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Abstract—This study presents a novel approach to the radio-
metric inter-calibration between two sensors onboard the same
satellite based on pseudo-invariant pixels (PIPs) using itera-
tively re-weighted multivariate alteration detection (IR-MAD)
method. The IR-MAD algorithm can statistically select pseudo-
invariant pixels from the multispectral image pair to assess
the radiometric differences between them. Analysis of multiple
image pairs from different acquisition times can provide long-
term inter-calibration results of the two sensors. The procedure
is applied to Fengyun(FY)-3A&3B Visible Infrared Radiometer
(VIRR), with the Medium Resolution Spectral Imager (MERSI)
onboard the same platform as the reference. Consistency of
the spatial distribution of the PIPs selected by IR-MAD with
pseudo-invariant calibration sites (PICS) given by other scientists
demonstrates the effectiveness of our method. The long-term
time series trending of top-of-atmosphere VIRR reflectance over
LIBYA1 and LIBYA4 after inter-calibration correction shows
that the inter-calibrated VIRR has good agreement with MERSI,
with a mean bias of less than 1% and an uncertainty of less than
2% for most channels. The approach requires no prior knowledge
of the inter-calibration targets and extends PICS to the pixel-level
targets, which results in more diverse samples, broader dynamic
ranges and lower uncertainty, yielding consistent and reliable
long-term inter-calibration results.

Index Terms—Inter-calibration, Pseudo-invariant pixels, Iter-
atively reweighted multivariate alteration detection (IR-MAD),
Visible Infrared Radiometer (VIRR), Medium Resolution Spec-
tral Imager (MERSI).

I. INTRODUCTION

UANTITATIVE remote sensing depends on the Earth
observing (EO) sensors to provide reliable, accurate,
and consistent measurements over time, especially for the
long-term trend monitoring of the Earth system. In order to
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benefit fully from the ever-increasing number of EO satellite
systems, inter-calibration between the sensors is critical to
bring the measurements from various imaging sensor systems
to a common radiometric scale and hence sensor radiometric
calibration is of critical importance [1].

The inter-calibration is a technique to use a well-calibrated
sensor as a reference to intercalibrate other sensors with
near-simultaneous observations of the common targets on the
surface of the Earth, Moon or mutual reference to pseudo-
invariant features [2]. Consistency biases between different
sensors can be introduced from temporal, geometric, and spa-
tial variation in sampling, as well as relative spectral response
differences and sensor degradation after launch. Regular inter-
calibration is necessary for data continuity and consistency
from different imaging sensors, particularly for which without
onboard calibrators or where vicarious calibrations are limited.
A number of studies have shown that inter-calibration is one
of the potential techniques for long-term radiometric trending
and quantifying radiometric bias for relative and absolute
calibration [3]-[8].

Numerous approaches to inter-calibration between the sen-
sors have been developed and implemented to better quan-
tify the radiometric biases, and new methodologies continue
to evolve. They mainly differ in degrees of simultaneity
between sensors and the associated ancillary data. The vi-
carious ground-based calibration method, such as radiance-
or reflectance- based methods, rely on simultaneous surface
measurements and radiative transfer code computations [9]-
[15]. However, these methods typically involve field cam-
paigns, which are cost and labor intensive, hence the number
of such calibrations is limited. In an attempt to have more
frequent calibration or validation opportunities, certain targets
have been used to calibrate or intercalibrate satellite sensors,
including pseudo-invariant calibration sites (PICS) [16]-[18],
deep convective cloud (DCC) [18], [19], sunglint [20], [21],
and the Moon [22], [23]. The simultaneous nadir overpass
(SNO) method [3], [24]-[26] was proposed to assess the
radiometric consistency between two satellites at the orbital
intersections to further reduce uncertainties due to such effects
as bi-directional reflectance distribution factor (BRDF). The
SNO method was later extended to low latitude (SNO-x) [8],
which makes comparisons over deserts and green vegetation
possible. These methods generally depend on a series of
elaborate thresholds of simultaneity applied to collocate the
data of sensors to minimize the consistency biases that may



This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3376580

JOURNAL OF TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

be attributed to BRDF effects or different contributions of
the target spectral signature and atmosphere composition to
the spectral response functions (SRFs), and therefore still
constrain the opportunities for high quality and frequent sensor
calibration and evaluation.

The motivation behind this study is the potential opportunity
for an accurate and high frequent long-term inter-calibration
for satellite sensors. An iteratively reweighted multivariate
alteration detection (IR-MAD) based method is proposed to
automatically select pseudo-invariant pixels (PIPs) in the scene
for inter-calibration. The PIPs selected by our method are
pixel-level, which do not depend on large spatially homo-
geneous areas, such as PICS. Moreover, the IR-MAD based
method can select a greater number of samples with a wider
variety of surface types than those selected by SNO or SNO-x
method, resulting in a wider dynamic range of reflectance for
inter-calibration. The approach requires no prior knowledge
of the inter-calibration targets and provide inter-calibration
result with high frequency. We describe the method and
its implementation on the interclibration of the visible near
infrared (VNIR) bands of Visible Infrared Radiometer (VIRR)
onboard Fengyun(FY)-3A&B satellites with Medium Reso-
lution Spectral Imager (MERSI) onboard the same platform.
Note that this method is also applicable to other situations
where the sensors for inter-calibration are onboard different
platforms, such as SNO or SNO-x events. Results of inter-
calibration between VIRR and MERSI on the same platform
demonstrate the efficacy of our method.

II. SENSOR OVERVIEW AND DATA

A. Sensor Description

1) FY-3/VIRR: Visible infrared radiometer (VIRR) is a
multi-band imager which inherited from FY-1C and FY-
1D and continued to be carried onboard FY-3 series sun-
synchronous satellites. The involved satellites in this study,
i.e. FY-3A and FY-3B, are a morning satellite with equator
crossing time (ECT) at 10:00 and an afternoon satellite with
ECT at 13:30 respectively. VIRR has 10 channels, of which
seven visible near infrared (VNIR) channels and three thermal
infrared (TIR) channels, with a spatial resolution of 1.1km
at nadir for all bands. More details and channel specification
is illustrated in [27]. VIRR is not equipped with an onboard
calibration system for reflective solar bands (RSBs). The in-
orbit test and postlaunch vicarious calibration found that the
prelaunch calibration coefficients for the VIRR solar bands are
not applicable [28]. The operational calibration depends on the
annual site calibration campaign in Dunhuang. However, the
operational calibration coefficients are not updated annually,
thus the accurate and frequent calibration for the VIRR RSBs
is necessary.

2) FY-3/MERSI: Medium Resolution Spectral Imager
(MERSI) is the keystone payload, which is completely new
generation imager of FY-3 series satellites. MERSI has 20
spectral bands, of which 19 are RSBs and one is TIR band,
covering the visible, near-infrared, and thermal infrared spec-
tra. MERSI scan the Earth through a 45° scan mirror in con-
cordance with one K-mirror (derotation), resulting in a swath
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of 2900km cross-track by 10km along track (at nadir) for each
scan [29]. The spatial resolution at nadir of bands 1-5 is 250m,
whereas 1000m for the remaining 15 bands. See [27] for more
details and channel specification of MERSI. The MERSI is
equipped with a visible onboard calibrator (VOC), which is a
6-cm-diameter integrating minisphere designed to monitor the
system radiometric response changes which arise either from
the MERSI degradation or a change in the output of VOC.
However, due to significant degradation of VOC itself, it is
not used for updating calibration coefficients on orbit [29]. In
practice, the operational calibration coefficients of MERSI are
updated based on the vicarious calibration using global mul-
tisites method and field measurement campaigns conducted
in China radiometric calibration sites, i.e. Dunhuang. Many
vicarious calibration methods have been conducted to MERSI
and the overall uncertainty in the MERSI top-of-atmosphere
radiance or reflectance is less than 5% [29]. In this study, the
long-term degradation of MERSI is monitored and corrected
using the method in [30], and the results align consistently
with other vicarious calibration methods.

B. Study Area and Data

The region of interest (ROI) for this study is located in
the North Africa, as shown in Figure 1. The reasons for
selecting this region as ROI are as follows: 1) this region is
mainly made up of desert with almost no vegetation, because a
high reflectance can reduce uncertainties from the atmospheric
path radiance due to higher signal-to-noise ratio; 2) this
region is arid to minimize the influence of atmospheric water
vapor and has minimal cloud cover and precipitation; 3) this
region is relatively spatial uniform to minimize the effects of
misregistration in inter-calibration; 4) the surface of this region
is relatively spectrally uniform, which is particularly important
for the matching spectral bands that have different spectral
response profiles in inter-calibration; 5) Several reference
pseudo-invariant calibration sites (PICS) in this region, such
as LIBYA1 and LIBYA4, can be used to evaluate the inter-
calibration accuracy.

In this study, the L1B level data of MERSI and VIRR are
used for inter-calibration. Experiments were carried out on
FY-3A and FY-3B respectively to demonstrate the efficacy
and generality of the proposed method. The range of the data
covers almost the entire life cycle of the satellite, as illustrated
in Table L.

TABLE I
THE TIME RANGE OF FY-3A AND FY-3B DATA USED IN THIS STUDY.
Start date End date Time span
FY-3A  Nov. 12, 2008  Dec. 31, 2014 >6 years
FY-3B Jan. 21, 2011 Nov. 14, 2018 ~8 years

III. METHODOLOGY
A. Inter-calibration Formulation

Although the aperture spectral radiance is actually measured
by the sensor, three advantages of converting the at-sensor
spectral radiance to top-of-atmosphere (TOA) reflectance were
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Fig. 1. The ROI in this study. The six reference PICS defined by CEOS are marked as star, of which LIBYA1 and LIBYA4 are located within the ROI.

reported in [31]. Using TOA reflectances instead of radiance
can reduce the image-to-image variability and is a fundamental
step to bring image data from multiple sensors and platforms
to a common scale. For a Lambertian surface in spectral band
i, the TOA reflectance can be computed as follows:
wd?L; T d?

pi= Epicos®  Ep; cosb (DN; = Coi) i M)
where L; is the spectral radiance at the sensor’s aperture
[in W/(m? sr um)], Ey; is the mean exo-atmospheric solar
irradiance [in W/(m? pm)] that can be obtained by convolving
the solar spectra [32] with the SRF of a given instrument. d
is the Earth-Sun distance in astronomical units (AU), 0 is
the solar zenith angle. DN; represents raw digital number (in
counts) recorded at the satellite, Cy; the zero-radiance response
(in counts), and .S; the sensor sensitivity coefficient in units
of percent reflectance per unit count.

In this study, MERSI is used as the reference sensor
to intercalibrate VIRR onboard the same platform. Suppose
MERSI is well-calibrated, the consistency bias between the
two sensors come from their SRF differences, calibration
differences and the VIRR degradation after launch. In this
context, the Equation 1 can be expressed separately for image
data from the MERSI (“M”) and for image data from the VIRR
(“V”) as follows:

7d? L T d?
pM FEoprricos@  Egppg cost (DN onte) St
)
wd2 Ly, T d?
ovi Vi _ (DNy; — Covi) Svi  (3)

" Egyicosf  Egy; cosf
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where ¢ is the spectrally matching band of MERSI and
VIRR. In practice, a fixed sensitivity coefficient from the early
operational stage is adopted to calculate the nominal TOA
reflectance. Accordingly, Equations 2 and 3 can be rewritten
as:

. T d?
P = Frg 080 (DNari — Conri) Sario

T d?

= B cost (DN - anri + Bara) €]
. T d?

Py = Evocos0 (DNv; — Covi) Svio

T d?

= Bygcosd (DNvy; - avi + Bvi) )

Where p},, and pj,, are nominal TOA reflectance calculated
by the fixed sensitivity coefficients Sy;;0 and Sy;g. Since
VIRR has degradation over time, it is useful to further separate
the sensitivity coefficient into a fixed initial component and a
time varying component as:

Svi = Svio - Svi (1) 6)

where ¢ represents days since the first day (Syio). Sy (¢) is
the inverse of the relative degradation. Note that the MERSI
is supposed to be well-calibrated, therefore:

Sari = Sario - S (8) , Sas () =1 = S = Sario (7)

The TOA reflectance of MERSI can be compensated with
the spectral band adjustment factor (SBAF) fspar and the
relative calibration factor fj, where fspapr accounts for SRF
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Fig. 2. The relative spectral response functions (SRFs) of matching channels between VIRR and MERSI for (a) FY-3A and (b) FY-3B.

differences and fj explains calibration differences for the fixed
sensitivity coefficients adopted in Equation 4 and 5. Then,

pvi=fo- fsBaF - pmi (®)
The combination of Equation 2 to 8 yields
« _ Jo-fsBar ,
P = JO JSBAF 1 )

Svi(t)
In practice, the «; and (; can be read directly from the first
day L1B file for MERSI and VIRR. The f;, we want to obtain
is contained in the slope of linear equation that characterizes
Py, as a function of pj,,. Once we get the degradation rate
function Sy; (t) and relative calibration factor fj, the updated
value of VIRR sensitivity coefficients is then given by

~ Svio-Svi(t)  avi- Sy (t)

Jo fo
With this updated value of Sy;, users can obtain TOA re-
flectance of VIRR from Equation 3.

Svi

(10)

B. Spectral Band Matching

Different sensors have varying channels and spectral cover-
age ranges. Even if two sensors have similar spectral ranges in
a given channel, differences in their relative spectral responses
(RSRs) may still exist. Figure 2 displays the spectral response
functions of matching channels between VIRR and MERSI.
The differences in RSRs can lead to systematic biases in
measurements of the same radiation source. Therefore, in
inter-calibration, the differences caused by the RSRs differ-
ences between the two sensors need to be addressed. This can
be compensated for by using the SBAF. The definition and
calculation of SBAF are documented in [33].

In this study, the Scanning Imaging Absorption Spectrome-
ter for Atmospheric Chartography (SCIAMACHY) hyperspec-
tral data were used to calculate the SBAF for each matching
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channel between VIRR and MERSI. The spectral response
function was convolved with the hyperspectral data, and the
SBAF values were obtained by performing linear regression
on all samples. A total of 44,511 spectral samples were used,
representing one full year of SCIAMACHY data within the
ROI and encompassing the spectra of all surface types within
the ROI. For VIRR channel 8, a binary linear regression was
performed since it matches with two MERSI channels. The
SBAF values, center wavelength (CW), correlation coefficient
(r), and residual standard deviations for each matching channel
between VIRR and MERSI are presented in Table II. The
regression plots for SBAF can be found in the supplementary
materials. Note that there may also include cloudy spectral
samples. Examination of the regression plot reveals that there
are no outliers, which can be verified by the residual standard
deviations in Table 1. The slightly higher residual standard
deviation of VIRR band 1 is primarily attributed to the substan-
tial difference in spectral bandwidth between VIRR band 1 and
MERSI band 3 as shown in Fig.2. As stated in [33], narrow-
band RSRs are more sensitive to changes in the spectrum,
leading to a more pronounced effect on SBAF compared to
the wideband sensor RSR. For the matched bands of VIRR
and MERSI, they are all broad bands with bandwidth greater
than 50nm and have weakly gaseous absorption, resulting in
the SBAF being less sensitive to the spectral variability of the
samples. Hence the impact of cloudy samples on the SBAF
regression is negligible.

C. IR-MAD Method for Inter-calibration

The multivariate alteration detection (MAD) technique was
first proposed for change detection by [34]. this technique
has been used in the automatic normalization of remote
sensing images [35], and also for the radiometric calibration
of AVHRR reflective bands [36]. An iteratively re-weighted
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TABLE II
THE MATCHING CHANNELS BETWEEN VIRR AND MERSI ON FY-3A AND
FY-3B, TOGETHER WITH THE SBAF AND REGRESSION RESULTS
CALCULATED BY USING SCIAMACHY DATA.

. VIRR MERSI residual
satellite. — W Band cw ~ SPAF std(%)
T 0630 3 0650 09557 09973 131
2 0865 4 0865 0987 09998  0.32
pyaa 70455 110 8'33(0) 8.223? 09999 051
80505 ) oB0 09Tl 09999 036
9 0555 2 0550 1005 09990 115
0630 3 0650 09650 09960 144
2 0865 4 0865 09921 09998 033
pyap 70455 110 8.gg 8'2222 09995 094
80505 ) oB0 oS 1owo  ous
9 0555 2 0550 09993 1.0000  0.02

modification of the MAD transformation (IR-MAD) has been
introduced [37] and was extended to radiometric normalization
with substantial improvement [38]. This method was later
applied to the selection of pseudo-invariant calibration sites in
Northwest China [39]. In this study, the IR-MAD technique
is used to statistically selected pixel-level targets for inter-
calibration. Next, the basic principles of IR-MAD and how it
is applied to inter-calibration are explained.

The MAD method can be used to automatically select
invariant pixels for multispectral satellite imagery. In the
context of radiometric normalization, the invariant pixels for
bitemporal image refer to those that are temporally invariant
across all spectral bands data during the acquisition time
interval. The MAD transformation is linear scale invariant
under affine transformations of either or both of the original
multispectral images, which is explicitly demonstrated in [35].
For inter-calibration, as shown in Equation 9, there is a linear
relationship between the nominal TOA reflectance of the two
sensors in matching bands. Given the invariance property
of the MAD transformation, it is reasonable to use MAD
algorithm to select PIPs that are suitable for inter-calibration.
Instead of temporally invariant pixels, the PIPs here refer to the
pixels that have linear scale invariance under two sensors with
different spectral response characteristics in matching bands.
Specifically, the PIPs represent the pixels that conform to the
linear relationship in all matching bands under the differences
caused by a combination of the relative spectral response
characteristics of the two sensors, spectral signature of the
target, and the atmospheric composition during overpass. It is
intuitively conceivable that when the SRF difference of the
two sensors is significant, only targets with relatively smooth
spectra profiles will be selected as PIPs. Similarly, when one
sensor contains atmospheric absorption feature within the SRF
and the other does not, only targets that are not susceptible to
atmospheric influence are selected as PIPs.

Consider two sensors with N matching bands for inter-
calibration. A image pair of two observations of the common
targets from the two sensors can be represented by a random
vector F = (Fl,...,FN)T and G = (Gl,...,GN)T, respec-
tively. [34] proposed that the MAD variates can be determined
by a linear transformation of F' and G with coefficients vector
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a and b, and the maximum variance of the MAD variates is
achieved.

U=a'F=aF +asFs+ ... +anFy (11)
V =bTG =b,G1 +b:Gs + ... + bnGn (12)
MAD; =U; —V; =a]F —blG,i=1,..,N (13)

where the coefficients vector a and b can be resolved by
applying standard Canonical Correlation Analysis (CCA) [40].
There are some underlying properties for MAD variates: 1)
From the Central Limit Theorem, the MAD variates, deter-
mined by several additions and subtractions, would ideally fit
a normal distribution; 2) Since MAD variates are orthogonal
(uncorrelated), all the MAD variates should follow a multivari-
ate normal distribution with diagonal covariance matrix [38].

Let the random variable Z represents the sum of squares of
standardized MAD variates:

N MAD;\?
5429

i=1

(14)

where o; is the variance of M AD;. Then, Z should follow a
chi-square distribution with N degrees of freedom (x% (2)).
An iteration scheme is adopted by setting the probability
of no change of observations as weight for the next MAD
transformation. The probability of no change of observations
z can be determined by the chi-square distribution as follows:

Pno_change (Z) =1~ X?\] (Z) (15)

The general idea behind this formulation is that a small
z implies a high probability of no change, resulting in a
large weight in the next iteration. This can be considered as
more emphasis placed on establishing a better background for
detecting change against a background of no change, therefore
resulting in improved sensitivity of the MAD transformation
[38].

The iteration of MAD transformation will continue until one
of the following conditions is met: 1) Maximum number of
iterations reached, usually set to 30; 2) The largest absolute
change in the canonical correlations, i.e. correlations of U and
V', becomes smaller than some preset small value (e.g., 1079).
Once the iteration ceases, a decision threshold k& can be made
to choose the final PIPs for inter-calibration. Typically, the &
is set to be the value of z when Py_change (2) = 0.9, that is,
pixels which satisfy Ppo_change (2) > 90% are designated as
PIPs.

The PIPs are selected statistically from the image pair
without a priori knowledge of the target pixel. They should
correspond to truly invariant targets for which the overall
differences between the image pair can be attributed to linear
effects as expressed in Equation 9. The location of the PIPs
are likely to change with each image pair, which is reasonable
because whether a target is designated as PIP is affected by
the atmospheric condition as well as the BRDF effect besides
its own spectral signature.

With the selected PIPs, an orthogonal, as opposed to or-
dinary, linear regression can be performed on the PIPs as
demonstrated by [35]. The regression slope m; (t) provides
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a measurement of Mij(g{‘;*“ as shown in Equation 9. By
performing IR-MAD procedure on image pairs from different
acquisition times, a large database of m; (t) can be created.
Analysis of these data can provide long-term inter-calibration
results of the two sensors, which can be seen in section V.

In summary, the steps involved in IR-MAD for inter-

calibration are as follows:

1) Reproject the near-simultaneous overpass at the ROI
from the two sensors onto a common geographic grid to
get the image pair.

2) Start with the original MAD transformation for the
image pair, i.e., set weights = 1 for all pixels.

3) Iterate the MAD procedure until termination conditions
are met:

a) Set the probability of no change from the last MAD
procedure as weight for all pixels.

b) Perform MAD procedure on the re-weighted image
pair.

¢) Calculate weights for the next iteration.

4) Select PIPs from the last MAD procedure by the preset
decision threshold k.

5) Perform an orthogonal regression on PIPs to get regres-
sion slope m;, which is a measurement of the inter-
calibration result.

IV. IMPLEMENTATION AND ANALYSIS
A. Examples Applied on FY-3 VIRR

The long-term time series datasets of MERSI and VIRR
onboard FY-3A and FY-3B satellites are created by repro-
jecting the L1B data onto a common geographic grid in
1km spatial resolution via the nearest neighbor method. This
is a prerequisite for making pair-wise comparison for IR-
MAD procedure. A rough threshold-based cloud detection
algorithm is applied to remove cloud pixels. Nevertheless it
must be acknowledged that reduction of variations in the scene
can improve the sensitivity of MAD procedure, the IR-MAD
method statistically and iteratively selects the truly PIPs hence
delicate cloud detection is not necessary.

Our method assumes that radiometric difference between
the PIPs from an image pair is solely due to the linear effects
as shown in Equation 9, thus other possible causes of change,
such effects as BRDF, misregistration and etc., need to be
eliminated or at least minimized. Since the two sensors are
onboard the same platform, the difference due to BRDF effect
is negligible. In order to reduce the uncertainty introduced
from misregistration error, only pixels with view zenith angle
(VZA) < 30° are used for statistic analysis of IR-MAD and
pixels with VZA < 15° are selected as PIPs for orthogonal
regression. This is mainly because large geolocation error
exists and spatial size of pixels increases at the edge of swath.
The impact of different VZAs and scattering regimes was
examined in [36].

Once the image pair data are masked as described above, the
IR-MAD procedure is applied subsequently to determine the
set of PIPs, of which the number can up to several thousand.
The number of PIPs of each image pair varies with the present
atmospheric and surface conditions. In order to exclude image
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pairs strongly affected by atmosphere, image pairs with PIPs
number less than 1000 or the regression correlation less than
0.95 will be removed. This means that the differences between
these image pairs no longer conform to the linear effects due to
atmospheric or surface influences and therefore is not suitable
for inter-calibration analysis.

Figure 3 shows an implementation of IR-MAD method
applied to FY-3B for inter-calibration on January 23, 2011.
Figures 3(a) and (b) show the true color images of MERSI
and VIRR respectively. The image of MERSI looks a little
redder than that of VIRR, which is mainly caused by the
difference in SRFs. Figures 3(c) present the mask used before
IR-MAD procedure, and the spatial distribution of selected
PIPs is shown in Figures 3(d). Interestingly, it can be seen that
the CEOS defined PICS, LIBYAI, is automatically selected
as PIPs. This suggests that LIBYAL is indeed a very suitable
PICS for inter-calibration, and also proves the efficacy of our
method to accurately select PIPs. A potential advantage of
using IR-MAD to select targets is that besides the traditional
sites used for calibration, which generally have few surface
types and limited reflectance dynamic range, the IR-MAD can
automatically select thousands of PIPs with various spectral
signatures over a wider radiance dynamic range including the
lower reflectance targets (see the spatial distribution of PIPs
and their corresponding surface types in Figures 3).

PIPs selected by IR-MAD method can then be used in linear
regression to obtain the slope m; for all bands, which is a
measurement of the calibration difference between MERSI
and VIRR. Figure 4 shows the regression result of the PIPs
in Figure 3. Note that the MERSI nominal TOA reflectance
(p3s) has been compensated by fspapr for comparison. The
regression intercept is due to the unaccounted for change
in the zero-radiance response of VIRR after launch, which
makes the pre-launch coefficients unable to accurately measure
its zero-radiance response on orbit. Though the PIPs are
spatially dispersed and consist of a variety of surface targets,
the correlation coefficient (r) values and the dynamic range
covered in the plot clearly indicate the benefit of using PIPs
for radiometric inter-calibration. The r values for all bands are
in excess of 0.99, and the uncertainties (one-sigma error) of
regression slopes are all less than 1%. The regression results
demonstrate that PIPs can be well used for inter-calibration
and can accurately measure the calibration difference of the
two sensors.

The ROI in this study has a large spatial range, about
2600km horizontally and 1600km vertically. Due to the con-
straint of VZA in the IR-MAD procedure, the spatial distribu-
tion of PIPs in a single day is limited and cannot be spread over
the entire ROI. Given the nominal revisit cycle of FY-3A/B is
5.5 days, assuming that the sensor radiometric calibration is
stable during the period, it is reasonable to aggregate PIPs from
5 consecutive days to further enhance the abundance of targets
and dynamic range. Figure 5 presents two examples of the
spatial distribution of aggregated PIPs at early and later stage
of FY-3B’s lifecycle. Although the orbit of the satellite has
drifted during this period and the sensor has also experienced
relatively large degradation, the spatial distribution of PIPs is
consistent except in some cloud areas. This means that whether
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Fig. 3. True color images at the ROI from (a) FY-3B/MERSI and (b) FY-3B/VIRR on 20110123; (c) The mask used for statistic analysis of MAD method;
(d) The spatial distribution of selected PIPs from IR-MAD method, only the pixels with VZA < 15° are used for regression. PIPs: pseudo-invariant pixels;

VZA: view zenith angle.
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Fig. 4. Regression results of the PIPs selected by IR-MAD on 20110123. The number of PIPs is 7387. PIPs: pseudo-invariant pixels; r: correlation coefficient;

k: regression slope; o: uncertainty (one-sigma error) of k.

a target is selected as PIPs depends on the intrinsic properties
of the target, which has nothing to do with the radiometric
performance of the sensors.

Figure 6 shows the regression results of the aggregated
PIPs from 5 consecutive days. In contrast to single-day PIPs
for regression in Figure 4, the 5-day aggregated PIPs do not
deviate from each other and still converge to the same linear
relationship. What is more, the regression results of aggregated
PIPs have wider reflectance dynamic range for all bands, and
the uncertainty of the regression slope is no more than 0.4%.
These superiorities indicate that it is reasonable and necessary
to aggregate multi-day PIPs for regression analysis, especially
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for long-term inter-calibration with time span of several years.

B. IR-MAD vs. SNO-x

The most related work to our study is the SNO-x method,
which extends the SNO analysis to the low latitude desert and
ocean sites, and sets a number of criteria to choose spatially
uniform ROIs to evaluate the bias between two sensors [8]. In
this study, based on the potential linear relationship between
two sensors, the IR-MAD technique was used to statistically
selects PIPs to inter-calibrate the sensor. Here we compare the
performance of the IR-MAD based method and the SNO-x
based method for inter-calibration. There are multiple criteria
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Fig. 5. The aggregated PIPs selected by IR-MAD overlay the concurrent true color images (VZA < 15°) of FY-3B/MERSI from five consecutive days: (a)
20110121-20110125 at early stage of FY-3B’s lifecycle; (b) 20180728-20180801 in the later of FY-3B’s lifecycle.
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Fig. 6. Regression results of the aggregated PIPs selected by IR-MAD from 5 days (20110121, 20110122, 20110123, 20110124, 20110125). Different colored

dots represent PIPs from different days. The total number of PIPs is 29171.

established to select the ROIs for SNO-x analysis as outlined
in the original paper [8], including: 1) Scan angle difference,
time difference and colsest-matching distance limit for geospa-
tial matching. These are inherently satisfied as the two sensors
used for intercomparison are onboard the same satellite; 2) The
size of the ROI is 9 kmx9 km, the solar zenith is less than
80° and the spatial uniformity should be less than 2%. These
criteria align with those in the original paper; 3) The VZA
is restricted to within 15° to ensure a fair comparison with
the IR-MAD method. We set the moving stride to 5 (which
means there is overlap) to increase the number of regression
samples. The mean reflectance for each ROI is calculated for
regression.

Figure 7 shows a comparison of the spatial distribution
of matched pixels selected by two methods on January 21,
2011. The main reason for choosing this case is that it covers
diverse land cover types, rather than a homogeneous desert
area, which better reflects the superiority of our method.
Figure 7 illustrates that in scenes containing complex samples,
the SNO-x method selects fewer spatially uniform ROIs and
the sample type is relatively small, mainly comprising desert
targets. In contrast, the IR-MAD method can automatically
select appropriate pseudo-invariant pixel-level samples for
regression without requiring spatial uniformity, resulting in a
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greater number of samples with a wider range of types.
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Fig. 7. A comparison of the spatial distribution of pixels selected by the
SNO-x and IR-MAD methods on 20110121. (a) True color image from FY-
3B/MERSI; (b) The mask used before selection; (c) Pixels selected by IR-
MAD method. (d) Pixels selected by SNO-x method. The gray area in (c)
and (d) represents the area where the VZA < 15°.

Figure 8 presents the regression results of the selected
samples from one day by the two methods. It can be seen
intuitively that the TOA reflectance of the regression sam-
ples selected by the IR-MAD method has a wider dynamic
range, indicating a greater diversity in the selected samples.
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Fig. 8. Comparison of the regression results for FY-3B on 20110121, where the samples are selected by the two different methods: (a) SNO-x, with 812

samples; (b) IR-MAD method, with 3175 samples.

TABLE III
COMPARISON OF REGRESSION RESULTS OBTAINED BY APPLYING THE SNO-X METHOD AND THE IR-MAD METHOD FOR FY-3B OVER FIVE
CONSECUTIVE DAYS.

number channel 1 channel 2 channel 7 channel 8 channel 9
date method of range range range range range
samples a(%) [min, max] a(%) [min, max] a(%) [min, max] a(%) [min, max] a(%) [min, max]
20110121 SNOX-x 812 0.18 [29.6, 46.2] 024 [39.6, 60.5] 0.34 [26.1,36.3]  0.19 [20.4, 32.2] 0.17 [20.1, 34.6]
IR-MAD 3875 0.08 [17.6, 47.3] 0.07 [17.9, 61.7] 0.07 [21.9,38.5]  0.05 [15.5, 34.3] 0.05 [13.1, 36.0]
20110122 SNOX-x 3007 0.1 [32.9, 56.9] 0.05 [41.8, 72.6] 0.06 [26.7,42.5]  0.03 [21.1, 39.5] 0.04 [20.9, 42.8]
IR-MAD 4307 0.05 [15.9, 56.6] 0.02 [17.6, 72.1]  0.04 [21.7,42.6]  0.03 [15.1, 39.5] 0.04 [12.0, 42.6]
20110123 SNOX-x 3436 0.21 [30.4, 57.9] 0.12 [42.7, 75.7] 0.06 [25.2,41.5]  0.05 [19.9, 37.9] 0.05 [19.4, 40.7]
IR-MAD 7387 0.08 [20.8, 56.1] 0.05 [25.7,73.7]  0.04 [23.2,42.8]  0.04 [16.8, 39.2] 0.03 [14.3, 41.1]
20110124 SNOX-x 2822 0.12 [31.2, 50.6] 0.11 [40.7, 66.1] 0.08 [25.9, 42.4]  0.07 [20.6, 36.7] 0.08 [21.4, 37.8]
IR-MAD 5203 0.08 [18.3, 50.6] 0.05 [20.3, 66.4] 0.07 [22.3,409]  0.05 [16.0, 36.7] 0.05 [13.6, 38.5]
20110125 SNOX-x 5991 0.13 [32.4, 50.1] 0.2 [42.1, 66.8] 0.06 [24.8,422]  0.06 [19.5, 37.9] 0.05 [20.3, 37.6]
IR-MAD 8399 0.1 [29.0, 49.9] 0.09 [37.7, 66.9] 0.04 [21.9,427]  0.04 [15.9, 38.3] 0.04 [15.9, 37.9]
o: uncertainty (one-sigma error) of regression slope.
range: TOA reflectance range of regression samples.
Furthermore, while the SNO-x method selects samples with applicable.

overlapping, the number of samples is fewer than with IR-
MAD, particularly in more complex scenes, e.g. those with
higher cloud coverage where it is challenging to obtain large
spatially uniform regions. With regards to regression results,
the IR-MAD method has a very consistent regression slope
with the SNO-x method, and the uncertainty of the regression
slope is smaller, which also confirms the correctness of the
samples selected by the IR-MAD method.

Table III presents the comparison of regression results
obtained by applying the SNO-x method and the IR-MAD
method from five consecutive days. It is evident that the
IR-MAD method has significant advantages over the SNO-
x method in terms of the number of regression samples, the
dynamic range of TOA reflectance for each channel, and the
uncertainty of the regression slope. Moreover, this method
requires no prior knowledge of the surface and is globally

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

V. RESULTS
A. Long-term Time Series Results of FY-3A&3B VIRR

By performing IR-MAD procedure on all image pairs and
subsequently aggregate 5-day PIPs for regression, a large
database of m; (t) can be created. Note that the MERSI nom-
inal TOA reflectance (p},) has been compensated by fspar
before, thus the m; (t) here represents the measurement of
5 Vf 9( ok For FY-3A data with a time span of 6 years there are
439 5-day comparisons, and for FY-3B data with a time span
of 8 years there are a total of 564 5-day comparisons. Analysis
of these data can provide long-term inter-calibration results of
the two sensors.

The long-term time series of m; (¢) for FY-3A and FY-3B
are shown in Figure 9. The gaps in the curves are due to
missing data. It can be seen that there is a decreasing trend
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Fig. 9. The long-term time series of regression slope (m; (t)) for FY-3A
MERSI and VIRR and the sensor degradation of VIRR itself.

in all bands for both sensors. This is because that all bands
of VIRR have different degrees of degradation. In addition to
long-term trends, periodic seasonal oscillations exist in some
bands, especially for channel 1 and 2. Examination of the
fitting error and potential overfitting problem shows that a
polynomial of order 4 can best capture the trending pattern.
For the regression intercepts in each comparison, they are
attributed to the unaccounted for change in the zero-radiance
response of VIRR after launch, which should generally remain
stable over time in orbit. However, due to the degradation
of VIRR itself, there would be a trend in the regression
intercepts over time (not shown). In this study, we employed
a second-order polynomial fitting to capture the trend of the
regression intercept for correction. The coefficients of the fitted
polynomials and bias statistics can be seen in Table IV.

As mentioned above, the m; (t) is a measurement of the
relative calibration factor (fy) and the sensor degradation
(1/Svio). The VIRR degradation can be obtained indepen-
dently by the approach of [36]and [30]. Therefore, we can
obtain the relative calibration factor (f) by dividing m; (t) by
sensor degradation (1/Sy o). Figure 10 shows the long-term
time series of fj. Since we used fixed calibration coefficients
at early operational stage to calculate the nominal TOA re-
flectance, f( represents the relative calibration factor of the two
sensors at that time, which expects to be a constant. Due to the
limitations of the polynomial functions used to fit the m; (t)
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and FY-3B, which is a measurement of the relative calibration factor between

and sensor degradation (1/Sy o) trending, they can not fully
capture the seasonal variation. Consequently, periodic seasonal
oscillations may manifest in the time series of the f,. We tried
to fit the trending of f; with polynomials of different orders,
all tend to be a constant (as expected), which demonstrate the
validity of the time series of m; (¢) we derived.

Furthermore, we can utilize the estimated f, value to calcu-
late the VIRR degradation and compare it with our previous
work [30]. Unlike the IR-MAD technique applied in this study
for inter-calibration, the IR-MAD technique is proposed to
select temporally invariant pixels from the bitemporal satellite
images by the same sensor to assess the sensor response degra-
dation during the acquisition time interval [30]. By dividing
the polynomials of m; (t) by the estimated fj, we can obtain
the sensor degradation as a function of time. The outcomes
are depicted in Figure 11, where the solid lines correspond to
the degradation calculated in this study and the dashed lines
represent the outcomes obtained using the method of [30]. The
highly consistent VIRR degradation curves obtained from the
two methods further confirm the effectiveness of this approach.

Table V presents a quantitative comparison of the degra-
dation results of VIRR obtained in this study with those
from the other two different methods, including a multi-site
calibration method [41], [42] and a IR-MAD based method
for sensor degradation tracking [30], and their results have
been unified to the same time range. It can be seen that
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TABLE IV
COEFFICIENTS OF THE FITTED POLYNOMIALS FOR LONG-TERM TIME SERIES OF m; () AND REGRESSION OFFSET, ALONG WITH THE FITTING BIAS
STATISTICS FOR m; (t).

VIRR band

m (t) = ap + a1t + ast® + azt® + ast?

of fset (t) = by + b1t + bat>

bias mean (%)

bias std (%)

ag a1(><10’4) CLQ(X1077) a3(><10’11) a4(><10’14) bo b1(><1074) b2(><1077)
fy3a/chl 0.6858 -1.5767 1.1953 -4.7703 0.7568 -2.2214 8.1813 -3.6872 0.0001 1.6394
fy3a/ch2 0.8554 -1.4257 1.1732 -5.2327 1.0301 -2.4014 16.315 -8.1611 0.0000 2.3243
fy3a/ch7 0.8856 -3.2868 0.5078 6.8015 -2.2115 -5.0486 28.606 -14.152 0.0001 1.8337
fy3a/ch8 0.8848 -1.8592 0.2292 0.9403 -0.1600 -7.9868 4.1352 -2.0237 0.0000 0.8153
fy3a/ch9 1.0283 -2.2065 1.4163 -6.5519 1.1270 -5.6542 21.537 -7.2687 0.0000 1.0514
fy3b/chl 0.8261 -1.9008 1.5373 -6.3876 0.9259 -2.6697 -2.6514 -0.1468 0.0000 1.5873
fy3b/ch2 0.6977 -0.8124 5.0772 -1.6215 0.1562 -1.2840 3.5416 0.6355 0.0000 2.3130
fy3b/ch7 0.6264 -1.5049 -0.0252 2.3268 -0.4491 -4.4480 9.0079 -2.7429 -0.0005 1.5665
fy3b/ch8 0.6376 -1.0266 0.3000 -1.5524 0.3598 -2.0573 1.8634 -0.5125 0.0002 1.2841
fy3b/ch9 0.7232 -1.4534 0.9793 -4.2652 0.6441 -1.0563 -0.9416 -0.3341 0.0000 0.7523
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Fig. 10. The long-term time series of relative calibration factor (fp) for FY-3A and FY-3B, which expects to be a constant. See main text for more explanation
about fo.

the degradation results of VIRR obtained in this study are
very consistent with the other methods. Compared to the
results of the other two methods, the annual degradation
for most channels differs by less than 0.1%. For channels
with significant seasonal fluctuations (such as channel 2), the

B. TOA reflectance trending validation over PICS

As an independent calibration method of on-orbit calibra-
tion, ground sites with suitable characteristics on Earth are
often used to evaluate and validate the post-launch radiometric

difference can reach around 0.3%. As for channel 7, which is
a short-wave channel, it is strongly affected by atmospheric
absorption and scattering, resulting in a difference of around
0.5%. This verifies the consistency of the VIRR degradation
results obtained by this method with other methods.
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performance of satellite sensors. Monitoring the long-term
time series of TOA reflectance at PICS is an effective approach
to verify the radiometric calibration consistency between
different sensors. In the ROI of this study, there are two
PICS identified by the CEOS, namely LIBYA1 and LIBYA4.
They are desert sites consisting of sand dunes and devoid of
vegetation. These sites have been extensively studied and used
as post-launch calibration sites for satellite optical sensors to
evaluate the long-term stability and inter-comparisons. Due to
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Fig. 11. The degradation curves over time of the VIRR on FY3A and FY3B. The solid lines correspond to the degradation obtained in this study and the

dashed lines represent the results using the method of [30].

TABLE V
COMPARISON OF THE TOTAL AND ANNUAL DEGRADATION OF VIRR OBTAINED USING THREE DIFFERENT METHODS. FY3A: FROM NOVEMBER 16,
2008, TO DECEMBER 1, 2014. FY3B: FROM JANUARY 25, 2011, TO DECEMBER 1, 2017.

total degradation

annual degradation

VIRR band

method 1 method 2 . method 1 method 2 .
(41)  (pop  MisswdyC gy oy  this study
fy3a/chl 14.06% 13.74% 14.44% 2.33% 2.27% 2.39%
fy3a/ch2 9.48% 7.58% 7.17% 1.57% 1.25% 1.19%
fy3a/ch7 30.26% 31.66% 30.66% 5.01% 5.24% 5.07%
fy3a/ch8 27.11% 26.02% 26.62% 4.49% 4.31% 4.40%
fy3a/ch9 22.18% 22.81% 22.76% 3.67% 3.77% 3.77%
fy3b/chl 18.08% 17.65% 18.26% 2.64% 2.57% 2.66%
fy3b/ch2 13.54% 10.64% 11.20% 1.98% 1.55% 1.63%
fy3b/ch7 35.67% 31.54% 32.54% 5.20% 4.60% 4.75%
fy3b/ch8 28.34% 26.30% 26.85% 4.13% 3.84% 3.92%
fy3b/ch9 23.07% 23.03% 22.99% 3.37% 3.36% 3.35%

space limitations, the long-term time series of TOA reflectance
over Libya 4 for FY-3B are presented here. FY-3B was selected
due to its longer time span, and LIBYA4 has been the most
commonly used calibration site in recent years. Similar results
can also be obtained for FY-3A and LIBYA1, which will be
presented in the table.

By selecting clear-sky samples with a sensor zenith angle
less than 20 degrees during satellite overpasses, Figure 12
shows the long-term time series of the TOA reflectance of
FY-3B/VIRR over LIBAYA4 before and after inter-calibration,
with the MERSI used as a reference. To mitigate seasonal
oscillations arising from BRDF effect or orbital drift, the
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TOA reflectance has been characterized by the solar zenith
angle and normalized to the TOA reflectance at a solar zenith
angle of 30 degrees. From the figure, it can be observed
that before inter-calibration, due to the degradation of the
VIRR itself, there is a significant downward trend in each
channel, while MERSI as the reference sensor has a very
stable and flat long-term response. After inter-calibration, the
trend of VIRR has been eliminated and it has a consistent
radiometric response with MERSI, indicating that our inter-
calibration method is effective. The second column of Figure
12 shows the relative deviation of TOA reflectance between
MERSI and inter-calibrated VIRR, which exhibits a seasonal
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oscillations pattern. The pattern becomes more pronounced
in the later stage of the satellite’s life cycle, which may be
related to the orbital drift of FY-3B in its later phase. Table
VI presents the quantitative results of the relative deviation
between MERSI and inter-calibrated VIRR on FY-3A and
FY-3B over LIBIYA1 and LIBAYAA4. It can be seen that for
most channels, the mean deviation is less than 1%, with a
standard deviation of less than 2%. For some channels with
significant seasonal fluctuations, the deviation may be slightly
larger, but the mean deviation is also less than 2%, with a
standard deviation of less than 2.5%. The mechanism behind
the significant seasonal fluctuations and amplitude of TOA
reflectance bias will be further investigated. The quantitative
results of the two satellites over the two PICS have also
verified the accuracy and effectiveness of our method.

TABLE VI
QUANTITATIVE RESULTS OF THE RELATIVE DEVIATION BETWEEN MERSI
AND INTER-CALIBRATED VIRR ON FY-3A AND FY-3B OVER LIBYA1

AND LIBYA4.
LIBYAI LIBYA4
AL bias mean  bias std bias mean  bias std
fy3a/chl -0.578% 0.866% 0.845% 0.888%
fy3a/ch2 0.725% 1.623% -1.200% 1.626%
fy3a/ch7 0.667% 1.550% -0.790% 1.297%
fy3a/ch8 1.009% 1.096% -0.371% 0.915%
fy3a/ch9 0.767% 1.034% -0.654% 0.872%
fy3b/chl -1.399% 0.855% 1.401% 0.826%
fy3b/ch2 0.479% 1.787% -0.434% 1.795%
fy3b/ch7 1.480% 1.750% 0.640% 1.532%
fy3b/ch8 1.341% 1.360% 0.531% 1.319%
fy3b/ch9 0.557% 1.213% -0.093% 1.112%

C. Uncertainty Analysis

In this inter-calibration, the uncertainty primarily originates
from the radiometric calibration uncertainty of the reference
sensor and the processing procedure of the inter-calibration.
Here we mainly analyze the uncertainty introduced by several
factors in our processing method, including: geometric misreg-
istration, spectral band differences, atmospheric conditions and
viewing geometry (or BRDF) effects during overpass. In this
study, since the two sensors are onboard the same platform,
the differences caused by atmospheric conditions and BRDF
effects are negligible.

MERSI and VIRR have a little difference in spatial resolu-
tion, making it challenging to achieve perfect pixel match-
ing between the two sensors, especially in off-nadir areas.
To minimize the effects of different spatial resolutions, our
method limits the near-nadir (VZA<15) pixels for analysis and
regression. Furthermore, the IR-MAD technique statistically
selects PIPs that satisfy the underlying linear relationship
(Equal 9) in each channel, hence pixels with larger differences
due to misregistration will not be selected as PIPs. As a
result, in the presence of misregistration effect, IR-MAD tends
to select PIPs from spatially uniform areas. Similarly, when
atmospheric disturbances and BRDF effects are present, IR-
MAD also tends to select pixels with the smallest possible
impact of these effects. Thus, the uncertainty introduced by
these effects is implicitly reduced during the PIPs selection of
IR-MAD.
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One of the primary sources of uncertainty in our method is
the differences in relative spectral responses. Despite com-
pensating with SBAF, the SBAFs for different land cover
types are not the same. Hence, when the study area is vast
and encompasses diverse land cover types, IR-MAD favors
selecting pixels with flat spectral signature to minimize such
effects.

The uncertainty arising from the above effects is reflected
in the residual standard deviation of the regression results.
For the 439 5-day comparisons of FY-3A and the 565 5-day
comparisons of FY-3B, the mean uncertainty for the matching
bands are listed on the first row of Table VII. For long-term
inter-calibration results, additional uncertainties are introduced
by polynomial fitting, mainly due to seasonal oscillations of
the sensor, which are listed on the second row of Table VII.
The overall uncertainties for the matching bands are listed on
the last row of Table VII.

VI. DISCUSSION

Unlike other previous studies that used IR-MAD method
to select temporally invariant pixels from bitemporal image of
one sensor, this study employed the IR-MAD method to select
PIPs from multispectral images acquired at the same time by
two different sensors for inter-calibration. Starting from the
formula of the inter-calibration problem, we demonstrate the
reasonableness of employing IR-MAD technique to select PIPs
for inter-calibration owing to the linear scale invariance prop-
erty of MAD transformation. The PIPs represent pixels that
conform to the potential linear relationship across all matching
bands in inter-calibration, under the differences caused by
a combination of relative spectral response characteristics of
the two sensors, spectral signature of the target, atmospheric
conditions, and viewing geometry.

The PIPs are selected statistically from the image pair
without a priori knowledge of the target pixel, which are de-
termined based on the existence of a certain underlying linear
relationship between the matching bands of the two images.
Therefore, for different pixels within an image pair, they may
not conform to this linear relationship due to variations in
surface characteristics or differences in atmospheric influence.
As aresult, the locations of PIPs may vary with different image
pairs. It should be noted that when the two images in an image
pair are strongly affected by atmospheric conditions or when
there is a lack of a sufficient number of samples for statistical
analysis due to extensive cloud cover, the number of selected
PIPs will decrease, which means it is challenging for IR-MAD
to find the underlying linear relationship between the two
images. Using these PIPs for regression will result in greater
uncertainty. Therefore, such image pairs will be excluded. To
examine which areas and surface types are most frequently
identified as PIPs, a density map showing the spatial frequency
distribution of PIPs of all FY-3B image pairs is depicted in
Figure 13. Similar results can also be obtained with FY-3A.

From Figure 13, it is evident that PIPs are distributed not
only in bright target areas such as deserts but also encompass
dark target types like volcanic surfaces. Therefore, inter-
calibration based on PIPs offers a broader dynamic range.
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Fig. 12. The long-term time series of the TOA reflectance of FY-3B/VIRR over LIBAYA4 before and after inter-calibration, with the MERSI used as a
reference. The second column shows the relative deviation of TOA reflectance between MERSI and inter-calibrated VIRR.
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TABLE VII
UNCERTAINTY OF THE PROPOSED IR-MAD METHOD FOR INTER-CALIBRATION.
Uncertaint Source FY3A VIRR FY3B VIRR
y chl(%) ch2(%) ch7(%) ch8(%) ch9(%) chl(%) <ch2(%) ch7(%) ch8(%) ch9(%)
misregistration
uncertainty atmospheric conditions
for image pair BRDF effect 1.46 1.30 0.69 0.68 0.65 1.50 1.23 0.85 0.78 0.89
spectral band differences
uncertainty polynomial fitting 1.64 2.32 1.83 0.81 1.05 1.59 2.31 1.57 1.28 0.75
for long-term total error 2.20 2.67 1.96 1.06 1.24 2.19 2.62 178 1.50 1.17

inter-calibration

(root sum of squares)

0.5

0.0

10°E

Fig. 13. The density map of the spatial frequency distribution of PIPs for all
image pairs of FY-3B.

The primary hotspot regions are predominantly located within
desert areas, which aligns with our expectations. Deserts
exhibit flatter spectral profiles, minimizing the impact of SRFs
differences between the two sensors. Regarding the spatial
distribution pattern of PIPs, our method does not rely on large,
spatially uniform regions. Instead, it selects samples at the
pixel level, resulting in a higher sample quantity, a richer
variety of land surface types, and a broader dynamic range
compared to the SNOx method. Furthermore, in addition to
internationally recognized PICS such as LIBYA1 and LIBYA4
being found within the distribution area of PIPs, there are
several extensive PIPs hotspot regions. These areas hold the
potential to serve as valuable calibration sites for future
research.

Another advantage of this method is its ability to implicitly
reduce uncertainty. Unlike SNO-x method, which relies on
the spatial uniformity of the surface to select samples, IR-
MAD selects samples based on the potential linear relationship
between two images. Samples that no longer conform to
this linear relationship due to effects such as misregistration,
atmospheric disturbances, and BRDF are excluded from the
PIPs selection. As a result, the uncertainty introduced by
these effects is implicitly minimized during the PIPs selec-
tion process of IR-MAD. It’s worth noting that this method
employs a single SBAF for all PIPs samples, which is a major
source of uncertainty in this method. However, as shown in
Figure 13, IR-MAD tends to select targets like deserts that
have relatively flat spectral profiles to reduce errors caused by
the SRF differences. For long-term inter-calibration, variations
in atmospheric conditions at different times are the primary
source of uncertainty, as evident in Figure 9. For channels
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easily affected by atmospheric conditions, their regression
slopes exhibit fluctuations and divergence (e.g. channels 1 and
2), while this phenomenon is less pronounced for channels that
are less susceptible to atmospheric influence (channels 8 and
9).

This method is not limited to a specific geographical region.
We also conducted research in the northwest region of China as
our ROI and obtained similar results. The results can be found
in the supplementary materials. Furthermore, this method is
not restricted to any particular sensor or satellite platform.
It can be applied to SNO and SNO-x events as well. The
entire process is generic. The difference lies in the fact that,
unlike the two sensors on the same platform in this study,
when dealing with sensors on different platforms, additional
considerations are required to account for the impact of BRDF
effects. Therefore, in such cases, additional constraints should
be added to minimize the influence of BRDF. This can be
achieved by imposing constraints on the proximity of the two
satellite orbits or by using samples from nadir observations
for the analysis.

VII. CONCLUDING REMARKS

In this study, we propose a novel approach to the sensor
radiometric inter-calibration based on PIPs using IR-MAD
method. Due to the property of linear scale invariance, the
IR-MAD method was proposed to statistically select PIPs for
inter-calibration. The approach requires no prior knowledge
of the inter-calibration targets. The PIPs do not depend on
large spatially homogeneous areas and extends PICS to the
pixel-level targets, resulting in a higher sample quantity, a
richer variety of land surface types, and a broader dynamic
range of reflectance. The PIPs are selected statistically and
can implicitly reduce uncertainty of inter-calibration. This
method is generic, not limited to any particular sensor, satellite
platform or geographical region, which is particularly suitable
for operational long-term inter-calibration.

The implementation on FY-3A&3B VIRR for inter-
calibration (with the MERSI onboard the same platform as the
reference) demonstrates the efficacy of our method. The results
show that two widely used PICS for calibration, LIBYA1
and LIBYA4, have been automatically included in the PIPs.
Moreover, despite the degradation of the sensors and drift of
the satellite orbit over time, the spatial distribution of the
PIPs remains consistent. The long-term time series of TOA
reflectance over LIBYA1 and LIBYA4 shows that the inter-
calibrated VIRR is in good agreement with MERSI, with a



This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3376580

JOURNAL OF TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

mean bias of less than 1% and an uncertainty of less than
2% for most channels. For channels with significant seasonal
oscillations, the uncertainty is also less than 2.5%. Further
exploration of the underlying mechanisms for the seasonal
fluctuations in the long-term inter-calibration results is still
needed. It should be reiterated that although this study used
two sensors onboard the same platform for inter-calibration,
our method is also applicable to other situations where similar
sensors for inter-calibration are onboard different platforms,
such as SNO or SNO-x events.

DATA AVAILABILITY

The data used in this study are all publicly available in
the FY-3A&B satellite archive at FENGYUN Satellite Data
Center. These datasets were derived from the public do-
main resources: http://satellite.nsmc.org.cn/portalsite/default.
aspx’currentculture=en-US.
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