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Guidelines to Compare Semantic Segmentation
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Abstract—Choosing the proper ground sample distance (GSD)
is a vital decision in remote sensing, which can determine the
success or failure of a project. Higher resolutions may be more
suitable for accurately detecting objects, but they also come
with higher costs and require more computing power. Semantic
segmentation is a common task in remote sensing where GSD
plays a crucial role. In semantic segmentation, each pixel of an
image is classified into a predefined set of classes, resulting in a
semantic segmentation map. However, comparing the results of
semantic segmentation at different GSDs is not straightforward.
Unlike scene classification and object detection tasks, which
are evaluated at scene and object level, respectively, semantic
segmentation is typically evaluated at pixel level. This makes it
difficult to match elements across different GSDs, resulting in
a range of methods for computing metrics, some of which may
not be adequate. For this reason, the purpose of this work is to
set out a clear set of guidelines for fairly comparing semantic
segmentation results obtained at various spatial resolutions. Ad-
ditionally, we propose to complement the commonly used scene-
based pixel-wise metrics with region-based pixel-wise metrics,
allowing for a more detailed analysis of the model performance.
The set of guidelines together with the proposed region-based
metrics are illustrated with building and swimming pool detection
problems. The experimental study demonstrates that by following
the proposed guidelines and the proposed region-based pixel-
wise metrics, it is possible to fairly compare segmentation maps
at different spatial resolutions and gain a better understanding
of the model’s performance. To promote the usage of these
guidelines and ease the computation of the new region-based
metrics, we create the seg-eval Python library and make it
publicly available at https://github.com/itracasa/seg-eval.

Index Terms—Remote Sensing, Semantic Segmentation, Qual-
ity Assessment, Error Metrics.

I. INTRODUCTION

Earth Observation (EO) has become a hot topic due to its
significant impact on society. Open data policies adopted by
agencies such as NASA [1] or ESA [2] have unleashed the
power of remote sensing yielding meaningful insights about
our world. As a result of the vast amount of data available
today, traditional techniques to process EO data have become
impractical. In the last decade, Deep Learning-based (DL)
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models have shown outstanding success in almost every ap-
plication domain ranging from computer vision [3] to natural
language processing [4]. When it comes to EO applications,
DL models can accurately classify [5] and segment [6] images,
detect objects [7], track changes over time [8], or answer text-
based questions about images [9].

EO data pose new challenges compared to natural images
(i.e., ImageNet) [10]. In remote sensing images, there is a
high intra-class diversity and a small inter-class dissimilarity.
That is, objects within the same semantic class may differ in
shape and color (i.e., buildings) making it extremely difficult to
distinguish them from objects in similar classes (i.e., industrial
vs. residential). In addition, depending on the sensor, the data
measured, the viewing angle, the scale, and the illumination
may differ, making it almost impossible to build a single DL
model that performs well in every scenario even for the same
task.

When building a DL model for EO data, delicate decisions
must be made about the type of sensor (i.e., radar vs. multi-
spectral) and the ground sampling distance (GSD) (i.e., sub-
meter, meter, or kilometer). While the former is relatively easy
to make based on domain expertise, the latter is not since it
heavily depends on the use case [11]. Accordingly, a slight
variation in the GSD can be the difference between seeing
an object or not. Hence, for accurately detecting any object,
higher resolutions may seem to be the ideal solution. However,
from an operational point of view, very high resolution im-
agery is costly and difficult to access. Furthermore, an increase
in the spatial resolution results in larger images, which in turn
require an increase in computing and storage resources [12].

Therefore, choosing an appropriate GSD is crucial in any
remote sensing project. To make this decision objectively,
it is necessary to have metrics that enable the comparison
of different GSDs. For tasks such as image classification
[13], [14] and object detection [15], [16], it is quite simple,
since metrics are computed at the scene and object level,
respectively. In these cases, only the input changes (the GSD),
but given that the outputs are in the same unit and scale,
it is easy to compare different input GSDs. However, for
semantic segmentation tasks, the output changes with the size
of the input, so different GSDs produce segmentation maps
with different dimensions. As a result, deciding based on the
metrics extracted from differently shaped outputs (at different
scales) is not straightforward.

In this respect, there is no consensus in the literature on
how these maps should be compared [17]. Most of the works
agree on the fact that all segmentation maps must be rescaled
to match the ground truth masks resolution [18]–[21], but there
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are others using the metrics computed at different resolutions
(with varying scale ground truths) to make the comparison
[22], or even works not providing any details on how the
comparison is done [23], [24]. Therefore, it is necessary to
study and propose a set of clear guidelines that can help
researchers and practitioners deciding the most appropriate
GSD for their semantic segmentation problem.

In addition, in [25] and [26], the authors suggest considering
the usage of a tolerance buffer when computing the metrics
to account for errors that may occur at object boundaries due
to the resolution used. However, the tolerance buffer does not
solve the aforementioned problems, since the metrics are still
incomparable across different resolutions, requiring a clear
guideline to set the buffer width according to its objective.

Applying these guidelines to find the most adequate GSD
for a use case, several models are trained at different GSDs,
looking for the best trade-off between accuracy and computa-
tional requirements. To reduce the number of experiments and
their associated cost, it would be helpful to know in advance
the upper bound of the evaluation metrics that can be achieved
at each GSD. As a result of our research, we devised a method
to compute these upper bounds without training any model.

In summary, this paper proposes a set of guidelines for fairly
comparing segmentation maps with varying GSDs addressing
the following issues:

• How to make segmentation maps at different GSDs
comparable.

• Why the commonly used pixel-wise metrics can lead to
a misleading view of model’s performance especially in
imbalanced scenarios.

• How to set the tolerance buffer to only account for the
uncertainty in the edges due to the resolution.

• How to calculate upper bounds for semantic segmentation
performance metrics at different GSDs.

Following these guidelines, commonly used pixel-wise se-
mantic segmentation metrics will allow us to get a fairer
overview of how our model performs. Nevertheless, it will
still be difficult to identify specific cases where the model
may be performing poorly. To address this issue, we pro-
pose a novel methodology for computing object level seman-
tic segmentation metrics that can help in the interpretation
of the results obtained by different models. The proposed
region-based pixel-wise metrics calculate pixel-wise semantic
segmentation metrics within a pre-defined set of evaluation
regions (e.g., a region around each building). These metrics
provide new insights into the effects of DL modeling choices
such as architecture, loss function, or patch size on model’s
performance. Furthermore, region-based pixel-wise metrics
can be used to identify the weaknesses of the model (e.g.,
difficulties detecting small buildings) and thus guide future
labelling efforts.

In summary, the two main contributions of this paper are:
1) A clear set of guidelines for fairly evaluate remote

sensing semantic segmentation maps across different
spatial resolutions (presented in Section IV).

2) A methodology for computing region-based pixel-wise
semantic segmentation metrics in remote sensing (pre-
sented in Section V).

Despite their differences, the proposed guidelines and the
region-based pixel-wise metrics are both useful and comple-
mentary for assessing the quality of semantic segmentation
maps. Accordingly, the former should be applied when com-
puting region-based pixel-wise metrics, while the latter com-
plements the traditional analysis performed by using standard
pixel-wise metrics.

Two different use cases have been considered to illustrate
the necessity of the proposed guidelines and the usefulness of
region-based pixel-wise metrics. On the one hand, the Mas-
sachusetts Building Aerial dataset [25] has been chosen due to
the high intra-class diversity of building footprints. In addition,
we have added high-resolution satellite imagery to the dataset
to simulate a super-resolution semantic segmentation (SRSS)
use case where segmentation maps at multiple resolutions must
be compared, which is a very common use case where our
guidelines should be applied. Finally, the BH-Pools dataset
[27] has been used to extract swimming pools from sub-
meter aerial imagery, which has low intra-class diversity and
much more imbalance than building segmentation. Moreover,
annotations are not provided in vector format allowing us to
show how the proposed guidelines may be applied in these
cases.

The experiments conducted demonstrate that the proposed
guidelines can be useful not only for comparing segmentation
maps with different spatial resolutions, but also for better
understanding the performance of the model. Finally, the code
developed in this work has been organized into a Python
library named seg-eval, which has been made freely available
at GitHub1. We believe that these guidelines will facilitate
the comparison of research results within the remote sensing
community.

The remainder of this article is organized as follows. Section
II summarizes the related works with regard to the accu-
racy assessment procedure commonly followed for comparing
semantic segmentation maps at different spatial resolutions.
Then, Section III describes the materials and methods used in
the experiments carried out. Thereafter, Section IV presents
the proposed guidelines for comparing segmentation maps at
multiple spatial resolutions. Furthermore, Section V presents
a novel approach for computing region-based semantic seg-
mentation pixel-wise metrics. Finally, Section VI summarizes
the lessons learned and presents some future research.

II. RELATED WORKS

Accurately evaluating the performance of a DL model is
essential for the advancement of research. The sampling unit
serves as the foundation for accuracy assessment and ranges
from single pixels and polygons to the whole scene [28].
Accordingly, a prediction and a reference ground truth are
compared on a sampling unit scale. For example, image
classification and object detection tasks are evaluated on scene
and polygon scales, respectively, while semantic segmentation
tasks are commonly evaluated at a pixel level.

If a pixel is chosen as the sampling unit, metrics must be
computed pixel-wise by mapping each pixel from the predicted

1https://github.com/itracasa/seg-eval
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segmentation map to the ground truth map [29]. Due to this
sampling design, segmentation maps at different GSDs cannot
be directly compared because the number of pixels that cover
a specific area varies depending on the spatial resolution.
However, this is essential, for example, to assess the effect of
super-resolution on subsequent semantic segmentation tasks or
to evaluate the suitability of different GSDs for a given task.

The SRSS problem is a clear example where segmenta-
tion maps at different GSDs should be compared. To obtain
segmentation maps with a higher spatial resolution than the
one provided at the input, either stage-by-stage or end-to-
end approaches can be adopted [18]. While the former often
super-resolves the low-resolution input prior to the segmen-
tation network [23], the latter integrates the super-resolution
process into the segmentation task [22]. As a result, it is
necessary to compare the super-resolved segmentation maps
to those derived from the native GSD in order to determine
whether these approaches outperform traditional segmentation
techniques (i.e., without super-resolving).

Both stage-by-stage and end-to-end approaches have been
fairly compared to other state-of-the-art SRSS techniques in
previous works [18], [19], using the same high-resolution
ground truth. To evaluate the individual contribution of the
super-resolution and semantic segmentation modules, it is
common practice to rescale the resulting low-resolution se-
mantic segmentation maps to match the GSD of the ground
truth [20], [21], [30], [31]. As we will show in Section IV,
interpolating the segmentation maps is not the most accurate
procedure, since class probabilities before the final segmenta-
tion can be used for a better estimation.

Pereira et al. [32] proposed an end-to-end SRSS framework,
but conducted the experimentation from a different point
of view. Rather than resampling the generated segmentation
maps to match the GSD of the ground truth, inputs were
downscaled using the bicubic interpolation prior to being fed
to the network. As a result, all the output segmentation maps
have the same dimensions and can be compared to the same
high-resolution ground truth. However, this method has the
drawback of losing critical information during the downscaling
process.

Otherwise, in [22] a novel DL architecture that learns
how to super-resolve an image internally to produce fine-
grained semantic segmentation maps was proposed. In the
experimental study, each predicted segmentation map was
compared to its corresponding ground truth mask (previously
rasterized to the target GSD). It must be noted that this differs
from previous works since ground truth masks at multiple
spatial resolutions are available. Anyway, this methodology
cannot be considered fair, since a fair comparison should be
done in the same unit scale. Finally, there are also other works
whose accuracy assessment procedure is unclear [23], [24].

Based on these previous works, we believe that it is neces-
sary to establish a consistent set of guidelines for comparing
the quality of semantic segmentation maps across different
GSDs that can be easily adopted by the remote sensing
community.

III. MATERIALS AND METHODS

This section introduces the materials (dataset, DL model,
training strategy, evaluation metrics, and seg-eval Python
package) used in the experiments carried out to illustrate the
proposed accuracy assessment guidelines and the region-based
pixel-wise metrics.

A. Datasets

To illustrate how the proposed guidelines can be used in
practice, the Massachusetts Building Aerial [25] and BH-Pools
[27] datasets have been considered. Table I summarizes both
datasets.

TABLE I
SUMMARIZED DESCRIPTION OF THE DATASETS CONSIDERED TO PUT INTO

PRACTICE THE PROPOSED GUIDELINES.

Massachusetts Building Aerial [25] BH-Pools [27]

Abbreviation(s) MB-Aerial, MB-Sat BH-Pools
Color spectrum RGB RGB
Native GSD (m) 1 0.15
Simulated GSD (m) MB-Aerial: 2, 3, 4, 5, 10 / MB-Sat: 10 0.3, 0.6, 1.2
Total Coverage (km2) 340 248
Target object Buildings Swimming pools
Avg. object size (m2) 236.57 467.51
Vector annotations Yes No
Intra-class diversity High Low
Class imbalance (% positive class) Medium (40.48%) High (0.83%)

1) Massachusetts Building Aerial dataset: The Mas-
sachusetts Building Aerial dataset [25] (MB-Aerial) contains
151 aerial images of 1500 × 1500 pixels covering urban
and suburban areas of Boston. Approximately 2.25 km2 are
covered by each aerial image at a GSD of 1 m. These aerial
images have been labeled using annotations from the Open-
StreetMap project [33]. These comprise buildings of diverse
sizes, including factories, individual houses, and garages. It
must be noted that ground truth vector annotations are also
provided within the dataset. This allows one to compute the
metrics more accurately, since the boundaries of the objects
are better preserved. Images were randomly split into training,
validation, and test sets following Mnih’s indications [25],
resulting in 137, 4, and 10 images, respectively. A sample
of the dataset is shown in Figure 1.

To evaluate if the proposed guidelines can help compare the
accuracy of semantic segmentation maps at different spatial
resolutions, images have been degraded to 2, 3, 4, 5, and 10
m using the bicubic interpolation. To train the corresponding
semantic segmentation models, the ground truth annotations
in vector format have been rasterized to the different spatial
resolutions. It is important to mention that, during the ras-
terization process the all touched flag has been set. In other
words, all pixels that intersect with a geometry are considered
positive class pixels. Figure 1 shows degraded images and
corresponding ground truth masks for a representative region.

In order to assess the validity of the conclusions drawn
in a simulated SRSS use case, real satellite imagery with
a GSD of 10 m has been included as a supplement to the
dataset. This is a common scenario in which segmentation
maps at different spatial resolutions are compared. For this
purpose, freely available Sentinel-2 imagery, using only the
RGB bands, has been considered. In the experimental study,
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a SRSS approach is utilized with satellite imagery to enhance
the spatial resolution of semantic segmentation maps up to 5 m
and 2.5 m. To train the SRSS models, ground truth annotations
in vector format need to be rasterized to 5 m and 2.5 m. This
dataset will be referred to as MB-Sat.

2) BH-Pools dataset: We have also considered the BH-
Pools dataset [27], since it represents the imbalance problem
better than the MB-Aerial dataset. The BH-Pools dataset
consists of 200 images covering 8 different neighborhoods
in the city of Belo Horizonte, Minas Gerais, Brazil. The
images were exported from Google Earth Engine and have an
eye altitude of 330 meters with a resolution of 3840 × 2160
pixels. Nevertheless, since Google Earth combines different
images from different observations to build up its high-
resolution images, it is not possible to determine the exact
spatial resolution. However, given the previous information
and through a visual analysis the GSD was estimated to
be 0.15 m [34]. Images were manually annotated resulting
in 3980 ground truth polygons. In this case, only the final
segmentation masks are provided in raster format, which
reduces the precision of the accuracy assessment. To fit and
evaluate the models, images were randomly split into training,
validation, and test sets, resulting in 571, 122, and 122 images,
respectively. Finally, we have degraded the images to 0.15,
0.3, 0.6, and 1.2 m using the bicubic interpolation to test if
the proposed guidelines can help compare the accuracy of
semantic segmentation maps at different spatial resolutions.
Since this time no vector annotations have been provided,
ground truth masks have been generated by rescaling the
one given at the maximum GSD using the nearest neighbor
interpolation. A sample of the dataset is shown in Figure 2.

B. Model

The model consists of a U-Net architecture [35] with a
ResNet-34 [36] encoder. To generate segmentation maps with
a higher spatial resolution than the one provided at the input
(MB-Sat dataset), a super-resolution module can be added
before the encoder [22]. Specifically, it consists on a nearest
neighbor upsample layer prior to the feature extractor. It
must be noted that we are not looking for the state-of-the-
art performance, so we focus on a simple yet powerful and
reproducible semantic segmentation architecture that can be
used to put the proposed guidelines into practice.

C. Training strategy

All the experiments were conducted under the same condi-
tions. Specifically, models were trained for 100 epochs, taking
batches of 16 samples. As mentioned earlier, to isolate the
effects of spatial resolution on final performance, it is crucial
that all patches cover the same area (in each dataset). However,
covering the same area with different GSDs results in patches
with varying numbers of pixels. To ensure that the input patch
size for the network is consistent across all resolutions, we
have chosen to resize them to 128 × 128 for the MB-Aerial
and MB-Sat datasets, and 256× 256 pixels for the BH-Pools
dataset. The patch size was set based on expert knowledge and
has determined the maximum possible degraded resolution for

each dataset as described in Section III-A. Additionally, in the
case of the BH-Pools dataset, due to the heavy class imbalance,
for training, we only considered samples with at least 10% of
pixels corresponding to the positive class (pool) to prevent the
training process from being dominated by samples without
positive pixels. Nevertheless, to fairly assess the performance
of the models, we consider all testing samples, including those
without any pixels belonging to the positive class. Finally, the
best model based on validation loss was selected to prevent
overfitting.

As in other works [22], [37], [38], we have used the
well-established Combo Loss [39] as a loss function, which
combines the Binary Cross-Entropy [40] and Dice [41] losses.
Adam [42] has been used as optimizer with a fixed learning
rate of 1e−3 and a weight decay of 1e−2.

To increase the generalization capability of the models,
affine and photometric data augmentation techniques have
been used. In particular, images have been augmented using
combinations of horizontal and vertical flips, as well as
90-degree rotations, which is known as Dihedral data aug-
mentation [43]. Moreover, photometric transformations [44]
such as randomly changing the brightness, saturation, and
contrast of the image have also been applied. Augmentations
at testing time are applied to enhance the quality of the
resulting segmentation maps. Accordingly, the final predicted
segmentation map is computed by aggregating predictions
across transformed versions of a testing sample using dihedral
transformation (resulting in 8 different predictions). It should
be emphasized that all the conclusions drawn from the exper-
imental study (Sections IV and V) would remain unchanged
even if test time augmentation had not been applied.

The experiments have been run on a computing node with
a 2 × Intel Xeon E5-2609 v4 @ 1.70 GHz processor with
128 GB of RAM and a NVIDIA RTX2080Ti GPU (11 GB of
RAM).

D. Evaluation metrics

There are various evaluation metrics in the semantic seg-
mentation literature that have been used to assess the quality
of the resulting segmentation maps [18], [24], [45]. While
most of them are based on the number of true positive (TP),
false positive (FP), true negative (TN), and false negative (FN)
derived from the confusion matrix [46], a variety of indices
have emerged to better assess different types of geometric
errors [47], [48]. Despite of this, the choice of the evaluation
metric depends on the use case. Therefore, we implemented
the full set of metrics in the open-source Python package
provided with this work, but we consider the most commonly
used ones for the analysis in this paper.

The considered metrics are Precision (Prec.), Recall (Rec.),
F1-score (F1), and Intersection over Union (IoU). For a binary
semantic segmentation problem, Precision [49] (Eq. (1)) is
defined as the proportion of true positive predictions among
all positive predictions made by the model, while Recall [49]
(Eq. (2)) is the proportion of true positive predictions among
all pixels that should have been classified as belonging to the
positive class. The F1-score [50] (Eq. (3)) is the harmonic
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Fig. 1. Sample images from the MB-Aerial dataset, including real imagery (1 m) and degraded versions (2-10 m), along with their corresponding ground
truth masks.
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Fig. 2. Sample images from the BH-Pools dataset, including real imagery (0.15 m) and degraded versions (0.30-1.2 m), along with their corresponding
ground truth masks.

mean of Precision and Recall, and has a similar definition
to the IoU [51] (Eq. (4)), although the latter penalizes false
positives and false negatives more.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-score =
2× TP

2× TP + FP + FN
(3)

IoU =
TP

TP + FP + FN
(4)

These metrics are frequently applied in multi-class problems
by computing each metric individually per class and then
averaging the results in different ways (micro, macro, or
weighted) [52]. It must be noted that the macro-average is
often used, since it equally weights the contribution of all the
classes, making it robust against imbalanced datasets [53].

E. Seg-eval Python Package

As a result of this paper, we have developed the seg-eval
Python package available at GitHub2. This library provides
useful tools for evaluating semantic segmentation models,
including commonly used pixel-wise semantic segmentation
metrics to quantitatively assess the quality of a segmentation
map. In addition to the metrics described in Section III-D,
the library also includes methods to compute the following
metrics: Overall Accuracy, Detection Probability or Hit Rate),
Specificity (also known as True Negative Rate), False Negative
Rate (also known as Fall-out), False Positive Rate (also
known as Miss Rate), Area Under the Curve, Cohen’s Kappa,
Matthews correlation coefficient, and Hausdorff distance. It
is important to emphasize that the novelty of the seg-eval
Python package lies not in the implementation of the metrics
themselves, but in their adaptation to be computed over shapes.
This represents a significant departure from the conventional
practice of computing metrics over rasters in remote sensing.

Furthermore, the library allows relaxing these metrics by
applying a tolerance buffer and it also includes functionality

2https://github.com/itracasa/seg-eval
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for generating a set of evaluation regions for computing
the region-based pixel-wise semantic segmentation metrics
as proposed in Section V. Finally, it provides utilities for
analyzing these metrics through visual IoU maps (e.g., Figure
3) or bi-variate probability density functions (e.g., Figure 12).

Overall, the use of this library by the remote sensing
community can contribute to a more fair evaluation of the
performance of semantic segmentation models and the stan-
dardisation of the style of the results and figures presented in
future research works.

IV. GUIDELINES TO COMPARE SEMANTIC SEGMENTATION
MAPS AT THE PIXEL LEVEL

This section presents common misconceptions that arise
when comparing semantic segmentation maps at multiple
spatial resolutions and provides guidelines for addressing
them. Each proposed guideline can be applied independently,
although we suggest using them all together. The order in
which the guidelines are presented is not relevant, but we
believe this order is adequate for readers to understand them.

The proposed guidelines are tested using the MB-Aerial,
MB-Sat, and BH-Pools datasets described in Section III-A.
To summarize, after processing each dataset as explained
in Section III-A and training the corresponding models, the
following information is available for each testing set:

• Ground truth annotations in both raster and vector for-
mats at all spatial resolutions. If the original dataset
does not include the vector format, it is generated by
vectorizing the raster ground truth at the highest spatial
resolution.

• Predicted segmentation maps in raster and vector formats.
Vector formats are derived from raster predictions. The
raster predictions are obtained for the original input
resolution and are also rescaled to the highest spatial
resolution.

The quality of the resulting segmentation maps has been
evaluated using the metrics described in Section III-D. For the
sake of accuracy, all the metrics presented in the experimental
study are computed using the vector format. To complement
the results presented in this paper, a full report containing all
the metrics for the experiments conducted can be found in
the supplementary material. Additionally, we have conducted
additional experiments using the DeepLabV3+ architecture
[54] to demonstrate that all the conclusions drawn within the
experimental study remain the same and thus, the proposed
guidelines are useful regardless of the segmentation model
considered. Accordingly, the DeepLabV3+ metric report have
been also included in the supplementary material.

To get a better idea of the spatial resolutions that are
being used and their derived segmentation maps, Figure 3
shows a randomly taken test sample from each dataset (MB-
Aerial, MB-Sat, and BH-Pools) together with the predicted
segmentation maps using IoU visualization (where the true
positives, true negatives, false positives, and false negatives
are depicted with different colors).

In the following sections, we will follow a consistent struc-
ture: we will identify a problem, provide a detailed description

of the issue, propose a guideline for addressing the problem,
and experimentally validate the proposed guideline.

A. Choosing a reference map
Problem. Metrics computed at different spatial resolutions
cannot be directly compared.
Description. When ground truth masks at multiple spatial
resolutions are available, one may mistakenly think that the
comparison should be performed at the predicted segmentation
map’s GSD. However, this is not the most suitable approach
because the target population varies, resulting in incomparable
results and potentially misleading conclusions.
Guideline. To accurately compare semantic segmentation
maps at different GSDs, the same reference ground truth
mask must be used, carefully considering the method used to
rescale the predicted segmentation maps. In this regard, it is
suggested to interpolate the class probabilities before thematic
classification.
Illustrative Example. The results comparing the predicted
segmentation maps with the ground truth masks at the same
GSD and with the ground truth mask at the greatest GSD
(rescaling class probabilities) are shown in Table II for the
MB-Aerial, MB-Sat, and BH-Pools datasets. These results are
presented in terms of the IoU, F1, Prec., and Rec. metrics. The
best results achieved for each dataset and performance metric
are presented in boldface.

TABLE II
RESULTS OBTAINED FOR THE MB-AERIAL, MB-SAT, AND BH-POOLS

DATASETS COMPARING EACH PREDICTED SEGMENTATION MAP WITH THE
GROUND TRUTH MASK AT ITS CORRESPONDING GSD AND WITH THE

GROUND TRUTH AT GREATEST GSD AFTER RESCALING CLASS
PROBABILITIES.

w/o rescaling w/ rescaling

GSD (m) IoU F1 Prec. Rec. IoU F1 Prec. Rec.

M
B

-A
er

ia
l

1 0.5794 0.7331 0.8286 0.6596 0.5840 0.7366 0.7631 0.7190
2 0.6065 0.7548 0.8023 0.7171 0.5443 0.7044 0.6526 0.7859
3 0.5952 0.7455 0.7766 0.7181 0.4941 0.6601 0.5720 0.7943
4 0.5888 0.7406 0.7706 0.7158 0.4502 0.6182 0.5213 0.7935
5 0.6022 0.7508 0.7430 0.7615 0.4058 0.5734 0.4489 0.8264

10 0.6142 0.7589 0.6942 0.8450 0.2841 0.4339 0.3005 0.8596

M
B

-S
at 2.5 0.3925 0.5624 0.6200 0.5182 0.3353 0.4990 0.4711 0.5442

5 0.4781 0.6447 0.6891 0.6119 0.3417 0.5057 0.4218 0.6635
10 0.5855 0.7348 0.6838 0.7972 0.2784 0.4286 0.2982 0.8220

B
H

-P
oo

ls 0.15 0.7163 0.8319 0.8796 0.7975 0.7163 0.8319 0.8796 0.7975
0.3 0.7372 0.8464 0.9034 0.8028 0.7363 0.8460 0.8809 0.8204
0.6 0.7254 0.8376 0.8436 0.8411 0.6817 0.8075 0.7612 0.8695
1.2 0.6743 0.8017 0.8706 0.7496 0.6158 0.7591 0.7097 0.8227

We can observe how the results change completely depend-
ing on the approach taken. When the predicted segmenta-
tion map and ground truth mask are compared at the same
GSD (without rescaling), the best overall result is generally
achieved at the lowest resolution (MB-Aerial and MB-Sat).
However, the performance does not follow exactly the same
trend in the BH-Pools dataset due to small variations in the
spatial resolution and class imbalance. This result may seem
counterintuitive, as Figure 3 shows that the highest resolution
segmentation maps in the MB-Aerial and MB-Sat datasets
produce a large number of false positives. This issue arises
because metrics calculated over different target populations
are being compared.
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Fig. 3. Image and corresponding predicted segmentation maps obtained at multiple GSDs for the MB-Aerial, MB-Sat, and BH-Pools datasets. Predicted
segmentation maps are presented in terms of TP in green, FN in blue, FP in red, and TN in white. It should be noted that randomly taken testing samples
are shown in this figure, and thus, the quantitative results presented in the following tables can slightly differ.

If we fix the target population at the maximum GSD as
suggested and rescale the outputs (w/ rescaling columns),
we can observe that the performance metrics can be fairly
compared regardless of spatial resolution and better reflects
the qualitative results. This is because pixels from different
segmentation maps can be properly matched and compared. In
most cases [18], [19], [32], [55], the predicted segmentation
map is directly rescaled to the maximum GSD, although it
may be more accurate to interpolate the class probabilities

before thematic classification, as this preserves more details
(see Figure 4).

Following this approach, the overall IoU and F1 results
accurately reflect what is shown in the figures, being the best
models the 1 m for MB-Aerial, the 5 m for MB-Sat (note that
in this case the 2.5 m does not perform as well as the 5 m due
to the effect of super-resolution), and the 0.3 m for BH-Pools.
In fact, the differences between higher and lower resolutions
become more pronounced when fixing the target population,
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which is more in line with what we observe qualitatively.

Image (RGB) Rescale mask Rescale logits Difference

Fig. 4. Image and corresponding predicted segmentation map obtained at 5
m GSD for a representative zone (22828930 15) from the MB-Aerial dataset.
Predicted segmentation maps are presented in terms of TP in green, FN in
blue, FP in red, and TN in white. Both the segmentation mask rescaled from
the final prediction (with nearest neighbor) and from the class probabilities
(bicubic interpolation) are presented with a map showing where they differ.

B. Choosing a fair metric

Problem. Commonly used single-class semantic segmentation
metrics focus only on the foreground class, leading to mis-
leading conclusions in scenarios where the background class
is equally important.
Description. We can use a variety of metrics to evaluate the
performance of a DL model. Looking at Table II, rescaling the
class probabilities to match the greatest GSD, we find that in
some metrics such as recall, lower spatial resolutions perform
better than higher ones, due to the coarse predictions. This
may lead to misleading conclusions if they are analyzed on
their own without looking at other metrics. For this reason,
the F1-score is usually considered since it takes into account
both the precision and recall metrics. A major drawback of
the F1-score is that it is computed only for the foreground
class without taking the number of TNs into account [56]. As
a result, the F1-score is not suitable for scenarios where both
classes are relevant such as the building and swimming pool
semantic segmentation [57]. Therefore, metrics that consider
both foreground and background classes are preferable, since
they provide a more accurate picture of the model’s perfor-
mance.
Guideline. Binary semantic segmentation problems should
be evaluated as multi-class problems, macro-averaging the
performance metrics obtained for both the foreground and
background classes.
Illustrative Example. Table III shows the performance in
terms of the IoU, F1, Prec., and Rec. metrics for both the
foreground and background classes, as well as their macro-
average, on the MB-Aerial, MB-Sat, and BH-Pools datasets.
Overall, the results are more consistent with what we ob-
serve qualitatively. While foreground metrics provide insight
into the model’s performance regarding under-segmentation
errors, background metrics account for over-segmentation er-
rors. To gain a comprehensive understanding of the model’s
performance, metrics must account for both under- and over-
segmentation errors. In this regard, it is a common practice
to compute the arithmetic average of the partial accuracies
of each class [58]. As a result, macro-averaging both the
foreground and background metrics gives a fairer view of
the model’s performance [59], which is more in line with
the qualitative results. This strategy can be easily applied to
any binary semantic segmentation metric. However, notice that

metrics such as the Matthews Correlation Coefficient (MCC)
[56], which takes into account the four components of the
confusion matrix could be used without macro-averaging. In
this case, the MCC is symmetric, and thus the same results
are obtained for both the foreground and background classes
(this can be observed in the supplementary material).

C. Addressing the lack of detail due to the limited spatial
resolution

Problem. There is no agreement on how the tolerance buffer
commonly used for relaxing semantic segmentation metrics in
the context of remote sensing should be set.
Description. In remote sensing, it is common to relax metrics
to deal with the limited spatial resolution of the imagery used.
This is done by ignoring pixels within a tolerance buffer, α,
of the object boundaries during metric computation [25], [26].
For instance, Mnih et al. [25], relaxed the metrics by using a
tolerance buffer of three times the GSD. On the other hand,
Feng et al. [26], chose a tolerance buffer of five times the GSD.
We believe these buffers are too optimistic for the imagery
used since they ignore many more pixels than necessary.
Guideline. Set the tolerance buffer to the diagonal of the pixel
at the corresponding GSD (Eq. (5)).
Illustrative Example. To determine the proper tolerance
buffer for a given GSD, we conducted qualitative and quanti-
tative analyses. Our approach is to define the tolerance buffer
by comparing the ground truth mask at a given GSD with the
ground truth mask at the highest GSD. This allows us to set a
buffer that only accounts for the errors caused by the limited
spatial resolution, such as those that may occur due to the
rasterization process at the edges of objects. As a result, the
proposed tolerance buffer is equal to the diagonal of the pixel
at the corresponding GSD:

α =
√

2×GSD2 (5)

Figure 5 visually compares the proposed tolerance buffer
with those suggested by Minh et al., and Feng et al., for
a sample randomly taken from the MB-Aerial dataset. To
illustrate this, we use the ground truth at both 1 and 2 m, where
the 2 m ground truth mask is considered the best possible
prediction that could be achieved at this resolution. If we want
to use the buffer to account for errors in boundaries due to
resolution, the buffer should cover the difference between the
highest resolution ground truth (1 m) and the ground truth
mask at the corresponding resolution (2 m in this case).

No buffer Mnih et al. Feng et al. Proposed

α = 0 α = 3 × GSD α = 5 × GSD α =
√
2 × GSD2

Fig. 5. Visual comparison of different tolerance buffers. The ground truth
mask is shown in blue while the predicted segmentation mask is shown in
orange. The tolerance buffer is illustrated with a hatched pattern. Additionally,
a point grid at 2m GSD has been included for ease of visualization.
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TABLE III
RESULTS OBTAINED FOR THE MB-AERIAL, MB-SAT AND BH-POOLS DATASETS CONSIDERING BOTH THE FOREGROUND AND BACKGROUND CLASSES,

AS WELL AS THEIR MACRO-AVERAGE.

Foreground metrics Background metrics Macro-averaged metrics

GSD (m) IoU F1 Prec. Rec. IoU F1 Prec. Rec. IoU F1 Prec. Rec.
M

B
-A

er
ia

l

1 0.5840 0.7366 0.7631 0.7190 0.8917 0.9421 0.9317 0.9537 0.7378 0.8394 0.8474 0.8364
2 0.5443 0.7044 0.6526 0.7859 0.8618 0.9250 0.9414 0.9109 0.7031 0.8147 0.7970 0.8484
3 0.4941 0.6601 0.5720 0.7943 0.8264 0.9037 0.9455 0.8664 0.6603 0.7819 0.7587 0.8303
4 0.4502 0.6182 0.5213 0.7935 0.7946 0.8839 0.9420 0.8354 0.6224 0.7510 0.7316 0.8145
5 0.4058 0.5734 0.4489 0.8264 0.7341 0.8430 0.9495 0.7624 0.5699 0.7082 0.6992 0.7944
10 0.2841 0.4339 0.3005 0.8596 0.4975 0.6391 0.9466 0.5117 0.3908 0.5365 0.6235 0.6856

M
B

-S
at 2.5 0.3353 0.4990 0.4711 0.5442 0.7788 0.8734 0.8898 0.8584 0.5571 0.6862 0.6804 0.7013

5 0.3417 0.5057 0.4218 0.6635 0.7327 0.8422 0.9110 0.7860 0.5372 0.6740 0.6664 0.7247
10 0.2784 0.4286 0.2982 0.8220 0.5257 0.6720 0.9338 0.5455 0.4021 0.5503 0.6160 0.6838

B
H

-P
oo

ls 0.15 0.7163 0.8319 0.8796 0.7975 0.9430 0.9646 0.9971 0.9454 0.8297 0.8983 0.9383 0.8715
0.3 0.7363 0.8460 0.8809 0.8204 0.9170 0.9471 0.9974 0.9190 0.8267 0.8965 0.9392 0.8697
0.6 0.6817 0.8075 0.7612 0.8695 0.9490 0.9688 0.9982 0.9504 0.8153 0.8881 0.8797 0.9100
1.2 0.6158 0.7591 0.7097 0.8227 0.9406 0.9645 0.9975 0.9426 0.7782 0.8618 0.8536 0.8826

As shown in the Figure 5, the tolerance buffers proposed by
Minh et al., and Feng et al. occupy much more space than the
space corresponding to the lack of resolution. In contrast, the
proposed tolerance buffer only considers pixels at the edges
of the object, addressing errors caused by the limited spatial
resolution without being overly optimistic. This will allow us
to know if at a given resolution we can achieve the same
metrics as at a higher resolution ignoring the boundary areas
where we cannot do as well due to the lack of resolution.

Table IV shows the results of using different tolerance
buffers for the MB-Aerial, MB-Sat and BH-Pools datasets in
terms of macro-averaged IoU and F1. The tolerance buffer is
applied to both the foreground and background classes before
the results are macro-averaged. It is important to note that the
all touched flag was set during the rasterization process (as
described in Section III-A1), and thus the negative buffer is
equal to the positive one.

TABLE IV
COMPARISON IN TERMS OF MACRO-AVERAGED IOU AND F1-SCORE
BETWEEN DIFFERENT TOLERANCE BUFFERS FOR THE MB-AERIAL,

MB-SAT, AND BH-POOLS DATASETS.

Without buffer Mnih et al. Feng et al. Proposed

GSD (m) IoU F1 IoU F1 IoU F1 IoU F1

M
B

-A
er

ia
l

1 0.7378 0.8394 0.7787 0.8692 0.7793 0.8702 0.7685 0.8617
2 0.7031 0.8147 0.8121 0.8923 0.8088 0.8909 0.7937 0.8798
3 0.6603 0.7819 0.8061 0.8890 0.7997 0.8858 0.7847 0.8740
4 0.6224 0.7510 0.7949 0.8823 0.7776 0.8704 0.7746 0.8677
5 0.5699 0.7082 0.8060 0.8896 0.7896 0.8769 0.7698 0.8648
10 0.3908 0.5365 0.8105 0.8886 0.7802 0.8564 0.7361 0.8409

M
B

-S
at 2.5 0.5571 0.6862 0.6425 0.7676 0.6358 0.7660 0.6116 0.7381

5 0.5372 0.6740 0.6953 0.8129 0.6635 0.7849 0.6752 0.7951
10 0.4021 0.5503 0.7563 0.8507 0.7262 0.8168 0.7092 0.8213

B
H

-P
oo

ls 0.15 0.8297 0.8983 0.8345 0.9014 0.8365 0.9027 0.8321 0.8999
0.3 0.8267 0.8965 0.8424 0.9066 0.8476 0.9098 0.8355 0.9022
0.6 0.8153 0.8881 0.8580 0.9165 0.8725 0.9255 0.8384 0.9038
1.2 0.7782 0.8618 0.8418 0.9063 0.8592 0.9175 0.8130 0.8870

These results support the conclusions drawn from examining
Figure 5. Both the Minh et al., and Feng et al., approaches are
overly optimistic as they ignore a large number of false posi-
tives, reducing the number of evaluated pixels and increasing
the impact of true positives on the final metric. The MB-Sat

dataset clearly shows how this can lead to undesirable results,
such as lower GSD outperforming higher ones. Additionally,
it may seem counterintuitive that Minh et al.’s approach
outperforms Feng et al.’s, even though the latter evaluated
fewer pixels. This can be explained by the fact that, we are
looking at the macro-averaged results. When considering only
foreground metrics, a larger tolerance buffer outperforms a
smaller one. For further details, please refer to the complete
metric report provided as a supplementary material.

Overall, the proposed tolerance buffer results in a more
accurate way of assessing the model’s performance, as it only
ignores pixels that are subject to uncertainty due to a lack of
resolution.

D. Establishing an upper bound for the pixel level metrics

Problem. There is no well-established strategy to estimate the
upper bound that can be achieved with a GSD for a given
semantic segmentation performance metric.
Description. Determining the maximum possible value of a
performance metric at a specific spatial resolution is use-
ful because it allows for the efficient use of resources by
eliminating unnecessary experiments. This can save time and
money by allowing researchers and practitioners to discard
GSDs that are known to be ineffective for the given use case.
Finding the upper and lower bounds for performance metrics
is relevant and has also been studied in other domains such as
object detection [60]. Despite attempts being made in SRSS
to define the upper and lower boundaries for performance
metrics [18], to the best of our knowledge, there is no work
describing a methodology to extrapolate this to multiple spatial
resolutions. Hence, we propose a simple but effective method
for defining the upper bound for any performance metric at a
given GSD, without having to train a model, just using ground
truth annotations.
Guideline. Rasterize ground truth vector annotations to any
spatial resolution. To determine the upper bounds, compute
performance metrics between the rasterized ground truth and
the ground truth at the greatest spatial resolution.
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Illustrative Example. Degraded ground truth masks are the
result of rasterizing ground truth vector annotations to many
GSDs. These ground truth masks can be seen as the most
accurate predictions that a semantic segmentation model can
make at those resolutions. Therefore, the upper bound can be
easily defined by computing performance metrics between the
degraded ground truth masks and the one at the highest spatial
resolution.

Table V presents the upper bounds in terms of macro-
averaged IoU and F1-score for the MB-Aerial, MB-Sat, and
BH-Pools datasets. Furthermore, the performance metrics de-
rived from using real predicted segmentation maps (after
training a model) are included in the comparison with and
without applying a tolerance buffer. These results are also
shown in Figure 6.

TABLE V
COMPARISON BETWEEN THE ESTIMATED UPPER BOUNDS AND REAL

VALUES (OBTAINED AFTER TRAINING A MODEL) IN TERMS OF
MACRO-AVERAGED IOU AND F1-SCORE FOR THE MB-AERIAL, MB-SAT

AND BH-POOLS DATASETS.

Upper bound Real w/o buffer Real w/ buffer

GSD (m) IoU F1 IoU F1 IoU F1

M
B

-A
er

ia
l

1 0.9093 0.9510 0.7378 0.8394 0.7685 0.8617
2 0.8420 0.9105 0.7031 0.8147 0.7937 0.8798
3 0.7858 0.8737 0.6603 0.7819 0.7847 0.8740
4 0.7389 0.8411 0.6224 0.7510 0.7746 0.8677
5 0.6984 0.8116 0.5699 0.7082 0.7698 0.8648
10 0.5529 0.6954 0.3908 0.5365 0.7361 0.8409

M
B

-S
at 2.5 0.8130 0.8918 0.5571 0.6862 0.6116 0.7381

5 0.6984 0.8118 0.5372 0.6740 0.6752 0.7951
10 0.5529 0.6961 0.4021 0.5503 0.7092 0.8213

B
H

-P
oo

ls 0.15 1.0000 1.0000 0.8297 0.8983 0.8321 0.8999
0.3 0.9763 0.9878 0.8267 0.8965 0.8355 0.9022
0.6 0.9342 0.9648 0.8153 0.8881 0.8384 0.9038
1.2 0.8664 0.9233 0.7782 0.8618 0.8130 0.8870

Closely looking at Figure 6 it becomes evident that the
estimated upper bounds are reasonable, as no real without
buffer results surpass them. For all the datasets, there is a
consistent shift between the estimated and real measurements.
When using a tolerance buffer, the real data outperforms the
estimated upper bounds for some GSDs. This is because the
relaxed metrics are directly compared to upper bounds derived
from the ground truth at their respective GSDs, rather than
their relaxed counterparts. In this regard the relaxed upper
bounds are all perfect performances since spatial resolution-
related errors are ignored. It is worth noting that the impact of
the tolerance buffer on the BH-Pools dataset is minimal due
to the slight variations in the GSD.

The estimated upper bounds may help to directly discard
working with a GSD for a specific problem. For instance,
for the building detection task, a 10 m GSD would lead to
a maximum possible macro-averaged IoU of 0.5529 which
may be considered not enough. If we want to ensure a higher
detection accuracy we may discard GSDs whose estimated
macro-averaged IoU upper bound is below 0.75. Under these
circumstances, we would end up choosing at least a 3 m
GSD which leads to a maximum possible macro-averaged IoU

of 0.7858. However, depending on the use case, if errors at
the building boundaries are acceptable (e.g., for demographic
analyses) a 5 m GSD would result in a buffered macro-
averaged IoU of 0.7698, which is close to the 3 m GSD
(0.7847), while reducing computing requirements by 64%.

V. REGION-BASED PIXEL-WISE METRICS

In the field of semantic segmentation, performance is often
measured using pixel level metrics. These metrics provide
insight into the model’s ability to make detailed predictions
about individual pixels in an image. However, it is also useful
to compute metrics at the object level, which provides informa-
tion about the model’s ability to classify and identify objects
within an image. By combining metrics at both the pixel and
object levels, it is possible to gain a more comprehensive
understanding of the performance of a semantic segmentation
model.

To assess the performance of a semantic segmentation
model at the object level, it is necessary to map objects
from the reference ground truth to the predicted segmen-
tation map. This is commonly done in biomedical image
segmentation, where object association criteria are applied to
map segmented nucleus with their corresponding ground truth
annotations [61]. The simplest method for doing this is to
label connected regions, which are groups of adjacent pixels
that can be reached from one another within a certain number
of orthogonal hops. However, at low spatial resolutions, this
method can lead to many connected regions being mapped to
the same reference object, as shown in Figure 7. This can make
it challenging to accurately evaluate the model’s performance
at the object level.

Unfortunately, there is no well-established strategy to
compute metrics pixel-wise at an object level regardless of
the spatial resolution. For this reason, this section presents a
methodology to define evaluation regions where pixel-wise
metrics can be computed to assess the performance of a
semantic segmentation model at an object level. It is important
to recognize that the proposed methodology is specifically
intended to work with polygonal geometries. To deal with
more complex geometries, such as line strings (e.g., roads),
it may be necessary to reconsider how evaluation regions are
defined.

A. Defining evaluation regions

In order to evaluate the quality of a semantic segmentation
map with respect to individual objects, we must first define
evaluation regions for each object. Pixels within these regions
will be used to compute the confusion matrix for the corre-
sponding object. It is important that these regions cover the
entire scene area and are resolution-agnostic, in order to allow
for a fair comparison between different resolutions.

To generate evaluation regions, we propose using Voronoi
diagrams, which have been used in many contexts including
semantic segmentation [62], [63]. Given a set of n points on
a plane, the Voronoi diagram of those points subdivides the
plane into n cells, each enclosing the portion of the plane that
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MB-Aerial MB-Sat BH-Pools

Fig. 6. Visual comparison between the estimated upper bounds and real values (obtained after training a model) in terms of macro-averaged IoU for the
MB-Aerial, MB-Sat and BH-Pools datasets.

Reference GT Predicted seg. map Overlay

Fig. 7. Visual comparison between reference ground truth objects and
connected regions extracted from the predicted segmentation map at 5 m
for the MB-Aerial dataset.

is closest to a given point. This approach can be extended
to polygons by sampling points from their boundaries and
merging the resulting Voronoi cells based on their source
polygons. The more points we sample, the more accurate
the resulting Voronoi cells will be. It should be noted that
the definition of cell boundaries is heavily influenced by
the distance metric used. In our experiments, we used the
Euclidean distance metric. Figure 8 illustrates the process of
generating Voronoi cells.

B. Computing region-based pixel-wise metrics

Once the evaluation regions have been defined, metrics can
be calculated pixel-wise for each region. This allows us to gain
new insights into the performance of the model, such as how it
is performing with respect to the object size. By looking at the
metrics for individual regions, it is possible to determine which
objects are consistently being misclassified or are otherwise
challenging for the model to predict. This information can
then be used to improve the model or to focus future research
efforts on specific areas of difficulty. Additionally, comparing
the performance of the model on different types of objects
(e.g., large vs. small objects, objects with complex shapes, etc.)
can provide valuable insight into the strengths and weaknesses
of the model. It is worth noting that the results are fairly
comparable across different spatial resolutions as the same
evaluation regions are used.

Since we are working at pixel level in each region we
can put into practice the guidelines described in the previous
section. In this regard, ground truth segmentation masks can
be used to estimate the upper bound of any performance metric
within the evaluation region. By analyzing the relationship

between performance metrics and features such as object area,
we can identify patterns or trends in the data that may not be
apparent from looking at the variables individually.

Figure 9 shows the relationship between the macro-averaged
IoU and the object area through a bi-variate probability
density function for the MB-Aerial, MB-Sat, and BH-Pools
datasets. Although we have focused on the object area, other
features may be of interest depending on the use case. For
the purpose of comparison, both upper bound estimation and
actual predicted values are shown.

In the case of the MB-Aerial dataset, the macro-averaged
IoU decreases gradually from 1 to 5 m. However, there is
a significant drop in performance at the lowest resolution
of 10 m. The results of Figure 9 suggest that this decline
in performance is primarily due to difficulties in detecting
small and medium-sized objects, rather than larger objects
which can be easily identified regardless of the GSD. Same
conclusions can be drawn for the MB-Sat dataset. For the
BH-Pools dataset, Figure 9 shows only minor differences in
performance across spatial resolutions. However, it is still
possible to observe the gradual loss of delineation of small
swimming pools as spatial resolution decreases.

C. Exploring model performance with region-based pixel-wise
metrics

This novel approach provides new insights into how the
model is performing and can be used to compare models
and identify their strengths and weaknesses. As an example,
we have compared segmentation results derived from super-
resolved satellite imagery (MB-Sat) to those obtained from
downgraded aerial imagery (MB-Aerial).

Figure 10 compares the relationship between the macro-
averaged IoU and the object area through a bi-variate proba-
bility density function for the MB-Aerial and MB-Sat datasets.
It should be noted that since there is no 2.5 m degraded aerial
imagery, the super-resolved satellite imagery at 2.5 m has
been compared to both 2 and 3 m degraded aerial imagery.
Upon closer inspection of the results, it can be concluded that
up to 5 m, both degraded aerial imagery and super-resolved
satellite imagery perform similarly (note that satellite uses 10
m images as input). Furthermore, it has been found that as
the spatial resolution increases, the performance gap between
the super-resolved satellite imagery and the degraded aerial
imagery grows.
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Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 8. Visual example of the procedure to generate evaluation regions for computing region-based pixel-wise performance metrics. After sampling points
from the boundary of objects (step 3), Voronoi cells are computed (step 4) and merged based on the source polygon (step 5).

Additionally, this novel approach can be particularly useful
in situations where commonly used pixel-wise metrics are sim-
ilar, making it difficult to determine which model configuration
is superior. For example, at low resolutions, it is common
to modify the patch size to increase the context provided to
the model. However, pixel-wise metrics for different patch
sizes often only vary slightly, making it difficult to determine
whether one patch size is superior to another based solely on
these metrics.

To illustrate this, we have compared several patch sizes at
1 m GSD for the MB-Aerial dataset. Figure 11 shows the
predicted segmentation maps for two testing samples randomly
taken from the MB-Aerial dataset. It becomes evident that
larger patch sizes result in less noisy segmentation maps, and
better detection of medium and large-sized buildings.

Table VI compares the commonly used pixel-wise metrics
and the proposed region-based macro-averaged metrics for
each patch size configuration. Pixel-wise metrics provide infor-
mation on the overall segmentation performance for each patch
size configuration. In this regard, larger patch sizes outperform
lower ones, although their differences are more significant
quantitatively than qualitatively. This is because pixel-wise
metrics do not give information about the detection capa-
bility of the models. However, region-based macro-averaged
metrics provide a more accurate picture of the performance,
reflecting the detection accuracy of the models. Therefore,
when we compare just the detection capabilities of the models,
we observe that there are slight differences between patch
size configurations, meaning that all of them have a similar
detection capability which is in line with what we observe
qualitatively.

TABLE VI
COMPARISON BETWEEN DIFFERENT PATCH SIZE CONFIGURATIONS IN

TERMS OF PIXEL-WISE AND REGION-BASED MACRO-AVERAGED IOU AND
F1-SCORE FOR THE MB-AERIAL DATASET.

Pixel-wise Region-based

Patch size IoU F1 Prec. Rec. IoU F1 Prec. Rec.

128× 128 0.7378 0.8394 0.8474 0.8364 0.6866 0.7801 0.7935 0.7915
256× 256 0.7639 0.8584 0.8600 0.8592 0.6966 0.7848 0.7919 0.7998
512× 512 0.7819 0.8710 0.8801 0.8643 0.7082 0.7928 0.8040 0.7993

1024× 1024 0.7952 0.8802 0.8819 0.8803 0.7208 0.8056 0.8120 0.8159

Figure 12 compares all patch size combinations in pairs,
in terms of the bi-variate probability density function of the
macro-averaged IoU and object area. This allows one to have

a deeper look at which specific scenarios each patch size
configuration is outperforming the others. Overall, we see that
increasing the patch size improves detection accuracy for large
buildings. In addition, patch sizes of 512×512 and 1024×1024
perform similarly for large buildings, but there is a slight
loss of precision for small buildings compared to lower patch
size configurations. Depending on the specific use case and
the target building size, different patch sizes may be more
appropriate. For example, if accuracy in small buildings is
a priority, a patch size of 256 × 256 should be chosen. On
the other hand, if the focus is on medium-sized and large
buildings, using a larger patch size such as 512 × 512 or
1024× 1024 may provide better accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we present a clear set of guidelines for fairly
comparing segmentation maps obtained at different spatial
resolutions in the context of remote sensing. To begin, a
reference ground truth must be selected at the highest resolu-
tion available. Then, the class probabilities should be rescaled
to match the ground truth resolution. Thereafter, pixel-wise
performance metrics can be computed and fairly compared.
However, due to the imbalance between background and
foreground classes, we suggest treating the problem as a multi-
class semantic segmentation problem and macro-averaging
the performance metrics. Additionally, to address the lack of
detail in coarse spatial resolutions, some works have relaxed
the performance metrics. We propose adjusting the tolerance
buffer to account for resolution issues without being overly
optimistic or pessimistic. Furthermore, we demonstrate how
upper bounds for any performance metric can be estimated
without training a model using only ground truth masks.
Based on these bounds, the optimal GSD can be selected
for a given use case to maximize the trade-off between
computing resources required and accuracy achieved. Finally,
we propose a methodology for computing region-based pixel-
wise metrics by defining disjoint evaluation regions for each
object. By following these guidelines, it is possible to compare
segmentation maps at different spatial resolutions and gain a
better understanding of how a model performs. We believe that
the open-source Python library developed in this project will
be useful for facilitating the comparison of research results in
the remote sensing community.

In addition to the novelties proposed in this paper, the
application of these guidelines to multiclass problems, such
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Fig. 9. Bi-variate probability density function of the macro-averaged IoU and the object area in m2 for the MB-Aerial, MB-Sat, and BH-Pools datasets.

as land use and land cover classification, requires further
investigation. Additionally, there is a need for a more in-
depth study on how to handle more complex geometries,
such as roads, in the process of defining evaluation regions
for computing region-based pixel-wise metrics. Moreover, the
inclusion of other datasets and sensors is necessary to enhance
the reliability of the conclusions drawn. Finally, it would be
interesting to further investigate whether the performance at
a given spatial resolution can be predicted by considering a
few upper bounds and actual performances to feed a machine
learning model.
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