recognition, IEEE. pp. 1-6.

Li, Q., Huang, H., Yu, W., Jiang, S., 2023. Optimized views photogrammetry: Precision analysis
and a large-scale case study in qingdao. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 16, 1144-1159.

Li, Y., Liu, M.Y., Li, X., Yang, M.H., Kautz, J., 2018. A closed-form solution to photorealistic
image stylization, in: Proceedings of the European Conference on Computer Vision (ECCV),
pp. 453-468.

Lin, D., Jarzabek-Rychard, M., Tong, X., Maas, H.G., 2019. Fusion of thermal imagery with
point clouds for building facade thermal attribute mapping. ISPRS Journal of Photogrammetry
and Remote Sensing 151, 162-175.

Lin, H., Chen, M., Lu, G., Zhu, Q., Gong, J., You, X., Wen, Y., Xu, B., Hu, M., 2013. Virtual
geographic environments (vges): A new generation of geographic analysis tool. Earth-Science
Reviews 126, 74-84.

Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S., 2017. Least squares generative
adversarial networks, in: Proceedings of the IEEE international conference on computer vision,
pp. 2794-2802.

Martinovic, A., Van Gool, L., 2013. Bayesian grammar learning for inverse procedural modeling,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
201-208.

Mirza, M., Osindero, S., 2014. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784 .

Miiller, P., Zeng, G., Wonka, P., Van Gool, L., 2007. Image-based procedural modeling of facades.
ACM Trans. Graph. 26, 85.

Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y., 2019. Semantic image synthesis with spatially-
adaptive normalization, in: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 2337-2346.

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., Carin, L., 2016. Variational au-
toencoder for deep learning of images, labels and captions. Advances in neural information
processing systems 29.

29



Radford, A., Metz, L., Chintala, S., 2015. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 .

Remondino, F., Gerke, M., 2015. Oblique aerial imagery—a review, in: Photogrammetric week,
pp. 75-81.

Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems 28.

Ripperda, N., Brenner, C., 2009. Application of a formal grammar to facade reconstruction
in semiautomatic and automatic environments, in: Proc. of the 12th AGILE Conference on
GIScience, Citeseer. pp. 1-12.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical
image segmentation, in: International Conference on Medical image computing and computer-
assisted intervention, Springer. pp. 234-241.

Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M., 2008. Interactive 3d architec-
tural modeling from unordered photo collections. ACM Transactions on Graphics (TOG) 27,
1-10.

Stiny, G.N., 1975. Pictorial and formal aspects of shape and shape grammars and aesthetic
systems. University of California, Los Angeles.

Tan, Y., Kwoh, L., Ong, S., 2008. Large scale texture mapping of building facades. TAPRS B37
, 687-691.

Tao, F., Qi, Q., 2019. Make more digital twins. Nature 573, 490-491.

Teboul, O., Kokkinos, I., Simon, L., Koutsourakis, P., Paragios, N., 2011. Shape grammar
parsing via reinforcement learning, in: CVPR 2011, IEEE. pp. 2273-2280.

Ulyanov, D., Vedaldi, A., Lempitsky, V., 2016. Instance normalization: The missing ingredient
for fast stylization. arXiv preprint arXiv:1607.08022 .

Vanegas, C.A., Kelly, T., Weber, B., Halatsch, J., Aliaga, D.G., Miiller, P., 2012. Procedural
generation of parcels in urban modeling, in: Computer graphics forum, Wiley Online Library.
pp. 681-690.

Verykokou, S., Ioannidis, C., 2018. Oblique aerial images: a review focusing on georeferencing
procedures. International journal of remote sensing 39, 3452-3496.

Waechter, M., Moehrle, N., Goesele, M., 2014. Let there be color! large-scale texturing of 3d
reconstructions, in: European conference on computer vision, Springer. pp. 836-850.

Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B., 2018. High-resolution
image synthesis and semantic manipulation with conditional gans, in: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 8798-8807.

Yang, C., Zhang, F., Gao, Y., Mao, Z., Li, L., Huang, X., 2021. Moving car recognition and
removal for 3d urban modelling using oblique images. Remote Sensing 13, 3458.

Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S., 2019. Free-form image inpainting with
gated convolution, in: Proceedings of the IEEE/CVF international conference on computer
vision, pp. 4471-4480.

30



Zhang, H., Xu, K., Jiang, W., Lin, J., Cohen-Or, D., Chen, B., 2013. Layered analysis of irregular
facades via symmetry maximization. ACM Trans. Graph. 32, 121-1.

Zhang, H., Yao, Y., Xie, K., Fu, C.W., Zhang, H., Huang, H., 2021. Continuous aerial path
planning for 3d urban scene reconstruction. ACM Trans. Graph. 40, 225-1.

Zhou, G., Bao, X., Ye, S., Wang, H., Yan, H., 2020. Selection of optimal building facade texture
images from uav-based multiple oblique image flows. IEEE Transactions on Geoscience and
Remote Sensing 59, 1534-1552.

Zhu, P., Abdal, R., Qin, Y., Wonka, P., 2020. Sean: Image synthesis with semantic region-
adaptive normalization, in: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 5104-5113.

Zhu, P., Para, W.R., Fruehstueck, A., Femiani, J., Wonka, P., 2020. Large scale architectural
asset extraction from panoramic imagery. IEEE Transactions on Visualization and Computer
Graphics , 1-1.

Zhu, P., Para, W.R., Friihstiick, A., Femiani, J., Wonka, P., 2020a. Large scale architectural
asset extraction from panoramic imagery. IEEE Transactions on Visualization and Computer
Graphics .

Zhu, Q., Huang, S., Hu, H., Li, H., Chen, M., Zhong, R., 2021a. Depth-enhanced feature pyramid
network for occlusion-aware verification of buildings from oblique images. ISPRS Journal of
Photogrammetry and Remote Sensing 174, 105-116.

Zhu, Q., Shang, Q., Hu, H., Yu, H., Zhong, R., 2021b. Structure-aware completion of photogram-
metric meshes in urban road environment. ISPRS Journal of Photogrammetry and Remote
Sensing 175, 56-70.

Zhu, Q., Wang, Z., Hu, H., Xie, L., Ge, X., Zhang, Y., 2020b. Leveraging photogrammetric mesh
models for aerial-ground feature point matching toward integrated 3d reconstruction. ISPRS
Journal of Photogrammetry and Remote Sensing 166, 26—40.

31



	1 Introduction
	2 Related work
	3 Structured realistic image synthesis method for building façades
	3.1 Overview and problem setup
	3.1.1 Overview of the approach
	3.1.2 Problem setup

	3.2 Direction guided semantics completion
	3.2.1 Similarity measure of patches
	3.2.2 Direction guided expansion

	3.3 Regularity-aware multi-domain universal image translation
	3.3.1 Network architecture
	3.3.2 Multi-domain losses

	3.4 Image quilting

	4 Experimental evaluation and analysis
	4.1 Dataset description
	4.2 Results
	4.2.1 Semantics completion of building façade
	4.2.2 Façade texture repair of 3D building

	4.3 Comparison of image translation
	4.3.1 Qualitative comparison
	4.3.2 Quantitative comparison

	4.4 Analysis of detail and regularity losses
	4.5 Discussion and limitations

	5 CONCLUSION

