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Abstract—Point cloud registration is a fundamental technique
in 3D computer vision with applications in graphics, autonomous
driving, and robotics. However, registration tasks under challeng-
ing conditions, under which noise or perturbations are prevalent,
can be difficult. We propose a robust point cloud registration
approach that leverages graph neural Partial Differential Equa-
tions (PDEs) and heat kernel signatures. Our method first uses
graph neural PDE modules to extract high-dimensional features
from point clouds by aggregating information from the 3D point
neighborhood, thereby enhancing the robustness of the feature
representations. Then, we incorporate heat kernel signatures
into an attention mechanism to efficiently obtain corresponding
keypoints. Finally, a Singular Value Decomposition module with
learnable weights is used to predict the transformation between
two point clouds. Empirical experiments on a 3D point cloud
dataset demonstrate that our approach not only does achieve
state-of-the-art performance for point cloud registration but
also exhibits better robustness to additive noise or 3D shape
perturbations.

Index Terms—Point cloud registration, neural diffusion, graph
neural network, heat kernel signature.

I. INTRODUCTION

IN the era of intelligent and smart perception, 3D computer
vision techniques are increasingly being used in various

fields, such as autonomous driving, robotics, and scene mod-
eling [1]–[3]. Point cloud registration is a crucial task in 3D
computer vision and has become an important tool in many
applications, including object detection, odometry estimation,
and SLAM [4]–[8], owing to its robustness against seasonal
changes and illumination variations. Point cloud registration
aims to estimate the transformation or relative pose between
two given 3D point cloud frames [9].

Iterative algorithms are widely used for point cloud registra-
tion [10]–[12]. The Iterative Closest Point (ICP) algorithm is
a well-known iterative method for point cloud registration that
matches the closest points between two point clouds, iteratively
updating the transformation matrix until convergence [10]. ICP
has been successfully used in numerous fields, including robotic
perception and autonomous driving.

Despite their usefulness, iterative algorithms face challenges
that limit their effectiveness in certain scenarios. The non-
convexity of the optimization problem presents a significant
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challenge, making it difficult to obtain the global optimum
[9]. As a result, iterative algorithms may converge to sub-
optimal solutions, especially in complex and non-rigid scenes.
Additionally, the performance of iterative algorithms heavily
relies on the initialization of the algorithm, which can be
time-consuming and computationally expensive. Sparse and
non-uniform point clouds present another significant challenge
for iterative algorithms in finding corresponding point pairs
between two point clouds. Traditional approaches, such as
nearest-neighbor search, may fail to find matching pairs in
such cases, leading to errors in the registration result [9], [13].

To address these challenges, deep learning-based methods [9],
[13]–[15] have been developed for predicting transformation
matrices or relative poses. These methods are designed for
various scenarios, including indoor and outdoor environments
[16]–[20]. However, robust point cloud registration remains
a challenging problem due to factors such as LiDAR scan
distortion, dynamic objects, and environmental noise [21]–[25].
Efficiently estimating the transformation under scenarios with
additive noise and perturbations remains an open problem.

In this paper, we propose a model for point cloud registra-
tion that utilizes a robust feature descriptor based on graph
neural diffusion. We also present an end-to-end transformation
estimation method by introducing the heat kernel signature into
the attention module, without any prior prediction information.
Our approach attempts to address the challenges faced by
iterative algorithms, leading to robust and efficient point
cloud registration. Our proposed approach is motivated by
the following:

• Graph neural PDE learning has demonstrated robustness
for representing graph-structured data, as highlighted in
[26]. Our aim is to leverage this module for effective
point cloud representation by constructing a neighborhood
graph in the feature space.

• We believe that the shape isometry-invariance of the heat
kernel signature, as described in [27], makes it beneficial
to incorporate into attention mechanisms for improved
robustness from a shape-preserving perspective.

Our main contributions are as follows:

• We design a 3D point cloud representation module based
on graph neural PDE learning.

• We propose a robust 3D point cloud registration method
using the graph neural diffusion modules and the attention
mechanism with a heat kernel signature.

• We empirically demonstrate that our point cloud registra-
tion method outperforms other baselines not only under
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normal scenarios but also when noise and perturbations
are present.

The rest of this paper is organized as follows. In Section II,
we discuss the related works. In Section III, we describe
our proposed model in detail. In Section IV, we present the
experimental results to evaluate our model and compare it with
several baselines. Finally, we conclude the paper in Section V.

II. RELATED WORK

In this section, we summarize relevant literature in the areas
of point cloud registration, point cloud feature representation,
and neural diffusion, including works utilizing the heat kernel
signature in point cloud feature descriptors.

A. Point Cloud Registration Methods

Iteration-based Methods. Iteration-based methods, such
as the Iterative Closest Point (ICP) [10] and the RANdom
SAmple Consensus (RANSAC) [28], are classical approaches
commonly used for point cloud registration. However, due to
its slow convergence rate, RANSAC requires high computing
resources and has a high running time complexity. The
performance of ICP heavily relies on the accuracy of the initial
value estimation, making it prone to suboptimal solutions. To
address these challenges, several refinement methods for ICP
have been proposed, such as the Branch-and-Bound (BnB)
method [11], convex relaxation improvement [29], and mixed-
integer programming [30]. However, these methods may be
computationally expensive and do not ensure global optimality.
Alternatively, updated ICP methods such as Voxelized ICP [12]
and Generalized-ICP [31] have been developed to improve both
acceleration and accuracy.

Correspondence-based estimators. Correspondence-based
estimators are commonly used for point cloud registration,
which involves estimating the transformation between two
frames [17], [32]–[34]. This approach obtains correspondences
between two point clouds and then uses pose estimators such
as RANSAC [18], [28], [35], Singular Value Decomposition
(SVD) [9], [10], [13], [36] and Maximal Cliques (MAC) [37]
to predict the transformation. There are generally two types
of correspondence-based estimators. One involves repeatable
keypoint detection [18], [35], [38], [39], followed by using
learned or handcrafted keypoint descriptors for correspondence
acquisition [17], [19], [40] or similarity measures to obtain
the correspondences [2], [36]. For example, DeepVCP [39]
uses PointNet++ [41] to extract features for the point clouds
and learns keypoint correspondences based on matching
probabilities among candidates. D3Feat [18] employs 3D
fully convolutional networks to output detection scores and
descriptive features for 3D points. PREDATOR [35] uses an
overlap-attention block for cross-information between two point
clouds and makes good use of their overlap region to achieve
registration. The other [9], [20] involves correspondence
retrieval for all possible matching point pairs without keypoint
detection. For instance, Deep Closest Point (DCP) [9] aligns
features based on the interaction of the point clouds. CoFiNet
[20] achieves hierarchical correspondences with coarse and
finer scales, without keypoint detection. In both types of

estimators, point cloud descriptors play significant roles, mainly
contributing to the robustness and accuracy of the entire
pipeline.

Learning-based estimators. In order to achieve more
robust non-handcrafted estimators, learning-based methods
are introduced into the transformation prediction [42]. Since
conventional estimators like RANSAC have drawbacks in
terms of convergence speed and are unstable in the presence
of numerous outliers, learning-based estimators [16], [43]–
[49], such as StickyPillars [50], PointDSC [51], EDFNet
[52], GeoTransformer [42], Lepard [53], RoITr [54], BUFFER
[55] and RoReg [56], have attracted much interest. Moreover,
auxiliary modules or prior information can be incorporated
into learning-based estimators, such as Prior-embedded Explicit
Attention Learning (PEAL) [57] and VBReg [58]. Some of
these classification neural networks can filter out extreme
outliers and some estimation neural networks are designed to
output the transformation. From the perspective of accuracy and
running efficiency, they perform better than those conventional
robust estimators. While, they need extra neural network
training, which holds more time and space complexity. In
contrast, our model achieves robust and accurate registration
without the need for training the estimation networks to
compute the final transformation in the output.

B. Point Cloud Feature Representation

To extract more efficient features for point clouds, methods
using different neural networks are studied. In general, we can
classify point cloud feature representation methods into three
categories as follows.

The first category performs voxel alignment on the points
and then obtains the corresponding features based on a 3D
Convolutional Neural Network (CNN) [59]–[62]. In this regard,
the full information in the point cloud is used to learn the
representation. However, it takes more computational resources
to deal with a sparse and irregular point cloud when using
closely spaced 3D voxels for more precise quantization.

The second category reduces a 3D point cloud to a 2D map
and then exploits the classical 2D CNN to extract features [63].
The commonly used 2D maps are the bird’s-eye view map,
cylindrical map, spherical map, and camera-plane map, for
which computational cost is incurred during the preprocessing
stage. Due to quantization errors, this approach can also
introduce unexpected noise.

The third category is to extract features from the raw point
clouds directly using specific neural networks. PointNet [64]
and PointNet++ [41] extract local point features independently
and obtain global features through max-pooling. To incorporate
local neighborhood information, Dynamic Graph Convolutional
Neural Networks (DGCNN) [65] uses a dynamic graph network,
and LPDNet [66] jointly exploits the geometry space and
feature space. KPConv [67] uses kernel points to achieve more
flexible convolutions compared with fixed grid convolutions.
PointGLR [68] considers not only local features but also global
patterns in point clouds. DIP [69] and GeDi [46] extract
local point cloud patches based on rotation-invariant compact
descriptors, which can be used in different data domains. Point
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Cloud Transformer (PCT) [70] utilizes the Transformer to
generate permutation-invariant descriptors for point clouds.
Moreover, there are also other learning-based point cloud
representation methods, such as PointMLP [71], and PointNeXt
[72].

C. Neural Diffusion
Neural diffusion methods [73], [74] combine neural networks

with ordinary and partial differential equations. For a neural
Ordinary Differential Equation (ODE) layer [73] with input
Z(0) and output Z(T ), the relationship between Z(0) and Z(T )
is given by

dZ(t)

dt
= fODE(Z(t), t), (1)

where fODE : Rn × [0, T ) → Rn is a learnable layer and
Z : [0, T ) → Rn denotes the state of the neural ODE. At the
terminal time T ∈ [0,∞), the output Z(T ) is given by

Z(T ) = Z(0) +

∫ T

0

fODE(Z(t), t)dt. (2)

In this paper, we consider only the time-invariant (autonomous)
case, i.e., fODE(Z(t), t) = fODE(Z(t)).

For graph-structured data, graph neural PDEs are designed
based on continuous flows, which represent the graph features
more concisely and stably [26], [74]–[80]. Neural ODEs/PDEs
are more robust in defending perturbations and even attacks,
compared with other deep neural networks without neural diffu-
sion (cf. [26], [81]). Compared with conventional graph neural
networks (GNNs), including the Graph ATtention network
(GAT) or the Graph Convolutional Network (GCN), graph
neural PDEs have superior performance in some applications
such as the node classification for graph-structured data. To
approximately solve the graph neural PDEs [74], the neural
ODE solvers proposed in [73] can be exploited.

D. Heat Kernel Signature
Based on the heat diffusion process, the heat kernel signature

[27] is presented as an intrinsic feature and is given by

h(x, t) =

∞∑
i=0

exp (−λit)ϕ
2
i (x), (3)

where x is a 3D point in a point cloud, λis denote eigenvalues
and ϕis are the corresponding eigenfunctions of the Laplace-
Beltrami operator. The feature h(x, t) is a robust local geo-
metric descriptor containing large-scale information [82], [83].
From the physics perspective, this feature descriptor represents
the temperature evolution of a point at which a heat source
is placed and removed immediately. The heat diffuses to the
neighborhood of the point [27], [84]. This evolution is based
on the temperature diffusion speed, which essentially depends
on the geometry of the objects projected by the point clouds.

From a geometric perspective, the heat kernel signature is
isometry-invariant, meaning that two isometric shapes have
equivalent heat kernel signatures. If the heat kernel signatures
of two shapes are equal, the corresponding shapes or parts of
the shapes are similar under isometric transformations [27].
Therefore, this feature is somewhat robust, making it a desirable
method for point description.

III. POINT CLOUD REGISTRATION METHOD BASED ON
GRAPH NEURAL PDE

In this section, we present our registration model that aims
to predict the transformation between two 3D point clouds.
However, point clouds may contain noise or perturbations that
can compromise the robustness of the transformation prediction.
Therefore, our goal is to develop a more robust method for
the registration task.

Our model is called the Point Cloud Diffusion Transformer
(PointDifformer). First, we provide an overview of the PointD-
ifformer framework, which is illustrated in Fig. 1. Then, we
present the details of the modules and the loss function used
in PointDifformer.

A. Overview of PointDifformer

Before introducing in detail the modules of PointDifformer,
we provide an overview of its pipeline as follows.

1) Within a 3D point cloud frame, the neighborhood graph
of each point consisting of its K nearest neighbors is
constructed. Points are regarded as the vertices in the
graph. The L2 distance between point features is used for
neighbor acquisition. The initial features of the points are
taken to be their 3D coordinates. The neighborhood graph
for each point is an undirected complete graph. Then,
graph neural PDE layers are applied to the neighborhood
graph of each point to obtain a robust representation of
the point.

2) Based on the robust feature representations, a self-cross
attention module is applied to obtain an embedding
containing point-level information interaction within a
point cloud frame and between two point cloud frames.
The heat kernel signature, as a robust feature descriptor
for point clouds, is introduced into the attention module
as the weights.

3) Using the above embeddings, an attention module is
established to learn weights for points from different
frames that indicate their correspondences.

4) Through the correspondence among points in the two
point-cloud frames, the optimal transformation (including
the translation and the rotation) can be estimated using
optimization solution methods like the weighted SVD.

B. Model Details

1) Point Cloud Representation with Neural Diffusion: To
represent point cloud features efficiently and robustly, we design
a neural diffusion network for point cloud representation, called
Point-Diffusion Net. This module consists of GNN modules
and graph neural PDE modules with different rewiring and is
shown in Fig. 2. Its details are described as follows.

3D Points Refinement. To pre-process the point cloud,
which has potential outliers, we first use a graph neural PDE
module as a learning-based filter. Consider a point cloud
denoted by X ∈ RN×3. The 3-dimensional coordinates of
each point are regarded as its feature map and N is the number
of points in the point cloud. We construct the neighborhood
graphs for the points by means of the K-Nearest Neighbors
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Fig. 1. PointDifformer for point cloud registration. The details of the modules are provided in Section III-B.

GNN

Graph Neural PDE
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GNN
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GNN
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FGNN_F

Concatenate
Features

Rewiring for GNN Rewiring for GNN

Fig. 2. The Point-Diffusion Net based on the graph neural PDEs for the point
cloud representation. The details are provided in Section III-B1.

(K-NN) method using the Euclidean distance. Furthermore,
we exploit a graph neural PDE module for feature updating,
given by

dZp(t)

dt
= fGNN_P(Zp(t)), (4)

where fGNN_P(·) denotes a graph learning module and Zp(t) is
the state at time t. The initial state is given by Zp(0) = X. By
integrating fGNN_P(·) from t = 0 to t = Tp (using differential
equation solvers [85]), we obtain the solution of (4) at time
Tp, given by

Zp(Tp) = FGNN_P(Zp(0)) = FGNN_P(X) ∈ RN×3, (5)

where FGNN_P(·) can be regarded as the embedding function
for the input Zp(0). In addition, the output of this graph neural
module also includes 3-dimensional features, which can also
be viewed as “generated” points.

High Dimensional Feature Extraction with Graph Neural
PDE. We extract high dimensional features for the preprocessed
3D points through a GNN module, e.g., DGCNN [65]. In this
regard, 3-dimensional coordinates of points are extended into
d-dimensional features. We construct a neighborhood graph
for each point using the K-NN method. The output from the
GNN module is denoted by

FG(X) = FGNN_G ◦ FGNN_P(X)

= FGNN_G(Zp(Tp)) ∈ RN×d, (6)

where ◦ denotes function composition and FGNN_G(·) denotes
the mapping of the GNN module. Then, we apply another
graph neural PDE module to update the feature FG(X), which
is described as

dZf (t)

dt
= fGNN_F(Zf (t)), (7)

where fGNN_F(·) is also a graph learning module that deals
with the neighborhood graph of input features. The initial state
is given by Zf (0) = FG(X). The equation (7) is solved in the
same way as that for (4). The output at time Tf is given by

Zf (Tf ) = FGNN_F(Zf (0)) = FGNN_F ◦ FG(X), (8)

where Zf (Tf ) ∈ RN×d, FGNN_F(·) can be regarded as the
embedding function for the input Zf (0).

Finally, we concatenate the output from the GNN module
and the graph neural diffusion module as the eventual output
for the point cloud representation module, which is denoted by

FX = FG(X)∥FGNN_F ◦ FG(X), (9)
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where FX ∈ RN×2d and ∥ denotes the concatenation op-
eration. Here, we follow the same approach as [13], [65]
in concatenating the feature Zf (Tf ) = FGNN_F ◦ FG(X)
with its corresponding hidden feature FG(X) to retain more
information. Our numerical experiments indicate that this is a
better approach than using only Zf (Tf ).

2) Self-Cross Attention Embedding Based on Heat Kernel
Signature: Based on the previous high-dimensional feature,
a self-cross attention mechanism is introduced to reinforce
the static structure information in each point cloud and the
interactive corresponding information between a pair of point
clouds, respectively. To improve the robustness of the feature
extraction, we also introduce the heat kernel signature [27]
into the attention mechanism as additive weights.

For a pair of point clouds (X,Y), the corresponding input
feature pair for the self-cross attention module is represented
as (FX, FY) using the embedding from (9). The embedding
from the self-cross attention module with respect to (w.r.t.) X
is given by

FX
sc_att(F

X, FY) = Fs_att(F
X) + FX

c_att(F
X, FY), (10)

where Fs_att(F
X) and FX

c_att(F
X, FY) are the features based

on the self-attention and the cross-attention, respectively. The
details of the features Fs_att(F

X) and FX
c_att(F

X, FY) are
described as follows.

Self-attention Feature. To improve the robustness, the heat
kernel signature is introduced into the self-attention module.
For a point cloud pair (X,Y), the corresponding heat kernel
signature pair is denoted by (HX, HY). Using the normalized
FX and HX as the inputs for the self-attention module, we
have

Fs_att(F
X)

= WS
Shead

∥
i=1

{
Fsoftmax

( (WSQ
i FX)(WSK

i FX)⊺√
dS
i

+
(WHQ

i HX)(WHK
i HX)⊺√

dH
i

)
(WSV

i FX)
}
+ FX, (11)

where (·)⊺ denotes the transpose operation, Shead is the number
of multi-heads for the attention, WSQ

i , WSK
i , WSV

i , WHQ
i ,

WHK
i , and WS are learnable layers, and dS

i and dH
i are

the dimensions for the point cloud features and heat kernel
signatures in i-th attention head, respectively. The function
Fsoftmax(·) denotes row-wise softmax.

The heat kernel signature is implemented as follows.
• Heat kernel signature acquisition. We compute this feature

based on the point cloud using the formula (3). Since
the function h(x, t) in (3) is a robust local geometric
descriptor containing large-scale information [82], we use
it to robustly describe the repeatable features for point
clouds.

• Embedding. We process the heat kernel signatures using
the graph neural PDE module and the Fully Connected
(FC) layer to obtain the embedding. Similar to (4), the
graph neural PDE is used as a filter for the heat kernel
signatures. The graph construction in the graph neural
PDE is based on the K-NN for the heat kernel signatures.

• Self-attention weights. After embedding the heat kernel
signatures, they are input into the self-attention module
as the additive weights. By introducing extra information
from the heat kernel signature, the robustness of the
point cloud representation is enhanced in the self-attention
module.

Cross-attention Feature. Based on the self-attention feature
Fs_att(F

Y) for the point cloud Y, we acquire the cross-
attention features for FX. Fs_att(F

Y) is input into a Feed
Forward Network (FFN) [86] to obtain the feature

Fs_att_n(F
Y) = FFNN(Fs_att(F

Y)) + Fs_att(F
Y), (12)

where FFNN denotes the FFN consisting of two linear layers
with normalization operation and the Rectified linear activation
function (ReLU). Inputting normalized Fs_att_n(F

Y) and
Fs_att(F

x) into the cross-attention module, we have

FX
c_att(F

X, FY) = WC×
Chead

∥
i=1

{
Fsoftmax

( (WCQ
i Fs_att(F

X))(WCK
i Fs_att_n(F

Y))⊺√
dC
i

)
× (WCV

i Fs_att_n(F
Y))
}
, (13)

where WCQ
i , WCK

i , WCV
i , and WC are learnable layers, dC

i is
the feature dimension for the i-th attention head. The remaining
notations are similar to those in (11).

The joint feature FX
sc_att(F

X, FY) based on the self-cross
attention module is obtained as mentioned in (10). Inputting
FX
sc_att(F

X, FY) into the FNN, we have the embedding from
the self-cross attention module as

FX
sc_XY = FFNN(F

X
sc_att(F

X, FY)) + FX
sc_att(F

X, FY),
(14)

whose normalization is regarded as the final output of this
module.

Similarly, the above self-cross attention module is also
available for the point cloud Y to obtain its output FY

sc_YX.
The architectures of the self-attention and the cross-attention
are shown in Fig. 3.

3) Attention-Based Keypoint Correspondence: Using the
attention mechanism, the information of point cloud X can
be involved in the embedding for the point cloud Y. By
resorting to the self-cross attention embeddings, we can obtain
the weighted Y denoted by YX which is regarded as the
transformed point cloud corresponding to the X. The details
are given as follows.

i) We compute the attention weight matrix

Watt = Fsoftmax

(
(FX + FX

sc_XY)(FY + FY
sc_YX)⊺

√
datt

)
,

(15)

where the feature dimension datt = 2d and Fsoftmax denotes
the row-wise softmax function.

ii) For each point xi in the point cloud X, we select its
corresponding point yj∗i

in the point cloud Y, which has the
highest similarity with the xi. Furthermore, based on the Top-
K ′ similarity scores, we select the corresponding point pairs
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Fig. 3. The modules of the self-attention with heat kernel signature and the cross-attention.

{
(xi,yj∗i

) : i = 1, 2, ...,K ′}. Specifically, for the i-th row of
Watt, we have

j∗i = max
j

watt
i,j , (16)

where watt
i,j (i, j ∈ {1, 2, ..., N}) denotes the element in the

i-th row and j-th column among the Watt. Then, based on
the watt

i,j∗i
(i ∈ {1, 2, ..., N}), we select the Top-K ′ point pairs{

(xi,yj∗i
) : i = 1, 2, ...,K ′} to obtain the updated point cloud

pairs (X,Y), where abusing notations X and Y are used.
iii) Based on the updated point clouds X and Y consisting

of the Top-K ′ points, we have the corresponding updated
attention weight matrix similar to (15), which is denoted by
an abusing notation Watt. Then, we have the weighted Y as

YX = WattY, (17)

whose the point number is also K ′ the same as that in the X.
In general, the points xi and yx

i (i = 1, 2, ...,K ′) from the
point clouds X and YX are treated as the correspondence
points.

4) Transformation Prediction: By resorting to the correspon-
dence of points, we can predict the transformation or relative
pose between two point clouds. Consider the Mean Squared
Error (MSE) given by

ℓMSE(R̂, t̂) =
1

K ′

K′∑
i=1

∥R̂xi + t̂− yx
i ∥2, (18)

in which ∥·∥2 denotes the L2 norm, xi = [x
(1)
i , x

(2)
i , x

(3)
i ]⊺ and

yx
i = [yxi

(1), yxi
(2), yxi

(3)]⊺ where x
(l)
i and yxi

(l) (l ∈ {1, 2, 3})
are elements from xi and yx

i , respectively. The R̂ ∈ R3×3

and t̂ ∈ R3×1 are the predicted results w.r.t. the ground-truth
rotation R ∈ R3×3 and translation t ∈ R3×1. The optimal
results of R̂ and t̂ are given by

R̂∗, t̂∗ = argmin
R̂,t̂

ℓMSE(R̂, t̂). (19)

Then, we use the weighted SVD [10], [42] to solve the
optimization problem in (19). Specifically, the weighted mean

of the {xi : i = 1, 2, ...,K ′} and the {yx
i : i = 1, 2, ...,K ′} are

first computed as

xw =
1

K ′

K′∑
i=1

wx
i xi, (20)

yx
w =

1

K ′

K′∑
i=1

wy
i y

x
i, (21)

where wx
i ∈ R3×1 and wy

i ∈ R3×1 are trainable weights.
Furthermore, the weighted cross-covariance matrix M is

given by

M =

K′∑
i=1

(xi − xw)(wM
i (yx

i − yx
w))

⊺
, (22)

where (·)⊺ denotes the transpose operation, wM
i ∈ R3×1 is a

trainable weight.
Similar to the procedure of SVD mentioned in [9], [13], the

matrix M can be decomposed as

M = UΛV
⊺
, (23)

where U and V are unitary matrices and Λ is a rectangular
diagonal matrix with non-negative real diagonal elements.
Furthermore, the transformation prediction (including the
predicted rotation R̂∗ and the translation t̂∗) can be obtained
as

R̂∗ = VU
⊺
, (24)

t̂∗ = −R̂∗xw + yx
w. (25)

5) Loss function: As the point yx
i corresponds to the point

xi, we use the corresponding point loss given by

Lpoint =
1

K ′

K′∑
i=1

∥R̂∗xi + t̂∗ − yx
i ∥2. (26)

To quantify the deviation between the ground truth and the
predicted results w.r.t. rotation and translation, we use the loss
given by

Lrt = exp (−γt)∥t̂∗ − t∥2 + γt

+ exp (−γr)∥R⊺
R̂∗ − I∥2 + γr, (27)
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where I denotes the identity matrix, and γt and γr are learnable
parameters. The learnable weights based on γt and γr are
inpsired by the loss in [77], [87]. The total loss combining
Lpoint and Lrt is given by

Ltotal = exp (−ηp)Lpoint + ηp + exp (−ηrt)Lrt + ηrt, (28)

where ηp and ηrt are learnable parameters.

IV. EXPERIMENTS

A. Dataset preparation

vReLoc Dataset. The vReLoc Dataset is a publicly available
indoor dataset,1 containing LiDAR point clouds and camera
images. In this paper, we randomly generate a transformation
matrix for each point cloud to obtain a pair of point cloud
frames. The transformation matrix is based on translation
along the x, y, and z axes, as well as rotation along the roll,
pitch, and yaw axes. The generated transformation matrix is
regarded as the ground truth. The generated translation values
are uniformly sampled from the intervals [−1, 1], [−2, 2], and
[−0.5, 0.5] along the x-, y-, and z-axes, respectively. The
generated rotation values are uniformly sampled from the
intervals [0◦, 5◦], [0◦, 5◦], and [0◦, 30◦] around the roll, pitch,
and yaw axes, respectively.

Boreas Dataset. The Boreas dataset is a publicly available
outdoor dataset2 that comprises multi-sensor data, including
LiDAR and camera data. It presents various environmental
scenarios, such as sunny, night, and rainy conditions, as it was
collected over the course of one year by repeatedly driving a
specific route. Furthermore, the dataset provides post-processed
ground-truth poses with centimeter-level accuracy, which offers
the transformation matrix required for two consecutive LiDAR
point clouds. The Boreas datasets undergo preprocessing
involving distortion correction of LiDAR point clouds, as
detailed in [88]. However, these preprocessing techniques do
not completely eliminate all distortions in LiDAR point clouds,
such as the tailing phenomenon [89]. Additionally, noise can
still be present in environments with adverse weather conditions,
dynamic objects or vehicles, and pedestrians, which can affect
the accuracy of the LiDAR measurements.

KITTI Dataset. The KITTI dataset is a publicly available
outdoor dataset3 that provides multi-sensor data for autonomous
driving. It includes LiDAR point clouds of street scenes cap-
tured using the Velodyne Laserscanner in Karlsruhe, Germany,
with tens of thousands of LiDAR points in each frame. The
dataset consists of 11 sequences (from sequence “0” to “10”)
depicting different street scenes, and global ground-truth poses
are available for each sequence. Similar to the Boreas Dataset,
we can use the ground-truth poses to obtain the transformation
matrix between each pair of adjacent LiDAR point clouds
in the KITTI dataset. While the KITTI dataset incorporates
preprocessing for point cloud calibration [90] through auxiliary
sensors, such as Global Positioning System (GPS) and Inertial
Measurement Unit (IMU), perturbations similar to those in the
Boreas datasets persist.

1https://github.com/loveoxford/vReLoc
2https://www.boreas.utias.utoronto.ca/
3http://www.cvlibs.net/datasets/kitti/

B. Experimental Details

Model Setting. We set d = 256 in (4). To deal with the
neighborhood graph of the K nearest neighbors (K = 20), we
set the GNN layer fGNN_P in the graph neural PDE (4) to be
the union EdgeConv layers [65] which is also regarded as a
kind of DGCNN. There are 5 EdgeConv layers used in the
DGCNN block, whose hidden input and output dimensions
are given by [6, 16], [16, 16], [16, 32], [32, 64] and [128, 3],
respectively. We set the graph learning module for the FGNN_G
to another DGCNN, in which 5 EdgeConv layers are used
with the hidden input and output dimensions [6, 64], [64, 64],
[64, 128], [128, 256] and [512, 256], respectively. When using
the DGCNN-based graph neural PDE for FGNN_F, there are 2
EdgeConv layers used in the DGCNN block with the hidden
input and output dimensions [256, 256] and [768, 256]. As for
the self-cross attention module, there are 4 attention heads with
128 hidden features for each attention head, which implies 512
hidden features in total. We adopt the Adam optimizer [91] in
the training, where the learning rate is set as 0.0001. We set
the number of training epochs as 50.

Baseline Methods. To demonstrate the superior performance
of PointDifformer, we compared it against several baseline
methods, including ICP [31], DCP [9], HGNN [92], VCR-
Net [13], PCT [70], and GeoTransformer [42]. ICP is an
iterative optimization method that does not require neural
networks for feature learning, meaning that it does not need a
training process. On the other hand, the other methods utilize
learned point cloud features to determine point correspondence
such as DCP, VCR-Net and GeoTransformere. We further
enhanced HGNN and PCT with attention modules for point
correspondence registration, which we refer to as HGNN++
and PCT++, respectively.

C. Point Cloud Registration Performance

1) Evaluation on Indoor vReLoc Dataset: To compare our
method with other baselines, we evaluate them on their ability to
predict transformations between two nearby point cloud frames
from the vReLoc dataset. For training, we use sequences “3”,
“6”, and “9”, while for testing, we use sequences “14” and
“16”. We evaluate the performance of these methods using
statistics such as Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) for the predicted relative translation and
rotation results. We also utilize Registration Recall (RR) as
a metric, which is defined in [37], [42], [54]. RR measures
the percentage of point cloud frames that achieve a certain
threshold of registration accuracy. In our evaluation, we use a
fine-tuned threshold for performance comparison.

From Table I, we observe that PointDifformer outperforms
the other baselines without neural diffusions in terms of relative
translation and rotation prediction. This suggests that the
graph neural PDE modules play a positive role in point cloud
registration. Further analysis of PointDifformer in Fig. 5 shows
that the translation and rotation errors lie in a small region
close to zero. In Fig. 5, the empirical probability or the relative
frequency of an error value, is the ratio of the number of errors
within a small bin around the error value to the total number of
trials. The relative translation error and rotation error in Fig. 5
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KITTI

Ground Truth ICP VCR-Net GeoTransformer  PointDifformer

vReLoc

Boreas

Fig. 4. Examples of point cloud frame pairs transformed using different prediction methods to align the second frame with the coordinate system of the first
frame.

are calculated as the absolute values of the difference between
the corresponding predictions and the ground truth. Using the
predicted transformation between two point cloud frames, we
can transform the second frame into the coordinate system of
the first frame to achieve alignment of the point clouds. We
show several examples of point cloud alignment based on the
predicted transformation in Fig. 4, where the degree of overlap
between the two frames increases with the accuracy of the
predicted transformation.

TABLE I
PERFORMANCE OF POINT CLOUD REGISTRATION PREDICTION ON THE

VRELOC DATASET. THE BEST AND SECOND-BEST RESULTS UNDER
DIFFERENT METRICS ARE HIGHLIGHTED IN BOLD AND UNDERLINED,

RESPECTIVELY.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
ICP 2.20 12.69 0.20 1.35 96.2
DCP 1.35 3.26 0.45 1.31 85.4

HGNN++ 3.33 11.29 0.36 1.57 83.5
VCR-Net 0.25 0.45 0.04 0.11 99.9
PCT++ 0.25 0.44 0.05 0.12 99.9

GeoTransformer 0.66 1.10 0.07 0.16 99.9
PointDifformer 0.14 0.40 0.03 0.10 99.9

2) Evaluation on Outdoor Boreas Dataset: We compare
PointDifformer with other baselines on the outdoor Boreas
dataset, where the training dataset is collected under sunny
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Fig. 5. The empirical probability of relative translation (centimeter [cm]) and
rotation (degree [◦]) errors on the vReLoc dataset.

weather, and the test dataset is collected under night weather.
As shown in Table II, PointDifformer outperforms the other
baselines under all criteria, except for the relative translation
MAE, for which GeoTransformer is slightly better. However,
Fig. 6 shows that GeoTransformer has longer probability tails
in the translation and rotation errors than PointDifformer,
indicating that our method is more robust. We also present
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several examples of point cloud alignment using the predicted
transformations in Fig. 4.
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Fig. 6. The empirical probability of relative translation (centimeter [cm]) and
rotation (degree [◦]) errors on the Boreas dataset.

TABLE II
POINT CLOUD REGISTRATION PERFORMANCE ON THE BOREAS DATASET.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
ICP 10.83 18.28 0.11 0.21 75.4
DCP 11.63 17.36 0.12 0.21 70.5

HGNN++ 14.41 23.16 0.14 0.25 56.1
VCR-Net 8.71 13.56 0.10 0.17 84.7
PCT++ 9.81 15.77 0.10 0.19 79.6

GeoTransformer 4.58 15.78 0.08 0.22 94.9
PointDifformer 6.12 8.84 0.07 0.12 96.1

3) Evaluation on Outdoor KITTI Dataset: We conduct point
cloud registration methods on the KITTI dataset, selecting
around 1600 and 1200 point cloud pairs for training and
testing, respectively. From Table III and Fig. 7, we observe that
PointDifformer demonstrates superior performance compared
to other baselines on the KITTI dataset, with shorter tails
of relative rotation and translation error probabilities. This
is similar to its performance on the Boreas dataset. We also
present several examples of our results in Fig. 4. Furthermore,
we train on sequences “0” to “8” and test on sequences “9” to
“10”. We observe that PointDifformer surpasses other baselines
when the size of the training data is larger, as shown in Table IV.
The LiDAR point clouds in the KITTI dataset have practical
noise due to dynamic objects and complex environments.
However, the graph neural PDE modules in PointDifformer
exhibit robustness to input perturbations, as demonstrated in
[81]. This may be the reason why PointDifformer achieves
more accurate predicted results when there is more practical
noise in larger-sized data.

4) Generalization from KITTI Dataset to Boreas dataset: To
cross-validate, we conduct point cloud registration by training
the models on the KITTI dataset and evaluating them on the
Boreas dataset. Specifically, we train the models on sequence
“9” of the KITTI dataset and test them on the sequence
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Fig. 7. The empirical probability of relative translation (centimeter [cm]) and
rotation (degree [◦]) errors on the KITTI dataset.

TABLE III
PERFORMANCE OF POINT CLOUD REGISTRATION PREDICTION ON THE

KITTI DATASET.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
ICP 9.86 19.48 0.17 0.27 87.9
DCP 9.28 15.34 0.26 0.49 95.0

HGNN++ 8.86 17.20 0.20 0.31 89.9
VCR-Net 5.31 11.07 0.16 0.24 97.3
PCT++ 6.16 13.96 0.18 0.28 95.4

GeoTransformer 3.93 13.50 0.18 0.50 97.8
PointDifformer 4.14 8.86 0.14 0.23 97.7

TABLE IV
PERFORMANCE OF POINT CLOUD REGISTRATION PREDICTION ON THE

KITTI DATASET WITH SEQUENCE “0” TO “8” FOR TRAINING AND
SEQUENCE “9” TO “10” FOR THE TEST.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
VCR-Net 7.17 10.88 0.21 0.36 97.2

GeoTransformer 3.45 12.91 0.14 0.76 99.0
PointDifformer 3.10 5.93 0.11 0.17 99.0

“night” of the Boreas dataset. From Table V, we observe that
PointDifformer has competitive performance compared with
the current state-of-the-art.

TABLE V
THE PERFORMANCE OF POINT CLOUD REGISTRATION ON THE BOREAS

DATASET FOR TESTING (USING THE MODEL PRE-TRAINED ON THE KITTI
DATASET).

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
HGNN++ 16.06 25.86 0.15 0.27 49.8
VCR-Net 11.97 19.78 0.11 0.19 68.6
PCT++ 11.61 19.57 0.13 0.31 72.4

GeoTransformer 5.97 27.90 0.09 0.33 93.1
PointDifformer 6.63 10.07 0.08 0.14 93.3
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D. Robutness Evaluation
1) Robustness against synthetic noise on the KITTI Dataset:

We investigate the robustness of PointDifformer under various
types of synthetic noise, as discussed below.

TABLE VI
POINT CLOUD REGISTRATION PERFORMANCE ON THE KITTI DATASET

WITH THE GAUSSIAN NOISE THAT FOLLOWS N (0, σ = 0.25).

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
ICP 14.97 26.09 0.20 0.32 69.3
DCP 9.97 15.84 0.29 0.52 94.3

HGNN++ 10.62 18.76 0.22 0.34 88.9
VCR-Net 6.40 12.40 0.18 0.27 96.3
PCT++ 6.85 14.03 0.20 0.30 95.3

GeoTransformer 5.37 14.43 0.25 0.50 97.5
PointDifformer 5.23 9.00 0.17 0.25 97.7

ICP VCR-Net

 PointDifformerGeoTransformer

Fig. 8. Examples for the point cloud frame pairs from the KITTI dataset
with Gaussian noise using different transformation prediction methods for
alignment.

TABLE VII
THE MAE OF THE PREDICTED RELATIVE TRANSLATION/ROTATION
(CENTIMETER [CM] / DEGREE [◦]) ON DIFFERENT NOISE POWERS.

Metric Methods N (0, σ = 0.5) N (0, σ = 0.75) N (0, σ = 1.0)

MAE
VCR-Net 7.97 / 0.23 9.70 / 0.29 11.62 / 0.36

GeoTransformer 7.95 / 0.34 10.04 / 0.44 13.27 / 0.54
PointDifformer 7.18 / 0.23 8.83 / 0.27 10.38 / 0.31

RMSE
VCR-Net 14.08 / 0.35 15.92 / 0.44 17.95 / 0.55

GeoTransformer 14.40 / 0.68 15.00 / 0.78 20.15 / 0.90
PointDifformer 12.90 / 0.34 15.08 / 0.40 17.31 / 0.45

Performance on the KITTI dataset with Gaussian noise.
To evaluate the robustness of PointDifformer, we add white

TABLE VIII
POINT CLOUD REGISTRATION PERFORMANCE ON THE KITTI DATASET

WITH 3D SHAPE PERTURBATIONS.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
ICP 12.60 24.92 0.18 0.32 80.4
DCP 12.63 23.04 0.28 0.48 85.8

HGNN++ 11.39 22.27 0.21 0.36 85.1
VCR-Net 6.39 13.69 0.18 0.36 95.4
PCT++ 7.23 16.23 0.21 0.36 93.6

GeoTransformer 3.89 13.08 0.18 0.44 97.8
PointDifformer 4.14 8.99 0.14 0.22 97.8

GeoTransformer

ICP VCR-Net

 PointDifformer

Fig. 9. Examples for noisy point cloud frames with 3D shape perturbations
using different transformation prediction methods for alignment.

Gaussian noise N (0, σ) to the original KITTI dataset, similar
to the experiments for Table III. Based on the results presented
in Table VI, we observe that PointDifformer surpasses the
other benchmark methods in terms of relative translation and
rotation errors. Additionally, we present examples of point
cloud alignment using the predicted transformation in Fig. 8.
We also evaluate the robustness of our method and other
baselines to different noise powers. As shown in Table VII,
PointDifformer demonstrates superior robustness w.r.t. additive
Gaussian noise compared to the other baselines across different
noise powers.

Performance on the noisy KITTI dataset with 3D shape
perturbations. We next introduce 3D shape perturbations to the
original KITTI dataset. This is achieved by removing certain
parts of the original point clouds, resulting in an imperfect
3D shape. Specifically, we remove a 25 m ×15 m region in
the lower left corner of each point cloud frame measuring
60 m ×30 m. The results presented in Table VIII show that
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PointDifformer still outperforms the baselines in terms of both
criteria for relative rotation error and the RMSE for relative
translation prediction. Some examples are presented in Fig. 9.

2) Robustness against natural noise on the Boreas Dataset:
We conduct experiments on the Boreas dataset under rainy
conditions, which is considered natural noise on point clouds.
From Table IX, we observe that PointDifformer outperforms the
baseline methods in terms of relative translation and rotation
RMSEs, while having comparable performance in terms of
MAEs. This indicates that our method produces fewer outliers
in the predicted results, demonstrating its superior robustness
compared to the baselines. We also provide several examples
of point cloud alignment in Fig. 10.

TABLE IX
POINT CLOUD REGISTRATION PERFORMANCE ON THE BOREAS DATASET

UNDER THE RAINING ENVIRONMENT.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
ICP 11.90 20.57 0.15 0.27 70.8
DCP 10.60 16.00 0.14 0.22 75.7

HGNN++ 15.02 25.63 0.18 0.32 52.5
VCR-Net 8.81 14.09 0.13 0.20 84.1
PCT++ 10.39 16.86 0.14 0.24 77.4

GeoTransformer 4.96 16.75 0.10 0.25 94.9
PointDifformer 5.91 8.45 0.10 0.14 96.9

GeoTransformer

ICP VCR-Net

 PointDifformer

Fig. 10. Examples for the point cloud frame pairs from the Boreas dataset
under a raining environment using different transformation prediction methods
for alignment.

E. Evaluation on Datasets with Lower Overlaps
We evaluate the performance of our method on datasets

with lower overlaps, namely, 3DMatch and 3DLoMatch, as

shown in Table X. The standard benchmark metric RR is used,
and the experimental configuration follows that of [42], [54].
The baselines include FCGF [17], D3Feat [18], SpinNet [19],
Predator [35], YOHO [44], CoFiNet [20], GeoTransformer [42],
RoITr [54], and RoReg [56]. To perform the registration task
on the 3DMatch and 3DLoMatch datasets, similar to several
current state-of-the-art models like CoFiNet, GeoTransformer,
RoITr and RoReg, we first employ a module to identify
the areas of higher overlap in the point clouds. Specifically,
we use superpoint matching [42]. Subsequently, keypoint
matching under the PointDifformer model is employed to
achieve more precise correspondences for pairs of point clouds.
Table X demonstrates that PointDifformer achieves state-of-
the-art performance, affirming its feasibility on datasets with
lower overlaps.

TABLE X
PERFORMANCE ON THE 3DMATCH AND 3DLOMATCH DATASETS, USING
THE SAME EXPERIMENTAL CONFIGURATION AS THAT IN [42], [54]. THE

RESULTS OF BASELINES ARE BORROWED FROM [17]–[20], [35], [42], [44],
[54], [56].

Method 3DMatch
RR (%)

3DLoMatch
RR (%)

FCGF 85.1 40.1
D3Feat 81.6 37.2
SpinNet 88.6 59.8
Predator 89.0 59.8
YOHO 90.8 65.2

CoFiNet 89.3 67.5
GeoTransformer 92.0 75.0

RoITr 91.9 74.8
RoReg 92.9 70.3

PointDifformer 93.0 75.2

F. Computational Complexity

In Table XI, we present the average inference time and
graphics processing unit (GPU) memory required for registering
each point cloud pair based on the KITTI dataset. We test
the methods on an NVIDIA RTX A5000 GPU. The average
inference time and GPU memory are measured in seconds (s)
and gigabytes (GB), respectively. From Table XI, we observe
that PointDifformer requires higher GPU memory and incurs
longer inference time compared to other baselines due to
its higher complexity. On average, the inference time is still
acceptable for real-time applications. A possible future work
is to optimize and prune [93]–[95] the PointDifformer model
to reduce its memory and inference time footprints.

TABLE XI
THE AVERAGE INFERENCE TIME AND GPU MEMORY FOR EACH POINT

CLOUD PAIR ON THE KITTI DATASET.

Method VCR-Net PCT++ GeoTransformer PointDifformer
Inference time 0.047s 0.648s 0.061s 0.072s
GPU memory 2.29GB 2.38GB 1.51GB 2.44GB

G. Ablation Study

We perform an ablation study using the KITTI dataset under
the same experimental settings as described in Section IV-C3
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for Table III. We first evaluate the efficiency of the self-attention
module with heat kernel signature by comparing it with the
vanilla self-attention module and the module without self-
attention. As shown in Table XII, the introduction of the heat
kernel signature as weights into the self-attention module im-
proves the transformation prediction accuracy. Furthermore, we
observe that the vanilla self-attention module also contributes
to the point cloud registration performance.

TABLE XII
ABLATION STUDY FOR THE SELF-ATTENTION MODULE WITH HEAT KERNEL

SIGNATURE.

Module
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
Self Attention (No) 5.75 11.73 0.16 0.25 92.1

Self Attention (Vanilla) 4.56 10.03 0.15 0.26 94.5
Self Attention (Heat Kernel) 4.14 8.86 0.14 0.23 97.7

We investigate the influence of our proposed Point-Diffusion
Net module on point cloud representation by comparing it with
other graph learning methods. The results in Table XIII show
that the point cloud registration model with our Point-Diffusion
Net outperforms those with other graph learning methods
including HGNN [92] and DGCNN [65]. This indicates that the
Point-Diffusion Net can achieve a more robust representation
of the point cloud.

TABLE XIII
ABLATION STUDY FOR THE EFFECTIVENESS OF POINT-DIFFUSION NET.

Method
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
HGNN 8.22 16.40 0.19 0.31 90.1

DGCNN 4.46 9.55 0.14 0.23 97.3
Point-Diffusion Net 4.14 8.86 0.14 0.23 97.7

We investigate the impact of the number of selected top K ′

corresponding keypoints from the attention-based correspon-
dence module. Specifically, we select 25%, 50%, 75%, and
100% corresponding keypoints from the entire set of keypoints.
The results in Table XIV show that selecting 50% and 75%
corresponding keypoints achieves better performance.

TABLE XIV
ABLATION STUDY FOR THE NUMBER OF SELECTED CORRESPONDING

KEYPOINTS IN THE ATTENTION-BASED CORRESPONDENCE.

Proportion
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
25% 8.88 15.84 0.20 0.32 88.1
50% 4.06 7.95 0.15 0.25 97.3
75% 4.14 8.86 0.14 0.23 97.7
100% 7.20 16.14 0.19 0.34 92.2

To evaluate the effectiveness of our total loss Ltotal in (28),
we compare it with the corresponding point loss Lpoint in (26)
and the ground-truth-to-prediction loss Lrt in (27). Based on
the results presented in Table XV, we observe that the total loss
Ltotal outperforms the others, suggesting that incorporating

more information in the loss function has a positive effect on
training. Additionally, we find that Lpoint surpasses Lrt, which
implies that the point loss plays a more important role in the
Ltotal.

TABLE XV
ABLATION STUDY FOR THE LOSS FUNCTION.

Loss
Relative Translation

Error (centimeter [cm])
Relative Rotation
Error (degree [◦]) RR

(%)MAE RMSE MAE RMSE
Lrt 6.32 11.55 0.21 0.39 94.2

Lpoint 5.41 11.44 0.15 0.24 96.3
Ltotal 4.14 8.86 0.14 0.23 97.7

V. CONCLUSIONS

In order to develop a robust 3D point cloud registration
approach that is able to handle noise or perturbations, we
have utilized graph neural PDE modules to learn point
cloud feature representations. We have also designed attention
modules with heat kernel signatures to establish correspondence
between points from two point clouds. Our approach has been
extensively evaluated through experiments, which demonstrate
that it generally outperforms baselines not only on raw point
clouds but also on point clouds with additive noise and 3D
shape perturbations. These results suggest that graph neural
PDEs are beneficial for the task of point cloud registration.

In this paper, we have conducted a robustness study limited
only to perturbations through Gaussian noise, rain, and partial
removal of a frame. A future work of interest is to further
investigate the robustness of our method under diverse pertur-
bations, including adversarial attacks. Furthermore, we aim
to enhance our model’s adaptability to noisy datasets under
different environmental factors.
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