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High-order Spatial Interactions Enhanced
Lightweight Model for Optical Remote Sensing

Image-based Small Ship Detection
Yifan Yin, Xu Cheng, Member, IEEE, Fan Shi, Xiufeng Liu, Huan Huo, and Shengyong Chen, Senior

Member, IEEE

Abstract—Accurate and reliable optical remote sensing
image-based small-ship detection is crucial for maritime
surveillance systems, but existing methods often struggle with
balancing detection performance and computational complex-
ity. In this paper, we propose a novel lightweight framework
called HSI-ShipDetectionNet that is based on high-order spa-
tial interactions and is suitable for deployment on resource-
limited platforms, such as satellites and unmanned aerial
vehicles. HSI-ShipDetectionNet includes a prediction branch
specifically for tiny ships and a lightweight hybrid attention
block for reduced complexity. Additionally, the use of a high-
order spatial interactions module improves advanced feature
understanding and modeling ability. Our model is evaluated
using the public Kaggle and FAIR1M marine ship detection
datasets and compared with multiple state-of-the-art models
including small object detection models, lightweight detection
models, and ship detection models. The results show that HSI-
ShipDetectionNet outperforms the other models in terms of
detection performance while being lightweight and suitable for
deployment on resource-limited platforms.

Index Terms—Small ship detection, Optical remote sensing
images, Convolutional neural networks, Spatial interaction,
Lightweight model.

I. INTRODUCTION

MONITORING the position and behavior of ships
plays a critical role in maintaining marine traffic

safety and supporting social and economic development. The
use of optical remote sensing images provides valuable infor-
mation for various applications such as fishery management,
marine spatial planning, marine casualty investigation, and
pollution treatment [1], [2]. However, when the altitude and
angle of satellite photography vary, ship targets can have
a large scale of variation, so there are a large number of
small target ships in the images. The complex sea state
can significantly impact the detection performance of small
ships. Waves can cause variations in pixel values in the
optical image due to the reflection of the sun and skylight off
their slopes [3]. Additionally, satellites may encounter clouds
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or sunglint when observing the Earth, which can make it
difficult to distinguish ships from the background, even for
the naked eye [4]. Therefore, it is still difficult to accurately
locate and recognize small ships from optical remote sensing
images.

In the field of object detection, small objects can be
defined in two ways. Chen et al. [5] propose a definition
based on relative sizes, stating that small objects have a
median relative area between 0.08% and 0.58% compared
to other instances in the same category. Another way to
define small objects is based on absolute sizes. In this
approach, objects with occupied areas equal to or less than
32×32 pixels are considered small objects [6]. Over the
past few decades, there has been a significant amount of
research on small ship detection in optical remote sensing
images. Traditional methods have mainly focused on fea-
ture design, including ship candidate extraction and ship
identification [7]. Ship candidate extraction techniques such
as statistical threshold segmentation [8], [9], visual saliency
[10], and local feature descriptor [11] have been commonly
used. In the identification stage, the support vector machine
(SVM) [12] has been a frequently adopted method for
ship classification. However, traditional methods may not
be effective in complex conditions as the impact of variable
weather factors on optical image imaging is uncontrollable.
Additionally, these algorithms rely heavily on manual and
expert experience for feature production and generation,
resulting in poor generalization ability.

Recently, the use of convolutional neural networks
(CNNs) has greatly improved the accuracy and efficiency of
ship detection. However, the continuous downsampling char-
acteristic of CNNs can still present challenges for detecting
small ships in optical remote sensing images. One important
way to improve the detection accuracy of small objects is
to address the issue of multi-scale feature learning. Shallow
layers of convolutional neural networks (CNNs) typically
have higher resolutions and smaller receptive fields, which
are more suitable for detecting small objects [13]. Several
methods have been developed to make use of these shallow
layers for small object detection, including the Single Shot
MultiBox Detector (SSD) [14] and the top-down feature
pyramid network (FPN) with lateral connections [15]. In
addition to multi-scale feature learning, the use of contextual
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information can also be beneficial for improving object
detection performance, particularly for small objects with
insufficient pixels [13]. This is because specific objects often
appear in specific environments, such as ships sailing in the
sea. Context-based small object detection methods can be
divided into two categories: local context modeling [16], [17]
and global context modeling [18]–[20].

Despite the advancements made by CNN-based detection
networks in improving the detection performance of small
objects, several limitations persist. These limitations include:

• In this study, real-time performance is crucial for detecting
ships in satellite images. To achieve this, the You Only
Look Once (YOLO) [21]–[24]networks are employed as a
one-stage algorithm, treating object detection as a regres-
sion problem. This approach significantly improves the
detection speed. However, a direct application of YOLOv5
to the task is not suitable due to the large number of small
ships present in satellite imagery. The limitation arises
from the fact that YOLOv5 underutilizes shallow features,
which are essential for detecting small objects. As the
deep feature maps are fused to the neck of YOLOv5,
excessive downsampling occurs, leading to the loss of
valuable information about small objects.

• The use of CNN-based models for small object detection
has been shown to be effective, but these models often
have a high number of parameters and are complex. For
example, the TPH-YOLOv5 detector [20] is well-known
for its proficiency in small object detection, but it requires
60 million parameters. This complexity can lead to time
delays when transmitting data from the platform to ground
stations for processing [25]. To address this, it is necessary
to migrate ship detection models from ground to space-
borne platforms. However, hardware resources on such
platforms are often limited, such as the NVIDIA Jetson
TX2 which only has 8 GB of memory [26]. This makes
it difficult to reduce model complexity while still main-
taining accuracy in ship detection. Therefore, finding an
optimal balance between model accuracy and complexity
is an ongoing research challenge.

• As the depth of the network layers increases, the high-level
features at the end of the backbone exhibit an abundance
of combinatorial information. While these higher-level
features carry richer semantic information, the location
information they convey is ambiguous. This ambiguity
can negatively impact the accuracy of small object detec-
tion, particularly for objects with insufficient pixels [27],
making it challenging to accurately localize and regress
small target ships. Additionally, the complexity of the
background texture and harsh environmental conditions
can weaken the ability of CNNs to extract features of
ships, making it difficult to distinguish small ships from
their background.

Given the limitations of existing methods in small ship
detection and the need to balance detection performance with
the limited storage space available on satellites, this paper
proposes a novel lightweight ship detection framework based

on high-order spatial interactions (HSI). The contributions of
this study can be summarized as follows:
• This study proposes an enhanced ship detection network,

HSI-ShipDetectionNet, which is designed to be more
lightweight and effective for ship detection in optical re-
mote sensing images. Furthermore, the proposed network
demonstrates improved accuracy in the localization and
identification of small ships.

• To make the detection model more accurate in detecting
tiny ships, we add a predictive branch of tiny ships
(Ptiny). To support this branch, we increase the number
of layers in the neck of the detection frame, making the
model more sensitive to tiny ships. Then, we design a
lightweight hybrid attention block (LHAB) to replace the
SE block in GhostNet, which is the backbone of the HSI-
ShipDetectionNet, reducing the number of parameters,
computations, and storage space required by the model.
Finally, A high-order spatial interactions (HSI-Former)
module is introduced at the tail of the backbone, extending
the interaction between spatial elements to any order
and strengthening the model’s ability to understand and
process advanced features in deep layers.

• We comprehensively evaluate the proposed ship detection
framework using optical satellite remote sensing images.
The performance of the proposed model is compared
with that of state-of-the-art small object detection models,
lightweight detection models, and ship detection models.
The experimental results indicate that the proposed HSI-
ShipDetectionNet demonstrates remarkable performance
in detecting small ships under diverse sea conditions.
Furthermore, the lightweight nature of the proposed model
makes it highly suitable for deployment on resource-
constrained satellite platforms.
The remainder of this article is organized as follows: Sec-

tion II reviews related work on this topic. Section III outlines
the framework of our discussed methodology. Section IV
describes the experimental results and analysis, and Section
V concludes the whole study.

II. RELATED WORK

A. Methods for Small Ship Detection

Accurate and dependable detection of small ships is cru-
cial for maritime surveillance systems. In recent years, there
have been numerous efforts to improve the performance of
small ship detection.

With the development of deep learning, the use of con-
volutional neural networks (CNNs) for ship detection has
become mainstream. For example, Wu et al. [28] proposed
a multi-scale detection strategy that uses a coarse-to-fine ship
detection network (CF-SDN) with a feature pyramid network
(FPN) to improve the resolution and semantic information of
shallow and deep feature maps, respectively. Xie et al. [29]
introduced an adaptive feature enhancement (AFE) module
into FPN to adaptively reinforce the locations of deep ship
features based on shallow features with rich spatial infor-
mation. Wang et al. [30] developed a ship detection model
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based on YOLOX that incorporates a multi-scale convolution
(MSC) for feature fusion and a feature transformer module
(FTM) for context modeling. Jin et al. [31] input patches
containing targets and surroundings into a CNN to improve
small ship detection results. Tian et al. [4] proposed an image
enhancement module base on generative adversarial network
(GAN), and introduced the receptive field expansion module
to improve the capability to extract features from target ships
of different sizes.

Despite the remarkable detection performance demon-
strated by existing ship detection models, these models are
often characterized by large and complex network architec-
tures, as evidenced by the substantial number of parameters
and computational demands. This presents a significant
challenge for resource-constrained applications, where the
available hardware resources are limited. To overcome this
limitation, we design a lightweight attention block and
construct a lightweight ship detection framework, which
reduces the number of parameters, computations, and storage
space required by the model.

B. Methods for Lightweight CNNs

Lightweight design of CNNs is crucial for deploying
models to resource-limited devices such as satellites, as it
helps to reduce the number of parameters and computational
requirements. A number of approaches have been proposed
in the literature to achieve this goal, including SqueezeNet
[32], which reduces the number of parameters by using 1×1
convolution kernels to decrease the size of the feature maps;
the MobileNet series [33]–[35], which uses depthwise sep-
arable convolution to factorize standard convolution into a
depthwise convolution and a pointwise convolution, reducing
the number of parameters and computational requirements;
ShuffleNet [36], [37], which replaces pointwise convolution
with pointwise group convolution and performs channel
shuffle to further reduce the number of parameters and ad-
dress the disadvantages of group convolution; and GhostNet
[38], which embraces abundant and redundant information
through cheap operations as a cost-efficient way to improve
network performance.

In the field of ship detection, it can be challenging to
balance the performance and computational complexity of
the model. To address this issue, Li et al. [39] optimized
the backbone of YOLOv3 using dense connections and
introduced spatial separation convolution to replace standard
convolution in FPN, resulting in a significant reduction
in parameters. Jiang et al. [40] developed YOLO-V4-light
by reducing the number of convolutional layers in CSP-
DarkNet53. Liu et al. [41] also improved upon YOLOv4
by substituting the original backbone with MobileNetv2,
significantly reducing the complexity of the ship detection
model. Zheng et al. [42] used BN scaling factor γ to
compress the YOLOv5 network, achieving higher detection
accuracy and shorter computational time compared to other
object detection models.

C. Methods for Attention Mechanism

Attention mechanisms have become a key concept in
the field of computer vision, with the ability to signifi-
cantly improve the performance of networks [43]. Channel
attention allows networks to model dependencies between
the channels of their convolutional features, such as in the
Squeeze-and-excitation (SE) network [44], which adaptively
recalibrates channel-wise features using global information
to selectively highlight important features. Wang et al. [45]
further developed this concept with the efficient channel
attention (ECA) module, which can be implemented using
1D convolution and has been shown to be more efficient
and effective. Spatial attention, on the other hand, focuses
on identifying specific positions in the image that should
be emphasized, such as in CCNet [46], which captures full-
image contextual information using criss-cross attention. The
Convolutional Block Attention Module (CBAM) [47] com-
bines channel and spatial attention, emphasizing important
features in both dimensions.

The Transformer model, proposed by Vaswani et al. [48],
has been a major milestone in the development of attention
mechanisms, and its application to the field of computer
vision is known as the Vision Transformer (ViT) [49].
The core idea of the Transformer is to use self-attention
to dynamically generate weights that establish long-range
dependencies. Self-attention achieves this through matrix
multiplication between queries, keys, and values, allowing
for the interaction of two spatial elements. However, it
has been noted that the Transformer architecture is lim-
ited in its capability to model higher-order spatial inter-
actions, which can potentially enhance the overall visual
modeling performance [50]. In this work, we propose a
novel lightweight ship detection framework for small ships
that includes the following elements: an extension of FPN
through the addition of a predictive branch for tiny ships, the
use of the lightweight hybrid attention block (LHAB), and
the introduction of the high-order spatial interactions (HSI-
Former) module, resulting in more accurate and reliable ship
detection in surveillance systems. Ablation and comparison
experiments will be conducted to demonstrate the superior
performance of our model.

III. METHODOLOGY

A. Overview

The proposed lightweight HSI-ShipDetectionNet for small
ship detection, as depicted in Fig. 1, consists of five com-
ponents: the Input, the Backbone, the HSI-Former module,
the Neck and the Output. The input optical remote sensing
images undergo processing in the backbone, which extracts
the detailed features of the ship. To address the challenge
of small ship detection, a predictive branch specifically
designed for tiny ships is added to the shallow layer of the
backbone, as discussed in detail in Section III-B. To further
reduce the complexity of the model, the Ghost bottleneck
in GhostNet has been improved with the implementation of
a new Lightweight Hybrid Attention Block (LHAB), which
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replaces the SE block [44]. This results in a LHAB-Gbneck
with a reduced number of parameters, computational effort,
and occupied storage space, as explained in Section III-C.
In addition, the HSI-Former module, which is designed to
reinforce contextual learning and modeling capability of
advanced features in deep layers, is introduced at the tail
of the backbone. The function and implementation of the
HSI-Former module are detailed in Section III-D. Finally,
the neck layer fuses the features, and four separate output
heads are employed to predict tiny, small, medium, and large
ship targets, respectively.

B. The Predictive Branch of Tiny Ships

The problem of low detection accuracy for small ships in
satellite imagery is a well-known issue. This is due to the
continuous down-sampling of features by the convolutional
layers in the backbone, which results in the loss of resolution
and information for small ships. To address this issue, we
propose adding a branch that predicts tiny ships in part 1
of the backbone, as shown in Fig. 1. This branch, named
Ptiny , is specifically designed to extract features before the
continuous downsampling process. Additionally, the number
of layers in the PANet in the neck of the detection frame
is increased to enhance the feature fusion effect for tiny
ships. This structure gradually fuses shallow features with
deep layers, ensuring that the feature maps of different sizes
contain both semantic information and feature information
of ships. This ultimately ensures the detection accuracy of
ships with different scales, particularly for tiny ships.

With the addition of the new branch Ptiny and the
increased number of layers in PANet, the resulting output is
augmented by an additional layer, bringing the total count of
outputs to four. Correspondingly, we also add an additional
set of anchors specifically tailored for tiny ships based on the
original three groups of anchors of YOLOv5, resulting in a
total of four groups of anchors. Instead of using the anchors
generated by COCO dataset as in the original YOLOv5, we
employ clustering to generate new anchors specifically for
ship sizes in our dataset. This makes the regression of the
anchors more accurate.

C. LHAB-GhostCNN

We select GhostNet as the backbone of our lightweight
ship detector and further simplified it. We name this archi-
tecture as LHAB-GhostCNN.

1) Ghost Module: The Ghost module is a crucial element
of the proposed LHAB-GhostCNN architecture for small
ship detection. Its purpose is to maintain the same number
of feature maps as a standard convolution while reducing the
number of parameters and computational effort. Specifically,
when the dimension of the input feature maps are C and
the dimension of the output feature maps after standard
convolution are D, the Ghost module can also produce
feature maps in D dimension while minimizing the number
of parameters and computations. The process can be defined
as follows.

For the input feature X ∈ RH×W×C , the m intrinsic
feature maps are first generated by a standard convolution,
represented by the set Y1:

Y1 = Conv (X) , Y1 ∈ RH′×W ′×m (1)

where m ≤ D. To obtain the desired D-dimensional feature
maps, each of the m intrinsic feature maps in Y1 undergoes
s cheap operations, implemented through depthwise convo-
lution (DW-Conv), resulting in m × s ghost feature maps
Y2:

Y2 = Φ(Y1) : yij = DW Convij (yi) ,

∀i = 1,· · · ,m, j = 1,· · · , s
(2)

where yi represents the i-th intrinsic feature map in Y1, and
the j-th feature map yij is generated by the j-th linear
operation DW − Convij . As a result, these m intrinsic
feature maps can eventually generate m × s feature maps,
that is, Y2 ∈ RH′×W ′×ms. The final output of the Ghost
module is the concatenation of Y1 and Y2:

Yout = Y1 ⊕ Y2 (3)

By employing the Ghost module, D-dimensional feature
maps can be obtained while maintaining the same number
of feature maps as a standard convolution. Consequently, the
output feature maps Yout have a dimension of m+ms = D.

Analysis of complexities. We define rF as the speed-
up ratio of FLOPs of the Ghost module to FLOPs of the
standard convolution:

rF =
k · k · C ·m ·H ′ ·W ′ + d · d ·m · s ·H ′ ·W ′

k · k · C ·D ·H ′ ·W ′

=
C ·m+m · s · 9
C ·m · (1 + s)

=
C + s · 9
C · (1 + s)

≈ 1

1 + s

(4)

where k = 1 is the standard convolution kernel size, while
d = 3 is the kernel size of each linear operation, and C ≫ s.
Similarly, the compression ratio rP of the parameters of the
Ghost module to the parameters of the standard convolution
is:

rP =
k · k · C ·m+ d · d ·m · s

k · k · C ·D
=
C ·m+m · s · 9
C ·m · (1 + s)

=
C + s · 9
C · (1 + s)

≈ 1

1 + s

(5)

In this paper, we set the value of s to 1. As a result, the Ghost
module can effectively reduce the number of parameters and
the computational effort of the network by half.

2) LHAB-Gbneck: Similar to the basic residual block in
ResNet [51], the Ghost bottleneck with LHAB (LHAB-
Gbneck) integrates two Ghost modules and a shortcut, as
shown in Fig. 2. The first Ghost module serves as an
expansion layer to increase the number of channels, while
the second Ghost module reduces the number of channels
to match the shortcut connection. The shortcut is connected
between the inputs and outputs of these two Ghost modules.
When Stride=2, a depthwise convolution (DW-Conv) is
added after the first Ghost module to reduce the size of
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Fig. 1. Overview of the proposed HSI-ShipDetectionNet for small ship detection in optical remote sensing images. In the Backbone, a predictive branch
is added to the shallow layer specifically for detecting tiny ships. The Lightweight Hybrid Attention Block (LHAB) in LHAB-Gbneck is designed,
resulting in a significant reduction in the number of parameters, computational effort, and storage space required by the network. The HSI-Former
module is added to the end of the Backbone to enhance the contextual learning and modeling of advanced features in the deep layers. The Neck layer
then performs feature fusion, and four output heads are used to predict tiny, small, medium, and large ships respectively.

the feature maps by half, at this time the shortcut path
goes through a downsampling layer to match the size of the
feature maps. If LHAB=1, the Lightweight Hybrid Attention
Block (LHAB) is selected. Compared with the SE attention
[44] used in the original Ghost bottleneck, LHAB can further
reduce the complexity of the network while enhancing the
response of key features.

Ghost 
Module

LHAB
Ghost 

Module

DW-Conv
Input Output

Stride=2

LHAB=0

Stride=1

Fig. 2. LHAB-Gbneck. Stride=1 and Stride=2 go through different
branches.

The SE block, a widely used channel attention mech-
anism, has limitations in ignoring spatial attention and
adding complexity to the model. To balance the trade-off
between model performance and complexity, we propose
the Lightweight Hybrid Attention Block (LHAB), which is
a lightweight and efficient attention block. LHAB consists
of a channel attention block and a spatial attention block,
enabling it to highlight significant information in both di-
mensions simultaneously.

Channel Attention Block. The Channel Attention Block
(CAB) is a key component of the LHAB, which aims to
capture interdependencies between channels. SENet [44]
employed global average pooling to aggregate channel-wise
statistics, but it overlooks the potential of max-pooling in
inferring fine channel attention, as pointed out by Woo et al.
[47]. Therefore, they proposed to use both average-pooling
and max-pooling operations in tandem and generated the
channel attention map using a shared network. In contrast,
we believe that max-pooled features and average-pooled fea-
tures each play distinct roles and therefore require dedicated
parameters to store unique feature information. Therefore,
we do not use shared parameters and instead employ two
different one-dimensional convolutions for the max-pooled
features and average-pooled features, respectively. This ap-
proach allows us to store different information and acquire
cross-channel interactions without reducing the channel di-
mensionality. Furthermore, since we use one-dimensional
convolution, the increase in the number of parameters is
negligible even if no parameters are shared. The specific
operation details are outlined below.

As shown in Fig. 3, we simultaneously apply max-pooling
and average-pooling operations to the input feature map
U ∈ RH×W×C, generating max-pooled features Umax

C and
average-pooled features Uavg

C , respectively. In contrast to
SE [44], which used fully connected layers to achieve cross-
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channel interactions, we use two different one-dimensional
convolutions (C1Dk) of size k for Umax

C and Uavg
C , respec-

tively, to avoid the negative effects of channel dimensionality
reduction and reduce model complexity. The kernel size k
is defined as the coverage of k neighbors to participate in
the interaction between channels, which is calculated using
the equation from ECA-Net [45]:

MaxPool

AvgPool

k1

H

W

C

U

H

W

C

U’

k2

Channel Attention Block

𝐔𝐂
𝐚𝐯𝐠

𝐔𝐂
𝐦𝐚𝐱 𝐂𝟏𝐃𝒌𝟏(𝐔𝐂

𝐦𝐚𝐱)

𝐂𝟏𝐃𝒌𝟐(𝐔𝐂
𝐚𝐯𝐠

)

Fig. 3. Diagram of Channel Attention Block (CAB) of LHAB. Due
to the max-pooling operations and average-pooling operations playing
different roles in aggregating spatial dimension information, we design an
adaptive channel attention block containing these two operations. The max-
pooled and average-pooled features are passed through two separate one-
dimensional convolutions, and then activated by the sigmoid function. The
resulting vectors are then multiplied by the input feature map for adaptive
feature refinement.

k = ψ (C) =

∣∣∣∣ log2 (C)γ
+
b

γ

∣∣∣∣
odd

(6)

where C is the number of channels and |t|odd represents
the nearest odd number of t. γ and b are set to 2 and 1
respectively in this paper. Through the mapping ψ, kernel
size k can be adaptively confirmed by the number of
channels C.

Then we merge these two feature vectors C1Dk1 (U
max
C )

and C1Dk2 (U
avg
C ) using element-wise summation and pass

the result through the sigmoid function. The final outcome
is obtained by multiplying the original feature map U with
the result of the sigmoid function to obtain U′ for adaptive
feature refinement. In a word, the CAB is summarized as:

U′ = σ (C1Dk1 (MP (U))⊕C1Dk2 (AP (U)))⊗U

= σ (C1Dk1 (U
max
C )⊕C1Dk2 (U

avg
C ))⊗U

(7)

Where σ refers to sigmoid function. MP and AP refer
to the max-pooling operation and average-pooling operation
respectively.

Spatial Attention Block. To strengthen the inter-spatial
relationship of features, we design a Spatial Attention Block
(SAB). Similar to channel attention block, we first apply
max-pooling and average-pooling operations along the chan-
nel axis to generate two 2D feature maps and then send them
to two different two-dimensional convolution layers, which
do not share parameters. We describe the detailed operation
below.

As shown in Fig. 4, for the intermediate feature map U′ ∈
RH×W×C from the channel attention block, we aggregate
channel information by max-pooling and average-pooling
operations to obtain two new maps: U′max

S ∈ RH×W×1and

MaxPool

AvgPool

Conv2d_1

H

W

C

U’

H

W

C

U’’

Conv2d_2

Spatial Attention Block

𝐔’𝐒
𝐦𝐚𝐱

𝐔’𝐒
𝐚𝐯𝐠

𝐂𝟐𝐃𝟕×𝟕(𝐔𝐒
‘𝐦𝐚𝐱)

𝐂𝟐𝐃𝟕×𝟕(𝐔𝐒
‘𝐚𝐯𝐠

)

Fig. 4. Diagram of Spatial Attention Block (SAB) of LHAB. Due to the
max-pooling operations and average-pooling operations playing different
roles in aggregating channel dimension information, we design an adaptive
spatial attention block containing these two operations. Then, the two 2D
maps are passed through two different two-dimensional convolutions and
further activated by the sigmoid function. Finally, the resulting vectors are
multiplied by the input feature map for adaptive feature refinement.

U′avg
S ∈ RH×W×1. Those are then convolved by two differ-

ent two-dimensional convolution layers (C2D7×7), respec-
tively. The kernel size of these two-dimensional convolutions
is 7 × 7, which helps to generate larger receptive fields.
Then, we merge these two feature maps C2D7×7

(
U′max

S

)
and C2D7×7

(
U′avg

S

)
using element-wise summation. The

result is activated by the sigmoid function and finally U′

multiply it to get the end map U′′. In a word, the SAB is
summarized as:

U′′ = σ (C2D7×7 (MP (U′))⊕C2D7×7 (AP (U′)))⊗U′

= σ
(
C2D7×7

(
U′max

S

)
⊕C2D7×7

(
U′avg

S

))
⊗U′

(8)

In conclusion, the LHAB module is composed of a CAB
and a SAB, arranged sequentially with the CAB being
in front of the SAB. The LHAB can make a significant
reduction in the number of parameters, the computational
effort, and the occupied storage space of the network, while
still effectively capturing important information from the
feature maps.

3) LHAB-GhostNet: The architecture of the proposed
LHAB-GhostNet, which serves as the backbone for the
HSI-ShipDetectionNet, is summarized in Table I. In this
table, the parameters Exp and Out indicate the number
of intermediate and output channels, respectively, and s
represents the stride. The architecture of LHAB-GhostNet
is based on GhostNet [38], with the G-bneck replaced by
LHAB-Gbneck. The first layer of LHAB-GhostNet is a
standard convolution operation, and the network is divided
into 5 parts based on the input feature map sizes. The stride
of the last LHAB-Gbneck in each part (except for part 5) is
set to 2. Furthermore, LHAB is integrated into some LHAB-
Gbnecks, as illustrated in Table I, to further simplify the
backbone.

D. High-Order Spatial Interaction Mechanism

In recent years, the Transformer has gained popularity
in vision applications and has challenged the dominance of
CNNs by achieving excellent results. Scholars have started
exploring the use of Transformer in the field of small object
detection, as seen in recent studies such as [20] and [52].
The success of Transformer in vision tasks can be attributed
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TABLE I
LHAB-GHOSTNET ARCHITECTURE.

Part Input size Operator Exp Out LHAB S

— 6402 × 3 Conv2d — 16 — 2

part 1
3202 × 16 LHAB-Gbneck 16 16 0 1

3202 × 16 LHAB-Gbneck 48 24 0 2

part 2
1602 × 24 LHAB-Gbneck 72 24 0 1

1602 × 24 LHAB-Gbneck 72 40 1 2

part 3
802 × 40 LHAB-Gbneck 120 40 1 1

802 × 40 LHAB-Gbneck 240 80 0 2

part 4

402 × 80 LHAB-Gbneck 184 80 0 1

402 × 80 LHAB-Gbneck 184 80 0 1

402 × 80 LHAB-Gbneck 184 80 0 1

402 × 80 LHAB-Gbneck 480 112 1 1

402 × 112 LHAB-Gbneck 672 112 1 1

402 × 112 LHAB-Gbneck 672 160 1 2

part 5

202 × 160 LHAB-Gbneck 960 160 0 1

202 × 160 LHAB-Gbneck 960 160 1 1

202 × 160 LHAB-Gbneck 960 160 0 1

202 × 160 LHAB-Gbneck 960 160 1 1

to self-attention. Self-attention’s ability to capture long-
range dependencies allows the model to learn contextual
information more effectively.

Despite its effectiveness, self-attention has some limita-
tions that need to be addressed. For instance, its spatial
interaction ability is limited to two orders by performing
matrix multiplication between queries, keys, and values,
while research by Rao et al. [50] has shown that higher-
order spatial interactions can improve visual models’ mod-
eling ability. Moreover, self-attention introduces a quadratic
complexity as it requires each token to attend to every
other token. Lastly, self-attention lacks some of the inductive
biases present in CNNs, which can make it difficult to gener-
alize well with limited data. To overcome these limitations,
we introduce the Iterative Gated Convolution (gnConv), a
convolution-based architecture that replaces self-attention in
our method. Specifically, we take g3Conv as an example to
illustrate its principle, as shown in Fig. 5.

g3Conv

𝑋:  𝐶

𝑎 :  𝐶 4

𝑏 :  𝐶

𝑏 :  𝐶 4

𝑏 :  𝐶 2

D
W

-C
onv

7×
7

𝑏’ :  𝐶 4

𝑏’ :  𝐶 2

𝑏’ :  𝐶

Mul Conv
(C, C) 

𝑎 :  𝐶

Split
Mul Conv

(C/2, C) 
𝑎 :  𝐶/2

Mul Conv
(C/4, C/2) 

𝑎 :  𝐶/4

Conv
(C, 2C) 

Fig. 5. g3Conv. We take g3Conv as an example to illustrate gnConv’s
principle. This module can extend the spatial interactions to three orders
so that the correlation between features is gradually enhanced through the
multiplication.

To process the input feature X ∈ RH×W×C , we first use
a linear projection layer implemented as a 1×1 convolution
operation to mix the channels. After this operation, the
number of channels is doubled to obtain the intermediate
feature X ′ ∈ RH×W×2C . The formula for this process can
be expressed as follows:

X ′ = Convin (X) (9)

Then, the feature map X ′ is split along the channel dimen-
sion, which is expressed as follows:

[a0, b0, b1, b2] = Split (X ′) (10)

where the number of channels for a0 is C
4 , and the number

of channels for b0, b1, and b2 is C
4 , C

2 , and C, respectively.
Then, the depthwise convolution (DW-Conv) is performed
on b0, b1, and b2, and the results are iteratively subjected
to gated convolution operations with a0, a1, and a2, respec-
tively by:

a1 = h0 (a0)⊗DW Conv0 (b0)

a2 = h1 (a1)⊗DW Conv1 (b1)

a3 = h2 (a2)⊗DW Conv2 (b2)

(11)

where ⊗ is the multiplication of the elements in the matrix
at the corresponding positions. The role of {hi} is to change
the number of channels of ai to match the number of
channels of bi. When i = 0, h0 is an identity mapping;
when i is 1 or 2, hi doubles the channels of ai. Finally, the
a3 received from the above steps is continued into a linear
projection implemented as a 1× 1 convolution operation to
obtain the final result of g3Conv:

y = Convout (a3) (12)

Based on the above analysis, g3Conv can be generalized
to the n-order spatial interaction, i.e. gnConv. For the input
feature map X ∈ RH×W×C , the process is similar to
g3Conv, as follows:

X ′ = Convin (X) ∈ RH×W×2C (13)

[aH×W×C0
0 , bH×W×C0

0 ,· · · , bH×W×Cn−1

n−1 ] = Split (X ′)
(14)

Where,
C0 +

∑
0≤i≤n−1

Ci = 2C (15)

Ci =
C

2n−i−1
, 0 ≤ i ≤ n− 1 (16)

Equation (16) specifies how the channel dimensions are
allocated in each order of the gnConv operation. This
allocation is designed to reduce the number of channels used
to compute lower orders, thereby avoiding a large computa-
tional overhead. After splitting the intermediate feature map
X ′, the gated convolution continues iteratively:

ai+1 = hi (ai)⊗DW Convi (bi) , i = 0, 1,· · · , n−1 (17)

where,
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hi (X) =

{
X, i = 0
Conv (Ci−1, Ci) , 1 ≤ i ≤ n− 1

(18)

The final result for gnConv is acquired by equation (19), as
follows:

y = Convout (an) (19)

The proposed HSI-ShipDetectionNet model uses gnConv
to replace the self-attention mechanism in the Transformer
encoder to create the High-Order Spatial Interaction (HSI-
Former) module. Traditionally, in vision tasks, the Trans-
former encoder is utilized independently without involving
the decoder, so the HSI-Former proposed in this paper can
be seen as a visual encoder. This is illustrated in Figure 1.
The gnConv offers several advantages over self-attention,
including its ability to extend spatial interactions to higher
orders, resulting in improved feature correlation. Moreover,
using a convolution-based architecture avoids the quadratic
complexity of self-attention, while channel division reduces
computational cost. In addition, convolutional operations
introduce inductive biases that are helpful for ship detection
tasks, such as translation equivariance and locality [49]. In
the gnConv, the depthwise convolution utilizes large 7 × 7
convolution kernels to increase the receptive field. This
improves context modeling and enhances the understanding
of advanced semantics.

Analysis of complexities. We will calculate the FLOPs
for gnConv in three parts: linear projection layers, DW-Conv
operation and iterative gated convolutions.

• Linear projection layers: The FLOPs of two linear pro-
jection layers, Convin, and Convout, can be calculated as
follows:

FLOPs(Convin) = 2HWC2

FLOPs(Convout) = HWC2
(20)

• DW-Conv operation: We denote the kernel size of the DW-
Conv as K. The DW-Conv is performed for all {bi}n−1

i=0 ,
where bi ∈ RH×W×Ci and Ci =

C
2n−i−1 . The FLOPs of

DW-Conv operation can be calculated as follows:

FLOPs(DW Conv) = HWK2
n−1∑
i=0

C

2n−i−1

= 2HWCK2(1− 1

2n
)

(21)

• Iterative gated convolutions (IGC): The FLOPs of iterative
gated convolutions can be divided into two components:
linear projections {hi} and element-wise multiplication.

FLOPs(IGC) = HWC0 +

n−1∑
i=1

(HWCi−1Ci +HWCi)

= HWC[2− 1

2n−1
+

2

3
C(1− 1

4n−1
)]

(22)

The total FLOPs are the sum of these three parts:

FLOPs(gnConv) =HWC[2K2(1− 1

2n
) + 2− 1

2n−1
+

(
11

3
− 2

3× 4n−1
)C]

(23)

IV. EXPERIMENTS

A. Experimental Setup

1) Parameter Settings: All experiments in this paper are
conducted on a server equipped with NVIDIA Titan V100
GPUs, and the deep learning algorithms are implemented
using PyTorch v1.9.0 and Python v3.8.0. During the training
process, we set the batch size to 4 and use the SGD optimizer
with momentum and weight decay of 0.937 and 5e-4,
respectively, and an initial learning rate of 0.01. We stop
training after 500 epochs. The other parameters are default
values, empirically adopted as done in the original YOLOv5.
For all baselines in this paper, rather than searching for the
best hyperparameters in the hyperparameter space, we use
the same training parameters as those in the corresponding
models.

A summary of the settings of the main modules proposed
in this paper is shown in Table II. Before being input into
the network, the images are cropped to a size of 640 x 640.
In the backbone, LHAB modules are applied on layers 5, 6,
11, 12, 13, 15, and 17, respectively, as explained in Section
III-C. In the LHAB module, two parameters, γ and b, are
set to specific values. γ is set to 2, while b is set to 1. These
values are used in the ECA equation. For HSI-Former, the
order of the gnConv operation is set to 3. Additionally, the
DW-Conv operation is performed using kernels with a size
of 7.

TABLE II
PARAMETER SETTINGS

Setting description setting or value
Input size 640

Layers using LHAB in the backbone 5, 6, 11, 12, 13, 15, 17
γ in the ECA equation 2
b in the ECA equation 1

Number of the HSI-Former layer 1
The order n in gnConv 3

The kernel size of the DW-Conv in gnConv 7

2) Dataset: The dataset used in our experiments is
sourced from the Kaggle competition for marine ship detec-
tion1. The dataset comprises 29GB of high-resolution optical
remote sensing images, consisting of a total of 192,556
images in the training set and 15,606 images in the test
set. Each image has a resolution of 768 × 768 pixels. To
evaluate the effectiveness of our model in detecting small
ships, we randomly select 1000 images from the dataset that
contain small target ships and divide them into three subsets:

1https://www.kaggle.com/c/airbus-ship-detection
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a training set, a validation set, and a test set, with a ratio of
7:2:1.

3) Evaluation Metrics: In order to provide a compre-
hensive evaluation of our proposed method, we consider
not only the standard metrics of Precision, Recall, and
the mean Average Precision (mAP), but also the model
size, the number of parameters, the calculated amount and
time. These metrics are commonly used in the field of
object detection and can provide a clear understanding of
the performance of our model in comparison to other state-
of-the-art methods.

These metrics are defined as follows:

Recall=
TP

TP + FN
(24)

Precision=
TP

TP + FP
(25)

mAP=

∫ 1

0

Precision (Recall) d(Recall) (26)

where TP, FP, and FN represent true positive, false positive,
and false negative, respectively, and Precision (Recall) refers
to the Precision-Recall curve.

B. Comparison with State-of-the-art Methods
To evaluate the performance of our proposed method, we

compare it with a total of three types of models: small object
detection models, lightweight detection models, and ship
detection models.

1) Comparison with Small Object Detection Models: To
verify the superior performance of our proposed approach on
small object detection, we compare HSI-ShipDetectionNet
with two state-of-the-art small object detection models, as
described below.
• TPH-YOLOv5 [20]: This is a YOLOv5-based detector

aimed at densely packed small objects. It incorporates
advanced techniques such as Transformer blocks, CBAM,
and other experienced tricks to improve performance.

• SPH-YOLOv5 [52]: The original prediction heads of
this detector are replaced with Swin Transformer Predic-
tion Heads (SPHs), which can reduce the computational
complexity considerably. In addition, Normalization-based
Attention Modules (NAMs) are introduced to improve
network detection performance.

TABLE III
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT SMALL

OBJECT DETECTION MODELS

Models Para GFLOPs R(%) mAP(%) Size(MB) T(ms)

TPH-YOLOv5 60.35M 145.3 76.85 74.84 116.8 22.91

SPH-YOLOv5 27.81M 272.4 76.30 74.53 54.6 15.73

Ours 4.15M 10.0 76.85 74.35 9.2 14.33

As can be seen in Table III, which displays the number
of parameters (Para) and recall (R), our proposed HSI-
ShipDetectionNet has the smallest number of parameters and

computational complexity, requiring only 9.2 MB of storage
space. Additionally, the average inference time for each
image in the proposed model is reported as 14.33ms. This
indicates that the model can perform real-time detection,
as it only takes approximately 1.4 seconds to complete the
detection of 100 images from the testing set. Although TPH-
YOLOv5 achieves a higher mAP value than ours by 0.49,
it has 14.5 times more parameters and GFLOPs than our
model. Similarly, the detection accuracy of SPH-YOLOv5
is comparable to that of HSI-ShipDetectionNet, but our
model requires 85.1% fewer parameters and 96.3% less
computational effort. While these two small object detectors
have superior detection performance, they are built on deep
and dense convolutional layers. In contrast, our proposed
model is much lighter and achieves comparable detection
accuracy and faster detection speed. Therefore, our method
is better suited for real-time tasks and scenarios with limited
resources.

2) Comparison with Lightweight Detection Models: To
evaluate the performance of our model, we also compare
HSI-ShipDetectionNet with the following eight lightweight
detection models, described as follows.
• MobileNetV3-Small [35]: Based on MobileNetV2, Mo-

bileNetV3 added the SE block and improved the activation
function using h-swish. The small version is targeted
at low-resource use cases and therefore contains fewer
bottleneck blocks.

• PP-LCNet [53]: This is a lightweight CPU network that
utilizes the MKLDNN acceleration strategy. While the
techniques used in the network are not novel and have
been introduced in previous works, this model achieves
a better balance between accuracy and speed through
extensive experimentation.

• ShuffleNetV2 [37]: Four policies were presented by the
authors to reduce memory access costs (MAC), avoid net-
work fragmentation, and reduce element-wise operations.

• MobileNetV3-Large [35]: Unlike MobileNetV3-Small,
the large version is targeted at resource-intensive use cases
and therefore contains more bottleneck blocks.

• GhostNet [38]: It has developed the Ghost module, which
tends to accept abundant and redundant information in
the feature maps through a cheap operation instead of
discarding it.

• Efficient-Lite0 [54]: The Efficient-Lite series is the on-
device version of EfficientNet and consists of five ver-
sions, of which Efficient-Lite0 is the smallest.

• YOLOv5s: YOLOv5s is the smallest network in the
YOLOv5 series in terms of depth and width.

• YOLOv3-tiny [23]: Compared to YOLOv3, YOLOv3-
tiny has fewer feature layers and only two prediction
branches, making it more suitable for high-speed detection
tasks.
In order to ensure consistency in experimental conditions,

we incorporated the aforementioned lightweight models (ex-
cluding YOLOv5s and YOLOv3-tiny) into the framework
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TABLE IV
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT

LIGHTWEIGHT DETECTION MODELS

Models Para GFLOPs R(%) mAP(%) Size(MB) T(ms)

MobileNetV3-S 3.54M 6.3 71.30 68.61 7.2 9.99

PP-LCNet 3.74M 8.1 72.59 70.87 7.4 8.93

ShuffleNetV2 3.78M 7.7 71.30 68.86 7.5 11.66

MobileNetV3-L 5.20M 10.3 72.59 70.52 10.2 12.33

GhostNet 5.20M 8.4 73.89 71.94 10.4 11.73

Efficient-Lite0 5.71M 11.5 71.85 70.08 11.2 10.18

YOLOv5s 7.05M 16.3 75.92 74.25 13.7 8.81

YOLOv3-tiny 8.67M 12.9 75.19 73.28 16.6 3.18

ours 4.15M 10.0 76.85 74.35 9.2 14.33

of YOLOv5 for the purpose of conducting target detection
tasks.

As shown in Table IV, our proposed HSI-
ShipDetectionNet achieves the highest recall and mAP.
Compared to the second-best performing model, YOLOv5s,
our model not only outperforms in terms of mAP but
also has a significantly lower number of parameters,
GFLOPs, and model size, at 41.1%, 38.7%, and 32.8% less
respectively. Similarly, Our model outperforms YOLOv3-
tiny with 2.2% higher recall and 1.5% higher mAP, despite
having half the parameters and a simpler network structure.
This is attributed to the fact that YOLOv3’s two prediction
branches result in fewer bounding boxes, thus weakening its
detection performance. GhostNet and MobileNet-Large have
a parameter count 1.05M higher than ours; however, their
mAP are lower than ours by 2.41 and 3.83, respectively. On
the other hand, ShuffleNetV2, PP-LCNet and MobileNetV3-
Small are indeed lighter than our model, but their detection
accuracy (mAP) is around 4 to 6 percentage points lower
than that of HSI-SmallShipDetectionNet. These models
prioritize lower model complexity over detection accuracy,
whereas our HSI-ShipDetectionNet effectively balances
both. Overall, HSI-ShipDetectionNet is more sensitive to
the detection of small ships while maintaining a suitable
level of model complexity.

In terms of inference time, our proposed model may not
be as dominant compared to other lightweight models. It is
worth noting that even though our model has a lower number
of parameters and requires less computation than YOLOv5,
the inference time of YOLOv5 is still lower. This observation
can be attributed to the fact that our model utilizes a large
number of depthwise convolutions (DW-Conv). Although
DW-Conv has fewer parameters and GFLOPs compared
to standard convolutions, they require more intermediate
variables to be stored during the computation process. As a
result, an amount of time is spent on reading and writing
data, leading to slower inference time. Addressing this
limitation is an area that can be explored in future work.

3) Comparison with Ship Detection Models: To fur-
ther evaluate the performance of the proposed HSI-
ShipDetectionNet in the field of ship detection, we compare
it with two state-of-the-art ship detection models. These
models are described as follows:
• ShipDetectionNet [2]: This is a lightweight ship detection

network that utilizes an improved convolution unit to
replace the standard convolution, resulting in a significant
reduction in the number of parameters in the network.

• Literature [55]: This network proposes a new loss func-
tion, IEIOU LOSS, and introduces the coordinate atten-
tion (CA) mechanism to achieve robust detection results
for docked and dense ship targets.

TABLE V
COMPARISON OF DETECTION PERFORMANCE OF DIFFERENT SHIP

DETECTION MODELS

Models Para GFLOPs R(%) mAP(%) Size(MB) T(ms)

Literature [55] 7.13M 16.4 73.89 71.79 14.0 14.39

ShipDetectionNet 6.05M 15.7 76.11 74.26 12.0 15.32

ours 4.15M 10.0 76.85 74.35 9.2 14.33

In the experiments illustrated in Table V, it can be seen
that our proposed model outperforms all the other models
in terms of all the evaluation metrics. HSI-ShipDetectionNet
has almost 3.6% higher mAP than the network proposed
in the literature [55]. Moreover, the number of parameters
and GFLOPs of our model is 41.8% and 39.0% lower
than that of the network in [55], respectively, indicating
that our model consumes less storage space. Compared
with ShipDetectionNet, our model has a reduction of 31.4%
and 36.3% regarding parameters and GFLOPs, respectively,
while achieving comparable detection accuracy. This is due
to the new Lightweight Hybrid Attention Block (LHAB)
proposed in our model, which replaces the SE attention
mechanism used in ShipDetectionNet. In summary, HSI-
ShipDetectionNet is more lightweight while having better
detection accuracy and faster detection speed.

4) The Result Analysis and Visual Comparisons of Dif-
ferent Methods: We compare our model’s detection per-
formance to that of several models of similar complexity
and magnitude. The resulting P-R curves are depicted in
Figure 6. Notably, the red curve corresponds to our model
and is situated prominently toward the upper-right corner of
the plot. This result demonstrates the superior performance
achieved by our model compared with other models of
similar size.

To demonstrate the superior performance of our proposed
method for detecting small targets, we present some infer-
ence results on the test set in Figure 7. It is evident from the
results that HSI-ShipDetectionNet successfully locates and
recognizes all small target ships that are missed by GhostNet
and YOLOv5s. Although ShipDetectionNet also detects all
small ships successfully, the confidence of its prediction box
is not as high as that of HSI-ShipDetectionNet. In particular,
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Fig. 6. Performance comparison on the testing set in terms of the P-R
curves.

for some images where it is challenging to distinguish
the ship from the background, as shown in row (a), HSI-
ShipDetectionNet more accurately wraps the target ships.
This is due to the fact that HSI-Former can better understand
and model advanced features in deep layers, which improves
the accuracy of location and regression for prediction boxes.
Furthermore, our proposed model can detect small target
ships at the edge of the images with relatively high confi-
dence, as shown in rows (c) and (d). Additionally, our model
exhibits excellent detection performance in the presence of
bad weather conditions, such as cloud barriers shown in row
(e).

To summarize, our proposed HSI-ShipDetectionNet
demonstrates competency in detecting small ships in chal-
lenging sea conditions. This results in more precise and de-
pendable prediction boxes on optical remote sensing images.

C. Ablation Experiments and Sensitivity Analysis

We evaluate the effectiveness of the proposed several
modules by ablation analysis and sensitivity analysis.

1) Choosing GhostNet as Our Baseline: To substantiate
the superiority of GhostNet over other networks of compa-
rable scale in the context of this study, the weights passing
through GhostNet and MobileNetV3-Large are visualized
as heat maps using the Grad-CAM [56]. Figure 8 in the
paper illustrates these attention maps, providing insights
into the model’s focal points. MobileNetV3-Large tends to
excessively emphasize background information, leading to a
detrimental impact on detection performance. In contrast,
GhostNet exhibits a more pronounced concentration on
small ship targets while mitigating the undue emphasis on
background elements. As a result, GhostNet has a higher
mAP value, as shown in Table VI. We speculate the possible
reasons for this as follows:

The authors of GhostNet found that some of the feature
maps generated by the first residual group in ResNet-50
were very similar, indicating that there was abundant and
redundant information in the feature maps. Rather than
discarding these redundant feature maps, they chose to
accept them in a cost-efficient way, which is the ”cheap

GhostNet HSI-ShipDetectionNet

(a)

(b)

(c)

(d)

(e)

ShipDetectionNetYOLOv5sGround Truth

Fig. 7. To visualize the inference results from different detection methods
on the test set, we display the outputs of the best-performing model
for each method. The methods we comparing are GhostNet, YOLOv5s,
ShipDetectionNet, and HSI-ShipDetectionNet.

TABLE VI
COMPARISON OF DETECTION PERFORMANCE BETWEEN

MOBILENETV3-LARGE AND GHOSTNET

mAP Parameters

MobileNetV3-Large 70.52 5.20M

GhostNet 71.94 5.20M

operation”. Small ships occupy fewer pixel units, making the
information about them extremely valuable. Removing re-
dundant information to reduce the complexity of the network
is not a good approach for small ship detection. However,
GhostNet’s approach of embracing redundant information in
a cost-effective way is beneficial for small target detection.
Therefore, we have selected GhostNet as the backbone of
our lightweight ship detector and further simplified it.

2) Ablation of the Predictive Branch of Tiny Ships:
To study the influence of the predictive branch of tiny
ships (Ptiny) on detection performance, we first conduct
experiments on the detection framework with GhostNet as
the backbone. We obtain results for GhostNet on the original
detection framework (with only three predictive branches),
and then add Ptiny on top of it. The results in Table VII
show that the introduction of Ptiny significantly improves
mAP by 1.07. This indicates that adding the Ptiny branch
can improve the network’s detection accuracy.

Moreover, to demonstrate the effectiveness of Ptiny in
HSI-ShipDetectionNet, we conduct experiments by remov-
ing it, and the corresponding results are presented in Ta-
ble VIII. Notably, the introduction of Ptiny leads to a
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MobileNetV3-Large GhostNetImages

Fig. 8. Visualization of heat maps for MobileNetV3-Large and GhostNet.

TABLE VII
ADDING THE PREDICTIVE BRANCH OF TINY SHIPS TO THE BASELINE

MODEL GHOSTNET

mAP Parameters

GhostNet 71.94 5.20M

GhostNet w/ Ptiny 73.01 5.34M

significant increase of 1.06 in the model’s detection accu-
racy (mAP), while requiring only a minimal increase of
0.14M parameters. This demonstrates the impact of Ptiny

on enhancing the model’s performance without substantially
increasing its complexity.

TABLE VIII
ABLATION OF THE PREDICTIVE BRANCH OF TINY SHIPS

mAP Parameters

w/o Ptiny 73.29 4.01M

ours 74.35 4.15M

3) Ablation and Sensitivity Analysis of the High-Order
Spatial Interaction Mechanism: Expanding on the detection
framework described in the previous part, which already
includes the Ptiny branch, we now examine the effects of

integrating the High-Order Spatial Interaction (HSI-Former)
module on detection performance. Table IX presents the
results of this analysis, where L denotes the number of HSI-
Former layers and n refers to the order of gnConv.

To investigate the impact of the order on model perfor-
mance, we conduct experiments with varying n from 1 to 4,
where the number of HSI-Former layers is fixed at 1. Our
findings indicate that the model performs best when the order
is 3, with the mAP value 1.66 higher than that without the
HSI-Former module. Conversely, the worst performance is
observed when the order is 1, as 1-order spatial interactions
are equivalent to plain convolution [50], thus contributing
little to model performance. Furthermore, 2-order spatial
interactions show a slight improvement in the modeling
ability by 0.26, while 4-order spatial interactions yield an
improvement of only 0.37 compared to the model without
the HSI-Former module. This result suggests that it is not
that the higher the order of spatial interaction is, the greater
the positive impact on the network will be. Further, we also
try the effect of 3-order when the HSI-Former layers are 2. It
is interesting to see that in the case where layers are 2 when
the order of spatial interaction is 3, the model performance
is slightly lower than when the HSI-Former layer is 1. This
indicates that too many HSI-Former modules may burden
the network.

On the other hand, as the HSI-Former is specifically
designed based on the analysis of the Transformer encoder,
we conduct a test to evaluate the impact of the Transformer
block on the overall network performance. As shown in
Table IX, we observe that the size of the model with the
Transformer module is comparable to that of the model with
HSI-Former(L=1, n=3). However, the mAP value decreases
by 1.04, indicating that 3-order spatial interactions have
more potential for learning and modeling context when com-
pared to 2-order spatial interactions. This finding strongly
suggests that the HSI-Former architecture with higher order
spatial interactions has superior performance in capturing
and modeling context for the given task.

TABLE IX
ABLATION AND SENSITIVITY ANALYSIS OF THE HIGH-ORDER SPATIAL

INTERACTION MECHANISM

mAP Parameters

GhostNet w/ Ptiny 73.01 5.339M

w/ HSI-Former(L=1, n=1) 72.70 5.631M

w/ HSI-Former(L=1, n=2) 73.27 5.647M

w/ HSI-Former(L=1, n=3) 74.67 5.653M

w/ HSI-Former(L=1, n=4) 73.38 5.655M

w/ HSI-Former(L=2, n=3) 73.92 5.967M

w/ Transformer(L=1) 73.63 5.493M

In addition, we conduct experiments to determine the
most appropriate size of the convolution kernel in depthwise
convolution (DW-Conv) within gnConv. We test kernel sizes
of 3, 5, 7, and 9, measuring the corresponding mAP values,
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as presented in Figure 9. The results indicate that our model
achieves the highest mAP value of 74.35 when using 7× 7
convolutional kernels. This suggests that larger 7×7 kernels
applied to the deep layers of the network are more effec-
tive in understanding advanced features. One of our initial
hypotheses is that a larger kernel would improve context
modeling and, consequently, detection accuracy. However,
the experimental results show that 9 × 9 kernels do not
lead to the desired effect. This implies that although large
kernels can facilitate context modeling, there seems to be
an upper limit based on the specific task. Theoretically, a
smaller kernel corresponds to a smaller receptive field and
is more suitable for detecting small targets. However, using
3×3 kernels in DW-Conv does not yield the desired results.
We attribute this to the fact that the gnConv module, located
at the back of the backbone network, is primarily responsible
for understanding high-level features. As we have already
extracted feature information of the small targets in advance
by increasing Ptiny in the shallow layers of the backbone,
the size of the convolution kernel in the DW-Conv might not
correlate well with small targets. This analysis also suggests
that smaller kernels are not as effective as larger ones in
understanding deeper features.
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Fig. 9. The effect of convolution kernel size in DW-Conv within gnConv
on mean Average Precision (mAP) values.

4) Ablation of the Lightweight Hybrid Attention Block:
To simplify the network further, we design the Lightweight
Hybrid Attention Block (LHAB). Our design thinking for the
Channel Attention Block (CAB) in LHAB is demonstrated
through ablation experiments, and the results are presented
in Table X. Here, ECA denotes the original ECA mod-
ule, where only an average-pooling operation is employed.
ECAupdate1 implies that both the max-pooling operation and
average-pooling operation are utilized in the ECA module,
and the parameters of both operations are shared. Referring
to Table X, the inclusion of both operations in a network en-
hances the mAP compared to the average-pooling operation
alone. And then, ECAupdate2 indicates that the parameters of
these two operations are not shared, which is our proposed
CAB. Since max-pooled and average-pooled features have
distinct convolutions, the mAP value is increased by another
0.51 and the optimal results are achieved for both Precision
and Recall values. Although this increases the network’s

parameter count, the use of one-dimensional convolutions
for feature extraction means that only 31 (4149741-4149711
= 31) parameters are added, which is insignificant.

Building upon CAB, we introduce an independent Spatial
Attention Block (SAB), which does not share parameters, to
create LHAB. In Table XI, compared with no LHAB, the
LHAB enhances the mAP by 1.59, but does not introduce a
huge number of parameters. The LHAB and CBAM share
certain similarities as they both incorporate channel attention
and spatial attention mechanisms. However, LHAB stands
out as a more lightweight option compared to CBAM,
resulting in a reduction of 0.37 (4.52 - 4.15 = 0.37) million
parameters. This reduction is primarily achieved through the
utilization of one-dimensional convolution in LHAB. Ad-
ditionally, the performance evaluation indicates that LHAB
outperforms CBAM with a 0.68 higher mAP value. On the
other hand, compared with SE attention, LHAB reduces the
parameter count by 1.50 (5.65-4.15 = 1.50) million presented
in Table IX. These experimental results demonstrate the
superiority of the proposed LHAB.

TABLE X
ABLATION OF THE CHANNEL ATTENTION BLOCK (CAB)

mAP Precision(%) Recall(%) Parameters

w/ ECA 73.55 79.47 75.93 4149711

w/ ECAupdate1 73.68 78.84 76.48 4149711

w/ ECAupdate2

(CAB) 74.19 79.99 76.85 4149742

TABLE XI
ABLATION OF THE LIGHTWEIGHT HYBRID ATTENTION BLOCK (LHAB)

mAP Precision(%) Recall(%) Parameters

w/o LHAB 72.76 79.34 75.37 4149680

w/ CBAM 73.67 78.53 76.48 4524718

w/ CAB+SAB

(LHAB) 74.35 80.43 76.85 4150428

In addition, our analysis extends to the examination of the
kernel size in LHAB and its impact on network performance,
particularly concerning the fifth part of the backbone, where
the feature map is set at 20× 20. As depicted in Figure 10,
the evaluation of various kernel sizes applied to part 5 reveals
that the 7 × 7 kernel not only attains the highest mAP
but also facilitates the swiftest convergence of the model,
which reaches the optimal detection accuracy after only
412 epoches. These findings affirm the superiority of the
7× 7 kernel. Even when applied to smaller feature maps, it
consistently maintains excellent performance. Our analysis
suggests the following reasons for its superiority:

With the emergence of Vision Transformers (ViTs), CNNs
face challenges in various visual tasks. The efficacy of
ViTs is attributed to their multi-head self-attention (MHSA)
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mechanism, enabling the modeling of long-range dependen-
cies and facilitating information gathering from expansive
regions. This prompts the question of whether employing
large kernels in traditional CNNs could foster more diverse
interactions between spatial locations, akin to the capabilities
of ViTs. Indeed, several studies have extensively explored
the use of large kernels. For instance, literature [57] has
extended kernel sizes to 31×31, demonstrating that employ-
ing a few large kernels, as opposed to numerous small ones,
can enhance the effectiveness of CNNs, particularly in down-
stream tasks. Additionally, literature [58] introduced sparsity
to further expand kernel sizes beyond 51×51, resulting in
improved performance. Consequently, the incorporation of
large-size kernels plays a pivotal role in global modeling.
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Fig. 10. The impact of varying convolutional kernel sizes on the network’s
performance within the part 5 of the backbone.

D. Tests on the FAIR1M Dataset

To evaluate the performance of our proposed model, we
conduct a comparative study using four models of the same
size level on a new dataset called FAIR1M [59]. By conduct-
ing experiments on the FAIR1M dataset of ship-containing
images, we aim to assess how well our proposed model
performs, particularly on dense ships in remote sensing
images. The images in FAIR1M vary in size, ranging from
1000×1000 to 10000×10000 pixels. The dataset comprises
5 categories and 37 subcategories. For our specific task,
we focus on the category of ships and select 1000 ship-
containing images to create our dataset. We randomly divide
this dataset into training, validation, and test sets in a ratio
of 7:2:1. During the training process, each network has a
batch size of 4, and we train them for 500 epochs while
keeping the default values of the hyperparameters of the
original network.

The experimental results are illustrated in Figure 11. It is
evident that the presence of a significant number of small and
dense ships in the FAIR1M dataset poses challenges, leading
to a decrease in overall detection accuracy compared to the
Kaggle dataset, regardless of the model used. However, our
proposed model stands out significantly, achieving the high-
est detection accuracy while requiring the lowest number
of parameters. Its mean Average Precision (mAP) value is
even on par with YOLOv5, which has the highest number
of parameters among the compared models. This outcome

highlights the remarkable trade-off achieved by our model
between accuracy and complexity.
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Fig. 11. The detection results on the FAIR1M dataset of ship-containing
images. Our proposed model achieves the highest detection accuracy while
requiring the lowest number of parameters.

Figure 12 visualizes the detection results of HSI-
ShipDetectionNet on dense ships using the FAIR1M dataset.
The red box represents the ground truth, while the lower
image shows the prediction box generated by our model,
indicated in yellow. The results demonstrate that our model
successfully localizes most of the ships, even those of
smaller sizes, as exemplified by the two smaller ships at
the bottom in Figure 12 (b). However, we acknowledge
that there is still room for improvement in our network. In
particular, for cases where two ships are situated side by side,
as shown in Figure 12 (a), our network encounters a missed
detection. In Figure 12 (b), there are also misdetections, such
as identifying the upper-right dock as a ship. We attribute
this situation to the scarcity of dense dataset instances,
making it challenging for the model to fit these occurrences
during training.

Figure 13 portrays the divergent focus of attention be-
tween our model and the baseline, GhostNet, through heat
maps. In line (a), GhostNet’s undue emphasis on the incon-
sequential background is conspicuous. Contrastingly, in line
(b), our model astutely attends to the small ships at the lower
part, exhibiting a perceptible advantage. Likewise, in line (c),
it can be observed that our model focuses more adequately
on the smaller ships. It can be seen that in more complex
scenarios, our model demonstrates a stronger ability to focus
on small targets than the baseline GhostNet.

In summary, our model excels in achieving the highest
detection accuracy while maintaining a more lightweight
architecture compared to models of the same size. With
further study to address the challenges presented by dense
objects, we believe our model has the potential to further
enhance its performance and robustness in remote sensing
target detection applications.

V. CONCLUSION

In this paper, we present a novel ship detection framework
called HSI-ShipDetectionNet, which aims to address the
challenges of accurate and efficient detection of small ships
on resource-limited platforms. To make full use of the
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(a)

(b)

Fig. 12. Visualisation of the detection of the dense ships. The red box
represents the ground truth, while the lower image shows the prediction
box generated by our model, indicated in yellow.

GhostNetImages Ours

(a)

(b)

(c)

Fig. 13. Visualization of heat maps for our model and the baseline,
GhostNet.

shallow features of the network, we introduce a predic-
tive branch specifically designed for tiny ships. To reduce
the network’s complexity without compromising detection
performance, we propose a Lightweight Hybrid Attention
Block (LHAB). To further enhance the network’s ability
to capture advanced features in deep layers, we introduce
the high-order spatial interaction (HSI-Former) module. We
conduct comprehensive evaluations of the proposed model,
including comparison experiments and ablation studies. The
results demonstrate the superiority and effectiveness of our
proposed model.
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