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Abstract—In the remote sensing community, extracting build-
ings from remote sensing imagery has triggered great interest.
While many studies have been conducted, a comprehensive review
of these approaches that are applied to optical and synthetic
aperture radar (SAR) imagery is still lacking. Therefore, we
provide an in-depth review of both early efforts and recent
advances, which are aimed at extracting geometrical structures
or semantic attributes of buildings, including building footprint
generation, building facade segmentation, roof segment and
superstructure segmentation, building height retrieval, building
type classification, building change detection, and annotation
data correction. Furthermore, a list of corresponding benchmark
datasets is given. Finally, challenges and outlooks of existing
approaches as well as promising applications are discussed to
enhance comprehension within this realm of research.

Index Terms—building extraction, deep learning, optical im-
agery, review, synthetic aperture radar (SAR),

I. INTRODUCTION

Although cities occupy 3% of the Earth’s land surface,
they are responsible for 60-80% of energy usage and 70%
of greenhouse gas emissions [1]. The frequent city renewal
and rapid urban growth lead to substantial changes within
cities [2]. These alterations can have adverse repercussions
on the environment and ecology, e.g., urban heat island,
the greenhouse effect, and resource depletion [3] [4]. Urban
structures are characterized by buildings in both planar and
vertical dimensions, offering insights into urban development.
For example, the area and volume of buildings correlate with
population distribution [5] [6], greenhouse gas emission [7]
[8], and energy consumption [9] [10]. Consequently, up-to-
date information about buildings is the key element to envi-
ronmentally sustainable urbanization. Moreover, geometrical
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structures and semantic attributes of buildings can be exploited
in various domains, including 1) undocumented building de-
tection, 2) emergency responses and rescue operations, 3)
autonomous vehicle navigation, and 4) facility management.

The most reliable geometrical structures and semantic at-
tributes of buildings can be achieved by field surveying and
mapping [11]; however, these methods are labor-intensive
owing to substantial workloads. In contrast, remote sensing
techniques capable of extracting buildings in a cost-effective
manner have become a mainstream strategy. Remote sensing
imagery usually consists of two types: 1) optical imagery, and
2) synthetic aperture radar (SAR) imagery. A wide variety of
optical sensors with different spatial resolutions are available
for building extraction. The benefit of SAR imagery lies in
its ability to penetrate through clouds, thus alleviating the
limitation of sun illumination and weather.

Nevertheless, several challenges are associated with building
extraction from optical imagery and SAR imagery. An essen-
tial issue is the intra-class variance and inter-class similarity of
buildings on remote sensing imagery [12] [13] [14]. Intra-class
variance denotes buildings are diverse in scale, appearance,
and structure on remote sensing imagery, which is due to dif-
ferences in architectural designs (e.g., size, height, and color),
materials (e.g., metal, clay, concrete, and stone), and land use
functions (e.g., commercial, industrial, and residential). Inter-
class similarity refers to buildings and other classes having
similar features on remote sensing imagery. For instance,
on optical imagery, some buildings share akin colors with
paved roads, whereas on SAR imagery large storage tanks
can have radar-reflective properties similar to some buildings.
Furthermore, the precision of building extraction from remote
sensing images is hindered by complex background interfer-
ence and the absence of relevant sensor information (such as
illumination conditions, shadows, and shooting angle).

In the past decades, numerous approaches have been pro-
posed to extract buildings from remote sensing images. Early
efforts have relied on heuristic feature design procedures,
which combine different spatial, spectral, or ancillary informa-
tion for the construction of building hypotheses. Nevertheless,
feature engineering makes it difficult to achieve scalable
robust, and generic solutions. Recently, the field of remote
sensing image interpretation has seen significant advancements
thanks to deep learning techniques. These methods leverage
convolutional neural networks (CNNs), known for their supe-
rior feature learning capability from raw data [15], recently
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becoming a popular strategy.
To the best of our knowledge, there are two review articles

about building extraction from optical imagery [16] [17] in
the existing literature. However, they ignore SAR imagery,
which can also contribute to this task. SAR imagery can offer
data irrespective of time or weather conditions. This capability
makes SAR data particularly valuable for application after
natural disasters (e.g., earthquake [18] and tsunami [19]) and
war conflict [20] and for investigations in areas frequently
obscured by clouds [21]. Moreover, these two studies mainly
concentrate on building footprint generation. Accompanied by
progress in remote sensing technology and data processing
strategies, a series of new research tasks have also emerged,
e.g., building type classification and roof superstructure seg-
mentation. These tasks aim at extracting geometric structures
and semantic attributes of buildings, whereas they have rarely
been summarized and discussed. Therefore, a timely overview
is essential to summarize works related to these new tasks.
In all, a comprehensive and systematic review concerning
the building extraction from both optical imagery and SAR
imagery has not yet been conducted in the existing literature.

This study mainly focuses on geometric structures and
semantic attributes of buildings that can be extracted from
remote sensing imagery. Note that the aspects (e.g., building
topology) related to building information modeling (BIM) [22]
are out of scope in this study. Our research aims to compre-
hensively review the major tasks within the remote sensing
field that exhibit correlations with building extraction, i.e.,
building footprint generation, building facade segmentation,
roof segment and superstructure segmentation, building height
retrieval, building type classification, building change detec-
tion, and annotation data correction. We conducted a literature
search on peer-reviewed scholarly publications that primarily
originate from mainstream journals or conferences within the
field of remote sensing. Through an in-depth analysis, we
identified the related publications and categorized them with
respect to corresponding tasks. The primary scientific progress
highlighted in the literature is first summarized. Then, some
benchmark remote sensing imagery datasets for these tasks
are introduced. Furthermore, challenges and outlooks toward
future research are presented. Finally, the main applications of
geometrical structures and semantic attributes of buildings are
discussed.

II. REVIEW OF THE MAJOR TASKS INVOLVED IN
BUILDING EXTRACTION

A. Building Footprint Generation

To initiate our exploration into building extraction from
remote sensing imagery, we commence with the fundamental
task of building footprint generation. This foundational step
lays the groundwork for subsequent analyses by establishing
the spatial extent of structures. The building footprint is a two-
dimensional (2D) visual representation of a building, describ-
ing its exact location, size, and shape in the ground [23] [24]
[25]. As illustrated in Fig. 1, three representation types (i.e.,
mask, boundary, and corner) are usually utilized to represent
the building footprint. Fig. 2 shows the building footprint map

(mask) corresponding to optical and SAR imagery in the same
region.

Early efforts to generate building footprints from re-
mote sensing images have three main types: 1) geometrical
primitive-based, 2) over-segmentation-based, and 3) classifier-
based methods. In the first type, geometric primitives (e.g.,
building corners [24] and edges [26] [27] [28] [29]) are first
extracted and subsequently assembled into enclosed polygons
corresponding to individual buildings. In the second type,
different segments –so-called super-pixels– are obtained from
the partition of an image to delineate building regions. For
instance, some commonly used over-segmentation techniques
are clustering [30] [31], graph model [32] [33], active con-
tour model [34] [35], and watershed segmentation [36] [37].
The third type mainly consists of two stages: hand-crafted
feature extraction and classification. Features from each pixel
are extracted and subsequently fed into classifiers that can
determine its label. Classifier-based methods utilize machine
learning models (e.g., support vector machine [38]) to dis-
tinguish buildings from non-building objects [39] [40] [41]
[42]. Note that optical imagery encompasses another method:
the index-based method. This method devises an index by
taking into account the contrast and brightness of buildings
and then utilizes an empirical threshold to extract buildings.
Specifically, morphological building index (MBI) [43] and its
improved versions [44] are commonly used indices.

In the past decades, a significant number of deep learning-
based approaches have been proposed, and they have signif-
icantly outperformed traditional methods in both efficiency
and accuracy. Based on the visual cues they utilize, these
methods can be categorized into three groups: 1) corner-
based, 2) boundary-based, and 3) mask-based methods. On
optical imagery, buildings usually show distinct traits such as
straight lines and sharp corners, inspiring some scholars to
leverage these traits as prominent and differentiable features
with which to extract buildings based on the former two
methods. The advancement of keypoint detection networks
has further propelled corner-based methods. PolygonRNN [45]
is an advantageous approach that comprises a CNN and a
recurrent neural network (RNN). The CNN is responsible for
extracting corner points, and the RNN then connects these
points to create closed polygonal representations. PolyMapper
[46] incorporates the Feature Pyramid Network (FPN) [47]
into PolygonRNN [45], eliminating the necessity for bounding
box annotations. Considering the difficulty in the CNN-RNN
training, graph convolutional network (GCN) combined with
CNN recently become a more popular strategy in this field
[48] [49]. To reduce vertex redundancy in the CNN-GCN
paradigm, a transformer [50] -based approach, PolyBuilding
[51] is proposed to learn building corner points from remote
sensing images. To generate building footprints, boundary-
based methods directly learn building boundaries in an end-
to-end manner. Some works [52] [53] use semantic seg-
mentation networks to learn building boundaries. To refine
the boundaries of individual buildings, other works exploit
instance segmentation networks (e.g., Mask R-CNN [54]) for
building boundary learning [55] [56]. To obtain sharp building
boundaries, some studies exploit the active contour model
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(a) (b) (c)

Fig. 1. (a) Mask. (b) Boundary. (c) Corner points of the corresponding
building footprint.

(a) (b) (c)

Fig. 2. (a) Optical imagery. (b) SAR imagery. (c) The corresponding building
footprints (mask). [59]

(ACM) where parameterizations are learned by an end-to-end
network [57] [58]. However, ACM-based methods are tailored
for extracting a single building instance from a cropped input
image. Thus, their initialization depends on external methods
not integrated into an end-to-end learning process.

Most methods for this task learn masks of buildings from
optical and SAR images. Their primary objective is to ad-
dress pixel-level labeling challenges. More specifically, these
approaches employ semantic segmentation networks to assign
each pixel within the image its relevant label, namely either
“building” or “non-building”. In the following, we introduce
these methods according to their addressed issues.

Buildings exhibit considerable variability within the same
class, such as differences in size, which poses challenges
for this task. This limitation stems from the fact that the
efficacy of semantic segmentation networks is constrained
when dealing with extremely small or large buildings. Ow-
ing to the restricted receptive field, large buildings often
show fragmented and incomplete shapes, whereas many small
buildings might be overlooked. Many approaches have been
introduced to extract buildings at multiple scales from both
optical and SAR images. The majority of research concentrates
on aggregating multi-scale information [60] [61] [62]. Some
studies concentrate on multi-scale feature extraction [63] [13]
[64], while others devise dedicated architectures, e.g., Siamese
network [65] [66] and multi-task learning network [67] [68].

On optical imagery, buildings commonly exhibit straight
lines and sharp corners. However, the inherent translational
and spatial invariance properties of CNNs can result in the loss
of intricate information necessary for precise localization. This
often leads to inaccurate and irregular building boundaries. A
range of methods have been introduced to maintain the geo-
metrical details of buildings. Improved output representation-

based methods devise various output representations capable
of encoding geometrical details concerning buildings, e.g.,
signed distance transform (SDT) [69] [70], frame field [71],
and attraction field representation [72] [73]. Compared to
other output representations, attraction field representation can
preserve more detailed structures for complicated buildings
[72]. Geometric priors of buildings are not evident on op-
tical imagery with a relatively low spatial resolution. Thus,
adversarial training-based approaches and graph model-based
methods can be adopted for these optical images. Adversarial
training-based approaches harness generative adversarial net-
works (GANs), comprising a generator and a discriminator
[74] [75]. Graph models, which facilitate the representation of
pixel interactions, can also be employed. Graph model-based
methods have integrated graph models in end-to-end network
learning frameworks [76] [77].

When preparing the training data, manually annotating
buildings requires more effort compared to annotating wood-
lands, water bodies, and roads [78]. Thus, different strategies
have been designed to diminish the requirement for extensive
pixel-level annotations and compensate for the limited su-
pervisory information. Weakly-supervised methods construct
models through learning with weak supervision. In addition
to pixel-level labels, weakly-supervised approaches still need
weaker labels, including point labels [79], bounding boxes
[80] [81], and image-level labels [82] [83]. However, weakly-
supervised methods neglect the opportunity to leverage exten-
sive unlabeled data. A study [78] explores pseudo-labeling,
where a model is initially trained using a small set of la-
beled data to create pseudo-segmentation maps for unlabeled
samples. Consistency training-based approaches enforce pre-
diction consistency by assigning diverse perturbations to the
input [84] [85], which are more efficient to implement than
the other methods. Domain adaptation is aimed at transfer-
ring knowledge from a source domain to a target domain,
mitigating domain shift. In this context, the source domain
dataset consists of ample annotated samples, whereas the target
domain dataset has no labeled instances. Domain adaptation-
based approaches aim to enhance CNNs’ performance on the
target domain by leveraging the source domain dataset and
aligning data distribution between the two domains. This helps
to mitigate the scarcity of supervisory information in the target
domain. Domain shift can be addressed at different levels.
For instance, [86] seeks to address the domain-shift problem
by only aligning the image distribution, whereas [87] tackles
domain adaptation at both the image and feature levels.

Rapid and accurate generation of building footprint
maps holds critical significance for disaster emergency re-
sponse, military reconnaissance, and loss assessment. Some
lightweight networks have been developed to realize a bal-
ance between computational costs and accuracy by designing
specific network architectures. [88] devises a compressing
module to reduce feature channels, [89] reduces the count of
convolution kernels in its network, and [90] incorporates atrous
convolutions [91], thereby diminishing the training parameters.
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Fig. 3. Off-nadir optical imagery with building facades extracted by the
method described in [92].

B. Building Facade Segmentation

With the building footprints delineated, our focus shifts to
a more detailed examination of structures through building
facade segmentation. This task delves into the exterior face of
buildings, contributing essential information for a more com-
prehensive understanding of their architectural characteristics.
For SAR imagery, there are no studies focusing on extracting
building facades. This is due to the side-looking geometry
of SAR: building areas refer to roofs and facades, making it
difficult to extract sole facade information [93]. For optical
imagery, the building facade is usually invisible at the nadir
angle. Thus, off-nadir imagery is the primary type of data
source to provide beneficial information for building facade
segmentation (see Fig. 3).

Early studies in segmenting building facades from off-nadir
optical imagery have two main types: 1) geometrical primitive-
based, and 2) index-based approaches. The first type extracts
geometric primitives (e.g., building corners and edges), which
are grouped to form a building facade by applying spatial
constraints [92] [94]. In the second type, the index is devised
by considering the spatial features of the facade, and then an
empirical threshold is applied to extract facade regions [95].

Recently, a deep learning network [96] has been proposed to
learn building facades directly from off-nadir imagery, and this
information is combined with other elements (e.g., footprint)
for 3D building reconstruction.

C. Roof Segment and Superstructure Segmentation

Now, we proceed to roof segment and superstructure seg-
mentation, advancing our analysis to the uppermost regions of
buildings. This phase enriches our understanding by capturing
the roof structures. Each planar roof segment (c.f. Fig. 4 (b)) of
the building usually has a specific orientation. Moreover, roofs
usually contain some structures (c.f. Fig. 5 (b)), e.g., chimneys
and windows, which are generally named roof superstruc-
tures. Very-high-resolution optical images provide a valuable
resource for roof segment and superstructure segmentation, as
the details of roof segments and superstructures are visible.

(a) (b) (c)

Fig. 4. (a) Optical imagery. (b) Roof segment map. (c) Roof segment classes
(legend).

(a) (b) (c)

Fig. 5. (a) Optical imagery. (b) Roof superstructure map. (c) Roof super-
structure classes (legend).

Roof segment segmentation aims to extract individual roof
planar segments. One early work [97] relies on a line detection
algorithm to detect roof ridges and gutters, and then roof
planar segments (which face in various orientations) of the
building can be deduced. Recently, semantic segmentation net-
works have been implemented to directly learn roof segments
from aerial imagery [98] [99].

Roof superstructure segmentation focuses on segmenting
different superstructures on the roof. To extract roof su-
perstructure, early efforts [97] [100] utilize either contour
detection [101] or watershed segmentation [102], while recent
studies [99] [103] use semantic segmentation networks.

D. Building Height Retrieval

Ascending to the three-dimensional realm, our attention
turns towards building height retrieval. This critical task aug-
ments our knowledge by providing insights into the vertical
dimension of structures. Building height retrieval involves
addressing two problems: 1) delineating building footprints,
and 2) estimating building heights. Fig. 6 shows the building
height maps (pixel-wise) retrieved from optical imagery and
Fig. 7 illustrates the building height maps (instance-wise)
obtained from SAR imagery.

Traditional approaches first extract building footprints and
subsequently model the height. For optical and SAR imagery,
most of these methods utilize geometrical primitives or the
shadow information as primary indicators [106] [107] [108]
[109]. Meta information of the sensor (e.g., the sun-earth
relative position) is also needed for height estimation. For
SAR imagery, its side-looking imaging geometry introduces
different types of geometric distortion, which lead to difficul-
ties in image interpretation. In this regard, simulation-based
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(a)

(b)

Fig. 6. (a) Optical imagery. (b) Building height map obtained by the method
described in [104].

methods are devised to iteratively simulate SAR images by
making a hypothesis of geometric and radiometric properties
[110] [111]. Afterward, the target building height is gradu-
ally obtained by minimizing the disparity between real and
simulated data.

Recent advances in deep learning-based methods have made
it possible to directly learn height maps and semantic masks
from remote sensing imagery via a multi-task network. In this
manner, the efficacy of both sub-tasks can be enhanced through
a concurrent optimization procedure. The integration of the 3D
centripetal shift representation and decoupling module in [104]
yields superior results on near-nadir optical images when com-
pared to other competitors [112] [113]. [96] devises a specific
network for off-nadir optical imagery where building facades
are also partially visible. For SAR imagery, buildings show
special geometric characteristics induced by the SAR view
geometry. Thus, two main types of methods are utilized to
retrieve building heights. The first type considers the building
footprint as preliminary input to estimate the instance-wise
building height from a bounding box regression network [105].
The second type exploits semantic segmentation networks to
learn building regions [93] [114]. This is because building
regions correspond to both roof and layover areas on SAR

(a)

(b)

Fig. 7. (a) SAR imagery. (b) Building height map obtained by the method
described in [105].

imagery, and building heights can be estimated from their
layover lengths.

E. Building Type Classification

Extending our analysis beyond geometric attributes, we
delve into building type classification that interprets the se-
mantic attributes of individual buildings according to their
geometry or functions. For instance, buildings can be classified
into different roof types, e.g., gable, flat, and hip, or different
function types, e.g., industrial, commercial, and residential.
Very-high-resolution optical imagery provides the potential for
building type classification, as finer building structures can
be observed. Fig. 8 (b) and (d) illustrate the roof geometry
types and building function types of individual buildings,
respectively.

In traditional methods [115] [116], buildings are first seg-
mented and then their types are distinguished by using ex-
tracted features.

In recent years, deep learning techniques have been ex-
ploited to identify building types directly from optical imagery.
Owing to the lack of pixel-level annotation data, early studies
[117] can only assign each image patch with a label of
the corresponding building type. Nowadays, researchers [118]
[119] focus on pixel-level-type classification of individual
buildings.

F. Building Change Detection

Acknowledging the dynamic nature of urban environments,
we introduce building change detection. This task aims to
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(a) (b) (c) (d) (e)

Fig. 8. (a) Optical imagery. (b) Roof geometry type map. (c) Roof geometry type classes (legend). (d) Building function type map. (e) Building function
classes (legend).

(a) (b) (c) (d) (e)

Fig. 9. (a) Pre-change optical imagery. (b) Post-change optical imagery. (c) Pre-change SAR imagery. (d) Post-change SAR imagery. (e) Changed building
masks. [120]

identify changes in buildings in bi-temporal or multi-temporal
remote sensing imagery that are captured from identical ge-
ographic regions. Fig. 9 shows the corresponding changed
building mask between pre-change and post-change remote
sensing imagery in the same region. Specifically, the change
types usually refer to newly constructed or demolished build-
ings [121] and building damage [122]. In the existing liter-
ature, there are two main strategies for building change de-
tection. One solution is based on change detection algorithms,
while the other solution is to first extract buildings in the post-
change remote sensing imagery and then identify changes by
comparison with the pre-change building maps. In this paper,
we introduce the literature related to the first solution.

Tradition methods usually consist of two steps [123]: feature
extraction and change detection. Multiple features (e.g., spec-
tral, textural, geometrical properties) of buildings need to be
engineered to explore the type of changes. For optical imagery,
MBI [43] is a commonly used feature, and its variation can
be used to carry out building change analysis [124] [125]. For
SAR imagery, the double bounce line [126] or the properties
of backscattering [127] are detected for monitoring changed
buildings. To generate difference images (DI) for further
change analysis, three types of indicators are usually utilized:
algebra-, transform-, and classifier-based methods. Change
vector analysis (CVA), image ratio, and image differencing
are commonly used algebraic-based methods. Principal com-
ponent analysis (PCA), which emphasizes change information
in the transformed feature space, is a widely used transform-
based approach. In classifier-based methods, change detection
can also be realized by exploiting the classifiers that assign
pixel-level labels of “change” or “non-change”.

Recently, a number of deep learning-based approaches have
achieved impressive performance. However, the potential of
existing approaches is usually limited by two factors. First,
buildings show various sizes and shapes, which makes it
difficult to extract representative features of buildings with
different sizes and shapes. Second, the similarity between
buildings and other objects as well as the complexity of
the background may also lead to mistaken identification.
To address the aforementioned issues, many methods are
proposed to enhance their capability of feature extraction.
Most studies introduce attention mechanisms [128] [129] [130]
[131] that select the most discernible features. Multi-scale
pyramid structures [132] [133] can also be implemented to
extract multi-scale features by increasing the reception field.
Some special modules, such as feature space alignment module
[134], feature difference enhancement module [135] [136], and
context extraction module [137] are also proposed to enlarge
the interclass disparity in the feature space.

Deep networks usually require the same number of ground
reference labels for pre- and post-change. However, the
annotation of changed/unchanged building labels is time-
consuming and laborious [121]. Two strategies are usually
exploited to compensate for the limited supervisory informa-
tion. One is generative adversarial training, which can synthe-
size new labeled samples to expand the training sets [138].
Nevertheless, methods based on adversarial training face a
considerable risk of model collapse attributed to the imbalance
between adversarial networks. In this regard, semi-supervised
learning is more efficient for implementation and can be
exploited to improve the model performance by leveraging
a considerable number of unlabeled samples [139] [140].
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(a) (b) (c)

Fig. 10. (a) Optical imagery. (b) True labels. (c) Labels from OpenStreetMap.
[141]

Fig. 11. Aerial imagery with alignment results obtained by the method
described in [142].

G. Annotation Data Correction

Recognizing the significance of precisely labeled training
data in deep learning or machine learning applications, we now
turn our attention to annotation data correction. In fact, data
annotation is a time-consuming process and requires exper-
tise. Fortunately, community-based organizations or compa-
nies have provided open cadastral maps (e.g., OpenStreetMap).
However, these datasets also have two limitations [143] [144]
[145]. One limitation is incorrectness (c.f. Fig. 10), where
the labels from open cadastral maps differ from the ones in
the real world [141] [146]. For example, owing to the time
difference between the two data sources, a newly constructed
building might be missing, while a demolished building exists
in the open cadastral maps. Moreover, the outlines of buildings
on open cadastral maps are sometimes much simplified. The
other limitation is misalignment (see Fig. 11), where annotated
buildings are rotated and translated from their position in the
remote sensing imagery [142] [147]. This is due to two factors:
1) errors from the projections of two data sources, and 2)
errors from the annotators. If these open data are used as
training samples, the noise in class labels will impair the model
performance.

To deal with both issues, existing studies involve two main
strategies: 1) noise modeling and 2) data cleansing. The
first strategy approximates noise transition matrices [141] or
devises robust loss functions [148]. However, estimating the
noise transition matrices poses a significant challenge, and loss
function-based methods suffer from the accumulation of errors

[149]. Data cleansing methods, in essence, adhere to a simple
yet intuitive concept: the removal of noisy data and training
exclusively with the cleaner subset [150][151].

Most existing works concentrate on the alignment of optical
imagery and cadastral maps. Cross-correlation-based methods
assume that the estimated alignment location refers to the
maximum value of the cross-correlation [69]. However, con-
ducting the cross-correlation is a time-consuming process. In
energy minimization-based approaches, the alignment problem
is solved by designing and minimizing an energy function
[143] [152]. Nevertheless, the algorithm for energy mini-
mization encompasses a considerable number of parameters.
CNN-based methods propose novel networks to address the
misalignment, i.e., displacement field learning [142] [153]
[154], probability transition modular [155], and robust loss
function [156]. A notable benefit of employing CNN-based
approaches lies in their better generalizability.

III. DATASET

With the available computational resources like graphics
processing units (GPU), deep learning methods have the
capacity to automatically extract information from a large
volume of remote sensing imagery. In this regard, some
benchmark datasets (see Table I) have been proposed to extract
geometrical structures or semantic attributes of buildings.

For building footprint generation, a considerable number
of benchmark datasets are available. However, for other tasks
(e.g., building facade segmentation), only limited available
benchmark datasets are available. This might be due to the
amount of effort needed to acquire corresponding labels.
Compared to other tasks, annotating building footprints is
now much easier since different label sources have become
available [17], e.g., OpenStreetMap.

In terms of sensor type, optical imagery is dominant in data
sources, and only a few benchmarks provide SAR imagery.
This is due to two factors. First, for the SAR sensor, its side-
looking geometry leads to difficulties in data interpretation.
Thus, most researchers prefer to use optical imagery that is
easier to interpret. Second, the number of SAR sensors is much
smaller than that of optical sensors, which means that only a
limited number of SAR products are available for the whole
community.

The spatial resolution of remote sensing images in most
datasets is very high (i.e., ranging from centimeter level
to decimeter level). However, for the SpaceNet 7 dataset,
the spatial resolution is relatively coarse (i.e., 4 m), which
introduces more challenges in building footprint generation,
as it is difficult to identify individual buildings on such spatial
resolution.

The spatial coverage of some benchmark datasets is limited
to one specific city or country. Since deep networks focus
on learning location-specific building patterns, the model’s
ability to generalize is restricted when exploiting such datasets.
Intra-class variation of buildings is evident across different
geolocations. On the one hand, the appearances of urban
settlements (which can be densely or sparsely populated)
vary across different continents. On the other hand, buildings
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TABLE I
REPRESENTATIVE BENCHMARK DATASETS FOR DIFFERENT TASKS.

Task Name Sensor Spatial
resolution

Coverage Website

Building footprint generation

ISPRS-Potsdam Optical 0.05m Potsdam,
Germany

https://www.isprs.org/education/benchmarks/UrbanSe
mLab/2d-sem-label-potsdam.aspx

ISPRS-Vaihingen Optical 0.09m Vaihingen,
Germany

https://www.isprs.org/education/benchmarks/UrbanSe
mLab/2d-sem-label-vaihingen.aspx

Massachusetts
building

Optical 1m Boston, USA http://www.cs.toronto.edu/∼vmnih/data/

WHU
building-aerial

Optical 0.3m Christchurch,
New Zealand

http://gpcv.whu.edu.cn/data/building dataset.html

WHU
building-satellite

Optical 0.3-2.5m Multiple cities
around the world

http://gpcv.whu.edu.cn/data/building dataset.html

Inria aerial
image labeling

Optical 0.3m Multiple cities in
Austria and the

USA

https://project.inria.fr/aerialimagelabeling/

CrowdAI Optical 0.3m Multiple cities
around the world

https://www.crowdai.org/challenges/mapping-challenge

SpaceNet Optical 0.5m Rio de Janeiro,
Brazil

https://spacenet.ai/spacenet-buildings-dataset-v1/

SpaceNet2 Optical 0.3m Las Vegas, USA;
Paris, France;

Shanghai, China;
Khartoum, Sudan

https://spacenet.ai/spacenet-buildings-dataset-v2/

SpaceNet4 Optical 0.3m Atlanta, USA https://spacenet.ai/off-nadir-building-detection/
SpaceNet6 Optical

and SAR
Optical:
0.5-2m;

SAR: 0.5m

Rotterdam, The
Netherlands

https://spacenet.ai/sn6-challenge/

SpaceNet7 Optical 4m Multiple cities
around the world

https://spacenet.ai/sn6-challenge/

GaoFen-3
Building

SAR 1m Multiple cities
around the world

https://doi.org/10.1109/JSTARS.2021.3085122

Building facade
segmentation

3D
reconstruction

Optical - Multiple cities in
China

https://liweijia.github.io/projects/building 3d/

Building height retrieval

ISPRS-Potsdam Optical 0.05m Potsdam,
Germany

https://www.isprs.org/education/benchmarks/UrbanSe
mLab/2d-sem-label-potsdam.aspx

ISPRS-Vaihingen Optical 0.09m Vaihingen,
Germany

https://www.isprs.org/education/benchmarks/UrbanSe
mLab/2d-sem-label-vaihingen.aspx

USSOCOM
Urban 3D

Optical 0.5m Jacksonville and
Tampa, USA

https://spacenet.ai/the-ussocom-urban-3d-competition/

3D
reconstruction

Optical - Multiple cities in
China

https://liweijia.github.io/projects/building 3d/

Roof segment and DeepRoof Optical - Multiple cities in
the USA

https://traces.cs.umass.edu/index.php/Smart/Smart/

superstructure segmentation RID Optical 0.1m Wartenburg,
Germany

https://github.com/TUMFTM/RID

Building type classification Urban Building
Classification

Optical 0.5-0.8m Beijing, China;
Munich,
Germany

https://github.com/AICyberTeam/UBC-dataset

DFC23 Optical
and SAR

Optical:
0.5-0.8m;
SAR: 1m

Multiple cities
around the world

https://ieee-dataport.org/competitions/2023-ieee-grss-d
ata-fusion-contest-large-scale-fine-grained-building-cla

ssification

Building change detection

LEVIR CD Optical 0.5m Texas, USA https://justchenhao.github.io/LEVIR/
WHU Building

Change
Detection

Optical 0.2m Christchurch,
New Zealand

http://gpcv.whu.edu.cn/data/building dataset.html

S2Looking Optical 0.5-0.8m Multiple cities
around the world

https://github.com/S2Looking/Dataset

SI-BU Optical 0.5-0.8m Guiyang, China https://github.com/liaochengcsu/BCE-Net
BANDON Optical 0.6m Multiple cities in

China
https://github.com/fitzpchao/BANDON

come in a wide variety of shapes and colors. Therefore, the
benchmark datasets that have wider spatial coverage and a
more diverse building pattern are more popular. This is because
they can help improve the generalizability of deep networks.

For all benchmark datasets, the most commonly used met-
rics to evaluate algorithms are precision, recall, F1 score,
and Intersection over Union (IoU). In terms of different
tasks or goals, new metrics will be considered to provide

a comprehensive evaluation. For instance, root mean square
error (RMSE) and mean absolute error (MAE) are metrics
for the benchmark datasets related to building height retrieval.
To provide instance-level evaluation, the standard MS COCO
measures [157] including average precision (AP, averaged over
IoU thresholds), or AP at different scales will be exploited.
For the evaluation of the quality of the predicted boundaries,
boundary F-score (BoundF) [158] and polygon similarity [159]
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will also be taken into account.
Given the rapidly evolving nature of the field, numerous

resources, such as the website “Papers with Code” (https:
//paperswithcode.com/) and project webpages related to the
benchmark datasets, provide detailed and up-to-date informa-
tion on the quantitative performance of different methods.
For instance, both https://paperswithcode.com/sota/se
mantic- segmentation-on- inria-aerial- image/ and https:
//project.inria.fr/aerialimagelabeling/leaderboard/ provide
the comparison of the performance of different methods on
the Inria aerial image labeling dataset.

IV. PERSPECTIVES AND INSIGHTS

A. Challenges and Future Directions
In this section, the challenges of building extraction from

remote sensing imagery are summarized. Moreover, possible
future directions are also discussed.

Polygonization: Polygonization refers to mapping building
corners. For the tasks of building footprint generation and
building height retrieval, polygonization should be taken into
account. This is because in geographic information system
(GIS), building footprints are usually stored as vector formats
where building shapes are characterized as building corner
points. Early efforts [160] perform the polygonization on
predicted semantic masks, and they exploit post-processing
steps (e.g., Douglas-Peucker algorithm [161]) to acquire an
abstract version of the building shape. Recently, some deep
learning-based networks that can directly learn building corner
points from remote sensing imagery have become more fa-
vored. However, there are several challenges arising from these
methods. First, building corners are not distinct on remote
sensing imagery with relatively low resolution (e.g., Planet
satellite imagery with 3 m/pixel). Thus, when applying these
methods to such imagery, results might not be satisfactory.
Second, the current strategies for corner point connection (e.g.,
manually defined rules [162] and graph model [49]) cannot
deal with complex shapes (e.g., buildings with holes).

Multimodal data fusion: Multimodal data denotes the data
collected by various sensors, and the synergistic utilization of
multimodal data empowers the network for the acquisition of
more details. For example, optical sensors capture spectral
attributes of objects, SAR remains unaffected by weather
conditions, and LiDAR can acquire precise geometrical infor-
mation. A common application for building change detection is
to assess information on building damage after an earthquake,
and multimodal data can contribute. For instance, pre-event
optical and post-event SAR imagery is compared to detect
the destroyed buildings [163]. In [164], bi-temporal optical
images and post-event LiDAR data are used to extract building
damage. A primary challenge emerges in determining the
“where” and “how” of fusing multimodal data for specific
tasks [165] [166]. “How” denotes fusion strategies to fully
exploit the distinct data, while ’where’ refers to the level
of fusion, encompassing three categories: data-, feature-, and
decision-level. The other main issue is the registration of
multi-modal data, as geometrical registration accuracy will
affect image fusion results. Moreover, different fusion levels
might have different sensitivities to registration errors [167].

Domain shift: For all tasks discussed in section II, the
generalization capability of deep neural networks is of great
concern for large-scale applications. For instance, deep net-
works tend to yield unsatisfactory outcomes when directly
applying a model trained on one dataset (source domain) to
another dataset (target domain) [168]. In other words, the
transferring capability of the trained model is restricted owing
to the domain shift between the target domain and the source
domain. An example is in large-scale building footprint gener-
ation [169], the model which is trained with samples collected
from European cities performs badly on test instances in the
African cities. Domain gaps arise from several factors. Firstly,
the appearances of urban settlements (which can be densely or
sparsely populated) are varied across different continents [70].
Secondly, the intra-class variation of buildings is evident, e.g.,
buildings have various shapes and colors. Thirdly, disparities in
the process of data acquisition (such as illumination conditions
and atmospheric effects) might cause various radiometries of
remote sensing images [170]. Domain adaptation and domain
generalization can be helpful in tackling the domain shift
problem. Some strategies aim to learn representations that are
invariant to domains. Specifically, domain alignment strategies
can be designed to minimize the divergence of distributions
between target and source domains [171]. Self-supervised
learning can also be explored to capture generic representation
[172]. Other strategies attempt to improve the generalizability
of models by avoiding overfitting issues. For instance, to
simulate the domain shift, various types of data augmentation
approaches are devised, including image-, model-, and feature-
based augmentations [171].

B. Potential Applications of Geometrical Structures and Se-
mantic Attributes of Buildings

The geometrical structures and semantic attributes of build-
ings provide valuable insights for many practical applications
at both micro and macro scales. In this study, several examples
are provided, including, 1) environmental and socioeconomic
analysis, 2) disaster risk management, and 3) high-resolution
population map production.

Environmental and socioeconomic analysis: Urbanization
involves the construction of buildings on former non-urban
land. Rapid urbanization can lead to detrimental consequences,
e.g., the spread of epidemics, air and water pollution, and re-
source depletion. For instance, morphological parameters and
landscape metrics of buildings are derived from investigating
their correlation with the thermal environment [173]. Carbon
dioxide emission [174] can be allocated to individual buildings
with respect to attributes (e.g., type, area, and height). The
analysis of the relationship between pedestrian-level wind
velocity and building density facilitates a better understanding
of urban ventilation [175]. The urban living environment,
such as the building density in the community, has also been
proven to be associated with the health of residents [176].
Moreover, the geometrical features of buildings contribute to
the estimation of energy consumption [177] and solar energy
potential [178].

Disaster risk management: For disaster risk management,
the assessment of vulnerability and risk to natural hazards is an
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essential process. Hazard refers to environmental phenomena
that potentially cause detrimental effects on both humans and
infrastructure. Different types of hazards–including landslide,
tsunami, drought, earthquake, flood, and volcanic ash –can
lead to building damage [179]. When a hazard occurs, we
can identify the buildings that are situated within vulnerable
regions. Moreover, evaluating the vulnerability of buildings
also aids practitioners and stakeholders by helping improve the
decision-making process. Specifically, parameters associated
with the properties of buildings (e.g., height, shape, orienta-
tion, and accessibility) are derived to quantify the vulnerability
of buildings [180].

High-resolution population map production: Population
maps refer to population distributions and dynamics, offering
insights for diverse applications such as comprehending inter-
actions between humans and the environment, and assessing
populations at risk. Nonetheless, population data frequently
lags behind or remains absent in certain regions. Consider-
ing that there is a high correlation between population and
buildings, geometrical structures and semantic attributes of
buildings can be harnessed to generate detailed population
maps [181] [182].

V. CONCLUSION

Buildings are indispensable objects in the urban environ-
ment and play an essential role in urban planning and moni-
toring. Remote sensing imagery provides excellent potential
for the detailed interpretation of buildings. Many methods
have been proposed for extracting geometrical structures and
semantic attributes of buildings from optical and SAR imagery.
Therefore, we present a comprehensive review of both early
efforts and recent advances in relation to building extraction on
optical and SAR imagery. We summarize six main categories
of studies in terms of their extracted building characteris-
tics, including building footprint generation, building facade
segmentation, roof segment and superstructure segmentation,
building height retrieval, building type classification, and
building change detection. Moreover, we also survey the
methods aimed at annotation data correction. Furthermore,
the corresponding benchmark datasets of these six categories
are described. Finally, we discuss the challenges of the cur-
rent approaches and introduce promising applications for the
extracted geometrical structures and semantic attributes of
buildings. Although much information about buildings can be
acquired by the existing methods, new efforts for developing
and improving current approaches should continue to be a
high research priority. With the accumulation of a wide range
of remote sensing data, more diverse types of information
are of interest. How to handle and fully explore these data
is becoming a new challenge for the research community, but
this also opens new opportunities to gain a deep understanding
of buildings.
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[143] J. E. Vargas-Muñoz, S. Lobry, A. X. Falcão, and D. Tuia, “Correcting
rural building annotations in openstreetmap using convolutional neural
networks,” ISPRS Journal of Photogrammetry and Remote Sensing,
vol. 147, pp. 283–293, 2019.

[144] S. Fobi, T. Conlon, J. Taneja, and V. Modi, “Learning to segment from
misaligned and partial labels,” in ACM SIGCAS, 2020, pp. 286–290.

[145] C. Ayala, R. Sesma, C. Aranda, and M. Galar, “A deep learning
approach to an enhanced building footprint and road detection in high-
resolution satellite imagery,” Remote Sensing, vol. 13, no. 16, p. 3135,
2021.

[146] N. Ahmed and R. M. Rahman, “Label noise tolerance of deep semantic
segmentation networks for extracting buildings in ultra-high-resolution
aerial images of semi-built environments,” Geocarto International,
vol. 37, no. 25, pp. 8062–8079, 2022.

[147] Y. Zhang, W. Li, W. Gong, Z. Wang, and J. Sun, “An improved
boundary-aware perceptual loss for building extraction from VHR
images,” Remote Sensing, vol. 12, no. 7, p. 1195, 2020.

[148] V. Mnih and G. E. Hinton, “Learning to label aerial images from noisy
data,” in ICML, 2012, pp. 567–574.

[149] Z. Sun, F. Shen, D. Huang, Q. Wang, X. Shu, Y. Yao, and J. Tang, “Pnp:
Robust learning from noisy labels by probabilistic noise prediction,”
in CVPR, 2022, pp. 5311–5320.

[150] C. M. Gevaert, C. Persello, S. O. Elberink, G. Vosselman, and R. Sli-
uzas, “Context-based filtering of noisy labels for automatic basemap

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3369723

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023 14

updating from UAV data,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 11, no. 8, pp. 2731–2741,
2017.

[151] H. Song, L. Yang, and J. Jung, “Self-filtered learning for semantic
segmentation of buildings in remote sensing imagery with noisy labels,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 16, pp. 1113–1129, 2023.

[152] D. Bulatov, “Alignment of building footprints using quasi-nadir aerial
photography,” in SCIA. Springer, 2019, pp. 361–373.

[153] A. Zampieri, G. Charpiat, N. Girard, and Y. Tarabalka, “Multimodal
image alignment through a multiscale chain of neural networks with
application to remote sensing,” in ECCV, 2018, pp. 657–673.

[154] N. Girard, G. Charpiat, and Y. Tarabalka, “Aligning and updating
cadaster maps with aerial images by multi-task, multi-resolution deep
learning,” in ACCV. Springer, 2018, pp. 675–690.

[155] Z. Zhang, W. Guo, M. Li, and W. Yu, “GIS-supervised building ex-
traction with label noise-adaptive fully convolutional neural network,”
IEEE Geoscience and Remote Sensing Letters, vol. 17, no. 12, pp.
2135–2139, 2020.

[156] H. Chen, W. Xie, A. Vedaldi, and A. Zisserman, “AutoCorrect: Deep
inductive alignment of noisy geometric annotations,” arXiv preprint
arXiv:1908.05263, 2019.

[157] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in ECCV. Springer, 2014, pp. 740–755.

[158] F. Perazzi, J. Pont-Tuset, B. McWilliams, L. Van Gool, M. Gross, and
A. Sorkine-Hornung, “A benchmark dataset and evaluation methodol-
ogy for video object segmentation,” in CVPR, 2016, pp. 724–732.

[159] S. Wang, M. Bai, G. Mattyus, H. Chu, W. Luo, B. Yang, J. Liang,
J. Cheverie, S. Fidler, and R. Urtasun, “Torontocity: Seeing the
world with a million eyes,” in Proceedings of the IEEE International
Conference on Computer Vision, 2017, pp. 3009–3017.

[160] K. Zhao, J. Kang, J. Jung, and G. Sohn, “Building extraction from
satellite images using mask R-CNN with building boundary regular-
ization,” in CVPR Workshops, 2018, pp. 247–251.

[161] D. H. Douglas and T. K. Peucker, “Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature,”
Cartographica: the international journal for geographic information
and geovisualization, vol. 10, no. 2, pp. 112–122, 1973.

[162] S. Zorzi, K. Bittner, and F. Fraundorfer, “Machine-learned regulariza-
tion and polygonization of building segmentation masks,” in ICPR.
IEEE, 2021, pp. 3098–3105.

[163] D. Brunner, G. Lemoine, and L. Bruzzone, “Earthquake damage
assessment of buildings using vhr optical and sar imagery,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 48, no. 5, pp.
2403–2420, 2010.

[164] X. Wang and P. Li, “Extraction of urban building damage using
spectral, height and corner information from vhr satellite images and
airborne lidar data,” ISPRS Journal of Photogrammetry and Remote
Sensing, vol. 159, pp. 322–336, 2020.

[165] H. Hosseinpour, F. Samadzadegan, and F. D. Javan, “Cmgfnet: A deep
cross-modal gated fusion network for building extraction from very
high-resolution remote sensing images,” ISPRS journal of photogram-
metry and remote sensing, vol. 184, pp. 96–115, 2022.

[166] X. Li, G. Zhang, H. Cui, S. Hou, Y. Chen, Z. Li, H. Li, and H. Wang,
“Progressive fusion learning: A multimodal joint segmentation frame-
work for building extraction from optical and sar images,” ISPRS
Journal of Photogrammetry and Remote Sensing, vol. 195, pp. 178–
191, 2023.

[167] W. Wu, Z. Shao, X. Huang, J. Teng, S. Guo, and D. Li, “Quantifying the
sensitivity of SAR and optical images three-level fusions in land cover
classification to registration errors,” International Journal of Applied
Earth Observation and Geoinformation, vol. 112, p. 102868, 2022.

[168] X. Yao, Y. Wang, Y. Wu, and Z. Liang, “Weakly-supervised domain
adaptation with adversarial entropy for building segmentation in cross-
domain aerial imagery,” IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 14, pp. 8407–8418, 2021.

[169] Q. Li, L. Mou, Y. Hua, Y. Shi, and X. X. Zhu, “Crossgeonet: A
framework for building footprint generation of label-scarce geograph-
ical regions,” International Journal of Applied Earth Observation and
Geoinformation, vol. 111, p. 102824, 2022.

[170] O. Tasar, S. Happy, Y. Tarabalka, and P. Alliez, “Colormapgan:
Unsupervised domain adaptation for semantic segmentation using
color mapping generative adversarial networks,” IEEE Transactions on
Geoscience and Remote Sensing, vol. 58, no. 10, pp. 7178–7193, 2020.

[171] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain
generalization: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022.

[172] Y. Wang, C. M. Albrecht, N. Ait Ali Braham, L. Mou, and X. X.
Zhu, “Self-supervised learning in remote sensing: A review,” IEEE
Geoscience and Remote Sensing Magazine, 2022.

[173] H. Lu, F. Li, G. Yang, and W. Sun, “Multi-scale impacts of 2D/3D ur-
ban building pattern in intra-annual thermal environment of hangzhou,
china,” International Journal of Applied Earth Observation and Geoin-
formation, vol. 104, p. 102558, 2021.

[174] R. Cong, M. Saito, R. Hirata, A. Ito, and S. Maksyutov, “Visualization
on fossil-fuel carbon dioxide (co2) emissions from buildings in tokyo
metropolis.” ISPRS Annals, vol. 4, no. 4, 2018.

[175] T. Kubota, M. Miura, Y. Tominaga, and A. Mochida, “Wind tunnel
tests on the relationship between building density and pedestrian-level
wind velocity: Development of guidelines for realizing acceptable wind
environment in residential neighborhoods,” Building and Environment,
vol. 43, no. 10, pp. 1699–1708, 2008.

[176] Y. Zhang, N. Chen, W. Du, Y. Li, and X. Zheng, “Multi-source sensor
based urban habitat and resident health sensing: A case study of wuhan,
china,” Building and Environment, vol. 198, p. 107883, 2021.

[177] G. V. Fracastoro and M. Serraino, “A methodology for assessing
the energy performance of large scale building stocks and possible
applications,” Energy and Buildings, vol. 43, no. 4, pp. 844–852, 2011.

[178] Q. Li, S. Krapf, Y. Shi, and X. X. Zhu, “SolarNet: A convolutional
neural network-based framework for rooftop solar potential estimation
from aerial imagery,” International Journal of Applied Earth Observa-
tion and Geoinformation, vol. 116, p. 103098, 2023.

[179] C. J. Van Westen, “Remote sensing and gis for natural hazards
assessment and disaster risk management,” Treatise on geomorphology,
vol. 3, pp. 259–298, 2013.
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