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AE-RED: A Hyperspectral Unmixing Framework
Powered by Deep Autoencoder and Regularization

by Denoising
Min Zhao, Student Member, IEEE, Jie Chen, Senior Member, IEEE and Nicolas Dobigeon, Senior Member, IEEE

Abstract—Spectral unmixing has been extensively studied with
a variety of methods and used in many applications. Recently,
data-driven techniques with deep learning methods have obtained
great attention to spectral unmixing for its superior learning
ability to automatically learn the structure information. In par-
ticular, autoencoder based architectures are elaborately designed
to solve blind unmixing and model complex nonlinear mixtures.
Nevertheless, these methods perform unmixing task as black-
boxes and lack of interpretability. On the other hand, conven-
tional unmixing methods carefully design the regularizer to add
explicit information, in which algorithms such as plug-and-play
(PnP) strategies utilize off-the-shelf denoisers to plug powerful
priors. In this paper, we propose a generic unmixing framework
to integrate the autoencoder network with regularization by
denoising (RED), named AE-RED. More specially, we decompose
the unmixing optimized problem into two subproblems. The first
one is solved using deep autoencoders to implicitly regularize the
estimates and model the mixture mechanism. The second one
leverages the denoiser to bring in the explicit information. In
this way, both the characteristics of the deep autoencoder based
unmixing methods and priors provided by denoisers are merged
into our well-designed framework to enhance the unmixing
performance. Experiment results on both synthetic and real data
sets show the superiority of our proposed framework compared
with state-of-the-art unmixing approaches.

Index Terms—Hyperspectral unmixing, deep learning, autoen-
coder, plug-and-play, image denoising, RED.

I. INTRODUCTION

HYperspectral imaging has been a widely explored imag-
ing technique during recent years and is still receiving a

growing attention in various applicative fields [1], [2]. Bene-
fiting from the rich spectral information, hyperspectral images
enable the analysis of fine materials in the observed scenes to
tackle various challenging tasks such as target detection and
classification [3], [4]. However, due to the limitations of the
imaging acquisition devices, there is an unsurmountable trade-
off between the collected spectral and spatial information,
which limits the spatial resolution of the hyperspectral sensors.
As a consequence, a pixel observed by a hyperspectral sensor
generally corresponds to a relatively large area and may
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TABLE I
NOTATIONS.

x, X scalar
x column vector
X matrix
B number of spectral bands
N number of pixels
R number of endmembers
yi ∈ RB spectrum of the ith observed pixel
Y ∈ RB×N an observed hyperspectral image
ai ∈ RR abundance vector of the ith pixel
A ∈ RR×N abundance matrix of all pixels
S ∈ RB×R endmember matrix with R spectral signatures
1 all one vector or matrix
0 all zero vector or matrix
· ≥ · elementwise inequality between vectors or matrices

encompass several materials, in particular when observing
complex scenes. More precisely, the spectrum collected at
a given spatial position of the scene is assumed to be a
mixture of several elementary spectral signatures associated
with the materials present in the observed pixel. This has led
to research focused on hyperspectral unmixing (HU), which
aims at decomposing the ith observed pixel spectrum yi ∈ RB

into a set of R spectral signatures of so-called endmembers
collected in the matrix S = [s1, . . . , sR] ∈ RB×R and their
associated fractions or abundances ai ∈ RR [5]–[7]. For the
sake of physical interpretability, the abundances are subject
to two constraints, namely abundance sum-to-one constraint
(ASC), 1⊤

Rai = 1, and abundance nonnegativity constraint
(ANC), ai ≥ 0. The endmembers are constrained to be
nonnegative (ENC), S ≥ 0.

Many methods have been proposed in the literature to
address the HU problem [8]–[12]. Considering a set of N
observed pixels Y = [y1, . . . ,yN ] ∈ RB×N sharing the
same endmembers, HU can be formulated as an optimization
problem, which aims at estimating the endmembers S and the
abundances A jointly, i.e.,

min
S,A

N∑
i=1

D
[
yi

∣∣∣∣M(
S,ai)

)]
+R

(
S,A

)
s.t. 1⊤

RA = 1⊤
N , A ≥ 0, and S ≥ 0

(1)

where

• D(·, ·) stands for a discrepancy measure (e.g., diver-
gence),
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• M(·, ·) describes the inherent nonlinear mixture model
which relates the endmembers and the abundances to the
measurements,

• R(·, ·) acts as a regularization term that encodes prior
information regarding the endmembers S and the abun-
dances A.

The regularization R(·, ·) is often designed to be separable
with respect to the abundances and endmembers,

R(S,A) = Re(S) +Ra(A), (2)

where the endmember and abundance prior information is
encoded in Re and Ra, respectively. For instance, geometry-
based penalizations, such as minimum volume [13], are often
chosen as endmember regularizers. Sparsity-based [14], low-
rankness [15] or spatial regularizers, such as total variation
(TV) [16], are usually utilized to promote expected properties
of the abundances. This work specifically focuses on the
design of an abundance regularization.

As for the mixing process, typical methods rely on an
explicit mathematical expression for M(·, ·) to describe the
mixture mechanism. For example, the linear mixing model
(LMM) is by far the most used in the literature since it
provides a generally admissible first-order approximation of
the physical processes underlying the observations. LMM
assumes that the measured spectrum is a linear combination of
endmembers weighted by the abundances, which assumes that
the incident light comes in and only reflects once on the ground
before reaching the hyperspectral sensor. Besides, bilinear
models consider second-order reflections, for instance in the
case of multiple vegetation layers [1], [17]. These explicit
models are usually designed by describing the path of the
light, along with its scattering and the interaction mechanisms
among the materials. They are thus generally referred to as
physics-based models. However, in some acquisition scenarios,
they may fail to accurately account for real complex scenes.
Data-driven methods have been thus proposed to implicitly
learn the mixing mechanism from the observed data. Never-
theless, if not carefully designed a data-driven method may
overlook the physical mixing process and require abundant
training data [18].

A. Motivation

Numerous methods cope with the HU problem by carefully
designing the data-fitting term and the regularizer [19], [20].
To reduce the computational complexity, most HU methods
are based on the LMM. It may be not sufficient to account for
spectral variability and endmember nonlinearity. On the other
hand, designing a relevant regularizer is not always trivial and
is generally driven by an empirical yet limited knowledge.
For these reasons, research works have been devoted to
the design of deep learning based HU approaches. Among
them, autoencoders (AEs) become increasingly popular for
unsupervised HU. The encoder is trained to compress the
input into a lower dimensional latent representation, usually
the abundances. The decoder is generally designed to mimic
the mixing process parametrized by the endmember signatures
and to produce the hyperspectral image from the abundances

defined in the latent space. AE-based HU methods exhibit
several advantages: i) they can embed a physical-based mixing
model into the structure of the decoder, ii) they implicitly
incorporates data-driven image priors and iii) the unmixing
procedure can benefit from powerful optimizers, such as
Adam [21] and SGD [22]. However, these deep architectures
behave as black boxes and the results lack of interpretation.
Motivated by these findings, this paper attempts to answer the
following question: is it possible to design an unsupervised
HU framework which combines the advantages of AE-based
unmixing network while leveraging on explicit priors?

B. Contributions

This paper derives a novel HU framework which answers
to this question affirmatively. More precisely, it introduces an
AE-based unmixing strategy while incorporating an explicit
regularization of the form of a RED. To solve the result-
ing optimization problem, an alternating direction method of
multiplier (ADMM) is implemented with the great advantages
of decomposing the initial problem into several simpler sub-
problems. One of these subproblems can be interpretated as
a standard training task associated with an AE. Another is
a standard denoising problem. The main advantages of the
proposed frameworks are threefold:

• This framework combines the deep AE with RED priors
for unsupervised HU. By incorporating the benefits of
AE with the regularization of denoising, the framework
provides accurate unmixing results.

• The optimization procedure splits the unmixing task into
two main subtasks. The first subtask involves training an
AE to learn the mixing process and estimate a latent
representation of the image as abundance maps. In the
second subtask, a denoising step is applied to improve
the estimation of the latent representation.

• The proposed framework is highly versatile and can
accommodate various architectures for the encoder, and
the decoder can be tailored to mimic any physics-based
mixing model, such as the LMM, nonlinear mixing
models, and mixing models with spectral variability.

This paper is organized as follows. Section II provides a
concise overview of related HU algorithms, with a particular
focus on the design of regularizations and AE-based unmixing
methods. Section III describes some technical ingredients
necessary to build the proposed framework. In Section IV, the
proposed generic framework is derived, and details about par-
ticular instances of this framework are given. Section V reports
the results obtained from extensive experiments conducted on
synthetic and real datasets to demonstrate the superiority of the
proposed framework. Finally, Section VI concludes the paper.

II. RELATED WORKS

This section provides brief overviews on two aspects related
to this work, namely regularization design in HU and AE-
based unmixing.
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A. Regularization design

Efficient algorithms for HU often require effective regular-
izations that incorporate prior knowledge about the images and
constrain the solution space. Traditional methods exploit the
spatial consistency of the image, and sparsity-based regulariz-
ers have also been extensively used on the abundances since
the number of endmembers is typically much smaller than the
size of the spectral library.

In [16], a TV regularizer is applied to the abundance
to promote similarity between adjacent pixels, and an ℓ1-
norm is used for sparse unmixing. Since the ℓ1-norm is
inconsistent with the abundance sum-to-one constraint, ℓp-
norms with 0 < p < 1 have been studied to obtain sparse
estimates [23]. In [24], a non-local sparse unmixing method
is proposed to exploit similar patterns and structures in the
abundance image. A weighted average is applied to all pixels
to exploit non-local spatial information. A weighted average is
applied to all pixels to exploit non-local spatial information.
Spatial group sparsity regularizers have also been proposed
to incorporate spatial priors and sparse structures. The authors
of [25] introduce a spatial group sparsity regularizer generated
using image segmentation methods such as SLIC. In [26], a
cofactorization model is used to jointly exploit spectral and
spatial information, while the work of [27] introduces an
adaptive graph to automatically determine the best neighbor
points of pixels and assign corresponding weights. However,
these methods require handcrafted regularizers, which can be
time-consuming when non-standard regularizers are applied to
large images.

More recently, the idea of PnP has been introduced to
exploit the intrinsic properties of hyperspectral images. These
methods use generic denoisers that act as explicit regularizers.
In [28], an HU method based on an ADMM algorithm is
introduced that can handle explicit regularizations. By select-
ing different pattern switch matrices, the denoising operator
can be used to penalize the reconstructed hyperspectral im-
age or estimated abundances. The work of [29] proposes a
nonlinear unmixing method with prior information provided
by denoisers. However, the denoisers used in these methods
are traditional denoising methods or deep denoisers trained
on grayscale or RGB images, which may not be optimal for
hyperspectral images.

B. Deep AE-based unmixing methods

Elegant neural network structures have been proposed to
formulate the HU task as a simple training process. Early
works used fully connected layers to design the model, such
as [12] and [30]. However, these networks process the pix-
els independently and ignore the spatial correlation intrinsic
to the image. To overcome this limitation, some AE-based
methods include spatial regularizations, such as total variation
(TV), in the loss function [31]. Recently, convolutional neural
networks (CNNs) have been used to perform HU and have
shown promising performance. CNNs convolve the input data
with filter kernels to capture spatial information [10], [32].
Recurrent neural networks (RNNs), which have memory cells,
implement a sequential process with hidden states that depend

on the previous states [31]. Hyperspectral images are often
corrupted by noise or outliers, which can dramatically decrease
the unmixing performance. To address this issue, denoising-
oriented architectures have been proposed [30]. Some works
have also proposed variants of encoders. In [33], a dual-
branch AE network is designed to leverage multiscale spatial
contextual information.

Most AE-based HU methods use a fully connected linear
layer in the decoder part to mimic the linear mixing process.
However, considering the physical interactions between mul-
tiple materials and the superior ability of deep networks to
model nonlinear relationships, some works [31], [32], [34],
[35] have focused on the design of structured decoders to
ensure the interpretability of the nonlinear model inherent in
the mixing process. The work of [34] introduces a nonlinear
decoder. Recycling an LMM-based AE architecture, the de-
coder contains two parts: one linear and the other nonlinear.
The linear part is considered a rough approximation of the
mixture and is then fed into two fully connected layers with a
nonlinear activation function to learn the nonlinear mechanism.
However, this post-nonlinear model-based decoder may not
be sufficient to represent complex nonlinear cases. Some
works [31], [32], [35] reexamine the nonlinear fluctuation part
of the decoder. For example, the method in [35] designs a
special layer to capture the second-order interaction, similar
to the Fan or bilinear models. Moreover, spectral variability
can also be addressed by using deep generative decoders [36],
[37].

Recently, deep unfolding techniques have been used to
unroll a model and its related iterative algorithm into deep
networks. This approach can include physical interpretability
into the design of network layers, and such model-inspired
networks are also used in the design of unmixing methods.
In [38], an iterative shrinkage-thresholding algorithm (ISTA)-
inspired network layer is applied to build an AE-based un-
mixing architecture. The work of [39] unrolls a sparse non-
negative matrix factorization (NMF)-based algorithm with an
ℓp-norm regularizer to integrate prior knowledge into the
unmixing network. An ADMM solver with a sparse regularizer
is also unrolled to build an AE-like unmixing architecture.
However, these methods do not utilize spatial consistency
information in the design of the network, which may limit
their unmixing performance.

III. BACKGROUND

A. Autoencoder-based unmixing

As highlighted in the previous section, AEs have demon-
strated to be a powerful tool to conduct unsupervised unmix-
ing. An AE typically consists of an encoder and a decoder. The
encoder, represented by EΘE

(·), aims at learning a nonlinear
mapping from input data, denoted as wi, to their correspond-
ing latent representations, denoted as vi. This can be expressed
as follows:

vi = EΘE
(wi), (3)

where ΘE gather all parameters of the encoder. The input
W = [w1, . . . ,wN ] depends on the architecture chosen for the
encoder network. For instance, when dealing with the specific
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Fig. 1. Framework of the proposed AE-RED. (a) The scheme of the proposed framework. (b) Flowchart of the (k+1)th ADMM step: the denoising operator
is applied in parallel to the update of Θ to speed up calculations. (c) An overview and some instances of AE-based unmixing networks, where the encoder
embeds deep priors for abundance estimation, and the decoder can model the mixture mechanism and extract the endmembers. The choice of the encoder
and decoder is let to the end-user.

task of HU, the input can be chosen as the image pixels Y =
[y1, . . . ,yN ] or as noise realizations Z = [z1, . . . , zN ] with
zi ∼ N (0, I). The decoder, denoted by DΘD

(·), is responsible
for reconstructing the data, or at least an approximation ŷi,
from the latent feature vi provided by the encoder. This can
be expressed as follows:

ŷi = DΘD
(vi), (4)

where ΘD parameterizes the decoder. Under this paradigm,
adjusting the encoder and decoder parameters ΘE and ΘD is
generally achieved by minimizing the empirical expectation of
a discrepancy measure between the input data y1, . . . ,yN and
their corresponding approximation ŷ1, . . . , ŷN , i.e.,

L(ΘE,ΘD) =
1

N

N∑
i=1

D [yi||ŷi] (5)

with ŷi = DΘD
(EΘE

(wi)). This reconstruction loss function
can be complemented with additional terms to account for
any desired property regarding the network parameters and
the latent representation.

Drawing a straightforward analogy with the problem (1),
AE-based unmixing frameworks generally assume that the
latent variable V = [v1, . . . ,vN ] can be considered as an
estimate of the abundance matrix A. The architecture of the
encoder should be chosen to be able to extract key spatial
features from the input data. Several choices are possible and
will be discussed as archetypal examples later in Section IV-B.
The decoder can then be designed to mimic the mixing process
M(·, ·) in (1). The endmember signatures to be recovered
are part of the decoder parameters, i.e., ΘD =

{
Θ̃D,S

}
where Θ̃D are intrinsic network parameters. For instance,
when the decoder is designed according to a physics-based
nonlinear mixing model prescribed beforehand, Θ̃D gathers
the nonlinearity parameters. In the simplistic assumption of the

LMM, the decoder does not depend on any additional intrinsic
parameters and ΘD = S.

B. Regularization by denoising priors

Various regularizers have been considered to design the
term Ra(·). Among them, PnP is a flexible and generic
framework that naturally emerges when resorting to splitting-
based optimization procedures. This framework replaces the
proximal operator associated with Ra(·) by off-the-shelf and
highly engineered denoiser. This strategy has been effectively
used when tackling many imaging inverse problems, such as
image denoising, super-resolution and inpainting [40], [41].
Recently, an advanced version of PnP, regularization by de-
noising (RED) [42] has demonstrated superior performance.
It can be expressed as

Ra(A) =
1

2
A⊤ (A− C (A)) , (6)

where C(·) is a denoiser. This regularizer is proportional to the
inner-product between the abundance and its post-denoising
residual and exhibits many appealing characteristics. First, it is
a convex function. Second, under some mild assumptions and
reasonable conditions on C(·), its derivative with respect to A
is simple and given as the denoising residual, i.e., ∇R(A) =
A − C (A) [42]. This work aims at devising a generic AE-
based HU framework that can incorporate the RED regularizer.

IV. PROPOSED METHOD

A. Generic framework

The generic unmixing framework proposed in this paper,
referred to as AE-RED hereafter, formulates the HU problem
as the training of an AE while leveraging the RED paradigm.
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Adopting a conventional Euclidean divergence for D(·, ·), the
HU problem (1) is now specified as

min
Θ

∥Y − DΘD
(EΘE

(W))∥2F
+ λEΘE

(W)⊤ (EΘE
(W)− C (EΘE

(W)))

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0 and S ≥ 0

(7)

with Θ = {ΘE,ΘD}. As stated in the previous section, the
endmembers are part of the set of decoder parameters, i.e.,
ΘD =

{
Θ̃D,S

}
and the latent representation directly provides

abundance estimates, i.e., A = EΘE
(W). This formulation

of the unmixing task leverages on a combination of the AE
modeling and RED, providing several benefits. First, the AE
is effective in handling the mixture mechanism and learning
underlying information. Second, RED provides a flexible and
efficient way to model data priors.

Solving the minimization problem (7) with deep learning-
flavored black-box optimizers is challenging if not infeasible,
in particular because back-propagating ΘE would require
differentiating the denoising function C. For most denoisers,
this differentiation is not straightforward and may need a huge
amount of computations. However, it is worth noting that one
of the great advantages of RED is that its derivative can be
directly calculated. To benefit from this property, one simple
strategy consists in reintroducing the abundance matrix A
explicitly as an auxiliary variable and then reformulating (7)
as a constrained problem

min
Θ,A

∥Y − DΘD
(EΘE

(W))∥2F + λA⊤ (A− C (A))

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0, S ≥ 0

and A = EΘE
(W).

(8)

To solve (8), a common yet efficient strategy boils down to
split the initial problems into several simpler subproblems fol-
lowing an ADMM. The main steps of the resulting algorithmic
scheme write

Θ(k+1) = argmin
Θ

∥Y − DΘD
(EΘE

(W)) ∥2F (9)

+ µ∥A(k) − EΘE
(W)−G(k)∥2F

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0 and S ≥ 0

A(k+1) = argmin
A

λA⊤ (A− C (A)) (10)

+ µ∥A− E
(k+1)
ΘE

(W)−G(k)∥2F
G(k+1) = G−A(k+1) + E

(k+1)
ΘE

(W) (11)

where µ is the penalty parameter and G is the dual variable.
The framework of the proposed AE-RED is summarized in
Fig. 1. It embeds a data-driven autoencoder with a model-
free RED. The algorithmic scheme is shown to be a con-
venient way to fuse the respective advantages of these two
approaches. Note that, since the AE-based formulation is non-
linear, providing convergence guarantees about the resulting
optimization scheme is not trivial. However, the experimental
results reported in Section V show that the proposed method is
able to provide consistent performance. Finally, without loss of
generality, detailed technical implementations of the first two
steps (9) and (10) are discussed in the following paragraphs
for specific architectures of the autoencoder.

B. Updating Θ

At each iteration, the set of parameters Θ of the autoencoder
is updated through rule (9). This can be achieved by training
the network with the function in (9) as the objective function.
The first term measures the data fit while the second acts as
a regularization to enforce the representation EΘE

(W) in the
latent space to be close to a corrected version A −G of the
abundance. Regarding the ASC, ANC and ENC constraints,
they can be ensured by an appropriate design of the network.
In practice, Adam is used to train the autoencoder.

Various autoencoder architectures can be envisioned and
the encoder and the decoder can be chosen by the end-user
with respect to the targeted applicative context. The encoder
EΘE

(·) aims at extracting relevant features to be incorporated
into the estimated abundances. A popular choice is a CNN-
based architecture where the input is the observed image.
Another promising approach consists in leveraging on a deep
image prior (DIP) with a noise input. These two particular
choices are discussed later in this section. Regarding the
decoder DΘD

(·), it generally mimics the mixing process and
the endmembers usually define the weights of one specially
designed linear layer. Again, the proposed AE-RED frame-
work is sufficiently flexible to host various architectures and
to handle various spectral mixing models. A popular strategy is
to design the decoder such that it combines physics-based and
data-driven strategies to account for complex nonlinearities
or spectral variabilities. For instance, additive nonlinear and
post-nonlinear models have been extensively investigated [31],
[32], [35] as well as spectral variability-aware endmember
generators [36], [37].

Some archetypal examples of possible elements composing
the architecture of the AE are (non-exhaustively) listed in
Fig. 1(c). In the sequel of this paper, for illustration purpose
but without loss of generality, two particular architectures are
discussed and then instantiated, as shown in Fig. 2. Both
consider an LMM-based decoder composed of a convolutional
layer with a filter size of 1× 1×B to mimic the LMM. The
adjusted decoder weights are finally extracted to estimate the
endmember spectral signature. For this particular instance of
the decoder, the optimization problem (9) can be rewritten as

{ΘE,S} ∈ arg min
ΘE,S

∥Y − SEΘE
(W)∥2F (12)

+ µ∥A− EΘE
(W)−G∥2F

s.t. 1⊤
REΘE

(W) = 1⊤
N , EΘE

(W) ≥ 0 and S ≥ 0.

The two examples of AE considered in this paper differ by the
architecture of the encoder. The first network is composed of
a CNN-based encoder while the second is a DIP. These two
choices are discussed below.

1) CNN-based encoder: The architecture of the CNN-based
encoder is shown in Fig. 2. The whole image Y is used
here as the input to extract the structure information from
the hyperspectral image. Another choice would consist in
considering over-lapping patches as the input. The encoder is
composed of 5 blocks. The first two blocks implement 3× 3
convolution filters to learn the spatial consistency information.
The next two blocks apply 1 × 1 convolution operators (i.e.,
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Fig. 2. The architectures of CNN-based and DIP-based networks used as particular instances of the proposed method.

fully connected layers) to model the spectral priors. Moreover,
to satisfy the ANC and ASC, the conventional LeakyReLU
activation function of the last block is replaced by a softmax
function. The output dimensions of each block are narrowly
diminished to compress the input pixels into the abundance
domain. Considering the optimization function defined in (12),
the objective function to train this model is expressed as

LAE(Θ) = ∥Y−SEΘE
(Y)∥2F+µ∥A−EΘE

(Y)−G∥2F. (13)

The resulting unmixing method will be denoted as AE-RED-C
in the sequel.

2) Deep image prior-based encoder: Another architecture
considered in this paper exploits the DIP strategy to implicitly
learn the priors of hyperspectral image. Unlike conventional
AE-based unmixing methods which use spectral signatures
as input for training, this network applies a Gaussian noise
image Z of size of the abundance matrix A as input to
generate the hyperspectral image. The encoder can be a U-
net like architecture to extract the features from different
levels. In this work the encoder has been designed with an
encoder-decoder structure for abundance estimation. The inner
encoder is composed of 4 down-sampling to compress the
features. Each down-sampling block consists of three layers,
namely a convolution layer with a filter of size 3 × 3, a
batch normalization layer, and a ReLU nonlinear activation
layer. The inner decoder is composed of 5 up-sampling blocks.
Each of the first 4 blocks has 4 layers: a bilinear upsampling
layer, a convolution layer, a batch normalization layer and a
ReLU nonlinear activation layer. The last block has two layers,
namely a convolution layer and a softmax nonlinear activation
layer to generate the estimated abundances while satisfying
the ANC and ASC. Skip connections relate the encoder and
decoder which are used to fuse the low-level and high-level

features and to obtain multiscale information. The objective
function to train this deep model is also defined as (13) where
EΘE

(Y) is replaced by EΘE
(Z). The proposed method with

this architecture is denoted as AE-RED-U.

C. Updating A

The abundance matrix A is updated by solving (10). This
problem is a standard RED objective function and can be
interpreted as a denoising of EΘE

(W) + G. The seminal
paper [42] discusses two algorithmic schemes to solve this
problem, namely fixed-point and gradient-descent strategies.
In this work we derive a fixed-point algorithm by setting the
gradient of the objective function to 0,

λ (A− C (A)) + µ (A− EΘE
(W)−G) = 0. (14)

Then, at the (k + 1)th iteration of the ADMM, the jth inner
iteration of the fixed-point algorithm can be summarized as

A(k+1,j+1)

=
1

λ+ µ

[
λC

(
A(k+1,j)

)
+ µ

(
E
(k+1)
ΘE

(W) +G(k)
)]

.

(15)

For illustration, we consider two particular denoisers C (·),
namely nonlocal means (NLM) [43] and block-matching and
4-D filtering (BM4D) [44]. NLM is a 2D denoiser and
should be applied on each spectral bands indendently while
and BM4D is a 3D-cube based denoiser. Depending on the
architecture chosen for the encoder (see Section IV-B), the
corresponding instances of the proposed framework are named
as AE-RED-CNLM, AE-RED-CBM4D, AE-RED-UNLM and
AE-RED-UBM4D, respectively.
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Algorithm 1 The proposed unmixing framework AE-RED
Input: Hyperspectal image Y; Regularization parameter λ;

ADMM coefficient µ; Denoiser C(·); Outer and inner
iteration numbers K and J ; Training parameters (learning
rate, epochs, batch size).
% ADMM iterations

1: for k = 1, · · · ,K do
% Updating Θ

2: for i = 1, · · · , epochs do
3: Update EΘE

(W) via forward propagation,
4: Compute the loss function by (13),
5: Update Θ(k) via retropropagation,
6: end for

% Updating A
7: Set A(k−1,0) = A(k−1)

8: for j = 1, · · · , J do
9: Update A(k−1,j) with (15),

10: end for
11: Set A(k) = A(k−1,J)

% Updating G
12: Update G(k) with (11);
13: end for
Output: Estimated abundances A and endmembers S.

V. EXPERIMENTAL RESULTS

This section presents experiments conducted to evaluate
the effectiveness of the proposed unmixing framework. These
experiments have been conducted on synthetic and real data
sets to quantitatively assess the unmixing results and to
demonstrate the effectiveness of our proposed method in real
applications, respectively (see Sections V-A and V-B).

Compared methods – Several state-of-the-art methods
have been compared. A first family of unmixing algorithms
are conventional methods. SUnSAL-TV [16] leverages
on a handcrafted TV-term to regularize the optimization
function. PnP-NMF [9] is an NMF-based unmixing method,
and denoisers are embedded as PnP to introduce prior
information. A second family of compared methods is based
on deep learning. CNNAE [10] is a deep AE-based unmixing
method where convolutional filters capture spatial information.
UnDIP [45] is a DIP-based unmixing method which uses a
convolutional network. A geometric endmember extraction
method is applied to estimate endmembers. SNMF [39] is
a deep unrolling algorithm, which unfolds the ℓp-sparsity
constrained NMF model into trainable deep architectures.
CyCU-Net [11] proposes a cascaded AEs for unmixing with
a cycle-consistency loss to enhance the unmixing performance.

Hyperparameter settings – All hyperparameters of the
compared methods have been manually adjusted to obtain the
best unmixing performance. The choice of the parameters
associated with the proposed AE-RED method are discussed
in detail as follows. The regularization parameters λ and µ
have been selected according to the noise level of generated
data. More precisely, λ and µ have been set to 0.5 for the

data with noise levels of 5dB and 10dB, to 0.1 for the
data with a noise level of 20dB, to 0.01 for the data with
a noise level of 30dB. The learning rate to train the deep
networks is set to 1 × 10−3, and set 1 × 10−4 to fine-tune
the decoder weights. For the proposed CNN based unmixing
method, the number K of ADMM iterations is set to 15,
the number of epochs is set to 250 and the number of inner
iterations when updating the abundances is set to J = 1.
As for the proposed DIP based unmixing method, K, the
number of epochs and J are respectively set to 10, 2300 and 1.

Performance metrics – The root mean square error (RMSE) is
used to evaluate the abundance estimation performance, which
can be expressed by

RMSE =

√√√√ 1

NR

N∑
i=1

∥ai − âi∥2, (16)

where ai is the actual abundance of the ith pixel, and âi is the
corresponding estimate. A smaller value of RMSE indicates
better abundance estimation results. The endmember estima-
tion is assessed by computing the mean spectral angle distance
(mSAD) and the mean spectral information divergence (mSID)
given by

mSAD =
1

R

R∑
r=1

arccos

(
s⊤r ŝr

∥sr∥∥ŝr∥

)
(17)

and

mSID =
1

R

R∑
r=1

pr log

(
pr

p̂r

)
, (18)

where sr and ŝr are the actual and estimate of the rth
endmember, respectively, pr = sr/1

⊤sr and p̂i = ŝr/1
⊤ŝr.

A smaller value indicates better estimation results. Finally, the
peak signal-to-noise ratio (PSNR) is used to evaluate the image
denoising and reconstruction, which is defined by

PSNR = 10× log10

(
MAX2

MSE

)
(19)

where MAX is the maximum pixel value of the reconstructed
image Ŷ and MSE is the mean square error between the
reconstructed image and the noise-free image. A higher value
of PSNR indicates better reconstruction.

A. Experiments on the Synthetic data set

Data description – The synthetic images are composed of
100 × 100 pixels. Abundance maps are generated using the
method of the Hyperspectral Imagery Synthesis tools1 to
mimic a spatial homogeneity. A Gaussian field is drawn to gen-
erate the abundance matrix A. The abundance ground-truth is
shown in Fig. 3. The abundances maps satisfy ANC and ASC.
Sets of R = 5 endmembers are randomly selected from the
U.S. Geological Survey (USGS) spectral library with a number
of spectral bands of B = 224. These endmembers are mixed
according to the LMM and an additive zero-mean Gaussian

1http://www.ehu.es/ccwintco/index.php/Hyperspectral Imagery Synthesis
tools for MATLAB
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Fig. 3. Synthetic data, SNR= 10dB: estimated abundance maps.

TABLE II
SYNTHETIC DATA: PERFORMANCE (IN TERM OF RMSE) OF THE

ABUNDANCE ESTIMATION. BEST RMSES ARE REPORTED IN BOLD AND
UNDERLINED NUMBERS DENOTE THE SECOND BEST RMSES.

5dB 10dB 20dB 30dB

SUnSAL-TV 0.1112 0.0804 0.0284 0.0104

PnP-NMF 0.1029 0.0711 0.0311 0.0117

CNNAE 0.1078 0.0682 0.0292 0.0127

UnDIP 0.1469 0.0854 0.0280 0.0100

SNMF 0.1207 0.0906 0.0313 0.0112

CyCU-Net 0.1150 0.0708 0.0296 0.0139

AE-RED-CNLM 0.0943 0.0640 0.0261 0.0097

AE-RED-CBM4D 0.1009 0.0665 0.0235 0.0093

AE-RED-UNLM 0.0919 0.0602 0.0241 0.0095

AE-RED-UBM4D 0.0972 0.0585 0.0251 0.0094

noise is considered with variances according to 4 signal-to-
noise (SNR) ratios, i.e., SNR ∈ {5dB, 10dB, 20dB, 30dB}.
Results – Tables II-V report the estimation results obtained by
the compared algorithms in terms of RMSE for the abundance
estimation, mSAD and mSID for the endmember estimation
and PSNR for the reconstruction. Conventional unmixing
methods, such as SUnSAL-TV and PnP-NMF, achieve good
unmixing results, demonstrating the usefulness of the explicit
prior provided by manually designed regularization. Deep
learning-based methods, such as CNNAE, SNMF and CyCU-
Net, they can obtain suitable unmixing results and better
endmember estimation results compared with the conven-
tional methods, illustrating the ability of deep networks of

TABLE III
SYNTHETIC DATA: PERFORMANCE (IN TERM OF MSAD) OF THE

ENDMEMBER ESTIMATION. BEST MSADS ARE REPORTED IN BOLD AND
UNDERLINED NUMBERS DENOTE THE SECOND BEST MSADS.

5dB 10dB 20dB 30dB

SUnSAL-TV 0.1013 0.0623 0.0173 0.0052

PnP-NMF 0.0855 0.0533 0.0181 0.0083

CNNAE 0.0811 0.0481 0.0162 0.0045

UnDIP 0.0977 0.0685 0.0193 0.0057

SNMF 0.0852 0.0595 0.0113 0.0043

CyCU-Net 0.0826 0.0569 0.0146 0.0069

AE-RED-CNLM 0.0769 0.0437 0.0103 0.0041

AE-RED-CBM4D 0.0770 0.0430 0.0105 0.0042

AE-RED-UNLM 0.0767 0.0434 0.0108 0.0040

AE-RED-UBM4D 0.0768 0.0433 0.0107 0.0039

embedding prior information. These results also show that
the proposed AE-RED framework outperforms the compared
state-of-the-art methods, across all performance metrics and
the noise levels. Fig. 3 depicts the estimated abundance maps
associated with the synthetic data set with SNR= 10dB. It
can be observed that the abundance maps estimated by the
AE-RED framework exhibit better agreement with the ground-
truth. Fig. 4 shows the endmember estimated by the proposed
framework on the synthetic data set with SNR= 20dB, which
are consistent with the ground-truth.
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TABLE IV
SYNTHETIC DATA: PERFORMANCE (IN TERM OF MSID) OF THE

ENDMEMBER ESTIMATION. BEST MSIDS ARE REPORTED IN BOLD AND
UNDERLINED NUMBERS DENOTE THE SECOND BEST MSIDS.

5dB 10dB 20dB 30dB

SUnSAL-TV 0.0391 0.0120 0.0013 0.0002

PnP-NMF 0.0195 0.0100 0.0011 0.0002

CNNAE 0.0432 0.0069 0.0013 0.0003

UnDIP 0.0650 0.0130 0.0023 0.0001

SNMF 0.1369 0.0112 0.0007 0.0001

CyCU-Net 0.0447 0.0052 0.0014 0.0003

AE-RED-CNLM 0.0184 0.0038 0.0005 0.0001

AE-RED-CBM4D 0.0189 0.0036 0.0006 0.0001

AE-RED-UNLM 0.0195 0.0037 0.0007 0.0001

AE-RED-UBM4D 0.0187 0.0037 0.0006 0.0001

TABLE V
SYNTHETIC DATA: PERFORMANCE (IN TERM OF PSNR) OF THE IMAGE

RECONSTRUCTION. BEST PSNRS ARE REPORTED IN BOLD AND
UNDERLINED NUMBERS DENOTE THE SECOND BEST PSNRS.

5dB 10dB 20dB 30dB

SUnSAL-TV 30.8279 35.3531 43.9418 54.4288

PnP-NMF 31.6765 36.2873 44.3496 54.6453

CNNAE 31.4510 35.2500 43.3465 50.9367

UnDIP 30.3016 34.8235 44.3141 54.6996

SNMF 28.1358 32.2243 41.2482 51.3990

CyCU-Net 30.8153 35.4829 42.6938 50.1539

AE-RED-CNLM 32.4931 36.8916 44.4119 54.7001

AE-RED-CBM4D 31.7141 36.1305 45.3226 54.8153

AE-RED-UNLM 32.0177 36.6815 44.4916 55.0293

AE-RED-UBM4D 32.2841 36.9038 44.5306 55.2367

B. Experiments on the Real data set

Data description – Finally, experiments conducted on two
real data sets are discussed. Firstly, one considers the Samson
data set, which was acquired by SAMSON observer and
contains B = 156 spectral channels ranging from 400 nm
to 889 nm. The original image is of size of 952 × 952
pixels, and a subimage of 95 × 95 pixels is cropped in the
experiment. There are three endmembers in this data, namely
“water”, “tree” and “soil”. The second real data set used in
these experiments is known as the Jasper Ridge image. It was
acquired by Analytical Imaging and Geophysics (AIG) in
1999 with B = 224 spectral bands covering a spectral range
from 380 nm to 2500 nm. One considers a subimage of size
of 100 × 100 pixels and B = 198 channels after removing
the bands affected by water vapor and atmospheric effects. It
contains R = 4 endmembers, namely “water”, “soil”, “tree”
and “road”.

Results – As there is no available ground-truth for real
datasets, a quantitative performance evaluation of abundances

0 100 200
Bands

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

0 100 200
Bands

0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

0 100 200
Bands

0.3

0.4

0.5

0.6

R
ef

le
ct

an
ce

0 100 200
Bands

0

0.2

0.4

0.6

0.8

R
ef

le
ct

an
ce

0 100 200
Bands

0

0.5

1

R
ef

le
ct

an
ce

Ground-truth
AE-RED-CNLM
AE-RED-CBM4D
AE-RED-UNLM
AE-RED-UBM4D

Fig. 4. Estimated endmembers of synthetic data (SNR = 20 dB).

and endmembers cannot be provided. Therefore, we only rely
on PSNR to evaluate the results of the compared methods.
Table VI presents the PSNR performance associated with
the compared methods obtained on the Samson data set. It
is noteworthy that all methods produce comparable PSNR
results, except for CNNAE, SNMF, and CyCU-Net, which
provide significantly worse reconstruction. Although there is
no ground-truth for the abundances, we can visually inspect the
maps. For illustration purposes, we show the abundance maps
estimated by the compared methods in Fig. 5. The proposed
AE-RED framework can successfully separate the materials
and provide sharp abundance estimates.

Table VI also lists the PSNR results for the Jasper Ridge
data set. It can also be observed that the proposed method
reaches the best PSNR. Fig. 6 depicts the abundance maps
estimated by all compared methods. Some of them, such as
UnDIP, fail to recover the road. Due to the learning ability
of deep networks, most deep learning based methods are able
distinguish the individual materials. Finally the proposed AE-
RED framework provides abundance maps with more detailed
information and sharper boundaries.

VI. CONCLUSION

This paper proposed a generic unmixing framework to
embed a RED within an autoencoder. By carefully designing
the encoder and the decoder, the autoencoder was able to
provide estimated abundance maps and endmember spectra.
In particular, for illustration purpose, two different encoder
architectures are considered, namely a CNN and a DIP. More-
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TABLE VI
SAMSON AND JASPER RIDGE DATA SETS: PERFORMANCE COMPARISON IN TERM OF PSNR. BEST RESULTS ARE REPORTED IN BOLD AND UNDERLINED

NUMBERS DENOTE THE SECOND BEST RESULTS.

SUnSAL-TV PnP-NMF CNNAE UnDIP SNMF CyCU-Net AE-RED-CNLM AE-RED-CBM4D AE-RED-UNLM AE-RED-UBM4D

Samson 32.6306 35.2650 28.6785 36.2918 29.7175 31.1702 35.6806 35.3954 35.5137 35.4009

Jasper Ridge 31.1325 29.2783 24.9619 32.1480 28.8746 28.7161 31.3895 30.0416 31.6140 30.0416

SUnSAL-TV PnP-NMF CNNAE UnDIP SNMF CyCU-Net AE-RED-CNLM AE-RED-CBM4D     AE-RED-UNLM AE-RED-UBM4D
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Fig. 5. Samson data set: estimated abundance maps.
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Fig. 6. Jasper Ridge data set: estimated abundance maps

over the decoder could be chosen according to a particular
mixture model. Leveraging on ADMM scheme, the resulting
optimization problem was split into simpler subproblems. The
first one was described by an objective function composed
of a data-fitting term and a quadratic regularization. It was
solved through the training of an autoencoder. The second
subproblem was a standard RED objective function and solved
by the fixed-point strategy. Two denoisers were considered,
namely NLM and BM4D. The effectiveness of the proposed
framework was evaluated through experiments conducted on
synthetic and real data sets. The results showed that the
proposed framework outperformed state-of-the-art methods.
Future works include considering explicit endmember priors
within the proposed framework and automatically selecting

mixing model.
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