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Abstract—Deep learning-based methods have been extensively
explored for automatic building mapping from high-resolution re-
mote sensing images over recent years. While most building map-
ping models produce vector polygons of buildings for geographic
and mapping systems, dominant methods typically decompose
polygonal building extraction in some sub-problems, including
segmentation, polygonization, and regularization, leading to com-
plex inference procedures, low accuracy, and poor generalization.
In this paper, we propose a simple and novel building mapping
method with Hierarchical Transformers, called HiT, improving
polygonal building mapping quality from high-resolution remote
sensing images. HiT builds on a two-stage detection architecture
by adding a polygon head parallel to classification and bound-
ing box regression heads. HiT simultaneously outputs building
bounding boxes and vector polygons, which is fully end-to-end
trainable. The polygon head formulates a building polygon as se-
rialized vertices with the bidirectional characteristic, a simple and
elegant polygon representation avoiding the start or end vertex
hypothesis. Under this new perspective, the polygon head adopts
a transformer encoder-decoder architecture to predict serialized
vertices supervised by the designed bidirectional polygon loss.
Furthermore, a hierarchical attention mechanism combined with
convolution operation is introduced in the encoder of the polygon
head, providing more geometric structures of building polygons
at vertex and edge levels. Comprehensive experiments on two
benchmarks (the CrowdAI and Inria datasets) demonstrate that
our method achieves a new state-of-the-art in terms of instance
segmentation and polygonal metrics compared with state-of-the-
art methods. Moreover, qualitative results verify the superiority
and effectiveness of our model under complex scenes.

Index Terms—Building mapping, transformer, bidirectional
polygon loss, hierarchical attention mechanism.

I. INTRODUCTION

BUILDING mapping from remote sensing images is an
essential task for geographic and mapping applications,

including disaster management and assessment, city planning,
human activity monitoring, and demographics. Deep learning
methods have emerged over recent years due to their pow-
erful representation learning and success in many tasks (e.g.,
classification, detection, segmentation). Meanwhile, the quick
development of satellite and sensor techniques makes large-
scale high-resolution remote sensing images easy to access,
and some building segmentation benchmarks have been built
for automatic building extraction. Therefore, deep learning-
based building mapping from high-resolution remote sensing
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images has attracted more and more attention in the remote
sensing community.

Early deep learning-based methods apply semantic segmen-
tation models, such as fully convolutional network (FCN)
[1], U-Net [2], and DeepLabs [3], [4], to classify each
pixel as building or background [5]–[9]. However, semantic
segmentation-based methods can not distinguish individual
buildings. Therefore, some building extraction methods based
on instance segmentation models [10]–[13] have been stud-
ied for building instance segmentation. All these pixel-wise
segmentation-based methods fail to obtain accurate building
boundaries due to dense buildings and similar backgrounds in
remote sensing images. To refine blurred boundaries, some
studies [14]–[17] introduce boundary-preserved modules to
regularize building boundaries. Although recent pixel-wise
segmentation methods produce accurate buildings with precise
boundaries, they usually output raster building segmentation
masks, requiring a delicate post-vectorization pipeline to meet
real-world geographic applications.

To vectorize building masks, researchers have formulated
building extraction as a multi-stage task and produced vec-
torized buildings by post-processing or multi-task learning.
Early multi-stage methods [18], [19] usually decompose this
task into different sub-tasks, including binary building seg-
mentation, polygon generation (or initialization), and boundary
regularization. Since these methods are not end-to-end train-
able due to separate sub-tasks, building segmentation errors
will accumulate throughout the pipeline, resulting in irregular
building boundaries. Another line of multi-stage methods
[20]–[23] has integrated building segmentation, polygoniza-
tion, and refinement into a framework by multi-task learning.
These methods usually design complex pipelines with different
threshold constraints for each sub-task, resulting in complex
pipelines and hard-to-train.

Recently, dominant building mapping approaches [24]–[26]
have represented building extraction as polygonal building
vertex prediction and directly predicted building vertices to
produce vector polygons of buildings. These methods can be
categorized as follows: (1) Predict serialized vertices clock-
wise or counterclockwise from the building feature map of
the candidate building region aligned from remote sensing
image features. A CNN-RNN architecture is adopted to extract
feature maps using convolution neural networks (CNNs) and
predict serialized vertices iteratively using recurrent neural
networks (RNNs, e.g., ConvLSTM [27]). Since they output
a vector polygon vertex by vertex, this type of method is
sensitive to buildings with complex structures or a large
number of vertices due to the long dependency problem.
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(2) Predict a vertex set from the extracted feature map of
remote sensing images. The primary concern of these methods
is determining the vertices of one building and the vertex
sequence of each building from the unordered vertex set,
requiring complex human-crafted polygonal constraints and
generating irregular building polygons.

In this paper, we present an end-to-end building mapping
method with a hierarchical transformer (HiT), which is built
on a two-stage detection architecture by adding a polygon
head to produce vector polygons of buildings. In particular, the
polygon head casts polygonal building as a bidirectional vertex
sequence without start or end vertices hypothesis, making
serialized vertices prediction order-independent (i.e., the order
can be clockwise or equivalently counterclockwise). Through
this new perspective, the polygon head pays more attention to
the prediction of vertex position and the relationship between
two vertices, regardless of whether the order is clockwise or
counterclockwise. Unlike RNNs that first define the start ver-
tex and then predict serialized vertices one by one, HiT adopts
learnable and order invariant vertex queries to automatically
predict serialized vertices of a building at one time. Moreover,
we introduce a hierarchical attention mechanism of vertex and
edge levels to encode the building feature of the candidate
building region aligned from remote sensing image features,
providing more geometric information of building boundaries
and corners to embed into the building feature.

We evaluate our proposed HiT on two building bench-
marks, including the CrowdAI [28] and Inria Polygonized [29]
datasets. Since the building mapping task can be seen as an
instance segmentation task and a vector polygon extraction
task, we compare the proposed HiT with classical instance
segmentation methods and state-of-the-art polygonal building
extraction methods to evaluate pixel-level and geometric-
level performance. Finally, experimental results demonstrate
that HiT improves performance to a new state-of-the-art by
considerable margins on the two benchmarks.

The contributions of our work include:
1) We propose HiT, a two-stage model with three parallel

heads to simultaneously detect buildings and extract vec-
tor polygons of buildings from remote sensing images,
which includes classification, bounding box regression,
and polygon heads. HiT is end-to-end trainable and
simple yet powerful to achieve building mapping.

2) HiT represents a polygonal building as a bidirectional
vertex sequence, making serialized vertices of a building
order-agnostic. In particular, the polygon head applies a
transformer-based architecture to directly produce serial-
ized vertices of a building at one time rather than one by
one. Besides, we introduce a novel bidirectional polygon
loss to supervise the polygon head, avoiding complex
polygonal constraints and improving the generalization
ability.

3) We introduce a hierarchical attention mechanism of
vertex and edge levels in the encoder of the poly-
gon head, embedding more geometric information (e.g.,
building boundaries and corners) into aligned building
features. Finally, comprehensive experimental results on
two building benchmarks demonstrate that our method

achieves new state-of-the-art performance on instance
segmentation and polygonal building extraction.

The remainder of this paper is organized as follows: Section
II reviews related studies. Section III introduces our proposed
HiT in detail. Section IV describes experiment settings, includ-
ing comparison datasets, methods, and evaluation metrics, then
reports and discusses the experimental results quantitatively
and qualitatively. Section V concludes this work.

II. RELATED WORK

Recently, deep learning has been a prevalent technology for
remote sensing mapping [30], [31]. Since building mapping
has been a hot research topic in the remote sensing community,
many attempts based on deep learning have been widely
explored. Early work treats building extraction as a semantic
segmentation task [5]–[9], [32], [33] or an instance segmen-
tation task [10]–[13], [34], [35], as shown in Figure 1(a) and
(b). However, they typically output raster building segmenta-
tion masks and are not suitable for real-world applications.
Recently, polygonal building extraction has directly outputted
vector polygons of buildings, which is more suitable for real-
world geographic and mapping applications. Therefore, we
review literature closely related to our research in this section.

A. Multi-stage polygonal building mapping

Multi-stage polygonal building mapping first extracts binary
building masks and then obtains polygonal buildings using
post-processing or multi-task learning, as exemplified in Fig-
ure 1(c) and (d). Some multi-stage methods [18], [19], [36]
based on post-processing decomposes polygonal building map-
ping into sequential sub-tasks: (1) Extract individual building
masks by segmentation models (e.g., Mask RCNN [37]); (2)
Generate or initialize polygons by heuristic post-processing
(e.g., Marching Cubes algorithm [38]); (3) Regularize or
simplify polygons using Douglas–Peucker algorithm [39] to
refine boundaries or vertices. Since they are not end-to-end
trainable, building segmentation errors of the first stage will be
accumulated throughout the pipeline, resulting in sub-optimal
performance and irregular buildings.

To tackle these problems, some works adopt multi-task
learning for polygonal building mapping. [20]–[23], [40] have
emerged by integrating building segmentation, polygonization,
and refinement into a unified framework to obtain polygonal
buildings. FrameField [29] generates a frame field to pro-
vide structural information and then aligns the frame field
to raster building segmentation for building polygonization.
FrameField leverages multi-task learning to achieve a poly-
gonization algorithm utilizing the frame field along with the
raster segmentation. [41]–[44] first sample serialized vertices
from building masks and then refine vertex positions using
the designed refinement module. BuildMapper [25] is an end-
to-end learnable building contour extraction framework with a
learnable contour initialization module and a contour evolution
module, which can directly extract building polygons. These
models include complex modules with different threshold con-
straints to achieve each sub-task, making training challenging
and computationally intensive. When dealing with inconsistent
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Fig. 1. Different building mapping categorized into rasterized and polygonal mapping based on the output format. Rasterized mapping employs semantic
or instance segmentation frameworks to obtain pixel-wise buildings shown in (a) and (b). Polygonal mapping is subdivided into multi-stage and single-stage
pipelines based on whether to segment buildings explicitly. Multi-stage mapping typically adopts post-processing or multi-task learning for transforming
pixel-wise masks to polygonal buildings shown in (c) and (d). Single-stage mapping designs serialized vertices or vertex connection prediction modules to
obtain building serialized vertices directly shown in (e) and (f).

remote sensing images caused by complex imaging condi-
tions, these methods remain the challenge of performance
degradation. Additionally, these methods generally predict
a fixed vertex number, resulting in vertex redundancy and
insufficiency for different buildings.

B. Single-stage polygonal building mapping

Single-stage polygonal building mapping casts polygonal
building mapping as extracting serialized vertices of a build-
ing. As shown in Figure 1(e), [24], [45], motivated by
PolyRNNs [46], [47], first extracts building features and
then iteratively predicts building serialized vertices by RNNs.
TransBuilding [48] predicts polygonal buildings with a vertex
transformer module and designs three self-attention modules in
row-wise, column-wise, and vertex-wise to enhance geometric
information of building features. These methods typically
employ a two-stage detection framework (i.e., Faster RCNN
[49]) and add a serialized vertices prediction head parallel with
building classification and bounding box regression heads.
Figure 1(f) shows another line of works, which first detects
all the vertices and then predicts the vertex connection matrix
for assembling serialized vertices. PolyWorld [26] directly
predicts a connection matrix to find the vertices of one building
and the order of building vertices. Since PolyWorld [26]
produces serialized vertices in a bottom-up pathway, missing
or error vertices will influence the connection matrix learning,
leading to self-intersection or non-closed polygons.

C. Transformers in CV

Since Transformers [50] are successful in natural language
processing (NLP) with their powerful feature encoding abil-

ity, some researchers have extended them to computer vi-
sion (CV). Self-attention mechanism enables Transformers to
model long dependencies, and multiple attention heads learn
appropriate inductive bias, avoiding spatial constraints and
inductive bias in convolutional operations. Hence, Transform-
ers have achieved promising performance over CNN-based
approaches [51] in CV. ViT [52] splits an image into non-
overlapping patches and employs the standard transformer-
based structure to process sequences of image patches, which
has become a milestone work in vision transformers. Since
ViT is a plain and non-hierarchical network, Swin Transformer
[53] introduces a feature pyramid to extract multi-scale feature
maps, which serves as a hierarchical backbone and facilitates
Transformers in other tasks. Follow-up works [54]–[57] adopt
hierarchical stages with spatial reduction layers and hybrid ar-
chitectures with convolutional operations to efficiently extract
local and global information. With notably advanced vision
transformers have emerged in image classification, transform-
ers have been successfully applied in various fields, such
as detection [58], segmentation [59], and video [60] in CV.
DETR [58] is the first transformer-based detection framework,
representing object detection as a set prediction and matching
problem and removing additional operations such as anchor
generation and non-maximum suppression (NMS). SETR [59]
reformulates semantic segmentation as a sequence-to-sequence
prediction task and uses a pure Transformer to model the
global context in transformer layers, which can provide a
powerful segmentation model. This line of work formulates
detection or segmentation problems as set prediction tasks
and introduces learnable queries to extract targets in an auto-
regressive manner, which can be applied in vertex prediction.
Alfieri et al. [61] explore transformer-based architecture in



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

𝑐𝑙𝑠

𝑏𝑏𝑜𝑥

𝑝𝑜𝑙𝑦

RPN Cls head

Bbox head

Hierarchical 

encoder
Decoder Prediction

…

Vertex queries

Class

Box

Polygon head

Polygon

Fig. 2. Overview of HiT. HiT is a two-stage building mapping framework, which includes classification, bounding box regression, and polygon heads. The
polygon head predicts serialized vertices of a building, together with building detection. We introduce a novel bidirectional polygon loss to train the polygon
head without complex constraints.

polygon prediction, but it still needs a multi-layer Elman RNN
[62] to generate serialized vertices iteratively. However, no
prior work has exploited Transformer for serialized vertex
prediction. This work leverages a pure Transformer to predict
serialized vertices for polygonal building mapping, aiming to
mitigate the research gap.

III. METHOD

In this section, We introduce the proposed HiT, a single-
stage polygonal building mapping approach. In the following,
we will first describe the overall pipeline of the proposed HiT
and then describe each component in detail.

A. Overall pipeline

Polygonal building mapping has recently focused on it-
eratively predicted vertex on the condition of the predicted
first vertex and the previous predicted vertices. Due to the
long dependency problem, it remains very challenging to
handle buildings with complex structures or occlusions and
shadows caused by the imaging conditions. In response to
these challenges, HiT models the vertex sequence on the
condition of all the vertices by the designed polygon head.
Specifically, we build the polygon head based on the insight
that building polygons should be effectively delineated using
a bidirectional vertex sequence. This innovative perspective
makes serialized vertex prediction order-independent, enabling
the model to concentrate on predicting vertex positions and
relationships of any two adjacent vertices. Consequently, this
alleviates the reliance on assumptions about the starting or
ending vertices within the single-stage pipeline.

As shown in Figure 2, HiT employs a transformer-based
architecture to simultaneously predict serialized vertices. No-
tably, the polygon head incorporates learnable and order-
invariant vertex queries to dynamically predict serialized ver-
tices for buildings with varying numbers at one time. Fur-
thermore, HiT introduces a hierarchical attention mechanism
at the vertex and edge levels, integrating convolution oper-
ations to amplify the encoding of geometric information for
building features. A novel bidirectional polygon loss is further
introduced to supervise the polygon head, thereby improving

the learning of sequence relationships within the query-based
transformer module. In addition, the designed loss disregards
the clockwise or counterclockwise orientation of the sequence,
enhancing greater flexibility when predicting polygon vertex
sequences. Finally, HiT directly extracts building polygons
with appropriate vertices, achieving high performance com-
pared to multi-stage and single-stage polygonal building map-
ping methods detailed in subsection IV-C.

B. Building detection

In building detection, HiT first extracts multi-scale features
from the input image by the feature extraction module and
then detects buildings by classification and regression heads.
The feature extraction module consists of multi-scale feature
extraction and candidate building region generation. Following
Faster RCNN [49], HiT takes the ResNet50 [63] as the multi-
scale backbone network in the feature extraction module.
In this paper, multi-scale features Ci (i ∈ [1, 2, 3, 4, 5]) are
firstly extracted from a remote sensing image X ∈ R3×H0×W0

by ResNet-50, of which the feature channels are {64, 256,
512, 1024, 2048} and the resolutions are {1/2, 1/4, 1/8,
1/16, 1/32} of the input image X. In order to accurately
detect buildings of different sizes, an FPN fuses multi-scale
features {C2,C3,C4,C5} in a top-down pathway with the
lateral connection, which obtains new multi-scale features Pi

(i ∈ [2, 3, 4, 5, 6]) with 256 channels and {1/4, 1/8, 1/16,
1/32, 1/64} resolutions of the input image X. Finally, an
RPN is adopted to generate candidate building regions with
three anchor aspect ratios {0.5, 1.0, 2.0} from fusion features
{P2,P3,P4,P5,P6}.

The building detection module outputs building classifica-
tion scores and bounding boxes through the building classi-
fication head and the bounding box regression head. Given
candidate building regions from the RPN, the building de-
tection module first extracts the building feature map B ∈
R256×7×7 from multi-scale features Pi of the corresponding
scale through a ROIAlign operation [37]. Subsequently, the
building feature map B is flattened along the spatial and
channel dimensions and goes through two connected lin-
ear layers to reduce channel dimension, which obtains the
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Fig. 3. Illustration of the polygon head. The encoder with a hierarchical attention mechanism embeds more geometric information into the building feature.
The decoder learns vertex queries to predict serialized vertices.

instance-level feature representation. Finally, a classification
linear layer takes as input the building representation and
predicts the building score (i.e., building or background); on
the other hand, a bounding box regression linear layer inputs
the building representation and produces the building bounding
box including center, width, and length.

C. Polygon prediction

HiT represents the vector polygon of a building as a
bidirectional vertex sequence, of which the vertex order can
be clockwise or equivalently counterclockwise. Therefore, the
polygonal building mapping can be formulated as a sequence
prediction task. As shown in Figure 3, HiT introduces a
transformer-based polygon head to directly predict serialized
vertices of a building at one time. Firstly, the polygon head
also uses a ROIAlign operation [37] to extract the corre-
sponding building feature map B ∈ R256×20×20, which is a
large resolution compared to the building detection. Then, the
encoder of the polygon head adopts a hierarchical attention
mechanism to embed geometric information into the building
feature map B. Finally, the decoder of the polygon head
learns dynamic vertex queries from the building embedding
for automatically serialized vertices prediction.
Encoder. The encoder of the standard transformer architecture
exploits the self-attention operation to calculate the similarity
between every two tokens of the sequence. However, serialized
vertices are sparsely present in the building feature map B,

leading to the self-attention operation intensive computation,
memory cost, and low efficiency. To deal with the sparsity of
attention weights, the encoder of the polygon head replaces
the original self-attention mechanism with the hierarchical
attention mechanism to encode the building feature map B
efficiently, which avoids the complexity and speeds up the
convergence speed by introducing the geometric information
in terms of vertex and edge levels.

As depicted in Figure 3, the encoder consists of vertex-level
and edge-level blocks. Similar to the original encoder in the
transformer [50], the two blocks have an attention operation
and a feed-forward network (FFN), after which the short-cut
connection and the layer normalization are also added. Since
HiT adopts the hierarchical attention mechanism, the encoder
directly takes the building instance feature B as input and
outputs the building embedding, avoiding feature patchy and
positional encoding. As shown in Figure 4, the encoder first
uses four 3×3 convolution layers with the batch normalization
and a rectified linear unit (ReLU [64]) to process the building
feature map B. Then, a 1× 1 convolution layer and a sigmoid
activation function are used to obtain the vertex attention
weight, and another 1 × 1 convolution layer, followed by a
sigmoid operation, is used to obtain the edge attention weight.
Finally, the vertex-level attention is calculated by multiplying
the building feature map B and the vertex attention weight.
Similarly, the edge-level attention is calculated by multiplying
the building feature map B and the edge attention weight. The
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outputs of the vertex-level and edge-level attention are defined
as:

B
′
= 4 ∗ [ReLU(BN(conv(B)))]

Attnv = B ⊗ σ(conv(B
′
))

Attne = B ⊗ σ(conv(B
′
))

(1)

Afterward, the FFN is added to generate the final building
embedding Bemd, which can increase the expressive ability of
the model. In this paper, we integrate the information from
vertex to edge level, enhancing building features. Besides, we
will discuss the combination manner of vertex-level and edge-
level attention in ablation studies.
Decoder. Unlike RNNs, which iteratively predict serialized
vertices of a building, the decoder uses the vertex query
Q ∈ RM×256 to predict the vertex sequence at one time.
Like the original decoder of the standard transformer archi-
tecture, the decoder consists of N identical decoder blocks
to perform multi-head self-attention and cross-attention. Each
block includes a multi-head self-attention sub-layer, a cross-
attention sub-layer, and an FFN sub-layer. Besides, the short-
cut connection and the layer normalization are added after
attention operations and FFN.

As shown in Figure 3, the vertex query Q added with the
sinusoidal positional encoding is transformed by the multi-
head self-attention operation, which outputs the vertex embed-
ding followed by the short-cut connection and the layer nor-
malization operations. Subsequently, the cross-attention sub-
layer (CAv) inputs the building embedding from the encoder
as key and value and uses the output vertex embedding to
automatically integrate the information of serialized vertices,
after which the short-cut connection and the layer normal-
ization operations are also used to enhance the output vertex
embedding. Finally, the FFN sub-layer is applied with the
short-cut connection and the layer normalization operations

to generate the final vertex embedding. The output of each
block is defined as:

V
′
= Q ⊕ PE(Q)

Vemd = LN(SAv(V
′
)⊕ V

′
)

Vemd = LN(CAv(Bemd,Bemd,Vemd)⊕ Vemd)

Vemd = LN(FFN(Vemd)⊕ Vemd)

(2)

where PE is the positional encoding. SAv and CAv are the
multi-head self-attention and the multi-head cross-attention
operations. LN is the layer normalization operation. ⊕ means
the element-wise addition. In the prediction, the final vertex
embedding Vemd is fed to a linear layer and is transformed
to M one-hot vectors by the softmax operation, indicating
whether the vertex is a building vertex or not.

D. Training objective

Building detection. HiT consists of building classification and
bounding box regression. Building classification loss Lcls is
calculated by the binary cross-entropy loss:

Lcls = − 1

N

N∑
i=1

(yi · log(pi) + (1− yi) · log(1− pi)) (3)

where yi represents the class, which is 1 for the building class
or 0 for the background, and pi is the predicted classifica-
tion score. For building bounding box regression loss Lbbox,
building detection is trained using a L1 loss:

Lbbox =
1

N

N∑
i=1

|ti − t∗i | (4)

where ti=(cxi, cyi, wi, hi) and t∗i =(cx∗
i , cy

∗
i , w

∗
i , h

∗
i ) represent

the ground truth and predicted bounding boxes, respectively.
Polygon prediction. Since polygon prediction introduces ge-
ometric constraints in terms of vertex-level and edge-level, the
vertex and edge prediction is trained by the focal loss [65]:

Lver =

{
−α(1− pv)γ log(pv) vertex
−α(pv)γ log(1− pv) otherwise

Ledge =

{
−α(1− pe)γ log(pe) edge
−α(pe)γ log(1− pe) otherwise

(5)

where α and γ are the hyper-parameters, which is 2.0 and 4.0
in this paper. pv and pe denotes the predicted probability of
vertex and edge, respectively.

For serialized vertices prediction loss Lsv , we use the binary
cross-entropy loss to automatically predict a polygon with
orientation invariant. In specific, we define Y and Ŷ as the
ground truth and predicted serialized vertices, respectively. For
ease of understanding, we describe the calculation of Lsv by
using the first vertex y0 of Y. As illustrated in Figure 5, we
first search the reference vertex ŷt from Ŷ, which is closest
to y0. Subsequently, we move ŷt to the first vertex ŷnew0 by
sequentially shift the predicted sequence. Then, we fix ŷnew0

and inverse the other vertices in counter clockwise to get Ŷinv .
Finally, we calculate the minimum of the binary cross-entropy
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loss between ground truth Y and Ŷ, as well as Ŷinv . The Lsv

is defined as follows:

ŷt = Search(Ŷ, y0)

Ŷ = Shift(Ŷ, ŷt)

Ŷinv = Inverse(Ŷ)

Lsv = min(Lce(Y, Ŷ),Lce(Y, Ŷinv))

(6)

The polygon prediction loss Lpoly is the the sum of Lver, Ledge,
and Lpoly. Finally, the total loss of HiT is defined as:

L = Lcls + Lbbox + Lpoly (7)

E. Implementation Details

HiT is implemented based on Faster RCNN [49] with a
ResNet50 backbone, which is trained end-to-endly by us-
ing the PyTorch framework. For data augmentations during
training and inference, input images are generally resized to
512×512, randomly flipped with a probability of 0.5, and
normalized. During training, HiT is optimized by AdamW [66]
optimizer. The initial learning rates of the backbone and the
other are set to 1e-5 and 1e-4, respectively. The weight decay
is set to 1e-4. The model is trained for 150 epochs with the
learning rate dropped by 10 at the 90 and 130 epochs. For
the model hyper-parameters and the joint training strategy, we
have conducted extensive ablation studies, as illustrated in the
section IV-D.

IV. EXPERIMENTS

A. Dataset

The proposed HiT is evaluated on two public building
segmentation benchmark datasets, namely the CrowdAI Map-
ping Challenge dataset (CrowdAI dataset) [28] and the Inria
Aerial Image Labeling dataset (Inria dataset) [67], to assess
its performance and generalization. Buildings in the two large-
scale building datasets cover many regions with different
complex scenes and significantly vary in size, shape, structure,
and appearance.

(1) CrowdAI dataset: The CrowdAI dataset is a large-
scale satellite imagery of about 30 cm resolution with RGB
channels, in which images have a size of 300 × 300 pixels and
are annotated with polygonal building instances in MS-COCO
[68] format. The training set consists of 280,741 images with

around 2,400,000 polygonal building instances. The test set
has 60,317 images with 515,364 polygonal building instances.
In addition, a small version that only includes 8,366 images
for the training set and 1,820 images for the test set is also
provided for comparison experiments. In our paper, the small
version is used to conduct the following ablation studies to
consider time-consuming and resource constraints.

(2) Inria dataset: The Inria dataset contains 180 aerial
images of 5,000 × 5,000 pixels, covering different geo-
graphic locations (i.e., United States and Austria) ranging from
highly dense metropolitan financial districts to alpine resorts.
Buildings of the Inria dataset have different urban settlement
appearances and are annotated in binary masks, indicating
pixels into building and not building classes. The Inria dataset
has a spatial resolution of 30 cm and is split by the cities
for the training set and the test set for assessing the model’s
generalization.

Since the source annotations in the Inria dataset are pixel-
wise semantic masks, the Inria dataset is not suitable for
supervising the model to extract polygonal building instances.
Following the FrameField [29], we use the Inria Polygonized
dataset to train our model, which converts the source anno-
tations to polygonal MS-COCO [68] format. The images of
the Inria Polygonized dataset are cropped into 512 × 512
patches with an overlap of 128. In the cropping stage, we
remove buildings with an area smaller than 50% compared to
the original building instance. Finally, we split the cropped
images with the 75% for the training set and the 25% for the
test set.

B. Evaluation Metrics

Building mapping from remote sensing images is a building
instance segmentation task and a polygonal building extraction
task. Therefore, we adopt two evaluation criteria to compare
the proposed method with other methods.
Instance metric. For the instance segmentation, we adopt the
average precision (AP) and the average recall (AR) under
different intersection over union (IoU) thresholds provided
by the standard MS-COCO metrics [68]. In order to eval-
uate the overall performance, we use AP and AR metrics,
which present average precision and average recall under IoU
thresholds ranging from 0.50 to 0.95 with a step of 0.05.
Moreover, AP50, AP75, AR50 and AR75 are also calculated
under IoU thresholds of 0.5 and 0.75 to measure the model’s
basic and higher performance. Besides, we report F1 to com-
prehensively assess the model’s precision and recall, which is
calculated as shown in Eq. 8.

AP =
AP0.50 +AP0.55 + · · ·+AP0.95

10

AR =
AR0.50 +AR0.55 + · · ·+AR0.95

10

F1 =
2×AP ×AR

AP +AR

(8)

where APi and ARi measure average precision and average
recall under IoU threshold i that is calculated by IoU =
(Pre ∩GT )/(Pre ∪GT ).
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TABLE I
RESULTS ON THE CROWDAI DATASET UNDER THE INSTANCE SEGMENTATION METRIC. THE BEST RESULTS ARE MARKED IN BOLD.

Method AP ↑ AP50 ↑ AP75 ↑ AR ↑ AR50 ↑ AR75 ↑ F1 ↑
Mask RCNN [37] 41.9 67.5 48.8 47.6 70.8 55.5 44.6
PANet [69] 50.7 73.9 62.6 54.4 74.5 65.2 52.5
PolyMapper [24] 55.7 86.0 65.1 62.1 88.6 71.4 58.7
FrameField [29] 61.3 87.5 70.6 65.0 89.4 73.9 63.1
PolyWorld [26] 63.3 88.6 70.5 75.4 93.5 83.1 68.8
TransBuilding [48] 54.4 88.6 64.1 62.1 91.6 72.7 56.0
BuildMapper [25] 63.9 90.1 75.0 - - - -
HiT (ours) 64.6 91.9 78.7 75.5 93.8 83.5 69.6

TABLE II
RESULTS ON THE CROWDAI DATASET UNDER THE POLYGONAL METRIC.

“N RATIO (=1)” DENOTES THAT THE PERFORMANCE IS BETTER WHEN THE
N RATIO IS CLOSER TO 1. THE BEST RESULTS ARE MARKED IN BOLD.

Method C-IoU ↑ MTA ↓ N ratio (=1)
PolyMapper [24] 65.3 32.8 1.29
FrameField [29] 73.7 33.5 1.13
PolyWorld [26] 88.2 32.9 0.93
HiT (ours) 88.6 31.7 1.00

Polygonal metric. The polygonal metric considers the geo-
metric properties of the extracted buildings, so we adopt three
indicators to evaluate the extracted polygonal buildings, which
consist of the N ratio [26], the complexity aware IoU (C-
IoU) [26], and the Max Tangent Angle Error (MTA) [29].
The N ratio measures the simplicity of polygonal buildings by
calculating the ratio between the predicted vertex number and
the ground truth, which is defined as:

N ratio =
V̂N

VN

(9)

where VN and V̂N denote the vertex number of the prediction
and the ground truth. When the model predicts redundant or
insufficient vertices, the N ratio would be greater or less than 1.
So, the N ratio is closer to 1, illustrating the better performance
of the model. C-IoU is used to jointly assess the complexity
and the segmentation of the extracted polygonal buildings,
which is defined as:

RD =
|VN − V̂N |
VN + V̂N

C-IoU = IoU(M, M̂) · (1− RD)

(10)

where M and M̂ denote masks of the predicted polygonal
building and the ground truth. The C-IoU is higher when the
model extracts polygonal buildings with accurate segmentation
and precise polygonal complexity. MTA measures geometric
shape by calculating the tangent angles between the predicted
polygonal building and the ground truth, which is defined as:

T(Vi) = (Vi+1 − Vi)/∥Vi+1 − Vi∥
T(V̂i) = (V̂i+1 − V̂i)/∥V̂i+1 − V̂i∥
MAT = max

1≤x≤N
cos−1(⟨T(Vi),T(V̂i)⟩)

(11)

C. Results and Discussion

In our experiments, we select PolyMapper [24], Framefield
[29], and PolyWorld [26]) for comparison, which are recently

proposed state-of-the-art (SOTA) methods for polygonal build-
ing extraction. Besides, we compare HiT with more polygonal
building mapping methods (TransBuilding [48] and BuildMap-
per [25]) on CrowdAI dataset. Moreover, we compare our
method with classical instance segmentation methods, includ-
ing Mask RCNN [37] and PANet [69] following the recent
SOTA methods. We adopt the Douglas-Peucker algorithm [39]
to polygonize pixel-wise segmentation masks to obtain polyg-
onal results from binary building instance masks predicted
by instance segmentation methods (Mask RCNN and PANet),
which can be compared with the other polygonal building
extraction for fair comparison. Our proposed HiT is similar
to Mask RCNN, which all add branches for task-specific
prediction in a standard two-stage detection framework (a
mask prediction head in the Mask RCNN and a polygon
prediction head in the proposed HiT). Therefore, we select
the Mask RCNN as the baseline.
(1) Results on CrowdAI dataset.

For the CrowdAI dataset, the proposed HiT is compared
with Mask RCNN [37], PANet [69], PolyMapper [24], Frame-
Field [29], PolyWorld [26], TransBuilding [48] and BuildMap-
per [25] under the instance segmentation metric and the
polygonal metric, respectively. Since TransBuilding [48] and
BuildMapper [25] only evaluates performance on the instance
segmentation metric, we have excluded them from Table II.
Quantitative Evaluation. Table I and II report the quantitative
comparison results under the two metrics. From Table I, we
can see that the proposed method outperforms all the compar-
ison methods under the instance segmentation metric. Com-
pared with the baseline instance segmentation method, the AP,
AR, and F1 scores have been improved by +22.5%, +27.9%,
and +24.9%, respectively. These significant improvements
show that the designed polygon head can more efficiently
extract building instances than the mask head in Mask RCNN.
For polygonal segmentation methods, the proposed HiT has
achieved AP gains of +8.7%, +2.7%, and +1.1% compared
with polygonal building extraction methods (i.e., PolyMapper,
FrameField, and PolyWorld). In addition, the AR scores are
+13.4%, +10.1%, and +0.1% higher than the three polygonal
building extraction methods, respectively. Specifically, the
F1 score of the proposed HiT has outperformed the three
polygonal building methods by +10.8%, +6.0%, and +0.7%.
All these results consistently show that the proposed HiT
generates building instances with high precision and recall.

For the polygonal evaluation, our method compares with
the three polygonal building extraction methods. As reported
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Fig. 6. Qualitative results on CrowdAI. The proposed HiT can generate high-quality polygonal buildings of different sizes and shapes.
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Fig. 7. Additional qualitative results on CrowdAI. HiT can accurately extract polygonal buildings.

in Table II, the performance of the proposed HiT significantly
increases compared with other methods. Especially, the N
ratio of HiT is closer to 1, which has redundant vertices for
FrameField (N ration=1.13 > 1.0) and insufficient vertices
for PolyWorld (N ratio=0.93 < 1.0). The results illustrate
that our method generates more accurate vertices than polyg-
onal building extraction methods. Moreover, our method has
achieved the highest C-IoU score (88.6%), demonstrating
that our method has better balanced building segmentation
and geometric complexity among comparison methods. To
measure the performance in polygonal building shape and

structure, HiT obtains the lowest MTA value, which means the
lower the MTA value, the better the performance. Specifically,
HiT gets 31.7% of the MTA indicator, which is 1.4%, 1.8%,
and 1.2% lower than PolyMapper, FrameField, and PolyWorld,
respectively.

The results in terms of instance segmentation and polygonal
metrics have proved that our model has a high ability for ac-
curately building segmentation with a more precise polygonal
structure. Besides, a comprehensive comparison has verified
our proposed HiT’s superiority and effectiveness.

Qualitative Comparison. Figure 6 and 7 shows some visual-
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TABLE III
RESULTS ON THE INRIA POLYGONIZED DATASET UNDER THE INSTANCE SEGMENTATION METRIC. THE BEST RESULTS ARE MARKED IN BOLD.

Method AP ↑ AP50 ↑ AP75 ↑ AR ↑ AR50 ↑ AR75 ↑ F1 ↑
Mask RCNN [37] 40.0 79.2 35.3 51.5 87.3 54.4 45.0
PANet [69] 39.6 79.0 35.0 51.5 87.3 54.2 44.8
PolyMapper [24] 44.9 82.5 45.4 55.4 90.8 61.7 49.6
FrameField [29] 38.3 67.3 39.8 49.0 78.1 53.4 43.0
HiT (ours) 50.5 86.1 56.6 60.6 91.2 71.0 55.1

TABLE IV
RESULTS ON THE INRIA POLYGONIZED DATASET UNDER THE POLYGONAL
METRIC. “N RATIO (=1)” DENOTES THAT THE PERFORMANCE IS BETTER

WHEN THE N RATIO IS CLOSER TO 1. THE BEST RESULTS ARE MARKED IN
BOLD.

Method C-IoU ↑ MTA ↓ N ratio (=1)
PolyMapper [24] 41.5 34.4 1.6
FrameField [29] 49.4 32.4 2.1
HiT (ours) 64.5 33.2 0.8

ization results generated by our approach and the comparison
methods for qualitative comparison. HiT can successfully
extract all polygonal buildings with high quality, including
buildings of different sizes, appearances, and shapes.

Compared with FrameField, HiT predicts more precise
vertices regarding number and position. While FrameField
can predict all buildings, it predicts many redundant ver-
tices, which is not suitable for real-world applications. In
addition, PolyWorld extracts polygonal buildings in a down-
top pathway, resulting in error vertex detection or insufficient
vertices. Although both HiT and PolyMapper represent build-
ing mapping as a vertex sequence prediction task, HiT can
better handle occlusions due to predicting serialized vertices
simultaneously by the polygon prediction head. Moreover, the
designed hierarchical attention mechanism embeds geometric
information into the building feature map so that HiT can deal
with buildings under complex scenes. Besides, the introduced
polygon head exploits the supervisions from vertex, edge, and
polygon, leading to more robustness and generalization. The
qualitative results further demonstrate the superiority of HiT.
(2) Results on Inria Polygonized dataset.

In this subsection, we compare HiT on the Inria Polygonized
dataset with Mask RCNN [37], PANet [69], PolyMapper [24],
and FrameField [29] under the instance segmentation and
polygonal metrics.
Quantitative Evaluation. Quantitative results are reported in
Table III and IV from different methods under two metrics.
For instance segmentation, our HiT has improved AP and
AR on all the indicators shown in Table III. Compared with
Mask RCNN, HiT achieves 50.5% AP (+10.0%), 60.6% AR
(+9.1%), and 55.1% F1 (+10.1%), comprehensively indicating
that HiT can generate highly accurate buildings. Since HiT is
similar to Mask RCNN in the pipeline, the high performance
of HiT demonstrates the effectiveness of the designed polygon
prediction head. On the other hand, our HiT has improved
the AP and AR scores by +5.6% and +5.2% compared with
PolyMapper, respectively. In addition, the F1 score is +5.5%
higher than the SOTA polygonal building extraction method,
as shown in Table III. Specifically, the AP75 and AR75

TABLE V
MODEL COMPUTATIONAL COMPLEXITY. M AND G DENOTE MILLION AND

GILLION, RESPECTIVELY.

Method #Params (M) ↓ FLOPs (G) ↓
Mask RCNN [37] 43.8 114.7

PANet [69] 47.7 123.1
PolyMapper [24] 53.8 717.6
FrameField [29] 76.7 204.3
PolyWorld [26] 39.4 448.3

HiT (ours) 47.4 145.3

scores of the proposed HiT have outperformed the polygonal
segmentation methods by +11.2% and +9.3%, respectively.
These high improvements indicate that HiT generates building
instances with high precision and recall.

Table IV reports the polygonal evaluation from different
polygonal building extraction methods. We can see that HiT
significantly increases performances than comparison methods
on all indicators. HiT detects buildings with more accurate
vertices than other methods on the N ratio, but FrameField
generates many more vertices with a large N ratio. Moreover,
our method has significantly improved the C-IoU score by
+15.1%, illustrating that our method has better balanced
building segmentation and geometric complexity.

The quantitative results on the Inria Polygonized dataset
under different metrics have further proved that our model
generates polygonal buildings with more accurate segmenta-
tion masks and precise polygonal structures.
Qualitative Comparison. We show some qualitative results
from our approach and comparison methods in Figure 8. Com-
pared with other methods, HiT extracts more accurate polyg-
onal buildings of different sizes, appearances, and shapes.
Moreover, HiT is more robust in dealing with images with
complex scenes by using a transformer-based structure to
predict the vertex sequence simultaneously. The visualization
results consistently demonstrate the superiority of HiT.
(3) Discussion.

In this section, we evaluate model complexity among com-
parison methods and then discuss performance in terms of
model structure, complexity, accuracy and robustness. For the
model complexity, we calculate model parameters (#Params
(M)) and floating point operations (FLOPs (G)) by testing
an image with a resolution of 512 × 512 on 1 GPU for all
comparison methods. As reported in Table V, our approach has
lower #Params and higher FLOPs than instance segmentation
methods since HiT directly generates polygonal buildings
rather raster building masks. Compared with polygonal build-
ing mapping, our model has much lower parameters, except
PolyWorld [26], and lower FLOPs than comparison methods,
demonstrating our method can effectively extract polygonal
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Fig. 8. Qualitative results on the Inria Polygonized dataset. The proposed HiT can better extract buildings in dense areas. Zoom in for a cleaner view.
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Fig. 9. Model complexity and F1 score comparison among different methods.
The floating point operations (FLOPs (G)) is denoted by the radius of the
circle.

buildings. Figure 9 shows comprehensive comparison between
complexity and accuracy (F1 score). We use the radius of the
circle to denote the floating point operations (FLOPs (G)). We
can see that HiT can accurately extract polygonal buildings
with lower #Params and FLOPs. In addition, we discuss the
model robustness using the CrowdAI dataset, which encom-
passes large-scale buildings across diverse regions, including
urban, suburban, and rural landscapes. Quantitative results in
Tables I and II reveal that HiT consistently achieves high
performance and robustness compared to alternative methods.
As depicted in Figures 6 and 7, HiT accurately delineates
building polygons for sparse and dense buildings. HiT exhibits
acceptable proficiency in handling occlusions or shadows,
demonstrating its robustness.

HiT is built on a insightful perspective that a building
polygon can be effectively formulated as a bidirectional ver-
tex sequence. Hence, a simple polygon head is designed
for serialized vertex prediction. The polygon head combine
attention with convolution operations to encoding building
features with rich geometric and semantic information in a
hierarchical manner. Moreover, a bidirectional polygon loss
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TABLE VI
RESULTS FOR DIFFERENT ENCODING MECHANISMS IN THE POLYGON HEAD ON CROWDAI-S DATASET UNDER THE INSTANCE SEGMENTATION METRIC.

THE BEST RESULTS ARE MARKED IN BOLD.

Method AP ↑ AP50 ↑ AP75 ↑ AR ↑ AR50 ↑ AR75 ↑ F1 ↑
Baseline 31.1 64.1 27.5 44.3 78.4 45.9 36.5
(a) Original 36.6 72.3 34.4 48.5 82.4 51.8 41.7
(b) Vertex-enhanced 34.0 68.9 30.9 46.4 80.4 48.8 39.2
(c) Edge-enhanced 31.7 65.5 27.9 44.7 78.9 46.3 37.1
(d) Vertex-edge-enhanced 37.5 74.1 35.7 48.7 82.9 52.1 42.4
(e) Vertex-wise 32.0 66.4 28.3 45.1 79.2 47.0 37.4
(f) Edge-wise 33.7 68.3 30.6 46.4 80.2 48.9 39.0
(g) Vertex-edge-wise 36.6 72.6 34.7 48.2 82.4 51.6 41.6
(h) Hierarchical (ours) 38.5 75.3 37.6 49.3 83.5 53.2 43.2

guide the model to pay more attention on vertex positions and
relationships, rather than the clockwise or counterclockwise
orientation of the vertex sequence. Consequently, HiT has
greater flexibility in polygonal building mapping.

D. Ablation Study

Our method designs a transformer-based polygon predic-
tion head to extract building serialized vertices parallel with
building classification and building bounding box regression
by a two-stage detection framework. In the polygon prediction
head, the encoder with the hierarchical attention operation is
proposed to encode building feature maps with geometric and
semantic information. The designed polygon prediction head
is optimized using the serialized vertices prediction loss joint
with the vertex and edge prediction loss. In this subsection,
we perform ablation studies on the CrowdAI dataset to further
analyze the effectiveness of the details of our approach,
including the encoding mechanism, the decoding setting, and
the training strategy. In the ablation experiments, we remove
the encoder from the polygon prediction head and train the
modified model on the small version of the CrowdAI dataset
(CrowdAI-S), which is used as the baseline.
(1) Encoding mechanism. The encoder of the polygon head
plays a significant role in the serialized vertex prediction. In
the encoding ablation experiments, we conduct eight different
encoding mechanisms and remove the encoder from the poly-
gon prediction head as a baseline. Figure 10 shows different
encoding methods discussed in the following.

(a) The original encoding mechanism. The original encod-
ing manner uses an element-wise self-attention operation to
obtain the relationship from the input sequence. As shown in
Figure 10(a), the flattened building feature map is processed
through N identical layers with self-attention and FFN opera-
tions.

(b) The vertex-enhanced mechanism. We use convolutional
operations to get a vertex feature map shown in Figure 10(b).
Then, the building and vertex feature maps are concatenated
to enhance vertex information.

(c) The edge-enhanced mechanism. In Figure 10(c), the
edge-enhanced encoding fashion is similar to the vertex-
enhanced encoding, which can introduce edge information for
serialized vertex prediction.

(d) The vertex-edge-enhanced mechanism. This encoding
method obtains the vertex and edge features separately and
then concatenates with the building feature, evaluating a joint
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Fig. 10. Illustration of the vertex-level and the edge-level attention operations.
The vertex-level and the edge-level attention replace the original self-attention
mechanism to encode the building feature map, avoiding the complexity and
speeding up the convergence speed by introducing the geometric information
in terms of vertex and edge levels.

enhanced encoding in vertex and edge levels shown in Figure
10(d).

(e) The vertex-wise attention mechanism. We formulate the
building vertex probabilities as attention weights and multiply
them with the building feature, enhancing vertex information
in the building feature. Besides, the short-cut connection and
layer normalization are used to get the building embedding,
as described in Figure 10(e).

(f) The edge-wise attention mechanism. Like vertex-wise
attention, the edge-wise attention mechanism multiplies edge
prediction probabilities with the building feature, followed by
short-cut connection and layer normalization operations.

(g) The vertex-edge-wise attention. We simultaneously ex-
ploit vertex-wise and edge-wise attention products to enhance
the building feature map, as shown in Figure 10(g).

(h) The hierarchical attention mechanism. Motivated by the
original encoding mode, the hierarchical attention mechanism
replaces the self-attention operation with vertex-wise and
edge-wise attentions due to the sparsity of serialized vertices
in the building feature map B.

As shown in Table VI, the hierarchical attention mechanism
significantly improves all the evaluation metrics compared
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with other encoding methods. We can see that encoding
methods in concatenation and multiplication manners improve
performance in all the indicators and show comparable perfor-
mance to the original encoding method, proving that geometric
information and the original encoding pipeline are effective in
feature encoding. Motivated by this observation, we replace
self-attention with hierarchical attention to introduce geomet-
ric information in building embeddings.
(2) Decoding setting. The polygon head uses N identical
decoder blocks to predict serialized vertices simultaneously.
In each decoder block, the multi-head self-attention operation
encodes the relationship among all the vertex queries. In this
ablation experiment, we test head number H and block number
N to select the optimal hyper-parameters. Finally, we can
observe from Table VII that optimal hyper-parameters are set
as H=4 and N=8.

TABLE VII
RESULTS FOR DIFFERENT HYPER-PARAMETERS IN THE DECODER OF THE

POLYGON HEAD. H AND N REPRESENT HEAD NUMBER AND BLOCK
NUMBER. THE BEST RESULT IS MARKED IN BOLD.

H=1 H=2 H=4 H=8

AP AP50 AP AP50 AP AP50 AP AP50

N=1 31.1 65.5 33.4 68.6 35.3 72.3 35.8 72.5
N=2 33.1 67.8 34.9 70.6 32.8 67.0 36.9 73.3
N=4 31.4 65.9 31.9 67.6 34.0 68.3 33.4 67.8
N=6 33.0 67.4 34.3 69.3 35.8 71.6 33.4 67.9
N=8 34.4 70.4 37.1 73.8 38.5 75.3 37.3 73.2

(3) Training strategy. HiT is jointly trained by building clas-
sification, bounding box regression, and polygon prediction
losses. In this ablation study, we select the optimal weighting
coefficients λcls, λbbox, and λpoly to balance different modules.
In Table VIII, the training objective is optimal when weighting
coefficients are all set to 1.0.

TABLE VIII
RESULTS FOR WEIGHTING COEFFICIENTS λcls , λbbox , AND λpoly

SELECTION IN THE JOINT TRAINING. THE BEST RESULT IS MARKED IN
BOLD.

λcls λbbox λpoly AP AP50 AR AR50

1.0 1.0 0.01 31.9 64.6 44.6 76.0
1.0 1.0 0.1 34.3 69.1 46.6 79.4
10.0 10.0 0.1 32.1 65.3 44.7 76.0
10.0 10.0 1.0 34.3 69.1 46.8 79.3
1.0 1.0 1.0 38.5 75.3 49.3 83.5

V. CONCLUSION

We have presented HiT for automatically building mapping
from remote sensing images. In this paper, we represent a
building with serialized vertices, which can be formulated
as a bidirectional vertex sequence. Based on this new ob-
servation, we apply a hierarchical transformer-based structure
to predict serialized vertices. In the hierarchical transformer,
we combine the CNN operation and transformer structure to
embed semantic and geometry information, obtaining more
effective building representations and capturing better building
boundaries and corners. Moreover, we introduce a novel
bidirectional polygon loss with bidirectional properties to train
HiT end-to-endly. Finally, our extensive experiments illustrate

that HiT significantly outperforms state-of-the-art methods,
demonstrating its superiority.
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