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Abstract—Deep learning models are essential for scene clas-
sification, change detection, land cover segmentation, and other
remote sensing image understanding tasks. Most backbones of
existing remote sensing deep learning models are typically initial-
ized by pre-trained weights obtained from ImageNet pre-training
(IMP). However, domain gaps exist between remote sensing im-
ages and natural images (e.g., ImageNet), making deep learning
models initialized by pre-trained weights of IMP perform poorly
for remote sensing image understanding. Although some pre-
training methods are studied in the remote sensing community,
current remote sensing pre-training methods face the problem
of vague generalization by only using remote sensing images.
In this paper, we propose a novel remote sensing pre-training
framework, Generic Knowledge Boosted Remote Sensing Pre-
training (GeRSP), to learn robust representations from remote
sensing and natural images for remote sensing understanding
tasks. GeRSP contains two pre-training branches: (1) A self-
supervised pre-training branch is adopted to learn domain-
related representations from unlabeled remote sensing images. (2)
A supervised pre-training branch is integrated into GeRSP for
general knowledge learning from labeled natural images. More-
over, GeRSP combines two pre-training branches using a teacher-
student architecture to simultaneously learn representations with
general and special knowledge, which generates a powerful pre-
trained model for deep learning model initialization. Finally, we
evaluate GeRSP and other remote sensing pre-training methods
on three downstream tasks, i.e., object detection, semantic seg-
mentation, and scene classification. The extensive experimental
results consistently demonstrate that GeRSP can effectively
learn robust representations in a unified manner, improving the
performance of remote sensing downstream tasks. Code and pre-
trained models: https://github.com/floatingstarZ/GeRSP.

Index Terms—Remote sensing self-

supervised learning

image, pre-training,

I. INTRODUCTION

EEP learning models have been widely used in remote

sensing (RS) image understanding tasks, such as detec-
tion [1], segmentation [2], and scene classification [3]. Most
of these interpretation models are initialized with ImageNet
[4] pre-trained weights. Although it has been proved that
ImageNet pre-trained models generalize well to the RS inter-
pretation tasks, domain gaps still exist between RS and natural
images due to different capture views, image resolutions, and
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Fig. 1. RS images encompass a wealth of domain-specific knowledge,
whereas natural images offer a broader range of diverse generic image
knowledge. The motivation of the GeRSP is to enhance the generalization
performance of RSP by leveraging the diversity present in natural images.

object appearances, which impedes the RS image understand-
ing performance. This puts forward an urgent requirement for
Remote Sensing Pre-training (RSP) techniques [5].

Most RSP methods draw inspiration from general pre-
training methodologies, such as MoCo [6], SimCLR [7], and
MAE [8], which can be categorized as supervised and self-
supervised paradigms. The supervised pre-training paradigm
necessitates extensive labelled data for achieving effective
pre-trained weights. Nonetheless, acquiring such datasets is
costly and demands substantial professional expertise. Re-
cently, the self-supervised pre-training paradigm has been
receiving much attention from both the computer vision [6]
and the remote sensing community [9]. This paradigm could
acquire essential visual representations by constructing label-
independent pretext tasks such as instance discrimination [9]-
[11], spatial coherence [12], and masked image modeling
[13]. Contrastive learning via instance discrimination is the
most popular self-supervised method. The key to contrastive
learning is to construct positive and negative example pairs.
Manas et al. [9] explored utilizing the seasonal variation to
construct the seasonal contrastive pairs. Ayush et al. [11]
utilized geographical location information and time changes
to establish the contrastive learning objective. Liu et al. [10]
introduced the consistency of SAR and optical image to realize
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contrast learning without negative samples.

Pre-trained models are believed to be able to boost the
downstream tasks; however, recent studies [5] have shown
that general pre-training methodology may not be suitable for
RSP. The suboptimal performance is observed when applying
the pre-trained model to the downstream tasks, such as the
segmentation task compared to IMP models [5]. The reason
might be that IMP models can obtain diverse low-mid level
features from natural images [14]. These features play a pivotal
role in dense prediction tasks, including semantic segmenta-
tion and object detection, possessing stronger transferability
[14] and serving as general knowledge. Our experiments and
previous research [15] consistently demonstrate that the IMP
model can serve as a robust baseline for various remote
sensing downstream tasks. Additionally, the differences in
semantics between natural and remote sensing images can
prevent semantic over-fitting [16], [17], further enhancing
transferability.

In contrast, RS images predominantly emphasize objects
or scenes on the earth’s surface, such as cars, houses, lakes,
and airports. Additionally, they are constrained by the bird’s-
eye view perspective and sensor resolution, thereby restrict-
ing the diversity of scenes, perspectives, and detailed object
information [18], thus impeding the learning of diverse low-
mid level features. Simply scaling up the dataset does not
bring more information enrichment. Furthermore, high-level
semantic feature alignment in contrastive learning within RSP
neglects the learning of low-mid level features [19], thus
diminishing performance on dense prediction tasks. IMP can
efficiently acquire these features, prompting us to explore
simultaneous pre-training using both RS and natural images.

In this study, we tackle this challenge by leveraging the
rich knowledge of natural images to boost RSP. Introducing
natural images to the RS domain enriches the feature space
of RS pre-training models. To achieve this goal, training an
IMP model on the RS images to acquire domain-specific
knowledge [20] is one straightforward approach. However, this
multi-stage training procedure makes the model tend to forget
the knowledge gained from the IMP phase, which hinders
the pre-trained model from achieving satisfactory results on
downstream tasks, as confirmed by our experiments.

To compensate for the shortcomings of the existing pre-
training paradigms, we propose Generic Knowledge Boosted
Remote Sensing Pre-training (GeRSP) to obtain generic and
remote sensing domain knowledge, as shown in Fig. 1. In
particular, a supervised pre-training branch on natural images
is used to obtain general knowledge for downstream tasks. To
capture RS domain knowledge, a self-supervised pre-training
branch on RS images is co-operated with the supervised
pre-training branch on natural images so that the proposed
GeRSP simultaneously learns domain-related features from RS
images.

In summary, our contributions include the following:

1) A novel remote sensing pre-training framework, GeRSP,
is proposed to learn robust representations for RS under-
standing tasks. GeRSP uses a teacher-student architecture
to simultaneously learn representations with general and
domain knowledge.

2) GeRSP contains supervised pre-training and self-
supervised pre-training stages: (1) The self-supervised
pre-training stage learns domain-related features from
unlabeled RS images. (2) The supervised pre-training
stage is integrated for general knowledge learning from
labeled natural images.

3) Three RS downstream tasks are evaluated to compare
GeRSP with other pre-training methods, including object
detection, semantic segmentation, and scene classifica-
tion. The experimental results consistently demonstrate
that GeRSP effectively improves the performance of re-
mote sensing downstream tasks. Additionally, we perform
a visual analysis to further evaluate the effectiveness of
GeRSP and its impact on downstream tasks.

II. RELATED WORK
A. Pre-training Methods

Motivated by the observation that humans can leverage ex-
isting knowledge to solve new problems [2 1], transfer learning
has been proposed as a solution to this challenge. Transfer
learning allows models to benefit from pre-existing knowledge
by leveraging pre-trained parameters. This idea of parameter
transfer has been widely used in computer vision tasks. There
are two general pre-training methods based on whether labeled
data is required during the training process: supervised pre-
training and self-supervised pre-training.

Supervised pre-training is a practical approach for obtaining
pre-trained models. Models with different architectures, such
as ResNet [22], ViT [23], and Swin Transfromer [24], have
been successfully pre-trained on large-scale image datasets like
ImageNet [4]. Benefiting from the general visual knowledge
obtained from large-scale image datasets, downstream models
only require a small amount of task-specific data to perform
well. However, collecting and annotating large-scale datasets
are still time-consuming and expensive in the real world, which
limits the development of supervised pre-training methods.
Semi-supervised learning [25], [26] can effectively leverage
unlabeled data; however, it is often oriented towards specific
task improvements and is less employed for pre-training.

Self-supervised pre-training methods are proposed to ad-
dress these issues. These methods construct pretext tasks that
leverage intrinsic properties of images, thereby facilitating
effective feature extraction [27]. The constraint of pretext
tasks compels the neural network to extract pertinent image
information and generate good visual representations. The self-
supervised pretext tasks encompass diverse methodologies,
such as image generation [28], image inpainting [8], [29],
jigsaw puzzles [30], and image colorization [31]. These tasks
are designed based on the inherent structure and characteristics
of the images themselves.

Jing et al. [27] summarized the pretext tasks into four cat-
egories: generation-based, context-based, free semantic label-
based, and cross-modal-based. Generation-based methods en-
compass tasks such as image generation and image inpaint-
ing. Among them, methods based on image generation are
primarily utilized for generating more realistic images [32]
or expanding datasets [33] rather than focusing on acquiring
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a robust feature extractor. Pre-training methods based on
image inpainting have gained significant traction within self-
supervised pre-training methods, such as MAE [8] and CAE
[34]. These methods involve masking specific regions within
an image and requiring the network to predict the content of
the masked areas. These approaches can effectively benefit
downstream tasks that demand semantic understanding by
necessitating the network’s comprehension of the remaining
image blocks and enabling image reconstruction based on
contextual cues.

The context-based pretext tasks primarily rely on semantic
consistency or spatial context cues within the image as the su-
pervisory signal. The pre-training method based on contrastive
learning [0], [7], [35]-[37] has gained significant traction
among these tasks. The core idea behind contrastive learning
is to minimize the distance between differently augmented
views of the same image while maximizing the dissimi-
larity between unrelated images [0], [7]. In our work, we
incorporate contrastive learning into the remote sensing pre-
training. Specifically, we employ MoCo technique [6] due to
its widespread popularity, code base availability, and results
reproducibility.

B. Remote Sensing Pre-training Methods

Similar to other computer vision domains, ImageNet pre-
trained models have demonstrated remarkable success in RS
image recognition tasks [I], [38]-[43]. Nevertheless, chal-
lenges such as the domain gap between natural scenes and
RS scenes and limitations in generalization persist in RS
pre-training methods. Tong et al. [44] presented a trans-
fer learning approach for scene classification. Initially, the
model is pre-trained with a well-annotated large-scale dataset.
Subsequently, a semi-supervised transfer learning method is
employed on the pre-trained model to achieve pixel-level
classification. Building upon this methodology, Long et al.
[45] introduced Million-AID, a substantial benchmark dataset
comprising one million instances designed explicitly for scene
classification. The Million-AID dataset contains globally dis-
tributed high spatial resolution RS images in 51 scene cate-
gories. After that, a hierarchical multi-task learning framework
[46] for pixel-level scene classification demonstrates the strong
generalization ability of Million-AID. In a complementary
study, Wang et al. [5] conducted extensive experiments to
assess the generalization performance of Million-AID pre-
training models across multiple downstream tasks. The models
employed encompass CNN-based architectures such as ResNet
[22], as well as Transformer-based approaches including Swin
Transformer [24] and ViTAEv2 [47]. The experimental results
highlight that the pre-training models significantly enhance
performance in various downstream tasks compared to the
ImageNet pre-trained models. However, they also found that
only using RS data may lack crucial information for detection
and segmentation [5], which inspired our investigation.

Self-supervised pre-training methods have been extensively
studied in RS research communities [17]. Numerous studies
have employed pre-training methods to enhance the perfor-
mance of specific RS tasks, such as hyperspectral imagery

classification [48]-[51], synthetic aperture radar (SAR) tar-
get recognition [52], and change detection [53], [54]. Some
studies leveraged the geographic information associated with
RS images to achieve more effective self-supervised pre-
training. Jean et al. [12] proposed Tile2Vec, an unsupervised
representation learning method inspired by Word2Vec [55].
Tile2Vec assumes that geographically proximate tiles exhibit
semantic similarity. Based on this assumption, they employed
metric learning for unsupervised tiles learning.

Jung et al. [56] proposed a contrastive learning method
based on the SimCLR [7] framework. The method uses the
idea of Tile2Vec [12], utilizing three neighbor tiles to obtain
the smooth representation for positive samples. Ayush et al.
[11] exploited the revisiting characteristics of satellites to con-
struct spatial-aligned image pairs at different times, enabling
informative learning. Additionally, a geo-location pretext task
was incorporated during training to enhance the representa-
tion learning of RS images. SeCo [9] combined temporal
variation with other augmentation techniques to enable multi-
augmentation contrastive learning. This approach yields repre-
sentations encompassing time-varying and invariant features,
offering advantages for downstream tasks. Scheibenreif et al.
[57] addressed land cover classification and segmentation tasks
by employing SimCLR [7] with paired satellite data obtained
from optical Sentinel-2 and SAR Sentinel-1 sensors. However,
it is essential to note that these studies require additional
meta-information, including geographical location and time,
which imposes more stringent restrictions on their practical
application.

While there has been considerable research on supervised
and self-supervised pre-training models in the remote sensing
domain, the comprehensive exploration of a general RS model
with extensive generalization performance still needs to be
improved. Risojevi’c et al. [58] proposed a domain-adaptive
pre-training method that re-trains an ImageNet pre-trained
model using MLRSNet [59] dataset. Their approach outper-
formed models pre-trained solely on either ImageNet [4] or
MLRSNet [59] in scene classification tasks. Likewise, Zhang
et al. [20] introduced the ConSecutive pre-training (CSPT)
method for RSP. In CPST, the model first performs self-
supervised learning on natural scene images through masked
image modeling [8] pretext task and then conducts self-
supervised training on task-related unlabeled RS data. CSPT
aims to bridge the domain gap and transfer knowledge from
the natural image domain to the RS domain. However, it
does not guarantee the preservation of general features learned
from natural images during the second-stage self-supervised
learning [60]. Additionally, the substantial size of ViT-based
models restricts their practicality in certain situations.

Our approach aims to improve the extraction of low-level
general knowledge in RSP by incorporating supervised train-
ing with natural images, thereby enhancing spatial information
perception capabilities. The motivation of TOV [18] is close
to ours. They freeze natural image pre-trained model’s shallow
and middle layers and subsequently train on the RS dataset.
This two-stage approach prevents the forgetting of general
knowledge and achieves adaptability to remote sensing images.
Compared with TOV, our method employs a joint training
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framework and facilitates the adaptation of even the shallow
layer to remote sensing images. Furthermore, our approach
demonstrates that simply introducing supervised learning with
ImageNet [4] can effectively acquire general knowledge with-
out requiring a redundant multi-stage training strategy.

III. GENERIC KNOWLEDGE BOOSTED PRE-TRAINING
A. Overview

Recently, remote sensing pre-training has established its
effectiveness in extracting information from remote sensing
data, with subsequent applicability to a broad spectrum of
downstream tasks [9]-[11], [51]. Simultaneously, ImageNet
pre-training persists as a strong baseline due to its adept-
ness in assimilating transferrable knowledge from extensive
large-scale natural data [5], [15]. Nevertheless, optimizing
the concurrent utilization of both datasets for acquiring more
robust transferable features remains a topic of ongoing re-
search. To fill this gap, we propose GeRSP, a novel pre-
training framework incorporating IMP and RSP. GeRSP learns
the fundamental knowledge from IMP and captures specific
knowledge tailored explicitly to remote sensing imagery. The
downstream tasks employ GeRSP pre-trained weights as ini-
tialization weights for fine-tuning. This two-stage training
methodology is illustrated in Fig. 2.

As illustrated in Fig. 2, GeRSP utilizes a teacher-student
architecture to enable collaborative learning. It comprises two
learning processes: natural image auxiliary learning (NIAL) on
labeled natural images and remote sensing contrastive learning
(RSCL) on unlabeled RS images. RSCL simultaneously trains
both the teacher network and the student network. During the
training process, the teacher network’s parameters are updated
using the exponential moving average of the student network
parameters. Conversely, in the case of NIAL, the training is
exclusively focused on the student network. Ultimately, the
student network serves as a pre-trained model for downstream
tasks. In each iteration of GeRSP, an equal number of natural
and remote sensing images are sampled from their respective
datasets.

During RSCL, the RS image is subjected to two distinct
augmentation strategies, denoted as ¢ and t’, to form positive
pairs. Subsequently, the RS image pairs are fed into the teacher
and student networks to extract their features. The features
are then aggregated using global average pooling (GAP) and
projected by independent projectors that consists of two fully-
connected layers, yielding the features z** and z¢. Finally,
the student network is optimized by minimizing the InfoNCE
[61] loss function computed over the positive sample pairs
(2¥*+,29) and negative samples z*~ for contrastive learning,
where 2*~ are retrieved from a dynamic queue that is actively
maintained by the teacher network. Further details will be
discussed in the subsequent subsection.

Concurrently, labeled natural images from the same batch
are utilized for NIAL to ensure adaptability to a wide range of
tasks. Data augmentation is also applied to unlabeled natural
images, resulting in the augmented images denoted as I.
Then, the augmented images are inputted into the student
network, followed by a GAP operation and an predictor.

The predictor, distinct from the projector used in RSCL,
helps alleviate conflicts between NIAL and RSCL. The cross-
entropy loss is then used to optimize the student network. After
each optimization iteration, both the parameters of the teacher
network and the dynamic queue are updated. Subsequent sec-
tions will detail each component, including data augmentation
(Sect. ITI-B), the backbone network, projectors, and predictors
for feature extraction in NIAL and RSCL (Sect. III-C), the loss
functions (Sect. III-D), and the update strategies for parameters
and the dynamic queue (Sect. III-E).

B. Data Augmentation

Data augmentation introduces variability in the input im-
ages, aiming at increasing the difficulty of the contrastive
learning pretext task. Thus, the pre-trained model can acquire
more meaningful features from augmented images rather than
merely memorizing the input images [0], [7], [37]. Therefore,
the proposed GeRSP framework adopts the strong augmen-
tation strategy described in [62] for both RSCL and NIAL,
enhancing the transferability of representations pre-trained on
remote sensing (RS) images. Besides, the pre-trained model
becomes more relevant to RSCL by employing strong data
augmentation during NIAL, enabling more efficient feature
learning.

The pipeline for strong augmentation is depicted in Fig. 3.
Initially, images are cropped from the corresponding original
image with a ratio ranging from 0.2 to 1 and then resized
to a scale of 224. Subsequently, color jitter is applied with a
probability of 0.8, employing brightness, contrast, saturation,
and hue factors of 0.4, 0.4, 0.4, and 0.16, respectively. More-
over, images are converted to gray-scale with a probability of
0.2. Finally, images are flipped with a probability of 0.5 and
subjected to Gaussian blur with a probability of 0.5.

C. Feature Extractor

Considering the practicality of the pre-trained model [9], we
select ResNet50 [22] as the backbone network for pre-training.
During RSCL, we employ shuffling batch normalization (BN)
[6] in the backbone to eliminate the correlation between
BN parameters and the mini-batch, which can effectively
avoid information leakage. Specifically, the order of samples
within the mini-batch is shuffled before input to the backbone
network. The original order is recorded to be restored during
contrastive learning.

After the backbone network has extracted image features,
Global Average Pooling (GAP) is applied to reduce the
dimensionality and obtain features in R2%48. As illustrated in
Fig. 2, the non-linear projector and predictor are employed to
process these features further.

The projector consists of two fully connected layers with
ReLU activation. It has a hidden dimension of 2048 and an
output dimension of 128, yielding the features z** and z9. On
the other hand, the predictor is a single fully connected layer
that maps features to logits z° for classification. The introduc-
tion of non-linearity in the projector can prevent dimension
collapse [63] and enhance the performance of multitask learn-
ing. Since RSCL aims to achieve feature invariance by strong
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Fig. 2. The overall framework of our proposed Generic Knowledge Boosted Remote Sensing Pre-training (GeRSP). GeRSP integrates two learning processes:
natural image auxiliary learning (NIAL) on labeled natural images and remote sensing contrastive learning (RSCL) on unlabeled RS images. NIAL utilizes
labeled natural images for training. NIAL involves training the model using labeled natural images, while RSCL adopts a contrastive learning approach. The

trained model is subsequently fine-tuned on various downstream tasks using task-specific data.

D. Loss Function

The loss function for GeRSP consists of two terms: the

Random —p Resize —> Randqm
Crop Color Jitter cross-entropy loss for NIAL, denoted as L¢g, and the con-
trastive loss for RSCL, denoted as Lor. For Lo, we firstly
‘ normalize z® by using the softmax function, which yields a
Random Random Random probability vector p = (p1,p2, ..., PK ), Where K represents
N Gaussian Blur Horizontal Flip Gray Scale the number of categories. Then, the cross-entropy loss Log
Amtd is computed by using the following equation:
Image

Fig. 3. Data Augmentation Pipeline for pre-training.

augmentation in input images, it can adversely affect task-
specific characteristics learning such as image color, contrast,
and position. Therefore, the projector is crucial for RSCL
and can learn semantic invariance features while preserving
more information for the backbone network. Additionally, the
projector serves as a bridge to close the information gap
between NIAL and RSCL.

K
Lop(p,y) == _ yilog(p:) )]
i=1
where y; represents the ground truth label for the correspond-
ing category. For Lor, RSCL utilizes the InfoNCE loss as
the contrastive loss function. Considering features z*+ and 29
obtained from the projectors, as well as features derived from
the negative queue comprising historical features Z¥- = z#-,

the calculation of the contrastive loss [61] is as follows:
exp(Sq,ky /T)
exp(Sq,k+/T) + 2 exp(sq_/T)
k_
2

Ler(27,ZF-) = —log



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

where 7 is the temperature parameter that controls the intensity
of contrast, s, = 29 - 2¥/||24]|||2¥]| is the cosine similarity
between features. The cross-entropy loss used in NIAL is
actually similar to the InfoNCE loss [6] employed in RSCL,
allowing for the joint training of NIAL and RSCL. The total
loss is defined as below:

Ltotal = Lct + aLce (3)

where coefficient « is employed to strike a balance between
NIAL and RSCL, with a default value of 1.

E. Parameter & Queue Update

The teacher network employs momentum update [6] on
the network parameters to facilitate a stable training process.
Denoting parameters of the teacher network and the student
network as W; and W, respectively, the update rule for W, is
as follows:

Wt = th + (]. — m)Ws (4)

where the momentum coefficient m is set to 0.996. The
dynamic queue is implemented as a First-In-First-Out (FIFO)
queue with a maximum capacity of 65,536. It is updated after
each iteration and serves as a storage for features generated
by the teacher network. Given a batch size of 128, it takes
approximately 500 iterations to complete a full update of the
queue.

IV. PRE-TRAINING
A. Implementation Details

To compare the effectiveness of our proposed GeRSP with
other pre-training methods, we use ResNet50 [22] as the
backbone and select several pre-training methods, such as
supervised pre-training and self-supervised pre-training. To
validate the superiority of GeRSP over RSP, we choose SeCo
[9], GeoAware [11], CACO [64], TOV [18], MoCo [6], and
MoCov2 [35] as comparative methods. To demonstrate the
advantages of GeRSP over IMP, we compare it with supervised
pre-training and MoCo [6]. Furthermore, we conduct training
using MoCo on mixed data as a stronger baseline to show that
GeRSP can better utilize mixed data.

The unlabeled RS image dataset Million-AID (MAID) [45]
and the labeled natural image dataset ImageNet [4] are utilized
for pre-training. MAID [45] is a large-scale remote sensing
scene classification dataset consisting of 1,000,848 images
with 51 scene categories. MAID is collected from Google
Earth with broad resolutions, ranging from 0.5 to 153 m per
pixel.

All pre-training methods are trained with the stochastic
gradient descent (SGD) optimizer for 100 epochs, with initial
values of 0.05 for the learning rate, 0.90 for weight decay,
and 0.00005 for momentum. The learning rate for GeRSP is
optimized using the cosine annealing scheduler with restarts

[65]:

1 Tcur
Ireur = rmin + = (Pmaz — min) (1 + cos( ) (5)

2 max
The minimum learning rate, denoted as Ir,,;,, is set to 0.10,
while the maximum learning rate, denoted as Ir,q,, is set

to 0.01. During a single round of training, 7},,, is defined
as the maximum number of epochs, which is set to 20.
T represents the current epoch number within the current
round. Once T, reaches 1},,., it is reset to O to initiate the
subsequent round, and Ir.,, denotes the current learning rate.

For MoCo and MoCov2, learning rates are optimized using
the step linear scheduler with a step size of 30 and a learning
rate decay of 0.1. Pre-training methods are trained in a
distributed manner, utilizing data parallelism across 8 RTX-
2080 GPUs, with a total batch size of 128. After the pre-
training stage, irrelevant components, including the predictor,
projector, and the teacher network, are removed, and the
student network acts as the pre-trained model for downstream
tasks. For previous RSP methods (SeCo, GeoAware, CACO,
and TOV), we directly download their pre-trained parameters
and evaluate them on downstream tasks to objectively compare
the performance of each method.

V. FINETUNING ON DOWNSTREAM TASKS

To evaluate the effectiveness of pre-training methods, we
finetune different pre-trained models on three downstream
tasks: scene classification, object detection, and semantic seg-
mentation. All pre-trained models in these tasks adhere to the
same configurations and hyper-parameter settings.

A. Scene Classification

To align pre-trained models with the requirements of clas-
sification tasks, they undergo augmentation by adding an
average pooling layer and a single fully connected layer at the
final stage. The models are optimized by mini-batch stochastic
gradient descent with momentum (SGDM) algorithm for 100
epochs, with a batch size of 64. For SGDM, the initial learning
rate, weight decay, and momentum are set to 0.01, 0.0001, and
0.9, respectively. A linear-step scheduler is utilized to ensure
training stability, employing step values of [30, 60, 90] and a
decay ratio of 0.1. For image pre-processing, the images are
scaled to 224 x 224 pixels. Additionally, random flipping is
applied with a probability of 0.5, meaning each image has
a 50% Two scene classification datasets are employed for
validation:

e EuroSAT [66]: This dataset consists of Sentinel-2 satellite
images captured over Europe. It consists of 27,000 images
belonging to 10 distinct categories. Each class comprises
approximately 2,000 to 3,000 images, with a resolution
of 64 x 64 pixels.

e NWPU-RESISC45 [40]: This dataset, developed by
Northwestern Polytechnical University (NWPU) for Re-
mote Sensing Image Scene Classification (RESISC), in-
cludes 31,500 images. The dataset covers 45 scene cat-
egories, with 700 images per category. The images have
spatial resolutions ranging from 30 to 0.2 meters, and
their size is 256 x 256 pixels.

The evaluation metric employed for classification accuracy
is the Top-1 accuracy. Following [5], we employ 20% of the
data for training and reserved 80% for testing. The models
are repeatedly trained and evaluated five times at each setting.
The average value p and standard deviation o of the results
across various trials were documented as p £ o.
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TABLE I
THE COMPARISON OF DIFFERENT PRE-TRAINING METHODS ON SCENE
CLASSIFICATION TASK.

L EuroSAT |NWPU-RESISC45
Pre-training Dataset Top-1 Top-1
IMP ImageNet 97.84 + 0.04 92.48 + 0.13
MoCo-IN [6] ImageNet 97.55 + 0.29 90.77 = 0.19
MoCo-MAID [6] MAID 97.52 + 0.10 91.19 + 0.15
MoCo-IN-MAID [6] | ImageNet + MAID |97.47 + 0.10 91.15 + 0.20
MoCov2 [35] MAID 97.52 + 0.07 91.28 + 0.04
SeCo [9] 1M Sentinel-2  [97.74 + 0.25 90.40 + 0.15
Geo-Aware [11] GeolmageNet 97.87 £ 0.11 92.37 £ 0.19
CACO [64] CACO 1M 97.67 + 0.09 90.81 + 0.18
TOV [18] TOV-NI + TOV-RS |97.80 + 0.06 92.59 + 0.21
GeRSP ImageNet + MAID |97.87 + 0.15 92.67 + 0.16
GeRSP-200 ImageNet + MAID |97.87 + 0.10 92.74 + 0.09

B. Object Detection

To assess the performance of pre-trained models, we employ
three detection methods, e.g., Faster R-CNN [67], RetinaNet
[68], and Dy-Head [69]. These detection methods are im-
plemented using MMDetection [70] toolbox. The pre-trained
backbone parameters are replaced with the parameters ob-
tained from our experiments. The detectors are trained using
the SGDM optimizer with a learning rate of 0.001, momentum
of 0.90, and weight decay of 0.0001. The learning rate is
reduced by a factor of 10 at 16 epochs and 22 epochs, re-
spectively. The experiments are conducted on two GPUs with
a batch size of 4 over 24 epochs. During training and testing,
images are resized to 800x 800 pixels. Only random flipping is
applied during training. For testing, non-maximum suppression
(NMS) with an intersection over union (IoU) threshold of 0.3
is employed to remove duplicated detections and retains a
maximum of 1,000 detections. The widely used DOTA [71]
and DIOR [72] datasets are selected in our experiments:

e DOTA [71]: This dataset comprises 2,806 images with
a total of 188,282 instances belonging to 15 different
categories. The images have varying sizes ranging from
800 x 800 pixels to 4,000x4,000 pixels. In our experi-
ment, we utilize horizontal bounding box (HBB) anno-
tations, which require minimal modifications to enable
Faster R-CNN for RS object detection. The images are
cropped into patches of size 800 x 800 pixels with a stride
of 640. The performance on the cropped validation set is
reported.

e DIOR [72]: The DIOR dataset consists of 23,463 images
with a total of 192,472 instances. It covers 20 object cate-
gories and offers a significantly more diverse distribution
of instances and finer classification than other datasets.

During the evaluation, we compare the Average Precision

(AP) of each category, and the mean Average Precision (mAP)
is also considered. Specifically, we adopt the evaluation pro-
tocol of COCO [73] and use the AP calculated under the IoU
threshold of 0.5 as the evaluation criterion.

C. Segmentation

Two classic segmentation methods (i.e., PSANet [74] and
DeepLabV3+ [75]) are chosen in our experiments. The two

segmentation models are all trained in 80,000 iterations with
a batch size of 4, using the SGD algorithm with a learning
rate of 0.01, weight decay of 0.0005, and momentum term of
0.9. During training, images are resized to 2,048 x512 pixels,
randomly cropped to 512x512 patches, and randomly flipped
along the horizontal axis. For more accurate segmentation
results, images are resized to 1,024 x 1,024 during testing. High
spatial resolution land-cover semantic segmentation is selected
as the segmentation task on land-cover dataset LoveDA.

e LoveDA [76]: The dataset contains 5,987 satellite images
with 166,768 annotated objects from three cities: Nanjing,
Changzhou, and Wuhan. LoveDA covers 536.15 km?
and each image includes multi-scale objects, complex
background, and inconsistent class distributions. There
are 2,522 and 1,669 images in the training and validation
sets, respectively. The typical resolution of images in the
dataset is 1,024 x1,024.

The mean IoU (mloU) is chosen as the metric for evaluation.

VI. EXPERIMENTS AND ANALYSIS
A. Results

We selected ImageNet supervised pre-training (IMP), Mo-
Covl [6], MoCov2 [35], SeCo [9], GeoAware [11], CACO
[64], and TOV [18] as comparison pre-training methods.
ImageNet supervised pre-training and MoCovl serve as the
baseline for GeRSP. To illustrate the impact of the dataset
on the pre-training method in downstream tasks, we pre-
train the backbone network with MoCo on ImageNet, MAID,
and ImageNet+MAID datasets, respectively. The obtained pre-
trined models are denoted as MoCo-IN, MoCo-MAID, and
MoCo-IN-MAID, respectively. To demonstrate the sustained
effectiveness of GeRSP in larger-scale training, we conduct
training for 200 epochs, referred to as GeRSP-200. The results
of semantic segmentation are shown in Table I, Table II, Table
III and Table IV, respectively.

Overall Performance: Across all the obtained results,
GeRSP consistently exhibited improvements. Notably, GeRSP
delivers substantial enhancements in detection, attaining supe-
rior performance across all methods and datasets. Moreover,
GeRSP demonstrates the capability to enhance both seg-
mentation and classification endeavors. Compared to training
from scratch, all pre-training methods prove efficacious in
augmenting the performance of fine-tuning on downstream
tasks, thereby emphasizing the indispensability of pre-training
in remote sensing cognitive tasks.

Scene Classification: Table I reports the top-1 accuracy
of our proposed GeRSP and other pre-training methods
on EuroSAT and NWPU-RESISC45. As shown in Table I,
GeRSP outperforms the other pre-training methods on the
two datasets, showing its effectiveness. For MoCo-IN, MoCo-
MAID, and MoCo-IN-MAID, GeRSP improves the top-1
accuracy by +2.0%, +1.6%, and +1.6% on NWPU-RESISC45,
respectively. The experiments show domain gaps exist between
RS images and natural images when comparing MoCo-IN
with GeRSP. Moreover, pre-training only on RS images can
lead to the lack of general features of objects, which reduces
the generalization performance on downstream tasks when
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FINE-TUNING RESULTS ON THE DIOR [

TABLE II
] OBJECT DETECTION TASK. WE USE THREE DETECTION METHODS TO VERIFY THE PRE-TRAINED MODELS.

Methods APL APO BF BC BR CH DAM ETS ESA GF GTF HA OP SH STA STO TC TS VE WM ‘ mAP
Faster R-CNN
From Scratch 454 282 63.1 599 18.7 574 32.1 38.1 434 40.2 48.6 404 37.0 69.8 457 43.5 75.1 279 31.8 70.0 | 458
IMP 58.6 740 709 86.0 389 775 552 599 694 742 804 513 555 75.1 629 57.0 83.6 50.2 39.6 81.9| 65.1
MoCo-IN [6] 53.8 735 67.6 86.1 41.8 754 553 619 732 749 772 57.6 573 772 677 554 84.6 56.2 39.2 823|659
MoCo-MAID [6] 53.8 733 694 859 40.6 75.1 56.3 65.7 73.1 76.1 77.7 574 573 77.1 649 574 845 534 40.3 83.1]| 66.1
MoCo-IN-MAID [6] 53.7 734 69.2 849 41.7 735 553 6277 727 74.6 784 574 56.7 77.0 643 543 855 59.2 39.7 82.2| 658
MoCov2 [35] 509 727 69.2 85.8 41.6 740 57.1 624 70.6 75.0 782 56.8 56.5 77.1 652 543 84.6 54.8 39.7 83.0| 65.5
SeCo [9] 563 56.6 71.3 814 334 71.1 482 55.1 63.5 65.6 71.7 479 499 745 49.0 51.8 824 46.5 37.6 80.3 | 59.7
Geo-Aware [11] 527 684 733 83.7 36.6 755 504 63.0 68.1 69.5 759 47.7 535 74.8 60.2 57.6 85.0 46.8 39.6 80.7 | 63.1
CACO [64] 53.8 64.6 734 82.6 352 727 49.0 56.7 65.6 69.9 75.1 48.77 50.7 757 54.8 54.6 84.5 44.6 384 80.4 | 61.6
TOV [18] 639 724 77.1 850 403 773 573 66.1 719 75.1 80.0 51.1 554 769 639 59.8 859 49.0 41.1 82.8 | 66.7
GeRSP 61.5 762 69.1 86.7 423 77.6 599 624 728 77.6 784 54.5 58.4 753 684 57.2 86.3 55.1 41.0 82.3| 67.1
GeRSP-200 63.6 78.1 694 87.1 44.0 785 629 67.0 76.0 76.8 79.6 54.7 58.7 753 60.3 57.3 864 56.3 41.3 804 | 67.8
RetinaNet
From Scratch 51.1 379 644 59.0 19.8 594 38.0 435 543 51.0 58.2 453 39.7 689 619 375 77.6 27.8 27.8 67.0| 49.5
IMP 66.6 774 745 87.2 358 799 594 556 754 804 79.7 49.5 548 758 68.8 52.7 85.5 50.1 39.6 82.4 | 66.5
MoCo-IN [6] 57.1 70.8 71.0 85.3 358 748 542 514 704 74.8 749 499 544 77.1 59.6 54.5 84.8 46.5 39.7 82.5| 635
MoCo-MAID [6] 57.7 727 714 86.0 350 758 52.6 553 73.6 75.1 75.6 514 53.8 76.5 64.6 534 856 434 40.8 82.8 | 64.2
MoCo-IN-MAID [6] 51.2 709 72.1 86.7 35.0 75.5 57.6 52.6 704 758 745 499 52.8 757 63.2 51.2 85.0 43.8 38.5 80.2| 63.1
MoCov2 [35] 54.1 71.8 709 86.7 353 747 593 52.1 702 74.8 747 51.0 53.8 75.7 61.5 519 85.0 42.1 399 823|634
SeCo [9] 547 609 71.1 81.1 30.3 727 563 532 69.6 73.7 732 50.7 48.5 75.0 65.0 47.9 84.0 454 349 78.6| 613
Geo-Aware [11] 604 679 71.8 83.6 31.3 774 519 551 71.5 722 75.1 46.6 509 739 623 51.6 85.7 424 37.6 78.1| 624
CACO [64] 56.0 679 723 81.6 30.8 743 56.5 539 71.6 749 752 49.8 50.9 75.1 69.6 49.1 84.8 414 364 80.1 | 62.6
TOV [18] 63.4 743 75.1 83.1 375 772 609 59.8 739 81.6 77.7 51.8 543 764 68.6 56.1 86.1 47.5 40.1 82.2| 66.3
GeRSP 70.3 769 753 87.2 394 803 614 593 773 80.5 76.8 50.5 56.0 76.8 64.3 543 86.8 50.3 422 83.8| 675
GeRSP-200 70.0 77.7 745 87.8 41.2 80.3 63.6 619 769 80.3 78.7 51.9 56.8 78.1 72.6 57.0 87.7 50.0 43.0 84.6 | 68.7
DyHead
From Scratch 58.6 61.1 70.5 68.6 283 653 464 505 652 632 629 51.8 46.5 77.6 66.5 47.5 789 50.1 354 75.7| 585
IMP 63.8 82.6 764 86.0 432 79.5 650 67.5 78.7 80.2 79.0 57.0 58.6 82.7 67.8 649 863 60.6 46.6 86.6 | 70.6
MoCo-IN [6] 64.1 787 749 85.8 430 747 594 658 754 77.1 774 594 579 859 709 67.5 85.6 59.1 469 85.5| 69.8
MoCo-MAID [6] 60.6 80.7 72.0 86.5 422 743 60.7 61.8 755 748 764 57.7 574 844 69.8 61.6 86.3 55.5 46.7 85.7| 68.5
MoCo-IN-MAID [6] 61.3 789 753 86.2 427 758 62.0 61.0 757 77.1 75.0 57.8 57.8 842 673 622 85.1 58.7 456 85.2| 68.7
MoCov2 [35] 64.0 80.1 74.8 86.4 44.0 749 61.1 61.7 758 75.1 763 59.3 594 850 702 644 850 555 47.3 86.4 | 69.3
SeCo [9] 57.5 752 739 81.3 374 729 61.6 60.0 725 742 725 56.6 53.6 80.4 663 57.1 829 58.6 414 83.0| 66.0
Geo-Aware [11] 63.0 774 76.1 85.1 422 765 612 61.6 759 722 747 56.7 57.6 83.7 67.2 63.5 855 60.0 45.1 84.0 | 68.4
CACO [64] 594 76.5 753 832 409 733 583 62.6 73.8 75.7 73.5 56.5 559 83.0 69.7 58.7 83.6 54.6 43.0 82.9| 67.0
TOV [18] 64.7 81.7 77.5 85.6 448 760 657 649 79.6 77.8 77.6 57.1 57.2 81.7 71.1 653 84.8 63.3 44.8 85.0| 70.2
GeRSP 68.4 83.6 759 87.4 470 784 633 67.8 794 79.1 77.6 57.7 59.1 842 684 66.8 86.6 59.0 48.1 86.4 | 71.2
GeRSP-200 72.0 84.1 76.8 869 473 790 623 709 814 789 789 582 60.7 839 704 67.7 86.9 62.8 48.9 86.6 | 72.2

comparing MoCo-MAID with GeRSP. The proposed GeRSP,
on the other hand, learns representations with general and spe-
cial knowledge simultaneously through a unified framework.
Compared with SeCo, CACO, TOV, and Geo-Aware, GeRSP
consistently improves top-1 accuracy, indicating that GeRSP
can learn robust representations with both general knowledge
and domain specializations.

Object Detection: Table II compares the detection per-
formance of GeRSP on DIOR with other pre-training meth-
ods. The comparison is made by fine-tuning with Faster R-
CNN [67], RetinaNet [68], and DyHead [69]. We observe
that GeRSP consistently outperforms other pre-training meth-
ods. Compared to IMP, GeRSP improves mAP from 65.1%
to 67.1% (+2.0%) on Faster R-CNN, improves mAP from
66.5% to 67.5% (+1.0%) on RetinaNet, improves 70.6% to
71.2% (+0.6%) on DyHead. MoCo-MAID only uses MAID
for training, so it can only obtain domain knowledge about
remote sensing images and lacks more robust generalization
performance. Compared to MoCo-MAID, GeRSP improves
mAP from 66.1% to 67.1% (+1.0%) on Faster R-CNN, GeRSP

improves mAP from 64.2% to 67.5% (+3.3%) on RetinaNet,
GeRSP improves 68.5% to 71.2% (4+2.7%) on DyHead.

As evidenced by Table II, MoCo-IN-MAID, despite being
pre-trained using both the ImageNet and MAID datasets, fails
to enhance performance on downstream tasks and exhibits a
certain degree of degradation. Conversely, our GeRSP frame-
work consistently achieves effective performance improve-
ment. This observation underscores GeRSP’s ability to effec-
tively leverage information from multiple datasets, resulting
in the acquisition of more generalized features. Additionally,
it is worth noting that the performance of pre-trained weights
obtained through existing pre-training methods in the detection
task displays instability, with their fine-tuning performance
on the three detection methods slightly trailing behind that
of IMP. In contrast, GeRSP exhibits exceptional stability in
its performance in detection while continuously demonstrating
improvement over time.

Table III compares the fine-tuning effects of different pre-
training methods on DOTA. We employed Faster R-CNN,
RetinaNet, and DyHead as the detection models to validate the
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TABLE III
FINE-TUNING RESULTS ON THE DOTA [71] OBJECT DETECTION TASK. WE USE THREE DETECTION METHODS TO VERIFY THE PRE-TRAINED MODELS.
Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC ‘ mAP
Faster R-CNN

From Scratch 765 440 232 21.5 63.7 733 83.4 855 137 480 21.6 251 66.6 473 19.8 47.6
IMP 84.1 633 414 60.9 669 771 86.2 926 530 614 610 564 76.1 523 441 65.1
MoCo-IN [6] 84.1 63.3 399 59.1 66.7 745 86.6 91.0 574 60.1 593 507 785 480 402 63.9
MoCo-MAID [6] 83.3  66.1 40.3 55.3 669 742 853 908 60.5 583 572 527 772 4677 385 63.6
MoCo-IN-MAID [6] 834  62.1 39.9 53.8 663 745 853 918 590 58,6 548 56.6 769 489 338 63.0
MoCov2 [35] 834 583 404 58.4 67.7 753 86.2 918 542 584 595 56.8 78.1 512 423 64.2
SeCo [9] 82.0 573 35.8 42.6 654 763 86.5 90.8 392 577 51.8 467 752 505 34.7 59.5
Geo-Aware [11] 84.1 66.1 36.9 56.0 680 762 860 91.6 535 615 61.4 521 74.3 51.0 438 64.2
CACO [64] 820 63.6 383 49.1 67.5 769 855 912 444 578 558 528 750 46.6 370 61.6
TOV [18] 837 665 414 60.6 674 763 868 91.6 60.1 61.5 62.0 558 752 514 456 65.6
GeRSP 853 636 427 60.7 672 752 859 917 604 630 612 568 782 504 465 65.9
GeRSP-200 852 643 449 60.5 654 750 86.1 928 650 632 604 563 767 505 447 66.1

RetinaNet
From Scratch 747  41.1 17.7 22.8 570 646 71.1 83.8 9.2 40.7 21.8 263 675 334 8.8 42.7
IMP 833 646 34.1 54.6 582 706 745 928 55.1 574 547 549 740 48.1 25.9 60.2
MoCo-IN [6] 83.6 592 326 49.9 612 718 765 923 548 60.0 495 466 768 459 232 58.9
MoCo-MAID [6] 843 623 35.6 52.0 60.8  72.1 765 920 573 586 475 50.1 773 47.1 24.4 59.9
MoCo-IN-MAID [6] 82.8 628 345 45.5 584 719 754 93.0 538 572 486 51.6 757 465 29.9 59.2
MoCov2 [35] 837 63.8 350 53.3 60.2 716 764 918 519 574 486 486 770 48.1 32.3 60.0
SeCo [9] 80.8 569  30.1 38.7 60.8  69.1 75.1 89.5 419 539 432 432 728 437 16.6 54.4
Geo-Aware [11] 81.0 623 276 52.9 592 673 738 913 535 546 468 495 712 471 26.6 57.7
CACO [64] 799 600 327 423 59.0 683 749 912 474 531 434 509 740 435 22.5 56.2
TOV [18] 823 661 369 51.9 614 707 1769 910 526 578 508 573 745 499 29.0 60.6
GeRSP 849 656 363 54.3 60.0 713 747 937 674 592 548 564 758 50.1 31.8 62.4
GeRSP-200 855 653 38.1 55.5 60.7 725 759 942 652 587 549 573 774 50.6 32.6 63.0

DyHead
From Scratch 797 492 271 37.1 63.0 72.1 819 869 266 52.1 233 379 754  46.1 18.5 51.8
IMP 855 644 403 59.7 66.6  76.1 849 926 540 655 479 547 799 49.1 51.0 64.8
MoCo-IN [6] 854 596 379 52.7 68.7 755 84.1 929 597 66.6 487 519 812 48.1 35.4 63.2
MoCo-MAID [6] 842 655 405 55.1 67.7 747 842 932 603 667 494 523 80.7 462 322 63.5
MoCo-IN-MAID [6] 84.7  65.1 39.3 53.5 67.1 746 842 928 58.1 663 455 545 798 47.1 31.2 62.9
MoCov2 [35] 852 623 402 49.5 67.0 749 84.1 926 537 664 468 51.8 805 50.0 38.6 62.9
SeCo [9] 82.1 61.0 350 46.5 63.8 723 832 895 449 594 31.1 46.1 787 47.6 284 58.0
Geo-Aware [11] 83.8 627 374 573 65.0 744 836 907 480 645 453 588 785 489 37.6 62.4
CACO [64] 82.6  59.7 38.7 56.2 650 759 837 902 482 61.1 409 518 793 448 288 60.5
TOV [18] 855 66.0 44.1 59.3 648 762 844 914 61.8 63.6 469 565 80.2 495 428 64.9
GeRSP 87.0 663 424 60.3 683 757 8.0 937 655 68.5 51.5 565 80.0 512 402 66.1
GeRSP-200 873 669 443 62.4 67.7 76.1 845 933 653 695 525 60.5 805 513 49.0 67.4

results. GeRSP consistently achieves notable improvements in
detector performance and outperforms other methods across
most regions. Specifically, GeRSP proves more advantageous
than IMP in detection tasks, showcasing an increase of
+0.8% on Faster R-CNN, +2.2% on RetinaNet, and +1.3% on
DyHead. Furthermore, GeRSP demonstrates more significant
improvement than MoCo-MAID, with gains of +2.3% on
Faster R-CNN, +2.5% on RetinaNet, and +2.6% on DyHead.

Notably, MoCo-MAID, which solely utilizes remote sensing
images, fails to exhibit any advantages over IMP in the detec-
tion task, showing decreases of -1.5% on Faster R-CNN, -0.3%
on RetinaNet, and -1.3% on DyHead. Moreover, the more
advanced self-supervised pre-training method MoCov2 fails
to yield performance improvements. In contrast, our GeRSP
method effectively enhances detection performance. Moreover,
from the GeRSP-200 row, it is evident that extended training
further enhances detection performance. GeRSP proves highly
effective in elevating the capabilities for detection.

Segmentation: Table IV compares mloU of PSANet [74]
and DeepLabV3+ [75] initialized by GeRSP and other pre-

training methods on the LoveDA dataset.

For PSANet, GeRSP consistently outperforms other pre-
training methods on LoveDA. Compared with MoCo-IN,
MoCo-MAID, and MoCo-IN-MAID, GeRSP improves mloU
by +0.99%, +2.38%, and +1.19%, which demonstrates that
both pre-training dataset and method play essential roles in
representation learning. Compared to GeRSP, MoCo-IN ex-
hibits poor performance due to its insufficient understanding of
knowledge in the RS domain. Although MoCo-MAID utilizes
remote sensing images for pre-training and acquires domain
knowledge specific to such images, it lacks generalization abil-
ity. In the case of MoCo-IN-MAID, the pre-training method
also influences the pre-training process.

For DeepLabV3+, GeRSP outperforms all other super-
vised pre-training and self-supervised pre-training methods on
LoveDA. As shown in Table IV, GeRSP improves mloU by
+2.42%, +1.86%, and +0.8% when compared with MoCo-
IN, MoCo-MAID, and MoCo-IN-MAID. The results are the
same as in PSANet, demonstrating that GeRSP efficiently
learns representations for remote sensing downstream tasks.
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Compared with SeCo, GeRSP consistently improves mloU on
the two semantic methods, especially +4.89% for PSANet and
+5.43% for DeepLabV3+. This observation shows that GeRSP
can effectively enhance semantic segmentation performance.

TABLE IV
RESULTS OF PSANET [74] AND DEEPLABV3+ [
PRE-TRAINED BACKBONES ON LOVEDA [

] WITH DIFFERENT
] DATASET.

o PSANet DeepLabv3+
Pre-training Dataset mloU mloU
IMP ImageNet 49.24 48.39
MoCo-IN [6] ImageNet 48.54 46.64
MoCo-MAID [6] MAID 47.15 47.20
MoCo-IN-MAID [6] | ImageNet + MAID | 48.34 48.26
MoCov2 [35] MAID 44.79 48.57
SeCo [9] 1M Sentinel-2 44.64 43.63
Geo-Aware [11] GeolmageNet 49.37 48.76
CACO [64] CACO 1M 48.81 48.89
TOV [18] TOV-NI + TOV-RS | 49.33 49.7
GeRSP ImageNet + MAID | 49.53 49.06
GeRSP-200 ImageNet + MAID | 49.56 50.56

TABLE V
SENSITIVITY OF BALANCE COEFFICIENT o IN GERSP.

EuroSAT |NWPU-RESISC45 | DOTA | DIOR | PSANet | DeepLabv3+
@ Top-1 Top-1 mAP | mAP | mloU mloU
0 197.52 £ 0.10 91.19 £ 0.15 63.6 | 66.1 | 47.15 47.20
0.5197.79 £ 0.10 92.54 + 0.09 65.6 | 67.6 | 49.37 49.36
1 197.87 £ 0.15 92.67 £ 0.16 65.9 | 67.1 | 49.53 49.06

B. Visualization

Fig. 4 visually explains model predictions on scene classifi-
cation tasks through class activation maps (CAM). The CAM
is implemented by Grad-CAM++ [77]. The principle of Grad-
CAM-++ [77] is to use a weighted combination of the positive
partial derivatives as weights to sum activation maps and
construct CAM capable of explaining numerous instances. We
compare the models obtained by INT Supervised and GeRSP,
as shown in the second and third rows of Fig. 4. Intuitively, the
GeRSP model can focus well on the instances in RS images,
such as school, palace, and baseball diamond. It can also sense
multiple objects in the image, such as ships in the harbor
shown in the third column of Fig. 4. This demonstrates that
GeRSP can improve the model’s ability to extract semantic
information from RS images. On the contrary, the IMP model
is difficult to capture RS semantic information and lacks the
generalization ability in RS cognitive tasks. Fig. 5 shows that
the IMP model struggles to recognize the scene categories in
images, whereas the GeRSP model can recognize these scene
concepts through unsupervised learning.

We also undertake a stage-wise linear evaluation, as outlined
by Wang et al. [19], to elucidate the underlying sources
of generalization of GeRSP. Following [19], we freeze the
parameters of the pre-trained model and subsequently conduct
linear evaluation training using features obtained from each
stage. The results of linear evaluation reflect the semantic
information contained in the features. Additionally, since the

quality of low-mid level features significantly impacts the
performance of semantic discrimination tasks, the performance
of linear evaluation indirectly reflects the caliber of low-mid
level features. As shown in Fig. 6, overall, as we progress
through the stages, there is a gradual enhancement of se-
mantic information, resulting in a continuous improvement in
linear evaluation performance. Compared with other compet-
itive methods, it is evident that both IMP and our GeRSP
demonstrate comparable linear evaluation performance across
different stages, consistently outperforming other methods at
every stage, especially in the first and second stages. This
phenomenon suggests that ImageNet supervised training can
acquire high-quality image features across different levels,
particularly emphasizing low to mid-level features, which is
advantageous for semantic discrimination tasks in remote sens-
ing images. Therefore, our GeRSP, through the introduction of
natural image supervised learning, acquires rich generic image
knowledge that can be effectively applied to subsequent remote
sensing tasks.

We conduct experiments on the balance coefficient o in
Eq. 3. As shown in Table V, when there is no supervised
loss, e.g., a set to 0, the model’s performance decreases
across all tasks. When « is set to 0.5 or 1, the natural image
supervised loss is introduced into the pre-training, significantly
improving performance. Also, from the results, the scale of «
has a relatively minor impact on the pre-training effectiveness,
demonstrating the insensitivity of GeRSP to a.

VII. CONCLUSION

This paper proposes Generic Knowledge Boosted Remote
Sensing Pre-training (GeRSP) for remote sensing pre-training.
GeRSP aims to obtain a pre-trained model suitable for ini-
tializing deep learning models for RS understanding tasks.
The proposed method leverages a teacher-student architecture
to harness the benefits of both supervised pre-training and
self-supervised pre-training, mitigating the impact of domain
gaps between RS images and natural images. During the
self-supervised pre-training process, GeRSP acquires domain-
specific features from unlabeled RS images. In contrast, in the
supervised pre-training process, it learns general knowledge
from labeled natural images. By integrating self-supervised
and supervised pre-training, GeRSP simultaneously learns
representations with general and special knowledge. Subse-
quently, GeRSP’s effectiveness is evaluated by conducting
three remote sensing downstream tasks: object detection, se-
mantic segmentation, and scene classification. Consistently,
the experimental results demonstrate that GeRSP is an ef-
fective pre-training method in remote sensing, enhancing the
performance of various downstream tasks.

GeRSP effectively mitigates the limitations of contrastive
learning in perceiving fine-grained features in RS images,
ensuring transferability across various tasks, especially seg-
mentation and detection tasks. In addition to introducing Ima-
geNet supervised learning, using masked image modeling [&],
[78]-[82] and explicitly specified learning of image descrip-
tors [80]-[82] can achieve similar goals. Replace supervised
training with these methods, potentially resulting in enhanced
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Fig. 4. Class activation maps (CAMs) visualization of GeRSP model and IMP model on six categories.
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Fig. 5. Class activation maps (CAMs) visualization of GeRSP model and

IMP model on beach, cloud, and terrace. Fig. 6. Top-1 accuracy of stage-wise evaluation [19] on NWPU-RESISC45

[40]. All parameters of the pre-trained models are frozen during the training
process. During training, features from various stages are extracted, flattened,
and fed into a linear layer for classification, achieving a stage-wise linear
generalization performance, which we will further consider in  evaluation.
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