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Abstract—Recently, remote sensing image captioning has
gained significant attention in the remote sensing community.
Due to the significant differences in spatial resolution of remote
sensing images, existing methods in this field have predominantly
concentrated on the fine-grained extraction of remote sensing
image features, but they cannot effectively handle the semantic
consistency between visual features and textual features. To effi-
ciently align the image-text, we propose a novel two-stage vision-
language pre-training-based approach to bootstrap interactive
image-text alignment for remote sensing image captioning, called
BITA, which relies on the design of a lightweight interactive
Fourier Transformer to better align remote sensing image-text
features. The Fourier layer in the interactive Fourier Transformer
is capable of extracting multi-scale features of remote sensing im-
ages in the frequency domain, thereby reducing the redundancy
of remote sensing visual features. Specifically, the first stage
involves preliminary alignment through image-text contrastive
learning, which aligns the learned multi-scale remote sensing
features from the interactive Fourier Transformer with textual
features. In the second stage, the interactive Fourier Transformer
connects the frozen image encoder with a large language model.
Then, prefix causal language modeling is utilized to guide the
text generation process using visual features. Ultimately, across
the UCM-caption, RSICD, and NWPU-caption datasets, the
experimental results clearly demonstrate that BITA outperforms
other advanced comparative approaches. The code is available
at https://github.com/yangcong356/BITA.

Index Terms—Fourier Transformer, vision-language pre-
training, multimodal information alignment, remote sensing im-
age captioning

I. INTRODUCTION

EMOTE sensing image captioning (RSIC) is a complex

task that revolves around enabling machine learning
models to accurately comprehend and depict various contex-
tual objects within remote sensing images using appropriate
vocabulary [10]. In contrast to other remote sensing tasks
such as image classification [2]-[7] or object detection [&],
[9], RSIC stands apart; its objective is not merely to predict
isolated labels or words, but rather to generate meaningful and
comprehensive sentences that describe the entirety of a remote
sensing image. Due to its significant potential applications in
areas like smart city development and military intelligence [1],
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RSIC is becoming increasingly appealing within the field of
remote sensing.

Recent works [15], [16], [19] have yielded significant
improvements in captioning performance on the RSIC task.
Zhang et al. [12] employed convolutional neural networks to
detect major objects in remote sensing images, subsequently
utilizing a recurrent neural network to generate natural lan-
guage descriptions for the initially detected targets. Wang et
al. [14] utilized the Mahalanobis matrix to measure the differ-
ence between visual features and textual features to improve
captioning results. Due to prior work neglecting the structured
spatial relations of semantic content in remote sensing im-
ages, Zhao et al. [13] proposed a structured attention-based
approach that employs pixel-level segmentation masks to guide
the caption generation process, enabling better generation
of accurate and concise descriptions. While these advanced
methods have improved the accuracy of caption generation,
they overlook bridging the modality gap between visual and
textual information, resulting in generated descriptive sen-
tences lacking semantic coherence [10]. The modality gap is
manifested as the image-text alignment issue, which involves
matching specific objects within remote sensing images to
their corresponding proper nouns in the generated sentences.

Due to the capability of reducing the modality gap, the
vision-language pre-training (VLP) paradigm has gained in-
creasing attention in multimodal understanding and generation
tasks [51], [59], [61]. The goal of VLP is to integrate the
robust representations and reasoning capabilities of both visual
models and large language models (LLMs, such as GPT-3
[28], TS [25], OPT [26], LLaMA [27], etc.), enabling effective
learning from multimodal data. Although the clear capability
of the VLP paradigm to bridge multi-modal discrepancies is
undeniable, the multi-scale characteristic of remote sensing
images presents a significant challenge in the development
path for VLP in the remote sensing field. This is because the
multi-scale characteristic of remote sensing images primarily
manifests as significant variance in the ground sampling dis-
tance (reflecting the spatial resolution of the remote sensing
sensor) among the images. This variance can affect the feature
representations of the same object, thereby increasing the
modality gap between visual information and textual infor-
mation [36].

To address the negative effects caused by the multi-scale
characteristics of remote sensing images and the multimodal
gap between image and text, this paper proposes an inter-
active visual-textual alignment method for remote sensing
image captioning, named BITA. a novel lightweight Interactive
Fourier Transformer (IFT) module is designed to guide the
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alignment between images and texts during a two-stage pre-
training process. The IFT module represents a lightweight
encoder-only Transformer that makes use of a set of trainable
embeddings for extracting valuable visual features from the
frozen image encoder. Moreover, the IFT module serves as
an information-filtering component between the frozen image
encoder and the frozen LLM. It accomplishes this by learning
image-text alignment through contrastive learning, enabling it
to understand the matching relationships between image-text
pairs. The learned useful visual features, then, are selected as
visual prompt inputs for the LLM, thus guiding the language
model to produce the description. In the first pre-training stage,
we employ image-text contrastive learning [33] to constrain
the IFT module to learn the most relevant and valuable
visual representations that are closely associated with the text.
In the second pre-training stage, we concatenate the visual
features learned by IFT with the encoded textual features. This
combined representation is then input into the LLM, utiliz-
ing language modeling learning [34] to guide the generative
learning of visual-to-language. Throughout this process, we
ensure that IFT remains trainable, allowing the whole model
to establish a causal reasoning relationship between visual and
textual features.

Overall, the main contributions of this paper can be sum-
marized in the following three aspects:

1) We introduce the VLP paradigm into the RSIC task and
propose a novel VLP model specifically designed for
RSIC. By utilizing the first-stage pre-training process
constrained by image-text contrastive learning and the
second-stage pre-training process guided by language
modeling, BITA is capable of acquiring robust visual
features, achieving visual-semantic alignment of objects
in remote sensing image-text pairs.

2) We devise an IFT module, which acts as an intermediary
between the frozen visual encoder and the frozen LLM.
This module employs a parameter-free Fourier transform
to encode image and text information, reducing the
model’s parameter. Moreover, it efficiently learns the
multi-scale features of remote sensing images in the
frequency domain.

II. RELATED WORK
A. Remote Sensing Image Captioning

The current prevailing methods for RSIC all adopt a uni-
fied encoder-decoder framework [11], [13], [17]-[20]. This
framework typically uses convolutional neural networks like
ResNet, VGG, and GoogleNet as encoders to extract deep
semantic visual features from remote sensing images. Mean-
while, decoders often use recurrent neural networks to trans-
late these features into corresponding sentence descriptions.
Furthermore, there are also a few studies that utilize Trans-
formers [22], [23] and support vector machines (SVM) [21]
as decoders in RSIC tasks.

Shi et al. [I] were the pioneers in investigating image
captioning in the field of remote sensing. They pointed out
that the main challenge in RSIC is that models need to not
only capture a variety of objects at different scales but also

express their attributes and interaction states. Wang et al.
[17] criticized the encoder-decoder architecture for lacking in-
terpretability. Consequently, they introduced a word-sentence
framework composed of a word generator and a sentence
generator. The former extracted attribute information from
significant objects in remote sensing images, and the latter
then assembled this information into syntactically correct and
coherent sentences. Considering the presence of multi-scale
characteristics in remote sensing images, Wang et al. [36]
introduced a two-stage multi-scale structural representation
method. This approach boosted the model’s object differen-
tiation ability through multi-level CNN feature interactions,
increasing description accuracy. Li et al. [37] proposed a
recurrent attention and semantic gate (RASG) framework
to interact with both image content and sentence, which is
devised to extract and understand effective information from
both the complex content of remote sensing images and textual
information.

Due to the remarkable success of attention mechanisms in
both the CV and NLP domains, there have been plenty of
attention-based methods in the field of RSIC as well. Wang et
al. [38] proposed an attention-based global-local captioning
model (GLCM) to obtain global-local visual feature repre-
sentation. Additionally, GLCM employed a similarity-based
approach to measure the relationships between all generated
words and their associations with the most relevant local visual
features. Cheng et al. [70] proposed a multilevel and contextual
attention network (MLCA-Net) that adaptively aggregates im-
age features from specific spatial regions and scales, while also
incorporating a contextual attention module to explore latent
context. Zhang et al. [39] proposed a global visual feature-
guided attention (GVFGA) mechanism and a linguistic state-
guided attention (LSGA) mechanism for RSIC. The former
was utilized to filter out redundant feature components from
the fused image features, ensuring more prominent visual
features. The latter enhanced the fusion of visual and textual
features and eliminated irrelevant information.

However, these encoder-decoder-based approaches primar-
ily leverage attention mechanisms and multi-scale aggregation
modules to unearth complex spatial relationships and multi-
scale information of objects within remote sensing images,
without considering whether the alignment between image and
text is achieved.

B. Vision-Language Pre-training

Recently, the VLP paradigm has gained remarkable perfor-
mance in vision-language understanding and generation tasks,
such as visual question answering (VQA) [60] and natural
image captioning (NIP) [62], etc. Based on whether the model
can be pre-trained in an end-to-end manner, VLP can be
categorized into two approaches: end-to-end pre-training and
two-stage pre-training.

The end-to-end pre-training approach is an earlier VLP
paradigm. In this kind of method, the initial step involves
using a pre-trained object detector (such as a pre-trained
Faster-RCNN model [40]) to capture image region features,
which are then fed into a cross-modal decoder to generate
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image captions. VILBERT [41] and LXMERT [42] both ex-
tracted image region features and subsequently employed a
co-attentional Transformer extended from the popular BERT
[43] architecture for multimodal fusion. Unicoder-VL [44]
employed a merged attention fusion module, which inputs both
image region and text features into a universal Transformer
encoder. Moreover, masked language modeling, masked object
classification, and visual-linguistic matching pre-training tasks
were utilized to learn context-aware representations. The cru-
cial role of visual features for image-text semantic alignments
was showcased by Oscar [45] and VinVL [46]: Oscar used
detected image object tags as an anchor point to simplify
alignment learning, while VinVL employed a more robust
object detector based on Oscar for feature extraction.

The two-stage pre-training approach is generally an end-to-
end method that utilizes either CNNs or a vision Transformer
[47] to extract image grid/patch embeddings. [49] proposed
Pixel-BERT, a unified end-to-end framework with a CNN-
based visual encoder and multimodal Transformer, which is
capable of aligning semantic connections between image pix-
els and text. PureT [48] utilized a Swin-Transformer to extract
grid-level features and captured the intra-relationship between
image and text by adding a pre-fusion process. Due to the
robust representation and inference ability of visual foundation
models (VFMs) and LLMs, Flamingo [52], leveraging large
pre-trained vision-only and language-only models, achieved
few-shot learning capabilities by aligning arbitrary interleaved
sequences of visual and textual data. The primary challenge
when employing a fixed LLM is to align visual features with
the textual context [29]. BLIP-2 has demonstrated exceptional
performance [29] for vision-language understanding and gen-
eration tasks. Similar to Flamingo, BLIP-2 adopted a pre-
trained frozen image encoder and a frozen LLM to initiate
the visual-language pre-training process. Additionally, BLIP-
2 also constructed a query Transformer (Q-Former) to bridge
the modality gap, and this module plays a role in both stages of
the two-stage pre-training process. Nevertheless, the Q-Former
is completely based on BERT, which causes the Q-Former to
take more time when interacting with image-text information.
Moreover, bidirectional attention in BERT suffers from a low-
rank issue that can weaken the model’s expressive capacity
[54], a drawback that Q-Former is likely to inherit.

III. METHODOLGY

Prior to delving into the method proposed in this article,
it’s essential to outline the foundational framework of VLP
and the Fourier transform that makes up the IFT module. We,
then, provide a detailed description of a VLP method proposed
for the RSIC task, known as BITA, which harvests the pow-
erful representation and reasoning capabilities of frozen pre-
trained VFMs and LLMs. To bridge the modality gap between
multimodal data and simultaneously capture multi-scale fea-
tures within remote sensing images, we propose a novel IFT
module in the two-stage pre-training process for image-text
alignment: (1) aligning image-text by representation and (2)
visual feature-guided language generative learning.

A. Vision-Language Pre-Training Setup

The VLP involves utilizing deep neural networks to extract
image and text features from pre-training dataset with N pairs
of image-text, denoted as D = {x%,xfl}gzl. Here, x¢ and
x! represent image and text samples respectively, forming
pairs. The deep neural networks consist of an image encoder
fo and a text encoder f,. These encoders are responsible
for encoding the image and text (from the image-text pairs
{xfl,xfl}gzl) into respective embeddings: z¢ = fy (x9) for
image embedding and z!, = f, (x!,) for text embedding. For
the image captioning task, the image and text embedding are
aligned through a predefined pre-training task. These learned
visual-textual semantic representations are then fed into a

decoder fy, to generate the desired text output y:

y=fo ([fo (x%) . fs (x5)]) (1)

where [- - -] represents tensor concatenation.

B. Discrete Fourier Transform

The most crucial component in building the IFT module is
the Fourier transform, which plays a significant role in digital
signal processing. For the sake of simplicity, let’s start by
introducing the 1-dimensional discrete Fourier transform (1D
DFT). Given a sequence {X,,} of length m € [0, M — 1], the
formula for the 1D DFT that transforms this sequence into the
frequency domain can be represented as follows:

0<k<M-1, 2)

for each k € [0, M — 1], the DFT generates a new repre-
sentation xj, which is the sum of all original input tokens
Xm. DFT finds widespread application in signal processing
algorithms for two main reasons: (1) Both the input and output
of DFT are discrete, making them computationally manageable
for computers; (2) Efficient algorithms exist for computing
DFT, namely the Fast Fourier Transform (FFT) [53]. FFT
algorithm leverages the symmetry and periodicity of DFT
matrix Wy, = fe_i(ﬁ)mk / VM ) to reduce the complexity

of computing the DFT from O (M?) to O (MlogM) on
graphics processing units (GPUs) [35]. Additionally, the DFT
can be extended to handle 2D signals as well. The 2D DFT
can be thought of as performing alternating 1D DFT along the
two dimensions of a 2D sequence. Since the input 2D sequence
exhibits conjugate symmetry, the FFT algorithm can also be
applied to 2D DFT to enhance computational efficiency.

C. Model Architecture

Replacing the self-attention layers in the Transformer with
a standard Fourier transform can help reduce the number
of network parameters, while still maintaining model per-
formance approximately unchanged [30], [35]. Furthermore,
the Fourier transform can decompose the input image into
different frequency components, which can reflect the multi-
scale features of the input image [31], [32]. Inspired by
these, we construct a lightweight and trainable IFT module
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Fig. 1. The overall framework for the first stage of BITA’s image-text representation learning. The learnable visual prompts are input into the Fourier-based
image Transformer (left side of the Interactive Fourier Transformer) to interact with the features obtained from the frozen image encoder, capturing the most
useful visual features. The original textual information is input into the Fourier-based text Transformer (right side of the Interactive Fourier Transformer) for
text feature extraction. L represents the number of layers in these Transformers. Finally, the extracted most useful visual features and textual features undergo
image-text contrastive learning. The image-text contrastive learning is to minimize the distance between positive image-text pairs and increase the distance
between negative image-text pairs, to achieve alignment of image-text features.

using a parameter-free Fourier transform and a cross-attention
mechanism. The IFT facilitates image-text alignment between
the frozen image encoder and the frozen LLM. As shown
in Fig. 1, the IFT comprises two sub-modules with shared
parameters: Fourier-based image Transformer fs and Fourier-
based text Transformer f,. The former module is used to
interact with the features zJ obtained from the image encoder
and the learnable visual prompt z,, while the latter module
is employed to process the raw textual information x!,. In
both of these sub-modules, the most critical aspect is the
construction of the Fourier layer. Specifically, the Fourier layer
employs a 2D DFT to process input embedding, with one 1D
DFT operating along the sequence length dimension F., and
another 1D DFT operating along the hidden dimension F,:

Zv/ = ]:seql (]:h (Zv)) 5
/

2 = Fou (73 ().
where z,’ and z!’ represent the features after processing
through the Fourier layer, respectively. Notably, to avoid
altering other components of the model, we retain only the
real part of the Fourier-transformed outputs, comprising all
frequency information of the signal. As image and text data
are discrete, sparse, and non-periodic, phase information is
not as crucial. Furthermore, the model incorporates additional
linear layers and residual connections, which can mitigate the
potential loss caused by discarding phase information [30].
For the Fourier-based image Transformer, we generate 32
learnable visual prompt embeddings, serving as inputs to the
Fourier-based image Transformer. This configuration allows
the Fourier-based image Transformer module to extract a
consistent number of output features from the image encoder,
regardless of the initial input image’s resolution. The visual
prompt embeddings z,’ after the Fourier layer can interact
with the visual features extracted from the frozen image

3)

encoder through cross-attention (CA) layers, achieving an
efficient lower-dimensional representation of visual features.
This process can be expressed by the following formula:

Q= ZUIWQvK = Z%WK,V = Z%WV,

CA(Q,K, V) = softmax (Q T) A% @
b ) m b
MultiHead(Q, K, V) = Concat(head , ..., head), )W, )

where head; = CA(Q;,K;, V),

where Q, K, andV represent Query, Key, and Value, respec-
tively, all obtained through linear mappings from relevant
features. +/dj; is the dimension of K, used to scale the
dot product to prevent it from becoming too large in high
dimensions. The softmax function is applied to each row to
normalize the weights into a valid probability distribution. In
the multi-head cross-attention mechanism (with h being the
number of heads), cross-attention operations are independently
and parallelly executed multiple times, and the final output is
concatenated (Concat) and obtained as the final output through
an additional linear mapping W©.

For the Fourier-based text Transformer, we first transform
the raw textual information into embeddings of text tokens.
Due to the Fourier layer’s role as a token mixing mechanism
[30], we then utilize the Fourier layer to capture dependencies
among these tokens. Additionally, the shared feed-forward
layers can serve as an interaction mechanism between the
learnable visual prompt embeddings and the text token em-
beddings. The process of the Fourier-based text Transformer
handling raw textual information can be represented as:

t t

7, = fo (x3) (6)
where z!, represents the output features of the Fourier-based
text Transformer.
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Fig. 2. The overall framework for the second stage of BITA’s visual feature-guided language generative learning. Learned visual prompt serves as prefixes
for text features, which are then inputted into a large language model for controlled text generation. L represents the number of layers in the LLM decoder,
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Fig. 3. An illustration of Image-Text Contrastive Learning and Prefix Causal
Language Modeling: (a) represents Image-Text Contrastive Learning, where
the pink squares represent positive image-text pairs, and the blank squares
represent negative image-text pairs; (b) represents Prefix Causal Language
Modeling, where the masked squares represent masked text tokens that can
attend to all visual prompts and the preceding text tokens.

To bridge the gap between images and texts, we employ
the image-text contrastive learning pre-training task [33] in the
first pre-training stage to involve the learned visual prompt and
text embeddings, which enforce alignment between images
and texts. Except for the Fourier layer, the other network
structure parameters of the two sub-modules in the IFT are
consistent with the parameters of BERT-base [43]. Therefore,
except for the cross-attention layers that are initialized ran-
domly, the rest of the trainable components in the IFT module
utilize pre-trained weights from BERT-base. The IFT module
encompasses a total of 171 million parameters.

D. Aligning Image-Text by Representation Learning

In the representation learning phase, we connect the IFT
module to the frozen image encoder and perform pre-training
using image-text pairs. Our objective is to train the IFT module
so that the visual prompts can learn to extract visual represen-
tations most relevant to the text. Inspired by approaches like
BLIP-2 [29] and CLIP [33], we find that optimizing solely
the image-text contrastive learning pre-training objective can
yield strong performance. This stands in contrast to BLIP-2,
which employs three different training objectives.

] is employed to mask out sequence information beyond the current time step, enhancing the model’s

Image-Text Contrastive Learning (ITC) aims to maximize
the mutual information between images and texts to learn
a joint representation. ITC achieves this by contrasting the
similarity of positive image-text pairs against the similarity
of negative pairs in a batch B. We align the output visual
prompt embeddings z, from the Fourier-based image Trans-
former with the representation z{, ¢ from the Fourier-based
text Transformer, where z{; ¢ corresponds to the embedding
of the [CLS] token. When computing the ITC loss, we employ

a bi-directional objective for image-text pairs:

(7

In Eq. 8, the contrastive loss from images to texts Lgo;
aligns the matched images in the batch with the given texts,
which can be written as:

Lirc = Lgat + Liog.

exp (ZZ:thCLSk/T)
B N
D q—0 €XP (Zgu ZtCqu / 7')

where k € P(u) = {k | k € B,x}, = x4}. 7 is the temperature
of the softmax for the normalization, and we set it to 0.07.

In Eq. 9, the contrastive loss from texts to images Lz
aligns the matched texts in the batch with the given images,
which can be written as:

®)

1
Lgor = Bz Z log
keP(u)

T
exp ((zéqu) Zu, /7')

e ( (s, ) 207

where k € P(q) = {k | k € B,x] =x.}. The value of 7 is
set to be the same as in Eq. 8. Eventually, we use Fig. 3(a) to
visually illustrate the computational concept of bi-directional
ITC.

€))

1
£t2g = —E Z log
keP(q)

E. Visual Feature-Guided Language Generative Learning

During the visual feature-guided language generative pre-
training phase, we connect the pre-trained IFT (along with
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the frozen image encoder) from the representation learning
stage to the frozen LLM to leverage the language generation
and reasoning capabilities of the LLM. As shown in Fig. 2,
we employ a fully connected layer to linearly project the
output visual prompt embeddings z, to the same dimension
as the input text embeddings z! for the LLM. To enable
the LLM to generate controlled text outputs conditioned on
the visual prompts extracted by the IFT, we concatenate the
projected visual prompt embeddings as a prefix to the input
text embeddings. We utilize a prefix causal language modeling
to control the interaction between visual prompt embeddings
and text embeddings. Since the IFT has been pre-trained,
it can extract visual representations that are relevant to text
features. This enables it to effectively serve as an information
bottleneck, conveying the most useful information to the LLM
while filtering out visually irrelevant details.

Prefix Causal Language Modeling (PCLM) is a kind of
language modeling that aims to generate text by conditioning
on a given image prefix, similar to the one used in UniLM
[34]. PCLM is similar to traditional causal language modeling
[50], where the model generates text one token at a time,
conditioned on the previous tokens. Due to the structure of
the IFT, direct interaction between the frozen image encoder
and the text tokens is not allowed. Therefore, it is essential
to utilize the PCLM, guiding text generative process by visual
features. As shown in Fig. 3(b), each text token embedding can
attend to all visual prompt embeddings and its previous text
token embeddings. Note that the visual prompt embeddings
added as prefixes do not contribute to the computation of the
PCLM loss which is still essentially a sequence-to-sequence
language modeling loss.

IV. EXPERIMENTS
A. Datasets Description

This subsection introduces three remote sensing image
captioning datasets, providing detailed descriptions based on
data volume and textual semantic richness. Performing remote
sensing image captioning tasks on the NWPU-caption dataset
is the most challenging among the three datasets. The detailed
descriptions are as follows:

1) The UCM-caption dataset [71], is an extension of the
UC Merced Land Use dataset, which comprises 2,100
aerial remote sensing images. The image resolution of
each image is 256 x 256, with a ground sampling
distance of 0.3 meters. The RGB three-band image
dataset was collected from the USGS National Map
Urban Area Imagery. Each image in the UCM-caption
dataset is annotated with five unique sentences, resulting
in a total of 10,500 annotations.

2) The RSICD dataset [69] is a large-scale aerial remote
sensing image captioning dataset, containing 10,921
remote sensing RGB three-band images collected from
Baidu Map, MapABC, Google Earth, and Tianditu. Each
image has a fixed size of 224 x 224 but varies from
ground sample distance. The RSICD dataset comprises
a total of 24,333 sentences. The annotations are de-
tailed as follows: 724 images are accompanied by five

distinct sentences; 1,495 images have descriptions in
four varying sentences; 2,182 images are matched with
three diverse sentences; 1,667 images are matched with
two unique sentences, and 4,853 images have a single
sentence. RSICD increased sentence diversity by ex-
panding the dataset to 54,605 sentences through random
duplication of existing sentences when fewer than five
distinct sentences were available for the same image.
3) The NWPU-caption dataset [70], is built upon the re-
mote sensing image classification dataset created by
Northwestern Polytechnical University, incorporating
31,500 aerial remote sensing images with RGB three-
band data and 157,500 sentences for remote sensing
image caption. Each image has a spatial resolution
of 256 x 256 pixels, with ground sampling distances
ranging from 0.2 to 30 meters. Additionally, to enhance
the semantic richness of sentences, each image is ac-
companied by five distinct textual descriptions.

B. Model Pre-Training Setup

1) Pre-Training Dataset: Similar to BLIP-2, in the pre-
training stage, we combine the UCM-caption, RSICD, and
NWPU-caption datasets for the two-stage pre-training. The
total number of training images is 57,933, which amounts to
289,665 image-text pairs. After being augmented by random
resized cropping and random horizontal flipping, the size of
the images is 224 x 224.

2) Frozen Image Encoder and LLM: For the frozen image
encoder, we explore the SOTA pre-training vision Transformer
model ViT-L/14 from CLIP! [33]. To avoid excessive normal-
ization from the final layer norm in pre-trained CLIP ViT-
L/14, we remove this layer and utilize the output features
from the second-to-last layer for image-text alignment. For the
frozen language model, we explore the unsupervised trained
decoder-only OPT 2.7B? language model [26], which is a
high-performance, versatile open-source LLM. Additionally,
the decoder-only OPT 2.7B language model is well-suited for
prompt-guided language understanding and generation tasks
[551, [56].

3) Pre-Training Hyperparameters: The following hyperpa-
rameters are used for both image-text representation learning
and language generative learning. We use AdamW optimizer
with 81 = 0.9, B2 = 0.98, and a weight decay of 0.05. For
the first 5000 training steps, we utilize linear learning rate
warmup, with an initial learning rate set to le — 6. Upon
reaching an initial learning rate of le — 4, we employ the
cosine learning rate decay and set the minimum decaying
learning rate to le — 5. We conduct pre-training for only
5 epochs in both the image-text representation learning and
language generative learning stages. We employ automatic
mixed precision and distributed data-parallel strategy for pre-
training on four NVIDIA GeForce RTX 4090 GPUs. For the
first-stage pre-training and second-stage pre-training, the batch
sizes per card were 96 and 64, respectively.

!Pre-trained weights for CLIP ViT-L/14
2Pre-trained weights for OPT 2.7B


https://storage.googleapis.com/sfr-vision-language-research/LAVIS/models/BLIP2/clip_vit_L.pth
https://huggingface.co/facebook/opt-2.7b
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4) Fine-Tuning Hyperparameters: After completing the
two-stage pre-training tasks, we perform fine-tuning on a
single dataset. We still employ the AdamW optimizer consis-
tent with the pre-training tasks and set the same parameters.
Similarly, we utilize linear learning rate warmup and cosine
learning rate decay, but with different parameter settings
compared to two-stage pre-training. We apply linear learning
rate warmup for the first 2000 fine-tuning steps, with an
initial learning rate of le — 8. Once the initial learning rate
reaches le — b, we proceed with cosine learning rate decay,
setting the minimum decayed learning rate to 0. Similarly,
during the fine-tuning stage, we also employ automatic mixed
precision and distributed data-parallel strategy. We set the
batch sizes for the training and validation steps as 64 and
16, respectively. Moreover, we set the maximum length of
the output sequences to the maximum token count in the
dataset itself. Through analysis, the maximum token counts
for UCM-caption, RSICD, and NWPU-caption datasets are
22, 34, and 50, respectively. To enhance the fault tolerance of
caption generation, we utilize the heuristic search algorithm
known as beam search. Based on prior research [13] and
common practices [48], [57], [58], we set the beam size to
5 to balance accuracy and search efficiency. As a result, the
model generates five candidate sentences and selects the best
among them.

C. Evaluation Metrics

To assess the model’s performance from various perspec-
tives, we selected five commonly used evaluation metrics for
image captioning tasks: BLEU [64], METEOR [65], ROUGE-
L [66], CIDEr [67], and SPICE [68]. These metrics were
calculated with the use of cocoapi’.

1) BLEU is a commonly used automatic evaluation met-
ric to measure the similarity between generated and
reference texts. It calculates a score by counting the
overlapping n-gram phrases (ranging from single words
to multiple words) between the generated and reference
texts and then combining exact and partial matches.

2) METEOR combines both exact and non-exact matching
criteria such as synonyms and stemming. METEOR uses
an external dictionary to help determine synonyms and
stemming, providing a more comprehensive assessment
of the quality of the generated text.

3) ROUGE_L is an evaluation metric used to measure
recall between generated and reference texts. It assesses
the similarity between generated and reference texts by
comparing the length of the longest common subse-
quence.

4) CIDEr is a metric used to evaluate image captioning
tasks, focusing on the diversity and consensus of the
generated descriptions. It calculates scores by comparing
word frequency statistics between the generated text
and several reference texts, emphasizing the consistency
between different reference texts.

5) SPICE is a metric used for evaluating image caption
generation tasks. Unlike traditional n-gram-based met-

3https://github.com/cocodataset/cocoapi

rics, SPICE attempts to capture sparse features in the
generated text, such as entities and relationships. It uses
semantic parse trees to measure the similarity between
generated and reference texts, providing better semantic
matching.

D. Baseline methods

In this section, we evaluate the performance of our proposed
method with five SOTA encoder-decoder-based methods and
explain our reasons for selecting these advanced methods.

1) PureT [48] utilizes Swin-Transformer to extract grid-
level features. A refining encoder captures relationships
within grid-level features, then a decoder generates cap-
tions word by word. The interaction between visual and
language features is enhanced by pooling grid features.
The integration of global features through a refining
encoder and decoder improves modeling capabilities.

2) BLIP-2 [29] is a visual-language pre-training approach
that employs a Q-Former structure inspired by BERT-
base for multimodal fusion. It utilizes three pre-training
proxy tasks to mitigate the modality gap between image
and text: image-text contrastive learning, image-text
matching, and image-grounded text generation.

3) Word Sentence [17] is a typical encoder-decoder frame-
work consisting of a word extractor and a sentence
generator. This method aims to extract significant words
from remote sensing images and form coherent sen-
tences, which decomposes RSIC into word classification
and sorting tasks, better aligning with human compre-
hension.

4) GVFGA+LSGA [39] provides innovative improvements
to the encoder and decoder parts respectively. GVFGA
integrates global and local visual features, using an
attention gate for enhanced saliency. A linguistic state
(LS) alleviates hidden state load by processing tex-
tual features, while LS-guided attention (LSGA) refines
fused visual-textual features, aided by an attention gate
to remove irrelevant information.

5) MLCA-Net [70] addresses scale inconsistency and cat-
egory uncertainty in multi-source remote sensing data.
Through multi-level and contextual attention modules,
MLCA-Net adaptively aggregates features for different
scales and latent context exploration. The LSTM-based
decoder aligns visual features and semantic descriptors
to reduce ambiguity.

6) GLCM [38] is an attention-based global-local captioning
model for RSIC. Global features convey overall visual
relevance to sentence words, while local features empha-
size individual word discrimination. GLCM leverages
both types of features for enhanced representation.

E. Comparative Experimental Results and Analysis

1) Quantitative Comparison: Table I, II, and III show the
quantitative results of various SOTA methods using multiple
evaluation metrics on the UCM-caption dataset, the RSICD
dataset, and the NWPU-caption dataset, respectively. It’s evi-
dent that BITA surpasses the other SOTA comparative methods


https://github.com/cocodataset/cocoapi
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TABLE I
QUANTITATIVE RESULTS OF THE SOTA METHODS ON THE UCM-CAPTION DATASET.
Params(M) | BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
PureT* (2022) [48] 220 85.73 80.20 75.62 71.29 46.86 82.01 349.00  47.94
BLIP-2* (2023) [29] 188 88.04 82.23 76.89 71.84 47.32 83.36 380.31 54.78
Word Sentence (2021) [17] 13 79.31 72.37 66.71 62.02 43.95 71.32 278.71 -
GVFGA+LSGA (2022) [39] - 83.19 76.67 71.03 65.96 44.36 78.45 33270  48.53
MLCA-Net (2022) [70] - 82.6 77.0 71.7 66.8 43.5 77.2 324.0 47.3
GLCM (2022) [38] 10 81.82 75.40 69.86 64.68 46.19 75.24 302.79 -
GLCM* (2022) [38] 10 65.68 59.31 53.33 48.22 36.11 59.04 189.76 30.16
BITA(Ours) 171 88.89 83.12 77.30 71.87 46.88 83.76 384.50  54.88
* represents our own best re-implemented results.
TABLE II
QUANTITATIVE RESULTS OF THE SOTA METHODS ON THE RSICD DATASET.
Params(M) | BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
PureT* (2022) [48] 220 77.05 65.75 56.63 49.19 37.66 67.41 275.56  48.87
BLIP-2* (2023) [29] 188 76.91 66.04 57.02 49.60 40.28 69.86 294.66  53.11
Word Sentence (2021) [17] 13 72.40 58.61 49.33 42.50 31.97 62.60 206.29 -
GVFGA+LSGA (2022) [39] - 67.79 56.00 47.81 41.65 32.85 59.29 260.12  46.83
MLCA-Net (2022) [70] - 75.7 63.4 53.9 46.1 35.1 64.6 235.6 44.4
GLCM 2022() [38] 10 77.67 64.92 56.42 49.37 36.27 67.79 254.91 -
GLCM* (2022) [38] 10 59.88 48.13 37.96 29.97 28.17 45.54 62.21 15.20
BITA(Ours) 171 77.38 66.54 57.65 50.36 41.99 71.74 304.53  54.79
* represents our own best re-implemented results.
TABLE 11
QUANTITATIVE RESULTS OF THE SOTA METHODS ON THE NWPU DATASET.
Params(M) | BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
PureT* (2022) [48] 220 88.82 80.31 73.30 67.50 42.32 75.84 195.12  27.43
BLIP-2* (2023) [29] 188 87.78 80.24 73.51 67.62 45.01 78.44 193.86 33.28
Word Sentence (2021) [17] 13 - - - - - - - -
GVFGA+LSGA (2022) [39] - - - - - - - - -
MLCA-Net (2022) [70] - 74.5 62.4 54.1 47.8 33.7 60.1 126.4 28.5
GLCM (2022) [38] 10 - - - - - - - -
GLCM* (2022) [38] 10 55.36 42.28 33.53 27.20 27.89 50.42 127.74 32.94
BITA(Ours) 171 88.54 80.70 73.76 67.60 45.27 78.53 197.04  33.65

* represents our own best re-implemented results.

in terms of performance. This is attributed to the capability of
the VLP paradigm to leverage the representative and reasoning
abilities of both VFMs and LLMs. Crucially, the proposed
IFT module plays a vital role in bridging the multimodal
gap between VMFs and LLMs. Hence, the proposed approach
can align image-text information while generating high-quality
image captions.

From the results obtained on the UCM-caption and RSICD
datasets, it is evident that methods utilizing CNN as a visual
feature extractor and LSTM as a text decoder (such as Word
Sentence, GVFGA+LSGA, MLCA-Net, and GLCM) perform
noticeably weaker across various metrics compared to methods
employing Transformer as both encoder and decoder (such as
PureT and BITA). Furthermore, the GVFGA+LSGA approach,
which integrates global and local visual features and incorpo-
rates a linguistic-state-guided attention mechanism for visual-
textual features, exhibits significant performance improvement
on RSICD. Additionally, the non-remote sensing method
PureT, which introduces interaction between visual and textual
features, also outperforms other state-of-the-art comparison
methods significantly across various metrics. This underscores
the importance of aligning visual-language features. Com-
pared to the second-best method, PureT, the proposed method

leverages the strong representation and reasoning capabilities
of VEMs and LLMs, together with a dedicated IFT module
designed to bridge the gap between visual and textual features.
As a result, BITA consistently outperforms PureT across a
range of metrics. In particular, our proposed approach demon-
strates superior performance in terms of word accuracy and
diversity, sentence structure coherence, and semantic consis-
tency. This highlights the effectiveness of the VLP paradigm
and the IFT module in feature extraction, text reasoning,
and image-text alignment, which together contribute to its
impressive results.

Furthermore, a similar phenomenon is evident in the
NWPU-caption dataset, where methods combining CNN with
LSTM exhibit noticeably weaker performance compared to
full Transformer-based approaches. The proposed method con-
tinues to lead other comparative methods across all evaluation
metrics. However, in contrast to UCM-caption and RSICD, all
methods experience a significant drop in evaluation metrics on
NWPU-caption. This is because each sentence in the NWPU-
caption dataset has a much larger word count than the other
two datasets, posing considerable challenges to word accuracy,
sentence structure coherence, and semantic consistency in the
generated text.
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GT: An white airplane is stopped
at the airport with some luggage
cars surrounded it.

GLCM: There is a big airplane
stopped at the airport.

PureT: A white airplane is stopped
at the airport.

BITA: An airplane is stopped at
the airport with some cars beside
it.

}1
P o
GT: Some green trees and several
buildings are around a playground.
GLCM: Many green trees are
around a playground with a row of
basketball fields near a playground.
PureT: A playground is sur-
rounded by many buildings.

BITA: Many buildings and green
trees are around a playground with
a basketball field in it.

GT: There are many roads and
neatly arranged houses and trees
and large lawns in densely popu-
lated areas.

GLCM: There are many roads of
different lengths in a dense residen-
tial area.

PureT: The dense residential is
next to the road.

BITA: There are many roads and
neatly arranged houses and trees in
densely populated areas.
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GT: Lots of boats docked neatly at
the harbor and only a few positions
are free.

GLCM: There is a piece of a
swimming pool beside it.

PureT: It is a piece of cropland.
BITA: Lots of boats docked neatly

at the harbor and some positions
are free.

GT: Three storage tanks are sur-
rounded by green meadow.
GLCM: Three white storage tanks
are near two storage tanks with
some green trees.

PureT: Two white storage tanks
are near several buildings and
green meadows.

BITA: Several storage tanks are
near meadows and green trees.

wl —

i NTETS -
GT: The dense mobile home park
has lots of neatly arranged mobile
homes and some roads go through
the mobile home park.
GLCM: There are many buildings
in the mobile home park beside the
mobile home park.
PureT: The mobile home park is
on the bare land next to the road.

BITA: The mobile home park has
some neatly arranged white mobile
homes and some roads go through
the mobile home park.

R L ; s .
GT: Many mobile homes arranged
neatly in the mobile home park and
some roads go through this area.
GLCM: Lots of mobile homes
with plants surrounded in the mo-
bile home park.

PureT: Many mobile homes ar-
ranged in lines in the mobile home
park.

BITA: Many mobile homes ar-
ranged haphazardly in the mobile
home park and some roads go
through this area.

GT: White waves in green ocean is
near yellow beach.
GLCM: White waves.

PureT: Some green trees are near
a piece of yellow beach.

BITA: Yellow beach is near a piece
of green ocean with white waves.

GT: A black palace with a dome
beside a white building.

GLCM: There are some green
trees and a church beside the
church.
PureT: The palace is surrounded
by trees.

BITA: The church with a cross-
shaped roof is on the open place
next to some trees.

GT: There are two tennis courts on
the lawn and surrounded by some
plants.

GLCM: There are two tennis
courts arranged neatly and sur-
rounded by some plants.

PureT: Two tennis courts arranged
neatly with a road beside.

BITA: There are two tennis courts
arranged neatly and surrounded by
some plants.

= S T
GT: Many buildings are in two
sides of a railway station.
GLCM: Some buildings and many
green trees are in two sides of a
railway station.
PureT: Some buildings are in two
sides of a railway station.

BITA: Many buildings are in two
sides of a railway station.

GT: There are large green forests
around the freeway and there are
many cars on the freeway.

GLCM: There are green lawns and
some bare land beside the freeway.

PureT: There are green belts along
the freeway with many green trees
around.

BITA: There are many green trees
around the freeway and there are
many cars on the freeway.

Fig. 4. Examples of captions generated by GLCM, PureT, and BITA across three datasets: the results for UCM-caption, RSICD, and NWPU-caption datasets
are shown in the first, second, and third rows, respectively. GT represents one of the five ground truth annotations from the original dataset.
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Fig. 5. Results of whether BITA uses data joint pre-training on UCM-caption
dataset.

2) Qualitative Comparison: Fig. 4 displays representative
image captions from three experimental datasets, as well as the
caption generation results from three methods: GLCM, PureT,
and BITA.

Comparing the caption generation results of GLCM, PureT,
and the proposed method, it is evident that the presented
method in this article outperforms the other two methods
in terms of word accuracy, sentence diversity, and semantic
consistency. Specifically, from the first row, second column
of Fig. 4, the proposed approach accurately describes the
entire image, while the other two methods provide incorrect
descriptions. In the bottom row, the first column of Fig. 4,
our proposed method provides a complete description of the
scene and uses the same expression as the ground truth, namely
the populated area. However, our approach provides fewer
descriptions of the colors and quantities of objects in the
image. For example, in Fig. 4, there is a lack of description
regarding the color of the airplane and the specific description
of the number of water tanks. In the description of the beach,
our approach accurately portrays the beach and waves, along
with their respective colors. Moreover, compared to other
contrasting methods, our approach exhibits greater diversity in
its descriptions. For mobile home, tennis court, railway station,
and freeway, our approach accurately describes the objects in
remote sensing images and their contextual information, with
the descriptions closely matching the ground truth.

F. Ablation Experiments

1) Impact of Multi-Dataset Joint Pre-Training: This sec-
tion primarily emphasizes the importance of conducting pre-
training tasks using all training image-text pairs from the
three caption datasets, referred to as joint data pre-training.
Figs. 5, 6, and 7 respectively depict the results of BITA
with joint data pre-training and non-joint data pre-training on
the UCM-caption, RSICD, and NWPU-caption datasets. Ob-
serving the results on the UCM-caption and RSICD datasets,
when joint data pre-training is utilized, there is a significant
improvement in BITA’s performance across metrics such as
word accuracy, diversity, sentence coherence, and semantic
consistency, especially for datasets with a smaller number of
samples. However, when dealing with datasets containing a
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Fig. 6. Results of whether BITA uses data joint pre-training on RSICD dataset.
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Fig. 7. Results of whether BITA uses data joint pre-training on NWPU-
caption dataset.

larger number of samples, joint data pre-training contributes
more to enhancing semantic consistency in BITA’s generated
text, with a relatively weaker improvement in word accuracy.
Notably, there is a slight drop in sentence coherence for the
generated text of our approach in this scenario.

Taking all aspects into consideration, joint data pre-training
has a more positive impact on the performance of BITA
with fewer samples, outweighing the performance suppression
effect on datasets with a larger sample count. As a result, we
select multi-dataset joint pre-training to enhance the model’s
performance on datasets with fewer samples.

2) Importance of Two-Stage Pre-Training: We conduct
experiments on the RSICD dataset to validate the importance
of the two-stage pre-training. In the first stage of pre-training,
we utilize the IFT module and the ITC loss to align image-
text representations. The second stage of pre-training involves
connecting the frozen visual encoder and the frozen LLM
using the IFT module. The process is guided by the PCLM
loss to enhance the model’s ability to generate text from visual
features.

As shown in Table IV, if the model does not undergo
the second pre-training stage, its performance is significantly
compromised, resulting in generated sentences lacking word
accuracy, sentence coherence, and semantic consistency. This
observation highlights the critical role of the PCLM-guided
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TABLE IV
EVALUATING THE IMPORTANCE OF TWO-STAGE PRE-TRAINING ON THE RSICD DATASET.
BLEU@! BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
BITA w/o s2 75.02 63.21 53.73 46.19 39.23 68.02 27785  50.74
BITA(Ours) 77.38 66.54 57.65 50.36 41.99 71.74 30453  54.79

”w/o s2” indicates the absence of the second pre-training stage.

TABLE V
EVALUATING THE LIGHTWEIGHT AND PERFORMANCE OF BITA ON THE RSICD DATASET.
Params(M) Time(s) | BLEU@1 BLEU@2 BLEU@3 BLEU@4 METEOR ROUGE-L CIDEr SPICE
BITA w/o IFT 188 0.7561 76.01 66.26 57.40 50.03 39.82 70.42 298.59 52.41
BITA(Ours) 171 0.7427 77.38 66.54 57.65 50.36 41.99 71.74 304.53  54.79

”w/o IFT” represents replacing the IFT module with the encoder from BERT-base.

second-stage pre-training in enhancing the text generation
capabilities of the proposed method.

3) Speed Performance of IFT: Given that the design of
the IFT structure is inspired by the BERT-base model, to
further validate the effectiveness of IFT, we replaced IFT
with the BERT-base structure (BITA w/o IFT). All the model
parameters and the pre-training time are measured in the first
training stage before the whole pre-training is completed to
evaluate the model performance. Compared to using self-
attention at each layer in BERT, the IFT module leverages
Fourier layers to efficiently extract effective visual features in
the frequency domain. It also employs cross-attention layers in
every BERT block to extract the most relevant and text-related
visual features.

As shown in the experimental results in Table V, BITA has
significantly fewer total trainable parameters and consumes
less time per iteration compared to "BITA w/o IFT”. Most
importantly, BITA outperforms "BITA w/o IFT” across all
evaluation metrics. This clearly demonstrates that our approach
is not only more lightweight than "BITA w/o IFT” but also
maintains or even slightly improves performance.

V. CONCLUSION

In this paper, we have introduced an efficient and powerful
two-stage vision-language pre-training method called BITA for
remote sensing image captioning tasks. In the first stage, an
interactive Fourier Transformer is designed to interact with
learnable visual prompts and visual features obtained from the
frozen image encoder. This facilitates the capture of the most
effective visual features using low-dimensional visual prompts.
Additionally, the interactive Fourier Transformer is capable
of extracting text features. Subsequently, we utilize image-
text contrastive learning to align visual prompts with text
features, minimizing the modality gap. In the second stage, the
interactive Fourier Transformer serves as a bridge connecting
the frozen visual encoder with the LLM, adopting prefix causal
language modeling to further enhance the model’s ability to
generate text from images. Furthermore, when compared to
other state-of-the-art methods, the proposed method consis-
tently demonstrates superior performance across three remote
sensing image captioning datasets.

Although BITA showcases a combination of lightweight
design and high performance, it’s worth noting that the two-
stage pre-training process can still be intricate. Therefore,

future research could explore the design of a single-stage pre-
training that maintains both efficiency and performance.
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