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Microseismic source imaging using
physics-informed neural networks with hard
constraints
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Abstract—Microseismic source imaging plays a significant role
in passive seismic monitoring. However, such a process is prone
to failure due to aliasing when dealing with sparsely measured
data. Thus, we propose a direct microseismic imaging framework
based on physics-informed neural networks (PINNs), which can
generate focused source images, even with very sparse recordings.
We use the PINNs to represent a multi-frequency wavefield
and then apply inverse Fourier transform to extract the source
image. To be more specific, we modify the representation of the
frequency-domain wavefield to inherently satisfy the boundary
conditions (the measured data on the surface) by means of a
hard constraint, which helps to avoid the difficulty in balancing
the data and PDE losses in PINNs. Furthermore, we propose the
causality loss implementation with respect to depth to enhance
the convergence of PINNs. The numerical experiments on the
Overthrust model show that the method can admit reliable and
accurate source imaging for single- or multiple- sources and
even in passive monitoring settings. Compared with the time-
reversal method, the results of the proposed method are consistent
with numerical methods but less noisy. Then, we further apply
our method to hydraulic fracturing monitoring field data, and
demonstrate that our method can correctly image the source with
fewer artifacts.

Index Terms—Microseismic source imaging, Physics-informed
neural networks, hard constraints, causality loss function

I. INTRODUCTION

ICROSEISMIC events location is the essential foun-

dation of passive seismic monitoring. The common
way to locate seismic events is based on the travel time
inversion [1]], which requires the time-consuming first arrival
travel time picking. The process of picking arrivals becomes
a challenge in low signal-to-noise data and in multiple-events
cases. What’s more, the resolution and accuracy of the source
locations via this type of method might be relatively low [2].
Directly making use of the full waveform information in the
seismograms can help us avoid such issues and allow for
higher resolution and accuracy in locating the microseismic
events. Kao and Shan [3|] proposed an imaging approach
based on summing the amplitudes of the measured data at
the corresponding estimated arrival times without the need
for phase picking, called the source scanning algorithm. It
is widely used in seismology, e.g. for detailed earthquake
rupture imaging [4]. Another type of method based on full
waveforms is time-reversal imaging [5]. Its key idea is to
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backpropagate the waveform recorded on the surface until
the energy is focused. [6] and [7] utilized the time reversal
imaging (TRI) to reverse the waveform in the time domain
for source locations. For this category of methods, the ac-
curacy of the location results is highly determined by the
imaging condition. In the past decade, many types of imaging
conditions, including the maximum energy imaging condition
(or the zero-lag cross-correlation imaging condition) [8], [9l,
the interferometric imaging condition for sparsely sampled
data [10], the deconvolution imaging condition [11]] and the
geometric mean imaging condition [[12] for higher resolution,
the maximum variance imaging condition [13]] and the grouped
seismic imaging condition [14], [15)] for noise-robust source
location, have been proposed to enhance waveform-based
location results. However, the accuracy for TRI is still an issue
in case of sparse and irregular observations. The other type
of waveform-based method is to invert the observed data for
a more accurate velocity model [16], [17], [18], [19]. These
methods require massive repeated wavefield computation, and
thus, they are costly. Besides, those grid-based methods rely on
the discretization of the spatial domain, which is not flexible
for irregular geometry and complex subsurface structures, and
the memory cost and precision depend on the grid resolution.

Thanks to recent advances in computing and algorithms,
machine learning has achieved a lot of success in many fields,
e.g., natural language processing, computer vision, and sci-
ence. Many computer-vision-based methods have been adapted
to microseismic source location tasks [20]], [21], [22], [23l],
[24], [25]. Most of these methods deal with source locations in
a supervised manner. That is to say, they train a neural network
on simulated data with labels (source locations) available
and then minimize the loss using the labels. However, the
generalization of these methods to field data is a challenge due
to the lack of a sufficiently diverse dataset [26]. Labels for the
field data are often attained using conventional methods and
human intervention, and thus, they are prone to errors. On the
other hand, purely data-driven methods, which do not require
labels, are an attractive alternative to the supervised approach.
One way to devise such an approach is by incorporating the
physics priors or specifically training the neural networks with
physics constraints.

Based on the universal function approximation theory [27],
neural networks can be utilized to represent functions like
the seismic wavefield, which is a key component of the
source location process using time reversal imaging. Thus, we
represent the seismic wavefield with a function of the spatial



coordinates and frequency, yielding significant flexibility of
the simulation in irregular domains and the case with a
complex governing equation, as well as a continuous solution
with fine details [28]], [29]. The governing equations for
seismic modeling, are used as a loss function, to optimize the
neural network using physics-informed neural networks (PINN
framework [30]]). PINNs have been used in seismic forward
modeling and inversion [29], [31], [32]], [33], [34], [35]. By
means of PINNs for source imaging, the subsurface velocity
information is well embedded into the neural network, and
it can image the source with irregular and sparse receivers.
As it is a mesh-free method, the precision of the source
location result theoretically depends only on the data without
the need for fine-grid discretization, even in dealing with
complex subsurface structures.

In this paper, we propose a novel direct microseismic
source imaging method by means of PINNs, in which the
source image is a snapshot of the time-domain wavefield. We
represent the wavefield as a function of the spatial coordinates
and frequency via a neural network (NN) and then train the NN
with the Helmholtz equation as a loss function. Specifically,
we incorporate the observed data on the surface (boundary
condition for the Helmholtz equation) into the wavefield via
the hard constraint and use the modified Helmholtz equation
as the loss function. Besides, inspired by the fact that the
information guiding the optimization of the NN parameters
is coming from the recorded data on the surface, we propose
to impose causality to the loss calculation along the depth
axis, yielding an ideal from-surface-down reconstruction of
the wavefield, which can improve the convergence speed and
accuracy. We will first demonstrate the effectiveness of the
proposed method via single- and multiple-passive sources
scenarios on the Overthrust model using sparsely sampled
data. We further test our proposed method on the Oklahoma
Arkoma Basin Hydraulic Fracturing data to highlight the
benefits and potential of the proposed method.

In summary, our main contributions are three-fold:

o We develop a direct source imaging framework based on
PINNs with hard constraints.

« To ensure a stable and reliable training process, we use
a reference frequency loss function incorporated in the
hard constraint implementation and impose causality on
the loss function with respect to depth.

o We evaluate the proposed method on the synthetic data
for two different cases, as well as field data, and achieve
reliable and less noisy source location results compared
with the time-reversal methods, demonstrating the poten-
tial of the method for even global event location.

We first introduce the proposed source imaging framework
and key concepts, including PINNs with hard constraints, ref-
erence frequency loss function, causality implementation, and
data fitting. To demonstrate the effectiveness of the proposed
method, Sections and present the numerical examples
and field tests. Finally, we discuss the potential of the approach
and its limitations in Section [V] and conclude in Section [VI

II. THEORY
A. Source imaging in the form of wavefield modeling

The source location imaging problem can be formulated
using frequency-domain wavefield modeling, which offers a
reduction of dimensionality compared to time-domain wave-
field modeling, but more importantly, it will allow us to
implement a causal loss function in the depth direction. The
wave equation in the frequency domain is described by the
Helmholtz equation and for a 2D acoustic isotropic medium,
it is, )

mu(:ﬁ, z,w) + Vu(z, z,w) = 0, (1)
along with the data boundary condition given by
u(z,z = 0,w) = D(z,w), (2)

where u(z,z,w) is the wavefield corresponding to the fre-
quency w and location (z,z2), v(z,2) is the velocity, V? is
the Laplacian operator, and D(z,w) is the frequency-domain
data obtained by applying Fast Fourier transform (FFT) to
the recorded data on the surface. We use Equations [l| and
[l to solve for the wavefield and then transform it to the time
domain in which the source image corresponds to a slice of the
time-domain wavefield where the energy focus is the highest.
With respect to the source imaging conditions, and for the
purpose of this paper, we visually evaluate snapshots of the
wavefield, and pick the image with the most focussed source
[8].

However, frequency domain modeling for irregular geom-
etry and high frequencies, where fine grids are needed, is
memory and computationally intensive. It also requires solving
for multi-frequencies. On the other hand, function learning, by
utilizing an NN, is a potential solution in view of its flexibility
to an irregular mesh and its instant inference speed. Thus, we
use PINNSs to represent the frequency-domain wavefield.

B. Physics-informed neural networks with hard constraints

In seismic wavefield modeling, physics-informed neural
networks (PINNs) can be used to find a neural network
function ®(x, z,w, @) with parameters 6 that maps the input
spatial coordinates and frequency to the value of the complex
wavefield that satisfies the Helmholtz equation. Using a vanilla
PINN often includes two loss terms for each of Equations [I]
and [2]to optimize one neural network. Balancing the contribu-
tions of these two terms using a weight affects the convergence
and accuracy of the solution. The hard constraints [36], [37]]
concept can alleviate this issue by modifying the representation
of the wavefield u(x, z,w) to a new form where the boundary
condition is inherently satisfied. Specifically, in this paper, we
propose to use the following form:

u(z, z,w) = D(z,w) + 2®(x, z,w, 0). 3)

Note that the zero-depth (2 = 0) frequency-domain wavefield,
in this case, is always equal to the recorded surface data
D(z,w) with regardless of the weights of the neural network
function ®. By means of the hard constraint, the governing
equations are reduced to a single equation given by inserting



Equation [3] into Equation [T] and 2] and thus, the loss function
of PINNSs is reduced to the mean square errors of the resulting
single equation. Thus, the loss function with hard constraints
can be written as follows:
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where N is the number of samples used for training, which
includes the samples with variable spatial coordinates (z¢, z*)
and angular frequencies w’, V, and V. are the gradient
operations with respect to x and z, respectively.
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C. A modified loss function

Recall that if we do the source imaging in the frequency
domain, then the wavefield belonging to multiple frequencies
is needed for the transformation to the time domain wavefield.
As shown in [38]], direct use of the PINN with the loss
(Equation ) would decrease the accuracy and convergence
speed. Similar to their implementation, we modify the loss
function with a single reference frequency loss by replacing
w with awyes and u(z, z,w) with D(z,w) + az®(z, z,w, ),
yielding
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where « is a scaling factor equal to the ratio of the frequency

w to the reference frequency w,.r. With this scaling factor,

the frequency variation is compensated by the scaling of the

spatial dimensions, so that the wavelength within the wavefield

(to the NN) apparently does not change much with frequency.

Accordingly, the dimensions of the velocity v are also scaled
by « to v(ax, az). For details, we refer the reader to [38].

D. Causality loss implementation

To improve the convergence of PINN, we replace the con-
ventional loss function with a causality loss implementation.
Since the information guiding the wavefield is coming from the
data on the surface, we impose causality to the loss function
along the depth axis, so that the wavefield is reconstructed
from the earth surface down. It is natural to fit the PDE from
the shallow to the deep. This has an equivalence in imaging
referred to as downward continuation. Like the loss calculation
based on the temporal causality [39], where the causality is
with respect to time, here we can apply it with respect to depth.
In this paper, we are formulating the solution with respect to

d(ax)? ’

an initial condition D(z,w) (for a solution in depth instead of
time). The corresponding modified loss function is given by,
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where L. is the PDE loss with causality implementation,
L(z;,0) is the loss corresponding to the parameters 6 (equa-
tion [5) at a depth of z;, N, is the number of samples along
the depth axis, and € is the causality parameter. It could be a
constant hyperparameter, but we modify it to be a varying one
that varies with the number of epochs. We use € = €0t Cpoehtl
as an alternative, where ¢q is the initial value of € and X is a
factor to adjust the change in €. The causality implies that, for
example, the solution at depth 0.5 m depends on the solution
at depth 0.3 m, but not the opposite, since the initial condition
is at depth zero. With this modification, the convergence is
faster, and the NN admits better predictions, which we will
see later.

E. Fitting the observed data with NNs

As suggested in [37], the hard constraint boundary condition
could be stored in a neural network to simplify the calculation
of the partial derivatives for the hard constraint PINN loss later.
As a result, we fit a small multi-layer perception (MLP) to the
surface observed data in a supervised fashion, so it becomes as
an NN function of the horizontal position of the receiver and
frequency Dg (z,w). Such training allows for fitting the NN
to irregular acquisition (receivers) geometry, which is common
in field applications (e.g., the lack of receivers or the non-
uniform receiver intervals). The size of this data NN function
will control the smoothness involved in the interpolation [40].
More importantly, it allows for robust derivatives calculation
for equation [5| using automatic differentiation (AD). Here, the
data fitting branch is trained in a supervised manner, where the
input of the NN are x and w, and the output are the real and
imaginary parts of the frequency-domain data at that location
and frequency. Then, the supervised loss function for the data
fitting is defined as follows:

Np.xN
Laf0) = ijle(m‘ wj) = Do (z5,w5)l5, (7)
NTXNf = VERaW) 72737120

where N, and Ny are the numbers of samples along the
receivers and frequencies. Using all samples is not always
needed because the noise in the samples may decrease the
accuracy, and we usually only need the use of a random subset
of the data points to train the NN. Here, we show a simple
demonstration to highlight the versatility of the approach for
data fitting in handling irregularly sampled data. We generate
data for a small layered model (same as the one used in
[41]) and place 100 receivers on the surface. We randomly
drop receivers to imitate irregular data to train the network.
As shown in Figure [T} the prediction looks reasonable even
when using only 20% of the receivers for training. The second-
order derivative w.r.t x of the NN data function calculated by
AD, which is needed for equation [5] also has good accuracy
compared with the second-order derivative calculated using a



5-point central difference formulation or AD with the full data.
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Fig. 1: The comparison between the NN function and the
3Hz observed data. a) shows the prediction of NN function
trained with 20% to 90% of the dataset, and b) is the
comparison between the corresponding second-order derivates
calculated by AD or the finite-difference method (FD) for
various coverage percentages.

F. The pipeline and the backbone NN architecture

As shown in Figure the preprocessed (e.g., non-local
means filtering, NLM) recorded data on the surface are first
transformed into the frequency domain via FFT and then used
to train a small NN for data fitting. This trained NN will be
used for the evaluation of the data term and calculation of the
second-order derivate by AD in the partial differential equation
(PDE) fitting. In the PDE fitting branch, the parameters of
the data fitting branch are frozen, and another new larger NN
is used to fit the PDE. To accelerate the convergence, we
use the causality implementation of the PDE loss. We show
more details of the training pipeline in Algorithm [I] After
training, we predict the multi-frequency wavefield using the
NN and utilize inverse FFT to get the time-domain snapshot.
The locations where the energy focus are the source locations.

As for the implementation of the neural networks used
in this pipeline, we utilize positional encoding [41] to help
the network deal with the complex wavefield variations and
help the convergence of the NN. The backbone of the NN is
Multilayer Perception (MLP [42]) with sine as the activation
function. The size of the networks and training details will be
shared in the examples.

III. NUMERICAL EXAMPLES

We first evaluate the proposed method on synthetic data, in-
cluding single-source event and multiple-source events cases.

Algorithm 1: The training pipeline

Collected N, x N Ji recorded data on the surface
{D(wj, )30 ™ and { (s, 23, w0) Ly
Initiate: NN parameters 87 and 8-
for each epoch in the data fitting do
Input: (2, w;) and corresponding labels D(z;,w;)
Output: Dg, (x;,w;)
Calculate the loss function of equation
| Update: NN parameters 6
Freeze the NN parameters 6,
for each epoch in the PDE fitting do
Input: (x;, 2;,w;)
Output: D (x;, i, w;, 02)
Evaluate Dy, (z;,w;) and replace it in equation
Calculate the loss function of equation [3]
Update: NN parameters 02

The synthetic data are generated for the 2D slice from the
3D Overthrust model [43] (Figure ). The model size is
501x161 with a spatial interval of 25 m. During the training
for synthetic examples, we use an MLP with two hidden
layers, with 128 and 16 neurons in the layers from shallow
to deep, respectively, to fit the data, but we reduced the size
of MLP to one hidden layer of 128 neurons for samples less
than 40. While for the PDE fitting, we use a larger MLP
with six hidden layers, with 256, 256, 128, 128, 64, and 64
neurons from shallow to deep, respectively. We also include
the positional encoding for z, z, and w with a level of 4. The
frequency range for both tasks is from 3 to 12 Hz and we
choose 12 Hz as the reference frequency.

A. A single-source event case

In this subsection, we first test the proposed method in
a toy problem, that has only one source event. A source is
placed at (5.0, 3.0) km. We first do the forward modeling
on the Overthrust model due to this source and recorded
the data (Figure [3) with 50 randomly placed receivers on
the surface, shown in Figure fp. We train the NN for data
fitting with positional encoding and train for 20000 epochs
using an Adam optimizer with a learning rate of le-3. Then
we train another NN for PDE fitting with 80000 random
samples for 6000 epochs, where we freeze the parameters of
the NN for data fitting. We evaluate the NN on a uniform
grid with 501x161 grid points and an interval of 25 m to
obtain the multi-frequency wavefields. As we have the source
information for this case, we directly obtain the source image
by the summation of the wavefield over frequencies (equal to
the time-domain snapshot at zero time). As shown in Figure []
b, the source location in the image is consistent with the
ground truth (black star in Figure @), which demonstrates
the accuracy of the proposed method. We also applied the
time reversal imaging using the finite-difference method to
obtain the source image as a baseline for comparison, as
shown in Figure [5] Since we ignited the source at time zero,
we evaluate the image at time zero, which is equivalent to
the direct summation of wavefields over all frequencies. It is
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Fig. 2: The pipeline of the proposed method. There are two branches: the data fitting branch (top) and the PDE fitting branch
(bottom). The recorded data d(z,t) are first transformed to the frequency domain. Then, they are used to train the data NN.
Further, the data NN is combined into the PDE fitting branch to train the PDE NN. The output of the PDE NN is transformed
to the time-domain snapshots using inverse FFT, where the red box denotes the source imaging where the energy focuses. The
module PE denotes the positional encoding with sinusoidal functions .

obvious that with 50 receivers, both methods could reconstruct
the source image, while the result of the proposed method is
cleaner compared to the numerical method, which contains the
artifacts due to relative-sparse sampling. Next, we test more
complex scenarios.

0 5 10
Distance (km)

Fig. 3: The filtered (3-12 Hz) recording of one source event
(located at (5.0, 3.0) km) with receivers covering the whole
surface.

B. A more complex case including triple-sources event

In a more realistic scenario, there might be multiple sources
distributed at variable locations in the subsurface. Thus, we
test the proposed method in this more complex situation.
The black stars in Figure Eh show the source locations, and
we use forward modeling from these sources to obtain the
data (Figure [6), recorded by a varying number of random
receivers. With the same hyperparameters and training process
mentioned in the last section, we tested the proposed method
with data received at 50 (Figure [7] a), 40 (Figure [7] ), 30
(Figure [7] e), and 20 (Figure [7] g) random receivers. As shown
in Figures m),d,f, and h, the source locations are accurately
extracted by the proposed method. Even in the case of only
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10.0 12.5

Fig. 4: a) shows the Overthrust velocity model, the source
event location (denoted by the black star), and the random
receivers (denoted by the red triangles); b) is the source image
courtesy of the proposed method.
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Fig. 5: The source image courtesy of a numerical finite-
difference solver.

20 random receivers placed along the 12.5 km distance, we can
still get focused source imaging results. While for the numer-
ical time reversal imaging using the finite-difference method,
shown in Figure [§] the result is not as clean as those by
the proposed method, especially for the area near the source.
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Fig. 6: The filtered (3-12 Hz) recording of triple-sources event
(located at (5.0, 2.5), (7.5, 3.0), and (10.0, 3.5) km) with
receivers covering the whole surface.

Comparing our proposed method to numerical time reversal
imaging, although our results seem slightly smoothed, they
remain sufficient for identifying source locations. In fact, the
smoothness can assist in the automatic detection of the source
location. This demonstrates the capability of the proposed
method in handling sparse and irregular observations, showing
good potential for the application to field data.

But before that, we need to test the performance of the pro-
posed method in the passive seismic monitoring scenario, as
this is a more common case. The above experiments are built
on an active seismic scenario in which the source is ignited at
zero time. For passive seismic data, we often do not know the
source ignition time. Thus, instead of the direct summation of
the wavefields over frequencies, we inverse Fourier transform
the wavefields to obtain time-domain snapshots. The snapshot
that shows the largest focusing of energy is often regarded
as the ignition time of the source [8]]. Thus, with a similar
setting to the previous experiments, we execute the forward
modeling from the triple sources but ignite the source at 5
s, which we consider as an unknown. We use the proposed
pipeline to obtain the time-domain snapshots, and we show
several snapshots from 4.75 to 5.5 s in Figure 0] We observe
that the energy focuses best at the snapshot at 5.00 s, which
is consistent with the ignition time. The locations where the
energy focus are also consistent with the ground truth of the
source locations.

IV. THE FIELD TEST TO THE HYDRAULIC FRACTURING
DATA

The above synthetic examples have demonstrated the po-
tential for a field data application. Thus, in this section,
we have further tested on the field vertical-component data
acquired in the Arkoma Basin in North America. The data
are recorded through passive seismic monitoring during a
hydraulic fracturing stimulation for a shale gas reservoir ,
[45]], [46]. Figure [I0h shows the whole region covering a
square area of 5x5 km? with a maximum depth of 2.75 km.
There were 75 events (red dots) captured in the four days
of monitoring and recorded by 911 receivers (blue dots) on
the surface. The 3D P-wave velocity (Figure [I0p) is obtained
from an active seismic experiment in the region and adjusted
by the well-log information [44]. In this case, we do not

have the exact zero-tag information of the recordings. Here,
to demonstrate the performance of the proposed method on
the field data, we select two events based on their signal-to-
noise ratio of the recorded event and the geometry of the line
and the event, so it complies with the 2D implementation of
the proposed method. The first event is extracted from the
recordings along line 10, denoted by the black box, shown in
Figure [T} The corresponding 2D velocity profile and recorded
data for the event are shown in Figure[T2] Prior to applying our
PINN imaging, we use several pre-processing steps, including
the Non-local means filter and a bandpass filter on the
data.

After preprocessing, we start the proposed pipeline (Fig-
ure [2). We transform the recorded data to the frequency
domain and train an NN of size {18, 128, 2} with positional
encoding where L=4 to fit the 3-12Hz recorded data on
the surface. As we claimed before, the data fitting network
could deal with a big part of the receivers missing. Here,
we randomly pick 70 receivers out of 122 for the training.
The benefit of this coarse fitting (Figure [I3) is to allow for
a smooth representation of the data that captures the key
moveout information. After 4000 epochs of supervised training
with an Adam optimizer and a learning rate of le-3, the
predicted data are shown in Figure [[4 We could obviously
observe that the main features of the original data are well-
reconstructed by the neural network, granted we ignore the
sharp changes, which could be due to noise (wavefields are
inherently smooth).

Then, the next step is to perform the PDE fitting branch in
Figure Here, we use a larger NN of size {27, 256, 256,
128, 128, 64, 64, 2} with positional encoding where L=4 to
ensure the capacity of the NN is enough to represent this high-
dimensional wavefield. The loss function here is the causality
implementation of equation [5} After training with an Adam
optimizer using a learning rate of le-3 for 1500 epochs, we
obtain the frequency-domain wavefield. An inverse Fourier
transform provides time-domain snapshots (source imaging).
Figure [T3] shows these snapshots in which the source image
seems to focus on the right source location consistent with
the provided location at the estimated time of around 0.55
s. Meanwhile, we also performed the numerical time reversal
imaging on the filtered field data after preprocessing, and the
imaging results are shown in Figure [I6] We found that the
time-reversal result is not as clean or crisp as the result of
our proposed method due to the numerical errors from the
irregular receiver spacing on the surface as well as the noise
and discontinuity in the field data, which can be smoothed out
by function learning in the proposed method.

In the proposed method, we do not need label information
for source location during the training as the supervision
comes from the governing equations and the data. On the other
hand, for supervised-based approaches, errors in the labels
would result in an error-prone trained model. For example,
as for event 62 in line 2 (Figures [T7] and [I8), the source
image result is shown in Figure [T9] where the image focuses
at a location different than the provided source location (a
potential label for supervised learning). We simulate the data
from the provided source location label using the 2D P-wave
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Fig. 8: The source imaging results by the numerical time re-
versal imaging with the finite-difference method using various
numbers of random receivers, specifically 50 (a), 40 (b), 30 (c),
and 20 (d) receivers denoted by the red triangles in Figure |Zl

velocity profile and a finite difference wave equation solver.
We realize that the simulated records and recorded data are
very different in curvature and shape (Figure [20). That means
this reference label might be wrong in 2D behavior, while
our method may provide the accurate source location at 0.6 s.
To further demonstrate the reliability of the proposed method,
using the simulated data, we image the source using our PINN
approach and obtain the images in Figure 21} The image
focused at the location of the source. This demonstrates that
the provided source location is not reliable, but our method
is consistent, and forms an adjoint to the forward modeling,
which is based on a finite difference method.

V. DISCUSSION

In this paper, we showed the results of our novel direct
source imaging method using PINNs with hard constraints
on both synthetic and field data. The functional form of
NNs offers flexibility for irregular and sparse recordings.
The synthetic demos and field examples demonstrate the
effectiveness and potential for source imaging. In addition, the
proposed method has the potential to be combined with neuron
dropout strategies and deep ensemble methods to quantify
uncertainty, which we would like to explore in future work.
In the following subsections, we will discuss the causality
implementation, the drawbacks of the method, and further
potential improvements.
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Fig. 11: The selected event 22 and the recording line. a) is the
original geometry, where the black box denotes the selected
recording line, and the black star denotes the location of the
event; b) is the zoom of the corresponding geometry.

A. The performance with/without causality implementation

As we claimed earlier, using the PDE loss with causal-
ity could accelerate the convergence and improve the final
predictions. Here, we take the triple-sources case with 20
random receivers to demonstrate the benefits of the causality
implementation. We use the same velocity model to generate
the data, the same network configuration but with 3000 epochs
in the training, and the same workflow to obtain the source
imaging results. For the causality implementation, we set g =
le—7 and A = le — 5. Figure [22] shows the loss curves of the
training process with and without the causality modification,
where the weights were removed from the loss value for a fair
comparison. The convergence with causality implementation
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Fig. 12: The original recorded data for a single event a) and

the 2D P-wave velocity profile b), where the source location
provided by the data provider is denoted by a red star.
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Fig. 13: The recording of event 22, a) is the original recording
with recording time from 0.8 s to 1.6 s; b) is the corresponding
processed data from 3 Hz to 12 Hz after non-local means
filtering where the patch size used for denoising is 15, maximal
distance in pixels where to search patches used for denoising
is 21, and the cut-off distance is 2.0.

is much faster than the vanilla implementation. The prediction
after 3000 epochs (Figure [23) with causality implementation
is better than the one without causality implementation. The
reconstructed source image (Figure 23p) has better energy
focusing.

B. Resolution

As shown above, the proposed method provides less noisy
results compared to the time-reversal methods because the NN
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Fig. 15: The time-domain snapshots of the wavefield at various
times with the proposed method. It seems that the wavefield
focus best at 0.55 s. The red box denotes the location where
the energy is focused, which is consistent with the provided
location (red star).

provides an automatic anti-alias filter to the data based on the
available receiver information. However, it is slightly more
smeared than the true backpropagation when the receivers are
sparse. Thus, the proposed method still has room for further
developments in terms of resolution. This can be achieved by
applying imaging conditions similar to the conventional source
imaging methods. On the other hand, this can also be achieved
by extending the frequency range used in the proposed method.
High frequencies have been a thorn for PINNs. However,
with the reference frequency approach and the strategy of the
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Fig. 16: The time-domain snapshots of the wavefield at various
times using the numerical time reversal imaging with finite-
difference method. The red stars denote the reference source
location.
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Fig. 18: The original shot gathers of line 2 due to event 62,
a) and the 2D P-wave velocity profile b), where the red star
denotes the source location given by the data provider.

frequency extension [33], [48], we can gear the approach to
work better. Increasing the frequency range used in the data
fitting and PDE fitting would increase the resolution of the
final source image.
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C. Efficiency

Although the workflow could deal with irregular and sparse
observations and show highly reliable performance, there
exists the main drawback of PINNs for now and that is
efficiency. The cost is reasonably high, especially considering
that the wavefield corresponds to a particular velocity and
source location. For each new field data measurement, the
neural networks need to be retrained. However, we can utilize
transfer learning [31]], which can reduce the computational
cost. Overall, PINNs are new compared to, for example, the
finite difference methods for solving the wave equation, so
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Fig. 21: The time domain snapshots of the wavefield at various
times with the proposed method applied to the simulated data
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speed up is a matter of time. Despite its slower implemen-
tation, the remarkable flexibility of PINN in its functional
wavefield representation, obviating the need for mesh, renders
it a compelling avenue for exploration and utilization.

VI. CONCLUSION

We present a novel direct microseismic imaging frame-
work utilizing physics-informed neural networks with hard
constraints. It allows us to image the source due to the use
of the neural network functional representation, in addition to
its interpolation capabilities. Meanwhile, we propose a loss
function with causality with respect to depth to accelerate the
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convergence and improve the prediction of the NN. With only
20 random receivers on a 12.5 km lateral stretch, the multiple-
source event is stably and accurately located. We successfully
applied to the Oklahoma Arkoma Basin hydraulic fracturing
data, showing the effectiveness of the proposed method and
its potential for mesh-free source location.
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