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Two-Stage Fine-Grained Object Detection
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Abstract—Fine-grained object detection (FGOD) extends ob-
ject detection with the capability of fine-grained recognition.
In recent two-stage FGOD methods, the region proposal serves
as a crucial link between detection and fine-grained recogni-
tion. However, current methods overlook that some proposal-
related procedures inherited from general detection are not
equally suitable for FGOD, limiting the multi-task learning
from generation, representation, to utilization. In this paper,
we present PETDet (Proposal Enhancement for Two-stage fine-
grained object detection) to better handle the sub-tasks in two-
stage FGOD methods. Firstly, an anchor-free Quality Oriented
Proposal Network (QOPN) is proposed with dynamic label
assignment and attention-based decomposition to generate high-
quality oriented proposals. Additionally, we present a Bilinear
Channel Fusion Network (BCFN) to extract independent and
discriminative features of the proposals. Furthermore, we design
a novel Adaptive Recognition Loss (ARL) which offers guidance
for the R-CNN head to focus on high-quality proposals. Extensive
experiments validate the effectiveness of PETDet. Quantitative
analysis reveals that PETDet with ResNet50 reaches state-of-the-
art performance on various FGOD datasets, including FAIR1M-
v1.0 (42.96 AP), FAIR1M-v2.0 (48.81 AP), MAR20 (85.91 AP) and
ShipRSImageNet (74.90 AP). The proposed method also achieves
superior compatibility between accuracy and inference speed.
Our code and models will be released at https://github.com/
canoe-Z/PETDet.

Index Terms—Fine-grained object detection, oriented object
detection, two-stage detector, aerial images.

I. INTRODUCTION

F INE-GRAINED object detection (FGOD) aims to ac-
curately recognize fine-grained sub-categories while lo-

cating them simultaneously. For example, an effective fine-
grained detector should not only correctly detect objects within
the coarse category Airplane but also recognize the fine-
grained subcategory such as Airbus 350 or Boeing 747. FGOD
in aerial images has a broad application prospect, such as earth
observation [1], urban monitoring [2], and disaster control
[3]. However, compared with general object detection, FGOD
presents a greater challenge due to the semantic confusion
between classes caused by the large intra-class variance and
the ambiguous inter-class differences.

With the rapid development of high-resolution remote sens-
ing technology, despite object detection has extensive suc-
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Fig. 1. Speed versus Accuracy on FAIR1M-2.0. Compared with other oriented
object detectors, our PETDet can achieve state-of-the-art performance with
competitive speed.

cessful applications in remote sensing [4], [5], [6], it no
longer meets the new demand for fine-grained recognition. In
recent times, FGOD in aerial images has garnered widespread
attention from the research community [7], [8], [9], [10], [11],
[12], [13], [14], [15]. FGOD is a multi-task learning prob-
lem comprising foreground and background (FG/BG) classi-
fication, box regression and fine-grained recognition. Recent
methods usually adopt the two-stage pipeline for better task
decomposition via sparse region proposals. Besides, objects in
aerial images often have varying orientations and aspect ratios,
which cannot be adequately represented under the horizontal
scheme. Current FGOD methods commonly perform oriented
detection since oriented bounding boxes can facilitate pre-
cise fine-grained recognition with less redundant background
regions. Based on two-stage pipeline and oriented scheme,
many works focus on improving the fine-grained recognition
performance with a variety of attention mechanisms or metric
learning methods proposed. For examples, Zhou et al. [7]
introduce attention-based group feature enhancement and sub-
saliency feature learning. Cheng et al. [9] propose a spatial
and channel transformer to capture discriminative features and
adopt deep metric learning to enhance the separability of fine-
grained classes.

Despite the notable progress, there are still significant
limitations that need to be addressed. From the perspective
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of multi-task learning, properly handling the relationship be-
tween sub-tasks is critical in FGOD. For two-stage methods,
the region proposal is the bridge linking the detection and
recognition sub-tasks. However, the importance of proposals
is neglected in previous work. In our study, we do not
aim to develop new components to directly enhance fine-
grained recognition. Instead, we try to unlock the potential
of two-stage FGOD detectors by enhancing region proposals
to improve collaborative optimization. We argue that some
procedures related to region proposals, designed for general
object detection may not be equally suitable for FGOD, which
results in performance limitations. Specifically, the following
three main issues hinder the performance of two-stage FGOD
methods:
(1) Generation: For two-stage FGOD methods, generating
high-quality proposals is one of the most critical task. High-
quality classification results in fewer false-positive proposals,
which allows the R-CNN head to focus more attention on
recognition than FG/BG classification. With high-quality local-
ization, the RoI features will align better with less redundant
background. In contrast, a proposal with inaccurate regression
which fails to fully enclose the target, will lead to the absence
of essential discriminative features.
(2) Representation: In two-stage FGOD detectors, the first
stage is responsible for FG/BG classification and proposal lo-
calization, while the second stage handles fine-grained recog-
nition and bounding box refinement. However, features for
both stages are extracted from the feature pyramid network
(FPN) [16] without being decoupled, which leads to confusion
among tasks. Moreover, proposal representation based on
single-level features is insufficient to support accurate fine-
grained recognition in the second stage [11], [12].
(3) Utilization: In previous two-stage methods, the R-CNN
head takes proposals generated by the vanilla RPN as input,
which include numerous false positives. Therefore, RoIs need
to be sampled by a handcrafted positive/negative ratio to
reduce the imbalance. Inheriting that procedure, the second
stage in current two-stage FGOD methods still pays much
attention to the FG/BG classification task. Even though the
proposal quality had been enhanced, high-quality positive
samples would not be fully utilized, which considerably hurts
the learning of fine-grained recognition.

In this paper, we focus the proposal enhancement and
propose a novel two-stage FGOD method called PETDet
(Proposal Enhancement for Two-stage fine-grained object de-
tection). Our PETDet comprises three main components, each
of which addresses one of above issues associated with region
proposals. To improve the quality of proposals, a Quality
Oriented Proposal Network (QOPN) is introduced, which
is an anchor-free oriented proposal network with dynamic
label assignment and attention-based decomposition. QOPN
generates high-quality proposals to facilitate subsequent op-
timization with slight increase in computational cost. Ad-
ditionally, inspired by the low-rank bilinear pooling [17],
we present a Bilinear Channel Fusion Network (BCFN) to
produce independent and discriminative features by cross-level
fusion. To further enhance proposal utilization, we design
an Adaptive Recognition Loss (ARL) for the R-CNN head.

ARL jointly assesses the quality of each proposal based on
the classification score and the refined IoU, up-weighting
the loss assigned to high-quality samples. Since ARL can
guide the R-CNN head to focus on certain samples, some
inappropriate procedures such as the random sampling and
the non-maximum suppression of proposals are discarded to
maximize sample utilization.

Extensive experimental results substantiate the effectiveness
of proposed methods. Specifically, PETDet with ResNet-50-
FPN achieves 48.81 AP on FAIR1M-v2.0 and largely surpasses
the strong baseline Oriented R-CNN by 4.91%, with a negli-
gible increase in inference time. Our method can also reach
state-of-the-art performance on single-class FGOD dataset in-
cluding MAR20 and ShipRSImageNet. As depicted in Fig. 1,
compared to the baseline, PETDet has only a negligible impact
on the inference speed. It can be concluded that our PETDet
performs well in terms of both accuracy and efficiency.

The main contributions of this work can be summarized as
follows:

1) We explore two-stage FGOD methods from a fresh per-
spective. By exploring three universal proposal-related
bottlenecks which restrict multi-task learning for FGOD,
we propose a novel FGOD framework with proposal
enhancement strategy, providing guidance to improve
existing two-stage methods.

2) We propose an end-to-end FGOD method called PET-
Det, in which three novel synergistic modules are de-
signed to resolve the inherent contradiction between
object detection and fine-grained recognition sub-tasks
within FGOD.

3) The proposed PETDet sets new records on multiple
FGOD datasets, including FAIR1M-V1.0, FAIR1M-
V2.0, MAR20, and ShipRSImageNet.

The rest of the paper is organized as follows. Section II
introduces a concise overview of the research progress related
to our work. Section III introduces the details of proposed
PETDet. Section IV provides experiments on the effectiveness
of the method. Finally, the conclusion is made in Section V.

II. RELATED WORKS

In this section, we review the previous research on two-
stage and one-stage methods in general object detection first,
to clarify the relationship with RPN and one-stage detector.
Then, as FGOD in aerial images commonly adopts oriented
bounding boxes, we review related work on oriented object
detection. Finally, we discuss the recent developments in the
FGOD field.

A. General Object Detection

With the advance of deep learning, object detection has
made significant progress. Convolution-based object detectors
can be categorized into two-stage or one-stage methods. Two-
stage methods adopt the region proposal network (RPN) to
generate potential proposals, then perform RoI-wise box re-
gression and classification in the second stage [18], [19], [20],
[21], [22]. Due to the complex pipeline with numerous hand-
designed components, two-stage methods are no longer the
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focus of community in general object detection more recently.
However, for FGOD tasks, the two-stage pipeline has a unique
advantage in task decomposition.

In contrast, one-stage detectors detect objects directly
without proposals. To address the problem of foreground-
background class imbalance, Focal Loss is introduced [23]
to down-weight well-classified samples. To further simplify
the pipeline, anchor-free one-stage detectors use anchor-points
[24], [25] or key-points [26], [27] instead of setting hand-
crafted anchors. Meanwhile, many advanced label assignment
strategies [28], [29], [30] proposed to dynamically choose
positive and negative samples. Moreover, kinds of soft label
assignment methods [31], [32], [33], [34] have been proposed
to alleviate the inconsistency of classification and localization.

For two-stage FGOD methods, we argue that the quality
of proposals is critical. RPN makes dense predictions like the
one-stage detector, but the relatively simple architecture leads
to low-quality predictions. Applying contrastive learning to
proposals is a potential way to improve the true positive rate
[35]. However, it can not enhance localization quality concur-
rently. In our study, inspired by the probabilistic interpretation
of two-stage detection [36], we adopt advanced designs from
modern one-stage detectors to generate high-quality proposals.

B. Oriented Object Detection

Comparing with general object detection, oriented ob-
ject detection extends detectors with extra angle prediction.
Aerial images is the most popular application scenario of
oriented detector, where objects are usually arbitrary-oriented.
Convolution-based oriented detectors can also be categorized
into two-stage or one-stage. Two-stage methods perform ori-
ented detection based on region proposals [37], [38], [39],
[40], [41], [42], [43], [44]. RRPN [38] sets rotated anchors
to generate oriented proposals. Gliding Vertex [39] glide the
vertex of the horizontal bounding box to accurately describe an
oriented object. Oriented R-CNN [41] directly learns oriented
proposals from horizontal anchors with a six parameters
representation.

In recent years, one-stage oriented detectors have also made
impressive progress [45], [46], [47], [48], [47], [49], [50], [51],
[52]. Some works pay attention on the feature misalignment
problem. S2ANet [48] applies an anchor refinement network
to generate oriented anchors. R3Det [46] refines oriented
bounding boxes by learning aligned feature maps. Some
works concentrate on the representation of oriented bounding
boxes to address the boundary problem. GWD [53] and KLD
[54] respectively adopted Gaussian Wallenstein distance and
Kullback-Leibler divergence to measure the distance between
boxes. PSC [55] predicts the orientation by mapping rotational
periodicity of different cycles into phase of different frequen-
cies. Apart from two-stage or one-stage convolution-based
methods, recently several transformer-based oriented detectors
have been proposed to make end-to-end detection. [56], [57],
[58], [59], [60].

Oriented bounding boxes encapsulate less redundant re-
gions when representing arbitrary-oriented objects. This brings
great benefits for FGOD in aerial imagery, where minimizing

background redundancy can enhance the recognition task.
Consequently, oriented prediction has become a popular choice
in FGOD methods. In our study, we adopt the strong two-
stage oriented detector Oriented R-CNN [41] as our baseline
method.

C. Fine-grained Object Detection

Based on the development of general object detection and
oriented object detection, FGOD in remote sensing has re-
ceived increasing attention more recently [7], [8], [9], [10],
[11], [12], [13], [14], [15]. Comparing with previous fine-
grained recognition work based on classification task [61],
[62], [63], [64], FGOD requires simultaneous localization
and fine-grained recognition. Current FGOD methods works
mainly make efforts to alleviate the semantic confusion be-
tween fine-grained classes. Zhou et al. [7] propose attention-
based group feature enhancement and sub-saliency feature
learning. Wang et al.[8] introduce an extra backbone to learn
fine-grained classification and adopt knowledge distillation to
keep it lightweight. Ouyang et al. [65] propose PCLDet to
maximize the interclass distance and minimize the intraclass
distance by prototypical contrastive learning. Cheng et al. [9]
propose SFRNet with a spatial and channel transformer to
capture discriminative features and adopt metric learning to en-
hance the separability of fine-grained classes. Besides, several
approaches are designed to perform FGOD on specific course-
grained class. As for fine-grained ship detection, Ouyang et al.
[10] build MGANet with a self-attention network to exploit the
global and local features. For fine-grained aircraft detection,
Zeng et al. [14] proposal ISCL to extract various discriminative
feature by instance switching-based contrastive learnings.

Most recent methods are designed following the two-stage
paradigm to better decompose the sub-tasks of FGOD. How-
ever, their performance may still be impacted by some inap-
propriate designs of region proposals, including proposal gen-
eration, representation, and utilization, which are overlooked
in previous studies. In our study, instead of directly enhancing
fine-grained recognition, we focus on proposal enhancement
to overcome these obstacles caused by region proposals.

III. METHOD

In this section, we present a two-stage FGOD method named
PETDet. Fig. 2 depicts the overall framework of the proposed
method. As it shown, PETDet consists three proposed compo-
nents for proposals enhancement. We will detail the Quality
Oriented Proposal Network in Section III-A. The Bilinear
Channel Fusion Network and Adaptive Recognition Loss are
presented in Section III-B and Section III-C, respectively.

A. Quality Oriented Proposal Network

We propose QOPN to generate well-localization proposals
with fewer false positives introduced. The idea is inspired
by CenterNet2 [36], in which a single-stage object detector
replaces the vanilla RPN for high-quality proposal generation.
However, setting more parameters in the first stage will cause
the imbalance between stages and be harmful for collabora-
tive optimization in FGOD tasks. On the contrary, advanced
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Fig. 2. The framework of our proposed PETDet model. PETDet is a two-stage detector designed for FGOD tasks by proposal enhancement, including: (a):
Quality Oriented Proposal Network: generate high-quality oriented proposals to free the second stage from FG/BG classification and imprecise RoIs. (b):
Bilinear Channel Fusion Network: fuse cross-level features bilinearly to enhance the representation of proposals. (c): Adaptive Recognition Loss: up-weight
high-quality proposals facilitate fine-grained recognition learning. Note that QOPN takes single-level feature map Pi from FPN as input while the second
stage perform on cross-level feature map fused by BCFN.

training strategies of one-stage detectors instead of the direct
replacement are adopted in QOPN. Specifically, QOPN adopt
anchor-free paradigm, learning the offsets and angle based on
prior points like FCOS [24] instead of setting horizontal an-
chors to avoid the problem that horizontal anchors may be hard
to pair with oriented ground truths. After that, QOPN applies
the adaptive training sample selection (ATSS) [28] for dynamic
label assignment rather than setting a fixed threshold, enabling
adaptive sample selection with fewer hyperparameters. With
those improvements, QOPN can generate high-quality oriented
proposals for less background redundancy to facilitate fine-
grained recognition without extra trainable parameters.

To further improve the quality of proposals, we also enhance
the network architectures of QOPN. Instead of introducing
decoupled branches for localization and classification, which
is widely used in one-stage detectors, only several extra shared
convolution layers are set in QOPN to avoid a marked increase
in computations. Let Xfpn ∈ RH×W×C signifies the FPN
features, where H , W and C denote the height, width, and
the number of channels of the feature maps, respectively. We
apply consecutive conv layers shared for both localization
and classification to extract multiscale features Xconv ={
X1, X2, ..., Xk

}
, k ∈ {1, 2, ..., N}, where N denotes the

number of 3 × 3 conv layers. In our implementation, N = 2
is our default setting since experiments prove that two shared
conv layers is adequate with LDAM detailed in the following
paragraphs.

Inspired by TOOD [33], we present a lightweight decou-
pled attention module (LDAM) to decompose the localization
and classification tasks with few extra parameters. LDAM
includes a layer attention aggregation (LAA) and a simple
spatial attention (SSA). The illustration of proposed LDAM
is shown in Fig. 3. In LAA, we first concatenate Xfpn and
Xconv to get Xcat ∈ RH×W×(N+1)C and execute global

H×W×3C
LAA SSA

H×W×C

Fig. 3. Illustration of LDAM. LDAM contains a layer attention aggregation
(LAA) and a simple spatial attention (SSA) to extract decoupled features for
classification and localization.
3

average pooling on the concatenated features. After that, a
1 × 1 conv layer is applied to learn a layer attention map
wlayer ∈ R(N+1)C . There is no activation function used
here to reduce computation. Another 1 × 1 conv layer is
to reduce the dimension from (N + 1) × C to C with the
layer attention map multiplied in the meantime. As a result,
the aggregated features XLAA ∈ RH×W×C can be obtained.
Then, a simple spatial attention (SSA) is presented to enhance
spatial decomposition. The attention map is generated by a
7 × 7 conv layer on global average pooling and global max
pooling maps from XLAA. A residual path with layer scale
[66] is used to maintain stability and speed up the convergence.

Taking the decoupled features extracted by LDAM, the clas-
sification branch performs class-agnostic foreground predic-
tion with an output dimension of H×W×1, while the regres-
sion branch predicts four offsets and an angle (l, t, r, b, θ) of
the oriented bounding boxes. During the training, to maximize
the usage of samples, QOPN discards random sampling and
uses Focal Loss [23] to reduce the weight of well-classified
samples. Rotated GIoU loss is employed for box regression,
since IoU-based loss can not only alleviate the inconsistency
problem of loss function and evaluation metric, but also avoid
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the boundary problem caused by angle periodicity.
In addition, the input scale of feature map is limited in

QOPN to reduce the computational cost. The vanilla RPN
take {P2, P3, P4, P5, P6} from FPN as input. However, it is
proved that P2 costs a large portion of the computations but
makes fewer contributions, while the high-level features are
more efficient [36], [67]. Although low-level features may
helpful to the detection of small object, in FGOD tasks, high-
resolution images with few tiny objects are more common.
In this case, QOPN discards P2 and generates proposals on
{P3, P4, P5, P6, P7} like a one-stage detector. The stride of
each level is 8, 16, 32, 64 and 128, respectively. With a larger
stride, there are significantly fewer anchor-points set on the
feature map. In this way, QOPN can contain more parameters
without increment of FLOPs.

B. Bilinear Channel Fusion Network

We present a Bilinear Channel Fusion Network (BCFN)
to enhance the feature representation of proposals. The mo-
tivation stems from the fact that high-level features contain
more semantic information while low-level features are more
likely to respond to local texture and patterns [68]. In two-
stage FGOD methods, the second stage requires not only the
semantic information for precise box regression but also high-
resolution spatial details for accurate fine-grained recognition.
Despite the pathway of FPN, the feature representation is still
not rich enough. In addition, features for both stages extracted
from FPN without feature decoupling will be harmful to the
fine-grained recognition due to the confusion between sub-
tasks. By cross-layer fusion, Our BCFN can address above
two problems in an effective and efficient way.

As shown in Fig. 4, our BCFN takes two adjacent level
feature maps as input to generate enhanced cross-level feature.
In the beginning of BCFN, a channel interaction module (CIM)
is proposed to fully harness the cross-level information via
channel-wise prefusion. CIM performs channel replacement
without new training parameters, which can be expressed as:

[X11, X12] = Chunk (Pi)

[X21, X22] = Chunk (↑ Pi+1)

XL = Concat ([X11, X22])

XH = Concat ([X21, X12])

(1)

where Pi ∈ R2H×2W×C and Pi+1 ∈ RH×W×C indicate the
low-level and high-level feature maps. H , W and C represent
the height, width, and the number of channels of the feature
maps, respectively. Chunk (·) is the channel chunk operation
and Concat (·) denotes the channel-wise concatenation oper-
ation. ↑ represents upsampling features via nearest neighbor
interpolation.

Based on the result of CIM, we perform the bilinear channel
fusion (BCF) to accomplish the actual task of cross-level
feature fusion. BCF draws inspiration from the bilinear pooling
[69], a classical method that has shown promising performance
in the fine-grained image classification task. However, original
bilinear pooling costs significant computational resources to
calculate second-order features. To tackle this issue, we draw
inspiration from the Multimodal Low-rank Bilinear Attention

2H×2W×C

H×W×C

Pi

upsample
chunk

CIM

prefusion

chunk

1x1
conv

1x1
conv

1x1
conv

2H×2W×C

Fig. 4. Illustration of BCFN. BCFN contains a channel interaction module
(CIM) for feature prefusion and the bilinear channel fusion implemented by
1 × 1 convolutions and a Hadamard product.

Networks (MLB) [17] and implement the bilinear operation in
BCF by two linear mappings and a Hadamard product, which
can be formulated as:

BCF (XL, XH , f, g, h) = h (f (XL)⊙ g (XH)) (2)

where f (·), g (·), and h (·) represent the channel-wise linear
mappings implemented by 1 × 1 convolutions, respectively.
The symbol ⊙ denotes the Hadamard product between two
matrices. BCF can also be deemed as a bilinear variant of the
Gated Linear Unit (GLU) [70], [71], which has been proved
effective in natural language processing. The main difference
between BCF and MLB/GLU lies in the fact that all operations
in our design are channel-wise, since BCFN is applied prior to
RoI Pooling, which can extract strong spatial features. In this
case, there is no need to consume additional compute resources
to prematurely perform spatial operations before focusing on
the regions of interest.

Considering that low-level features play a more important
role in FGOD tasks, we add the original low-level feature
map to the result as a shortcut. After performing the above
operations, the bilinear fusion feature map Bi ∈ R2H×2W×C

can be obtained. Specifically, {P2, P3, P4, P5, P6, P7} from
FPN are introduced to BCFN and {B2, B3, B4, B5, B6} with
the stride of {4, 8, 16, 32, 64} will be generated to support the
next stage with feature enriched and decoupled.

C. Adaptive Recognition Loss

To take full advantage of high-quality proposals, We pro-
pose the Adaptive Recognition Loss (ARL) to mainly address
two problems existing in current two-stage FGOD methods.
First, the vanilla R-CNN head ignore the quality variance
of different proposals. We believe that high-quality proposals
with higher foreground probability and more precise local-
ization should be prioritized in the FGOD tasks. Second,
the non-maximum suppression (NMS) of proposals has a
negative impact on the fine-grained recognition. Due to the
misalignment of classification and localization in the first
stage, high-scoring proposals may not have accuracy bounding
box. As a result, well-localized proposals might be removed.
Besides, rotated NMS is time-consuming operation. The sub-
stitute horizontal NMS sometimes leads to wrongly removal,
especially confronting the densely arranged proposals with a
large aspect ratio.
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Our ARL is designed to address above issues based on Focal
Loss [23]. The vanilla Focal Loss can be formulated as:

FL (p, y) =

{
−α (1− p)

γ
log (p) , if y = 1

−pγ log (1− p) , otherwise
(3)

where α and γ are two hyperparameters. α is used to balance
the contribution of positive and negative samples while γ
adjusts the rate of focusing on hard examples. However,
Focal Loss treats positive and negative samples equally, while
positive samples are more valuable for FGOD. In addition,
Focal Loss modulates by cross-entropy, ignoring the actual
factors which affect fine-grained recognition. In that case,
we design a new reweighing strategy for ARL. The joint
measurement t is proposed to re-weight positive samples by
their quality, which can be calculated as:

t =
√
s× q (4)

where s denotes the classification score of the proposal pro-
vided by QOPN. Compared with the vanilla RPN which places
most emphasis on the recall, our QOPN can generate more
reliable scores to precisely measure the quality of the proposal
in terms of the foreground probability. q is the output IoU after
box regression in the second stage, which indicates the quality
according to localization. Overall, ARL is able to jointly assess
the quality of each proposal based on the classification from
the first stage and localization from the second stage. Then
our ARL can be formulated as:

ARL (p, y) =

{
−teβt log (p) , if y = 1

−pγ log (1− p) , otherwise
(5)

where the hyperparameter β controls the variance of different
proposals. Comparing with Focal Loss, the hyperparameter
α is removed in our ARL, since β can also contribute to
adjust the overall weight of positive samples. With ARL, we
no longer perform NMS on the proposals but retain noisy
proposals to avoid the absence of high-quality proposals.
Discarding NMS also contributes much to inference speed.
Besides, since ARL can dynamically increase the weight of
high-quality proposals, we do not sample proposals during
the training to maximize the utilization of all high-quality
proposals.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we design extensive experiments to evaluate
the performance of our PETDet on multiple FGOD datasets.
We compare our methods with the state-of-the-art oriented ob-
ject detection methods to demonstrate our superiority. Besides,
We conduct extensive experiments to verify the effectiveness
of each module and the optimal parameter settings.

A. Datasets

Multiple datasets are adopted to evaluate the effectiveness
and robustness of our method comprehensively, including
the FAIR1M [1] dataset, the MAR20 [72] dataset and the
ShipRSImageNet [73] dataset. Our mainly experimental re-
sults are performed on FAIR1M, the largest multi-class FGOD

dataset. The MAR20 dataset and ShipRSImageNet dataset are
single-class FGOD dataset, producing for aircraft and ship
detection and recognition respectively. We adopt these three
datasets to comprehensively evaluate our method in both multi-
class and single-class FGOD tasks.

1) FAIR1M Dataset: FAIR1M [1] is currently the largest
remote sensing fine-grained object detection dataset. The
image size ranges from 1000 × 1000 to 10,000 × 10,000
pixels. All objects in the dataset are annotated with respect
to 5 categories (Airplane, Ship, Vehicle, Court,and Road)
and 37 sub-categories with OBB annotations. Except 3 other
categories (other-airplane, other-ship, and other-vehicle), there
are 34 fine-grained classes in FAIR1M, i.e., Boeing 737
(B737), Boeing 777 (B777), Boeing 747 (B747), Boeing 787
(B787), Airbus A320 (A320), Airbus A220 (A220), Airbus
A330 (A330), Airbus A350 (A350), COMAC C919 (C919),
COMAC ARJ21 (ARJ21), passenger ship (PS) motorboat
(MB), fishing boat (FB), tugboat (TB), engineering ship (ES),
liquid cargo ship (LCS), dry cargo ship (DCS), warship (WS),
small car (SC), bus (BUS), cargo truck (CT), dump truck
(DT), van (VAN), trailer (TRI), tractor (TRC), truck tractor
(TT), excavator (EX), baseball field (BF), basketball court
(BC), football field (FF), tennis court (TC), roundabout (RA),
intersection (IS), and bridge (BR).

The FAIR1M dataset consists of two versions: FAIR1M-
v1.0 and FAIR1M-v2.0. The 1.0 version contains 16488 im-
ages for training and 8137 images for testing, respectively.
Comparing with FAIR1M-v1.0, the 2.0 version introduces an
extra validation set and an expanded testing set, while the train
set of them are consistent.

2) MAR20 Dataset: MAR20 [72] is a dataset of remote
sensing military aircraft recognition. It consists of 3842 im-
ages, including 1311 images for training and 2511 images for
test. The size of images is mostly 800 × 800 pixels. In MAR20,
there are 22341 aircraft instances with 20 different types
gathered from 60 military airports across the United States,
Russia, and other countries using Google Earth. All instance
has both horizontal bounding box and oriented bounding box
annotations.

3) ShipRSImageNet Dataset: ShipRSImageNet [73] is a
large-scale fine-grained ship detection datasets. Most of the
data are collected from Google Earth and supplemented by
HRSC2016. The resolution of ShipRSImageNet ranges from
0.12 to 6 m, and the size of images ranges from 930 × 930
to 1024 × 1024 pixels. The dataset contains over 3435 images
with 17,573 ship instances. Instances are annotated with HBB,
OBB and polygons annotations. In ShipRSImageNet, ships are
hierarchically classified into four levels. We mainly evaluate
models on level 3, where ship objects are divided into 50 fine-
grained classes at type level.

B. Implementation Details

We implement our PETDet and other comparison models
by the mmrotate [74] toolbox. All models are trained on 4
NVIDIA GeForce RTX3090 GPUs with total batch size set
to 8 (2 images per GPU). We use SGD with momentum of
0.9 and the weight decay of 0.0001 as default optimization
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parameters. The initial learning rate in all experiments is 0.02.
No data augmentation except random flipping is used during
the training.

It should be noted that some experimental settings vary
across different datasets. For FAIR1M, we use training and
validation sets for training and the rest for testing. All images
are cropped into 1024 × 1024 patches with an overlap of
200. And models are trained models with 12 epochs and the
learning rate is reduced at the factor of 0.1 in the 8th and 11th.
For MAR20 and ShipRSImageNet, the official train-test split
is adopted. Models are trained with longer 36 epochs and the
learning rate is reduced at the factor of 0.1 in the 24th and
33rd. The input image size for MAR20 and ShipRSImageNet
is set as 800 × 800 and 1024 × 1024, respectively.

C. Evaluation Metric
We choose mean average precision (AP) as the major

evaluation metric. AP of each class is calculated based on
precision (P) and recall (R), which are calculated by:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP, FP, and FN respectively represent the true-positive,
false-positive and false-negative. The definitions of positive
and negative samples depended on the IoU threshold, e.g,
AP50 employs the IoU = 0.5 as the threshold. By set different
confidence thresholds to change the recall, the P–R curve
composed of a series of different P and R can be obtained.
After that, AP can be calculated by the P–R curve of each
class.

Note that some details of AP calculation are not fully
same for different datasets. For FAIR1M, Only AP50 will be
reported by the online evaluation server according to Pascal
VOC 2012 metric. Thirty-four fine-grained categories are used
for calculation, and the accuracy of three other categories
(other-airplane, other-ship, and other-vehicle) is not included.
Conversely, for MAR20 and ShipRSImageNet, AP50 is cal-
culated by Pascal VOC [75] 2007 metric. Besides, AP75 and
AP50:95 are calculated to dissect the quality of localization.
Unless otherwise specified, all AP in our paper by default stand
for AP50 rather than AP50:95 for greater focus on fine-grained
recognition performance.

In assessing the efficacy of our QOPN, the average recall
(AR) with different IoU threshold and proposals number is
used to evaluate the quality of generated proposals. We also
evaluate the speed of our PETDet and other mainstream
oriented object detectors. The FPS result is reported from
experiments on single RTX 3090 GPU. The time of post-
processing (e.g., NMS) is included.

D. Comparison with State-of-the-Art Methods
In this section, we compare PETDet with more than ten

mainstream rotated object detection methods, including single-
stage and two-stage methods. Experimental results show that
our PETDet achieves state-of-the-art performance and outper-
form previous method lots on multiple datasets.

TABLE I
QUANTITATIVE RESULTS ON FAIR1M-2.0 DATASET. * INDICATES THE

RESULT IS FROM [9]. THE OTHERS ARE FROM OUR RE-IMPLEMENTATION.

Method Reference Backbone AP50 FPS

One-stage methods:

RetinaNet [23] ICCV2017 R-50-FPN 26.07 24.7

GWD [41] ICML2021 R-50-FPN 31.48 —

KLD [54] NIPS2021 R-50-FPN 32.12 —

R3Det [46] AAAI2021 R-50-FPN 36.04 18.5

S2ANet [48] TGRS2021 R-50-FPN 30.93 21.5

FCOS [24] CVPR2019 R-50-FPN 39.98 28.1

Two-stage methods:

Faster R-CNN [18] CVPR2018 R-50-FPN 41.64 24.7

Gliding Vertex [39] TPAMI2020 R-50-FPN 41.27 24.1

RoI Transformer [40] CVPR2019 R-50-FPN 44.03 21.7

Orinted R-CNN [41] ICCV2021 R-50-FPN 43.90 23.4

ReDet [42] CVPR2021 ReR-50-FPN 46.03 15.8

SFRNet* [9] TGRS2023 R-50-FPN 45.68 —

PETDet (Ours) — R-50-FPN 48.81 23.3

1) Quantitative and Qualitative Result on FAIR1M: For
FAIR1M, the primary experimental results are performed on
FAIR1M-v2.0. We report 11 mainstream oriented object detec-
tors for comparison, including advanced two-stages methods
such as Oriented R-CNN, ReDet, etc. The quantitative results
are shown in Table I, with the best performance highlighted
in bold. All methods except ReDet use ResNet50 [76] as the
backbone by default. We did not report the FPS for GWD
and KLD as they merely replace the regression loss based
on RetinaNet. As can be seen, our PETDet largely surpasses
all current oriented detectors by a clear margin with 48.81
AP50. Under same experiment settings, PETDet outperforms
baseline Oriented R-CNN by 4.91 AP and the previous best
RoI Transformer by 4.78 AP, respectively. PETDet also can
outperform ReDet with the vanilla ResNet50, while ReDet
uses heavier ReResNet50 for rotation equivariant. Compared
with the baseline Oriented R-CNN, our PETDet maintains a
comparable inference speed. Additionally, the AP50 for each
specific fine-grained category is presented in Table II. It shows
that for some challenging categories such as C919 and truck
tractor (TT), PETDet has a notable advantage comparing with
other methods.

Fig. 6 illustrates the confusion matrices on FAIR1M-v2.0
validation, which are calculated based on the detection results
obtained from the baseline Oriented R-CNN and our PETDet.
It suggests that our PETDet outperforms the baseline in
most fine-grained classes of ships and vehicles but appears
to perform worse in airplane recognition. However, PETDet
can achieve a higher AP than Oriented R-CNN in almost
all categories. The variance is primarily attributable to the
differences between metric calculations. AP is a ranked-base
metric which takes both precision and recall into account,
while the confusion matrix only focuses on precision with the
confidence score ignored. In that case, PETDet tends to make
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TABLE II
COMPARISON OF PER-CLASS PERFORMANCE ON FAIR1M-2.0. RED NUMBERS ARE THE OPTIMAL RESULTS AND BLUE NUMBERS REPRESENT THE

SUBOPTIMAL RESULTS.

Method RetinaNet-O [23] GWD [53] KLD[54] R3Det [46] S2ANet [48] FCOS-O [24] FRCNN-O [18] Gliding Vertex [39] RoI Trans [40] ReDet [42] ORCNN [41] PETDet (Ours)

Backbone R-50 R-50 R-50 R-50 R-50 R-50 R-50 R-50 R-50 ReR-50 R-50 R-50

Airplane

B737 37.60 38.05 38.82 39.28 39.74 38.12 42.29 41.36 46.52 44.02 44.16 49.96
B747 86.54 87.59 88.53 87.47 88.74 89.30 92.73 93.02 93.05 94.41 93.13 93.60
B777 28.21 28.66 31.68 31.33 33.51 31.65 35.68 35.67 41.60 42.89 39.64 43.77
B787 48.91 50.52 55.97 53.93 52.09 54.72 60.36 58.94 62.88 60.17 61.41 67.27
C919 0.44 0.35 0.35 0.70 0.50 0.62 8.90 2.13 9.90 9.29 2.25 34.53
A220 51.19 52.37 50.12 51.77 49.34 52.88 54.03 53.51 53.80 56.93 54.53 59.91
A321 65.89 68.87 69.13 69.87 70.52 69.63 68.34 67.03 71.07 71.81 70.61 76.72
A330 27.86 33.79 40.78 44.99 47.54 50.31 58.69 58.21 61.48 62.98 59.94 64.33
A350 50.82 48.41 49.39 55.16 47.07 58.98 67.67 66.14 67.02 73.93 67.54 73.29

ARJ21 3.47 3.34 3.82 2.75 2.20 3.15 9.97 10.10 14.35 17.42 11.97 15.29

Ship

PS 1.92 4.76 4.56 9.62 4.80 11.28 12.00 13.06 12.71 15.52 15.20 13.43

MB 10.74 36.16 35.69 38.26 23.47 54.12 53.17 54.81 58.74 61.36 59.62 64.15
FB 1.43 5.51 5.80 9.55 4.67 16.19 16.99 15.55 19.33 29.59 26.46 24.94

TB 12.87 21.55 22.22 25.39 15.62 29.83 29.38 29.34 30.79 30.71 30.23 30.05

ES 4.32 12.29 11.91 10.44 7.59 13.97 13.00 12.78 13.81 20.22 15.92 17.82
LCS 8.33 17.98 17.35 46.48 31.81 46.74 43.29 43.76 46.96 49.78 49.06 50.67
DCS 14.11 28.86 28.96 45.84 33.34 49.55 44.45 44.08 50.52 52.59 51.12 51.18
WS 1.21 5.36 5.77 22.32 7.16 28.82 20.27 20.23 27.33 33.18 32.37 32.04

Vehicle

SC 30.40 46.80 49.61 51.17 47.77 54.92 53.78 53.32 58.10 60.00 56.87 72.00
BUS 2.69 5.79 7.08 3.95 2.38 12.40 25.68 31.18 31.76 23.88 30.46 43.51
CT 8.49 25.45 23.62 34.27 19.75 44.78 47.36 47.42 49.76 49.07 49.95 55.60
DT 10.09 19.59 17.67 27.98 24.10 34.71 45.69 45.94 48.78 49.52 48.82 54.76

VAN 20.81 38.69 41.49 43.50 39.53 51.71 47.87 47.01 52.92 55.50 51.39 69.83
TRI 0.00 0.12 0.08 10.43 0.08 12.19 12.17 13.12 13.68 13.45 15.99 14.24
TRC 0.00 0.00 0.04 0.26 0.08 1.24 1.58 1.02 1.81 1.33 1.85 1.94
EX 0.16 0.11 0.42 4.84 1.71 13.39 11.15 13.22 13.21 14.28 15.26 14.82
TT 0.00 0.08 0.03 0.42 0.02 22.79 13.45 11.05 16.34 21.20 5.39 33.14

Court

BC 30.54 38.45 38.23 47.66 40.69 50.64 55.38 54.34 56.90 64.65 57.56 54.88

TC 74.59 80.85 83.93 85.68 79.13 86.89 88.40 87.51 88.88 89.35 88.56 88.17

FF 54.73 59.55 61.54 59.33 46.33 58.43 60.23 60.22 62.80 66.89 63.34 67.56
BF 87.28 89.68 90.31 90.25 87.14 89.04 91.47 90.01 90.81 91.74 90.90 92.36

Road

IS 60.07 62.27 60.32 61.23 56.07 65.88 65.04 63.41 64.40 65.20 64.57 65.75
RA 35.13 32.63 33.21 33.17 29.15 27.51 33.09 33.20 31.90 32.84 31.24 35.73
BR 15.46 25.91 23.72 25.97 18.02 32.89 32.18 31.38 32.99 39.25 35.36 32.41

AP50 26.07 31.48 32.12 36.04 30.93 39.98 41.64 41.27 44.03 46.03 43.90 48.81
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Fig. 5. Qualitative comparisons on FAIR1M-v2.0 validation. Ground-truth annotations shown in the top row as references. The results in the second row
and the last row respectively from Oriented R-CNN (baseline) and our proposed PETDet. Different colored bounding boxes represent objects of different
fine-grained categories. We set the threshold as 0.5 to filter out bounding boxes with low confidence here.

more false-positive predictions with low confidence scores,
resulting in a reduced proportion of true positives. However,
these low-confidence predictions can be removed by setting a

certain threshold in practice.

Then, we have also analyzed the qualitative result on
FAIR1M-v2.0 validation. Fig. 5 gives the visualizations of



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

TABLE III
COMPARISON RESULTS ON FAIR1M-1.0. * INDICATES OUR

RE-IMPLEMENTATION. OTHER RESULTS FOR COMPARISON ARE FROM [9].

Method Reference Backbone AP50

One-stage methods:

RetinaNet [23] ICCV2017 R-50-FPN 26.58

GWD [53] ICML2021 R-50-FPN 28.13

KLD [54] NIPS2021 R-50-FPN 28.25

DAL [47] AAAI2021 R-50-FPN 29.00

RIDet [51] GRSL2021 R-50-FPN 31.58

R3Det [46] AAAI2021 R-50-FPN 31.07

S2ANet [48] TGRS2021 R-50-FPN 34.71

FCOS [24] CVPR2019 R-50-FPN 34.10

CFC-Net [50] TGRS2022 R-50-FPN 34.31

TIOE-Det [52] JPRS2023 R-50-FPN 35.16

Two-stage methods:

Fatser R-CNN [18] CVPR2018 R-50-FPN 36.83

Gliding Vertex [39] TPAMI2020 R-50-FPN 36.47

RoI Transformer [40] CVPR2019 R-50-FPN 39.15

Orinted R-CNN [41] ICCV2021 R-50-FPN 38.85

PCLDets* TGRS2023 R-50-FPN 40.25

SFRNet [9] TGRS2023 R-50-FPN 40.74

PETDet (Ours) — R-50-FPN 42.96

fine-grained detection results obtained by Oriented R-CNN
and our PETDet. It can be revealed that our proposal en-
hancement strategy can reduce false negatives in PETDet,
particularly for small objects. Meanwhile, the emphasis on
high-quality samples also facilitates fine-grained recognition.
Without contrastive learning, our PETDet can also predict fine-
grained categories closer to ground truth than the baseline
Oriented R-CNN.

Table III reports the quantitative results on FAIR1M-1.0.
Note that the results reported by PCLDet are based on a score
threshold of 0.001, instead of 0.05 in our default settings. So
we reimplement PCLDet for fair comparison. Other results
are cited from [9]. Though all methods use ResNet50 as
the backbone, some methods such as DAL, RIDet, CFC-
Net, and TIOE-Det adopted more relaxing settings for data
augmentation or training schedule. And some comparison
methods are trained with a smaller batchsize, which may bring
extra improvement to the results. The experimental results
show that PETDet surpasses previous one-stage and two-
stage oriented object detectors on FAIR1M-v1.0. Comparing
with contrast learning based methods PCLDet and SFRNet,
our proposed PETDet outperforms them by 2.71 AP and
2.22 AP respectively. Both experiments on FAIR1M-v2.0 and
FAIR1M-v1.0 show that our PETDet can achieve significant
improvements in multi-class FGOD tasks.

2) Quantitative Result on MAR20: To further validate the
effectiveness of PETDet on the single-class FGOD task, we
conducted comparison experiments on the MAR20 dataset.
MAR20 contains only aircraft targets, where detection diffi-
culty is relatively lower compared to FAIR1M. Then, accurate

TABLE IV
COMPARISON RESULTS ON MAR20.

Method Backbone AP50:95 AP50 AP75

One-stage methods:

RetinaNet [23] R-50-FPN 43.78 68.56 48.86

R3Det [46] R-50-FPN 40.13 61.18 48.13

S2ANet [48] R-50-FPN 41.82 70.76 42.64

Two-stage methods:

Faster R-CNN [18] R-50-FPN 47.57 75.01 52.93

Gliding Vertex [39] R-50-FPN 41.24 80.28 37.60

RoI Transformer [40] R-50-FPN 56.43 82.46 69.00

Oriented R-CNN [41] R-50-FPN 58.14 82.71 72.52

PETDet (Ours) R-50-FPN 61.48 85.91 78.10

TABLE V
COMPARISON RESULTS ON SHIPRSIMAGENET.

Method Backbone AP50:95 AP50 AP75

One-stage methods:

RetinaNet [23] R-50-FPN 12.56 20.08 14.14

R3Det [46] R-50-FPN 12.82 23.43 13.14

S2ANet [48] R-50-FPN 28.71 49.39 30.43

Two-stage methods:

Faster R-CNN [18] R-50-FPN 27.60 54.75 24.09

Gliding Vertex [39] R-50-FPN 28.67 58.64 24.37

RoI Transformer [40] R-50-FPN 33.56 60.98 32.17

Oriented R-CNN [41] R-50-FPN 51.90 71.76 63.69

PETDet (Ours) R-50-FPN 55.69 74.90 67.86

fine-grained recognition becomes the key to achieve higher
results. We compared with seven mainstream oriented object
detection methods, including the single-stage and the two-
stage methods. Table IV shows the experimental results on
MAR20 dataset. As can be seen, PETDet can also achieve
state-of-the-art on the MAR20 dataset, surpassing Oriented
R-CNN by 3.20 AP. In addition, PETDet significantly outper-
forms all other methods in AP75 and AP50:95, demonstrating
that our PETDet can significantly improve the quality of
localization.

3) Quantitative Result on ShipRSImageNet: We also con-
ducted experiments on the ShipRSImageNet dataset, the re-
sults of which are shown in Table V. Our proposed PETDet
can also perform will on this dataset. Compared to Ori-
ented R-CNN, PETDet introduces +3.14 AP50 and +3.79
AP50:95 gains, respectively. Both experiments on MAR20
and ShipRSImageNet show that without design for specific
categories, PETDet also can achieve competitive performance
in the single-class FGOD task.

E. Ablation Study

We conduct extensive experiments to verify the effective-
ness of proposed module in our PETDet. We first ablate each
component step by step to verify effectiveness of our QOPN,
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(a) (b) (c)

Fig. 6. Confusion matrices of detection results obtained from Oriented R-CNN (top) and our PETDet (bottom). The horizontal and vertical coordinates of the
matrices represent ground truths and the predictions, respectively. BG refers to the background. The vacancy values are nearly zero. (a) Airplane. (b) Ship.
(c) Vehicle.

BCFN and ARL. Then, we respectively analyze specific effec-
tiveness and optimal parameter settings of each component.
Unless stated otherwise, all experiments for ablations are
conducted on FAIR1M-v2.0 with a ResNet-50 backbone.

1) Effectiveness of New Components: We perform a com-
ponentwise ablation to thoroughly analyze the effect of the
three key components in our PETDet on various FGOD
datasets. As presented in Table VI, all three components
QOPN, BCFN and ARL are beneficial for performance on
each dataset. Furthermore, it should be noted that three
components give difference AP gains on difference datasets.
On FAIR1M-v2.0 and MAR20, ARL contribute the most
improvement (+2.42 AP and +2.79 AP) by focusing on hard
and important samples. On ShipRSImageNet, detectors will
face numerous ships dense arranged with large aspect radios.
With anchor-free paradigm and stronger architecture, QOPN
can more obviously benefit it (+1.40 AP) via better proposal
generation.

2) Ablation on QOPN: In QOPN, LDAM is designed to
decompose the BG/FG classification and regression, including
the layer attention aggregation (LAA) and simple spatial

TABLE VI
EFFECTIVENESS OF EACH PROPOSED COMPONENT.

Dataset QOPN BCFN ARL AP50:95 AP50 AP75

FAIR1M-v2.0

- 44.26 -
√

- 45.00 -
√ √

- 46.39 -
√ √ √

- 48.81 -

MAR20

58.14 82.71 72.52
√

58.46 83.05 73.65
√ √

58.71 83.12 73.85
√ √ √

61.48 85.91 78.10

ShipRSImageNet

51.90 71.76 63.69
√

52.81 73.16 65.08
√ √

54.88 74.28 66.80
√ √ √

55.69 74.90 67.86

attention (SSA). To thoroughly investigate the importance of
LDAM, we perform a study of different network architectures
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TABLE VII
ABLATION STUDIES ON DIFFERENT NETWORK ARCHITECTURES OF

QOPN.

Stacked convs LAA SSA AP50 FLOPs(G) #params.(M)

2 44.61 143.82 46.41

4 44.86 169.60 47.60

2
√

44.84 143.85 46.81

2
√ √

45.00 143.86 46.81

TABLE VIII
COMPARISON OF QOPN AND ORPN IN RECALL ON FAIR1M-2.0

VALIDATION.

#proposals Method R50 R75 R85 AR

300
ORPN 0.663 0.317 0.103 0.343

QOPN 0.907 0.515 0.169 0.513

500
ORPN 0.718 0.336 0.103 0.368

QOPN 0.927 0.524 0.171 0.523

1000
ORPN 0.753 0.350 0.108 0.384

QOPN 0.939 0.529 0.171 0.529

of QOPN. The result is shown in Table VII, where stacked
convs denotes that number of convolution layers in shared
branch. We can observe that both LAA and SSA can bring
improvements with negligible increment of FLOPs and model
parameters. Benefited from LDAM, QOPN with 2 stacked con-
volutional layers can outperform than 4 stacked convolutional
layers.

To further substantiate the quality improvement of proposals
generated by QOPN, we evaluate the performance of QOPN
in terms of recall under different settings. Specifically, we
respectively take 300, 500 and 1000 proposals, calculate the
recall under the 0.5, 0.75 and 0.85 IoU thresholds. Then,
the AR (the average recall within the range of 0.5 to 0.95
IoU thresholds) with different number of proposals will
be calculated. We compare our QOPN with Oriented RPN
(ORPN) proposed in Oriented R-CNN [41]. The experiments
are conducted on the FAIR1M-v2.0 validation set, and the
results are presented in Table VIII. It can be found that our
QOPN can not only significantly improve recall with 0.5 IoU
threshold, also has significant gains at higher IoU threshold.
This suggests that our QOPN can generate a greater number
of well-localized proposals, which is crucial for subsequent
fine-grained recognition in the second stage.

3) Ablation on BCFN: As shown in Table IV, we explore
different network designs in BCFN standing on the shoulders
of QOPN. Here high-level and low-level refer to the direct
utilization of {P3, P4, P5, P6, P7} or {P2, P3, P4, P5, P6} as
the input of the second stage. And FPN-style represents the
FPN-like fusion method for comparison. In details, firstly the
high-level feature map will be upsampled by nearest neighbors
interpolation. Then, a 1 × 1 convolution is applied to adjust the
number of channels. After that, an element-wise addition of
high-level and low-level feature maps is performed, followed
by a 3 × 3 convolution to mitigate the aliasing effect.

Our results demonstrated that single-level feature is inade-

TABLE IX
ABLATION STUDIES OF DIFFERENT CROSS-LEVEL FUSION APPROACHES.

Fusion method AP50 FLOPs(G) #params.(M)

high-level 45.00 143.86 46.81

low-level 45.77 186.84 47.47

FPN-style 46.13 238.35 48.06

BCFN 46.39 204.07 47.67

TABLE X
ABLATION STUDIES OF NMS ON PROPOSALS IN RECALL ON FAIR1M-2.0

VALIDATION.

#proposals NMSproposal R50 R75 R85 AR

300

√
0.907 0.515 0.169 0.513

0.865 0.549 0.225 0.521

500

√
0.927 0.524 0.171 0.523

0.911 0.575 0.233 0.547

1000

√
0.939 0.529 0.171 0.529

0.938 0.589 0.238 0.561

TABLE XI
COMPARISON OF CROSS-ENTROPY LOSS (CE) AND ARL WITH DIFFERENT

POST-PROCESSING SETTINGS OF PROPOSALS.

Loss NMSproposal #proposals AP50

CE
√

2000 46.39

CE 2000 46.70

CE
√

1000 46.22

CE 1000 46.89

ARL
√

1000 47.05

ARL 1000 48.81

quate for FGOD tasks. In addition, low-level feature is more
important for fine-grained recognition with richer local texture
and patterns. Cross-level fusion is an effective way to enhance
feature representation of proposals. Compared with FPN-style
fusion, our BCFN can perform better cross-level fusion with
lower FLOPs and parameters.

4) Ablation on ARL: When ARL is applied in the R-CNN
head, the NMS on proposals is discarded in our configuration.
Based on the proposals provided by QOPN, we first evaluate
the recall rate under the conditions with and without NMS, as
shown in Table X. On one hand, if NMS is not performed,
R50 will decrease with fewer proposals since one ground
truth will occupy more matched proposals. However, if we
increase the number of proposals to 1000, this effect becomes
negligible. On the other hand, the recall at higher IoU and the
average recall benefit from discarding NMS on proposals. As
we discussed, due to the inconsistency between localization
and classification in the first-stage, high-scored proposals may
not have the most accurate bounding boxes. Therefore, not
performing the NMS on proposals improves the recall at high
IoU thresholds.

Table XI reports the comparison of cross-entropy loss and
ARL under different post-processing settings of proposals.
It can be found that reducing the number of proposals to
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TABLE XII
DETECTION PERFORMANCES BY SETTING DIFFERENT VALUES OF γ AND β

IN ARL.

γ
β 1.0 1.5 2.0 2.5 3.0

1.0 47.23 48.08 48.55 48.73 48.36

1.5 47.40 48.07 48.58 48.81 48.47

2.0 48.45 48.09 48.51 48.57 48.53

1000 will not significantly affect the performance. Besides,
When using cross-entropy loss, an increase of 0.31 and 0.67
in AP can be achieved under 2000 and 1000 proposals by
removing NMS on proposals, respectively. These results meet
our expectations, as 1000 proposals are already sufficient to
achieve a high recall rate, and more high-quality proposals
can be reserved without NMS on proposals. After applying
proposed ARL, 47.05 AP can be achieved with 1000 proposals
after NMS, surpassing cross-entropy loss of 0.83 AP under the
same settings. Furthermore, if NMS is not applied, we can get
a larger extra gain of 1.76 AP with ARL. This suggests that
ARL can better utilize noisy proposals to promote fine-grained
recognition learning.

We also conduct experiments to investigate the robustness of
two hyperparameters γ and β set in ARL. Here, γ can reduce
the weight of easy negative samples, while β is to control
the relative scales between different positive sample by the
quality of proposals. We make a grid search to investigate
the impact of the hyperparameters, as shown in Table XII. It
can be seen that both γ and β set small will decrease the
performance. When γ ranges from 1.5 to 2.0 and β ranges
from 1.5 to 3.0, the performance is no longer sensitive to
these two hyperparameters. We adopt γ = 1.5 and β = 2.5
as default in all other experiments. With this combination,
our PETDet can achieve 48.81 AP on FAIR1M-v2.0 dataset.
Notice that the default number of proposals and hyperparam-
eters selection is set slightly different on other dataset. For
instance, The detection task in the MAR20 dataset is much
easier, where a less number of proposals can ensure the recall
rate. Consequently, we decrease the number of proposals taken
into the second stage, and set β in ARL lower to balance the
weight between positive and negative samples.

V. CONCLUSION

In this paper, we explore two-stage FGOD methods from
a novel perspective. We firstly highlight the asset of region
proposal in FGOD from the perspective of multi-task learning.
Therefore, we present an improved two-stage FGOD method
with proposal enhancement called PETDet. Our model mainly
contributes in three aspects: 1) improves the proposal quality
(QOPN module); 2) leverages cross-level discriminative fea-
tures (BCFN module); 3) re-weights proposals to focus on
high-quality samples (ARL module). Extensive experimental
results on four universal datasets with all-sided ablation studies
on each module demonstrate the effectiveness of PETDet.
Compared to other methods, PETDet not only reaches state-
of-the-art performance but also achieves favorable accuracy-
versus-speed trade-off. Although PETDet shows great perfor-

mance, the design is only suitable for two-stage pipeline and
only evaluated on large-scale datasets. Our future work will
extend our model from two main aspects: 1) more architecture-
efficient from including transformer-based methods; 2) few-
shot FGOD adaptation to meet more practical data-scarcity
applications. We hope that our exploration of multi-task inter-
action in PETDet can contribute to further advancements in
the field of FGOD.
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