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Abstract—Deep learning technologies have demonstrated their
effectiveness in removing cloud cover from optical remote-
sensing images. Convolutional Neural Networks (CNNs) exert
dominance in the cloud removal tasks. However, constrained
by the inherent limitations of convolutional operations, CNNs
can address only a modest fraction of cloud occlusion. In
recent years, diffusion models have achieved state-of-the-art
(SOTA) proficiency in image generation and reconstruction due
to their formidable generative capabilities. Inspired by the rapid
development of diffusion models, we first present an iterative
diffusion process for cloud removal (IDF-CR), which exhibits a
strong generative capabilities to achieve component divide-and-
conquer cloud removal. IDF-CR consists of a pixel space cloud
removal module (Pixel-CR) and a latent space iterative noise
diffusion network (IND). Specifically, IDF-CR is divided into
two-stage models that address pixel space and latent space. The
two-stage model facilitates a strategic transition from preliminary
cloud reduction to meticulous detail refinement. In the pixel space
stage, Pixel-CR initiates the processing of cloudy images, yielding
a suboptimal cloud removal prior to providing the diffusion
model with prior cloud removal knowledge. In the latent space
stage, the diffusion model transforms low-quality cloud removal
into high-quality clean output. We refine the Stable Diffusion by
implementing ControlNet. In addition, an unsupervised iterative
noise refinement (INR) module is introduced for diffusion model
to optimize the distribution of the predicted noise, thereby
enhancing advanced detail recovery. Our model performs best
with other SOTA methods, including image reconstruction and
optical remote-sensing cloud removal on the optical remote-
sensing datasets.

Index Terms—Remote-sensing image, cloud removal, diffusion
model, iterative noise refinement.

I. INTRODUCTION

OPTICAL remote-sensing images are visual representa-
tions capable of encapsulating information about the sur-

face. Optical sensors sensitive to both visible light and infrared
radiation gather optical remote-sensing images. These visual
representations capture the spectral attributes that characterize
the Earth’s surface, facilitating the provision of intricate details
of surface features, including mountain ranges, plains, lakes,
rivers, and various geomorphic elements. Therefore, they can
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be used in various applications, including geographic infor-
mation systems, environmental monitoring, land use planning,
agriculture, forestry, urban planning, and natural disaster mon-
itoring. However, the ubiquity of atmospheric clouds poses
an inevitable challenge by obscuring portions of the optical
remote-sensing image. The difficulty lies in that clouds, as
products of climatic conditions, respond to climate change in
such complex ways that predicting their trajectory becomes a
formidable task. In addition, the international satellite cloud
climatology project finds that the global average annual cloud
cover is as high as 66% [1]. Consequently, efforts to remove
clouds from optical remote-sensing images are emerging as a
central avenue for improving the utility of such images.

In recent years, Convolutional Neural Networks (CNNs)
have brought about a paradigm shift. Leveraging their pow-
erful nonlinear representation capabilities, many challenges
associated with image processing in various domains have
been successfully overcome. For example, tasks such as de-
hazing [2], super resolution [3]–[6] and cloud removal [7]–[9].
In particular, DSen2-CR [10] introduces an effective remote-
sensing image reconstruction network based on deep convolu-
tional networks. This method mainly uses residual networks to
skillfully capture the mapping from cloudy to cloud-free states.
In addition, Generative Adversarial Network (GAN) [11]
demonstrates its generative capabilities. It synthesizes data via
a generator and then uses a discriminator to determine the
true or false of the data, thereby improving the performance
of the generator. Spa-GAN [12] uses both GAN and CNNs
for cloud removal from optical remote-sensing images. It
proposes to assist the GAN in producing cloud-free images
by estimating spatial attention. These methods significantly
improve the ability to remove clouds from remote-sensing
images.

However, all of the aforementioned frameworks have inher-
ent limitations. The convolutional operation inherent in CNNs
can only capture information at local locations, making them
less suitable for capturing and interacting with information
over long distances. In contrast to the transformer [13], the
attention mechanism is characterized by its ability to capture
a wider range of feature information than the convolutional
operation. At the same time, the design of the Vision Trans-
former (ViT) [14] serves to expand the perceptual field of the
image. And GAN faces the challenge of the interplay between
the generator and the discriminator, which makes it difficult
to achieve simultaneous convergence of both the generator
and the discriminator losses, often leading to model failure.
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Notably, generative models find it easier to understand the
semantic meaning of discrete vectors as opposed to continuous
vectors [15].

Recently, diffusion models [16] have emerged as a new
focus in generative research following GAN. Subsequently,
many works have tried to improve the efficiency of the
diffusion model. It has been successful in several tasks,
including image super-resolution [17], segmentation [18] and
classification [19], and has consistently demonstrated state-of-
the-art (SOTA) performance. A particularly effective variant is
the Stable Diffusion Model (LDM) [20]. LDM is designed to
transform the image from pixel space to latent space using
a frozen Vector Quantised Variational AutoEncoder (VQ-
VAE) [15] and is realized by both diffusion and sample phases
performed in the latent space. Despite the efficacy of the
diffusion model in various domains, a notable absence persists
in the realm of a diffusion-based cloud removal network. In
light of this, our endeavor is dedicated to utilizing the powerful
generative capability of the diffusion model for realistic cloud
removal. This innovative design aims to exploit the powerful
image-to-image mapping capability in the diffusion model to
achieve high-quality cloud removal results.

In this paper, we provide an iterative diffusion process for
the robust cloud removal network, called IDF-CR, tailored for
optical remote-sensing images. Inspired by CDC [21], IDF-
CR embodies a component divide-and-conquer architecture
that includes a pixel space cloud removal (Pixel-CR) module
and an iterative diffusion process module as follows. (1)
To enhance the effectiveness of cloud removal and achieve
superior visual results through the diffusion model, we initiate
the process by coarse cloud removal of cloudy images in
pixel space. Taking advantage of the ability of the Swin
transformer [22] to preserve the long-distance information
interaction and the local feature extraction ability, we utilize
the Swin transformer as the basic operation in pixel space. At
the same time, a cloudy attention module is introduced after
the Swin transformer to extract cloud location information for
subsequent feature extraction modules. (2) Since the resulting
pixel space expression tends to simply remove clouds, it is
common for the positions occupied by clouds to yield residual
small regions of distorted pixel clusters. This phenomenon
leads to visually unsatisfactory results. Simultaneously, owing
to the limitations of the GAN-based approaches in globally
encapsulating the comprehensive data distribution [23], this
results in suboptimal visualization when reconstructing texture
details in cloud cover locations. Conversely, diffusion models
excel in attaining high-quality mappings from stochastic prob-
ability distributions to high-resolution images [24]. Therefore,
we advocate using the diffusion model for both detail recovery
and cloud removal. The low-quality cloud removal output
is transformed from pixel space to latent space via VQ-
VAE. The resulting discrete vectors serve as inputs to the
diffusion model. Meanwhile, we apply ControlNet [25] to
maintain the generation capability of the diffusion model. (3)
We introduce an iterative noise refinement (INR) module based
on the diffusion model to optimize weights for image detail
restoration. This involves constructing a more complicated
diffuse discrete vector zt from the UNet predicted noise ϵpred,

which allows for iterative noise refinement.
We present a component divide-and-conquer cloud removal

framework and compare the proposed method with the SOTA
image cloud removal network Spa-GAN without ground fea-
ture prompts, together with our retrained image reconstruc-
tion networks DiffBIR and SwinIR. These comprehensive
comparisons demonstrate that IDF-CR provides a significant
performance leap in the field of single remote-sensing image
cloud removal. Furthermore, to verify the effectiveness of our
proposed modules, we perform ablation experiments specif-
ically targeting the two-stage network, the cloudy attention,
and the INR modules. A comprehensive set of metric results,
coupled with visualization analyses, demonstrate the ability of
IDF-CR to not only achieve cloud removal but also improve
visualization. The primary summary of our contributions to
this effort is outlined below:

1) We present IDF-CR, a pioneering network that integrates
a diffusion model into the cloud removal domain. This
innovative architecture exploits component divide-and-
conquer cloud removal with the powerful generative
capabilities of diffusion models.

2) We present cloudy attention and INR modules for feature
extraction in pixel space and detail recovery in latent
space, respectively. Unlike previous image reconstruc-
tion networks, cloudy attention provides explicit location
information of clouds to the network, allowing more
efficient feature extraction by the Swin transformer. INR
is designed to enhance the accuracy and robustness of
the diffusion model in predicting noise by constructing
more complex latent variables, culminating in visually
appealing results.

3) Extensive experimental results on both RICE [26] and
WHUS2-CRv [27] datasets demonstrate the effective-
ness of our proposed method.

II. RELATED WORKS

Cloud Removal. Image cloud removal is a classic low-level
image processing task and mainly falls into two categories:
deep learning approaches and traditional methods. The latter,
characterized by interpolation [28], wavelet transform [29],
and information cloning [30], represents the paradigm for
addressing this challenge. Xu et al. [31] uses a sparse rep-
resentation to facilitate the removal of thin cloud artifacts in
the spectral domain. In Liu et al. [32], a low-pass filter is
meticulously designed to selectively extract cloud components
to achieve cloud removal. On the other hand, Lin et al. [30]
performs cloud removal operations simultaneously with the
retrieval of ground information. Meanwhile, Hu et al. [33]
uses an hourglass filter bank in conjunction with the dual-
tree complex wavelet transform to extract information at
different scales and directions from remote-sensing images.
Lorenzi et al. [34] proposes to augment the designated cloud
regions in remote-sensing images by the compressive sensing.
Xu et al. [35] rectified the cloud pixels through spectral
blending analysis. Li et al. [36] use multitemporal dictionary
learning algorithms that extend the Bayesian method for cloud
removal. However, the effectiveness of traditional methods is
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often limited to specific tasks and datasets. Faced with new
complexities, traditional methods require re-engineering and
customization. Conversely, CNNs typically do not require this
overhaul. CNNs exhibit superior generalization capabilities
compared to traditional methods, allowing them to outperform
the latter in handling complex relationships between pixels
within an image.

Zhang et al. [37] is a pioneer in the field of CNNs applied
to remote-sensing image cloud removal. It assimilates diverse
data sources and merges their respective features to aug-
ment information content. While Enomoto et al. [8] employs
cGAN [38] to exploit multispectral data for the purpose
of improving the clarity of visible RGB satellite images.
Similarly, Zheng et al. [39] employs GAN and UNet to acquire
mappings under both cloudy and cloud-free conditions. The
additional cyclic consistency serves to constrain the genera-
tor predictions, ensuring cloud-free scenarios correspondingly
align with the designated locations.

Synthetic Aperture Radar (SAR) is an active remote-sensing
technique employing radar signals to scan the surface of the
Earth. Unlike other optical remote-sensing techniques, SAR
image is unaffected by meteorological constraints such as
cloud cover and precipitation, rendering it adept at operating
across diverse environmental contexts. However, SAR image
lacks spectral information. Bermudez et al. [40] uses GAN to
directly transform SAR data into RGB images. This catalyzed
a subsequent conceptualization to merge SAR with optical
remote-sensing images within the same spatial location. They
employ frameworks such as residual networks [10], GAN [41]
and deconvolutional networks [42] to conjoin the two optical
datasets for the purpose of guiding image reconstruction.
Subsequently, GLF-CR [43] prompts SAR to serve as a guide
to orchestrate global contextual interactions. SEN12MS-CR-
TS [44] adds temporal dimensions to multispectral information
fusion. UncertainTS [45] introduces multivariate uncertainty
quantization to the cloud removal task within the multispectral
information fusion.

The aforementioned CNNs and transformer methods have
significantly advanced remote-sensing image cloud removal.
Our goal is to assimilate the merits of these approaches while
integrating a more potent diffusion model to achieve higher
precision in cloud removal and finer detail recovery.

Diffiusion Processes. While CNNs and transformers cur-
rently dominate the forefront of computer vision methods,
the diffusion model has emerged as a formidable contender,
demonstrating remarkable generative power and experienc-
ing significant advances in the field of artificial intelligence
generated content. As a pioneering work, Denoising Dif-
fusion Probabilistic Models (DDPM) [16] consists of two
main processes: diffusion and sampling. The diffusion process
manifests as a Markov chain, incrementally introducing noise
into the image until corruption occurs. The sampling process
anticipates the noise from the previous epoch according to
the distribution of the existing noise until complete image
restoration is achieved. However, the generation of high-
quality samples necessitates multiple iterations. In this regard,
DDIM [46] accelerates the sampling process by constructing a
non-Markovian diffusion mechanism. DreamBooth [47] under-

takes concept-specific finetune of diffusion models to mitigate
training costs. Furthermore, ControlNet [25] introduces multi-
ple auxiliary condition paths to pre-trained diffusion models.
Stable Diffusion [20] projects diffusion and sampling into the
latent space, ensuring a stable diffusion process.

Diffusion models find applicability in various visual tasks,
including text-to-image [48], video generation [49], image
editing [50] and image reconstruction [17]. Nevertheless, we
remain uninformed of any cases where diffusion models have
been employed for cloud removal in remote-sensing images.
Inspired by these outstanding efforts, we leverage the Stable
Diffusion model to facilitate depth cloud removal and texture
detail reconstruction for the framework of the pixel space
cloud removal model consisting of Swin transformers. Our
proposed IDF-CR represents the pioneering diffusion model
used for remote-sensing cloud removal tasks, which addresses
the limitations in both CNNs and transformers and improves
the fidelity of reconstruction details.

III. METHOD

As is shown in Fig. 1. IDF-CR consists of two stages.
The first stage is the pixel space cloud removal phase
(Pixel-CR). The Pixel-CR module essentially integrates the
Swin transformer and cloudy attention components. The Swin
transformer provides superior pixel reconstruction capabilities
compared to CNNs. Cloudy attention serves as an auxiliary
cloud removal module, providing guidance for the spatial
localization of clouds. The second stage is the latent space
deep optimization phase. We propose an iterative noise diffu-
sion (IND) model for refinement. IND includes ControlNet
and iterative noise refinement (INR). ControlNet skillfully
regulates the generative capabilities of the diffusion model,
while INR stands as our innovative proposal in this framework.
IND improves the accuracy of the prediction noise, which is
enhanced by the continuous updating of inputs and outputs
in the diffusion model. And the analog data within the latent
space exhibits a greater degree of compactness compared to
the pixel space. As a result, the execution of generation and
denoising tasks within the latent space is more straightforward,
facilitating the generation of cloud-free output of high-quality.

A. Pixel Space Phase

The Pixel-CR module operates in the pixel space. It consists
of three modules, namely shallow feature extraction, cloud
removal, and cloudy image reconstruction.

Given a cloudy image ICloudy ∈ RC×H×W , where H and
W denote the height and width of the image, respectively, and
C represents the number of channels. Subsequently, ICloudy

undergoes initial processing through the shallow feature ex-
traction module to acquire the shallow features:

F0 = HHF (ICloudy), (1)

where F0 designates the shallow feature, and HHF signifies
the shallow feature extraction module. The HHF module
includes a convolutional layer.

The cloud removal module, symbolized by HCR, is sub-
sequently employed to remove the clouds within F0. HCR is
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Fig. 1. Training and inference pipelines of the proposed component divide-and-conquer cloud removal. It consists of two stages: (Pixel Space): We pretrain
a transformer-based cloud removal module (Pixel-CR) to perform the coarse elimination of clouds in pixel space. We provide a priori knowledge of the
cloud removal IDecloudy−LQ for the diffusion model in latent space. (Latent Space): First, the encoder of the VQ-VAE ε is employed to effectuate the
transformation from the pixel space to the latent space. Then, the continuous variables are discretized based on the nearest distance search in the CodeBook.
The cloud-free label and coarse cloud removal information are denoted as z0 and the conditioning variable Clatent, respectively. High-quality cloud removal
output IDecloudy−HQ is achieved by our proposed iterative noise diffusion (IND) module, which consists of ControlNet and iterative noise refinement (INR).
ControlNet is a trainable parallel module tasked with acquiring knowledge of the data distributions associated with Clatent and the true vector zt. INR creates
intricate noise patterns to enhance the precision noise and strengthen the model robustness. Finally, z0 is projected back into pixel space by the VQ-VAE
decoder D. During the inference, the noise ZT is stochastically drawn from a normal distribution N (0, I). The uppercase Z and lowercase z refer to the
inference and training stages, respectively.
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Fig. 2. Graphical representation of Pixel Cloud Removal module (Pixel-CR).

illustrated in the grey region of Fig. 2. HCR is composed of N
submodules, specifically denoted as HCR1 , HCR2 , ... , HCRN

.
Each submodule, HCRi

, comprises a combination of the Swin
transformer and the cloudy attention. The submodule initiates
the process by extracting deep features through the Swin
transformer. Cloudy attention is a convolution-based spatial
attention module employed to discern and extract the attention
within the deep feature. This attention component delineates
the spatial distribution of clouds within the features, thereby
providing guidance to the network for effective cloud removal.
Attention is incorporated into the depth feature through an
element-wise multiplication, followed by an addition of the
resulting output to the Swin transformer deep feature. This
operation can be succinctly expressed as:

Attention = HCA(HST (Fi−1)), (2)

Fi = Attention×HST (Fi−1) +HST (Fi−1)

= HCRi
(Fi−1), i = 1, 2, ..., N − 1,

(3)

where Attention represents the cloudy attention output, HCA

denotes the cloudy attention module, and HST signifies the
Swin transformer. Fi corresponds to the feature extracted by
HCRi

. When i = N , denoting the final submodule as HCRN
,

a convolutional layer is introduced in HCRN
, denoted as:

Fi = Attention×HCONV (HST (Fi−1)) +HST (Fi−1)

= HCRi(Fi−1), i = N,
(4)

where HCONV is represented by a convolutional layer. In-
corporating a new convolutional layer at the end of the
cloud removal submodule introduces a bias. Paving the way
for the reconstruction module constructed by convolutional
layers [51].

Finally, the reconstruction module is elegantly constructed
by integrating two convolutional layers. The formulation is
concisely expressed as:

IDeCloudy−LQ = HRC(FN ), (5)

where HRC denotes the reconstruction module, and
IDeCloudy−LQ represents the low-quality cloud removal out-
put. The refinement of the visualization for IDeCloudy−LQ will
be achieved through the diffusion model in the latent space.

Loss Function in Pixel-CR. The loss in pixel space is
divided into two principal components. The first part corre-
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Fig. 3. Graphical representation of the iterative noise refinement (INR) module. We present an instance of data distribution refinement for INR (upper row)
and the visualization outcomes subsequent to the respective noise sampling (lower row). (Row 1): the curves show the distribution of the data. The blue solid
line denotes the true noise, while the red dotted line signifies the representation after the diffusion process of z0. The red solid line, in turn, represents the
outcome of the noise predicted by UNet θ. The direction of the gradient updates from the red solid line to the blue solid line. (Row 2): visualization showing
the prediction noise over different iterations. S(ϵ) denotes the sampled result with cloud-free. As the number of iterations increases, a gradual improvement
in both color contrast and texture refinement is observed.

sponds to the loss of cloud removal, while the second part
corresponds to the loss associated with attention.

We use the L1 function directly to calculate the loss for
cloud removal:

LCR = ||IDeCloudy−LQ − ILabel||1, (6)

where ILabel denotes a cloud-free image located at the same
location as ICloudy and separated by less than 15 days.

The target of the attention loss is defined by the output of
cloudy attention and M , where M denotes the binarized map
of the disparity between ILabel and ICloudy. The calculation
of the attention loss is accomplished with the L2 function:

LAttn = ||Attention−M ||2. (7)

The total Pixel-CR module loss in pixel space can be
expressed as:

LPixel−CR = LCR + LAttn. (8)

B. Iterative Noise Diffusion

Diffusion Model. To generate a high-quality cloud removal
output, we employ the Stable Diffusion model (LDM). As
shown in Fig. 1, the transition from pixel space to latent
space is achieved before the diffusion process. Given the
suboptimal cloud removal output IDecloudy−LQ and the cloud-
free label ILabel in the pixel space, we employ the en-
coder ε of the pre-trained VQ-VAE to perform the trans-
formation of IDecloudy−LQ and ILabel into the latent space.

These transformations are denoted as ε(IDecloudy−LQ) and
ε(ILabel), respectively. In addition, we make the transition
from continuous to discrete variables in the latent space is
effectuated. We establish a latent embedding space denoted
as CodeBook ∈ RB×D, where B represents the magnitude
of the latent embedding space, and D signifies the dimension
of the latent variable. As explained in Equation (9), latent
discrete variables are found by the nearest distance lookup of
Codebook:

zd = CodeBook[b], (9)

where b = argminj ||zc − CodeBook[b]||2. zd and zc denote
the representations of discrete vectors and continuous vectors,
respectively, in the latent space.

As shown in Fig. 1 (Latent Space Stage), the discrete latent
variable z0 is subsequently destroyed by the diffusion process.
Also, z0 signifies the variant at moment 0. At each moment, z
introduces noise. This noise for the current moment is derived
from the previous moment, formulated as zt =

√
atzt−1 +√

1− atϵ, where at represents the weight term and ϵ is the
noise conforming to a Gaussian distribution N (0, I). zt−1 can
be derived from zt−2 through recursion. Consequently, zt at
any given moment can be computed from z0 by:

zt =
√
atz0 +

√
1− atϵ, (10)

where at is the factorial from a1 to at.
During the sampling process, deriving the image at mo-

ment t − 1 from the information available at moment t,
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denoted as q(zt−1|zt, z0). Applying Bayes formula reveals that
q(zt−1|zt, z0) conforms to a Gaussian distribution. The mean
µt and the variance σ2

t are then expressed as 1√
at
(zt− 1−at√

1−a
ϵt)

and 1−at−1

1−at
(1 − at), respectively [16], where ϵt represents

the unknown noise conforming to a Gaussian distribution at
moment t. ϵt is predicted through the UNet θ. Therefore, the
standard Gaussian noise zt can be stochastically generated at
moment t, making that zt is reversed sampled back to z0.
Finally, the pre-trained VQ-VAE decoder D is employed to
map z0 back into pixel space.

During the training, the original latent vector z0 diffuses
to zt according to Equation (10) and the authentic noise ϵ
at moment t is derived. The input to UNet θ includes zt
and condition c, yielding the predicted noise ϵpred. The loss
function of the LDM can be expressed as:

LLDM = Ez,c,t,ϵ[||ϵ− ϵpred||22], (11)

ϵpred = ϵθ(zt, c, t), (12)

where t is the moment of random sampling from [0, T ] and the
condition c of LDM is empty. ϵθ(zt, c, t) is the noise output
of UNet under the weights θ, with the inputs zt, c and t.

ControlNet. We employ ControlNet to avoid overfitting
when faced with small datasets during the training and to
ensure the fidelity of superior image reconstructions obtained
from large datasets. In contrast to the exclusive reliance on
LDM, ControlNet creates a copy that duplicates the encoder
and middle block of the pre-trained UNet as parallel modules.
The output from the parallel module is then seamlessly sent to
the UNet decoder according to its corresponding dimensions.
Specifically, the frozen UNet is configured to maintain the
fidelity of data mappings acquired from voluminous data.
Simultaneously, the parallel module provides an end-to-end
mechanism for capturing task-specific conditional input. In this
regard, we employ the concat [Clatent, z0] as the conditional
input for ControlNet, [Clatent, z0] provides ControlNet with
data distribution information for both cloud-free and low-
quality cloud removal data.

During the sampling process, a randomly generated variable
ZT , conforming to the standard normal distribution, is created
as the noise at moment T . Clatent is the latent discrete vector
transformed from the low-quality output in pixel space. The
noise at the moment T − 1 can be jointly predicted by the
UNet and the parallel module. The parallel module provides
the UNet with features of Clatent, thereby incorporating
information pertaining to Clatent into the noise at moment
T − 1. Then, using the DDPM algorithm, Z0 can be obtained
iteratively by sampling.

During the training, only the weights of the parallel module
are updated, while the weights of the UNet are fixed. The
training loss is described as follows:

LDiff = Ez,c,t,ϵ,Clatent
[||ϵ− ϵθ(zt, c, t, Clatent)||22]. (13)

Algorithm 1 Diffusion Training.

TRAIN(θ)
select randomly t ⊂ T, ϵ ∼ N (0, I), z0, c, Clatent

zt ←
√
atz0 +

√
1− atϵ

Optimize current model θ by minimizing the Equa-
tion (13):
||ϵ− ϵθ(zt, c, t, Clatent)||22 for one iteration.
return θ

Algorithm 2 DDPM Steps.

PREDICT(Z0)
Input ZT ∼ N (0, I), c, Clatent

for t = T, ..., 1 do
Zt−1 ← {q(Zt−1|Zt, c, Clatent)}
:= N (Zt−1;µt(Zt, c, Clatent), σ

2
t I)

return Z0

Iterative Noise Refinement. In the training procedure for
the diffusion model, with a given latent variable z0 and a real
noise ϵ, generate the noise zt by following the Equation (10).
The diffusion model requires the UNet to learn the mapping
θ(zt)→ ϵ. However, the simple utilization of synthetic and
original noise pairs for model training, denoted as {zt, ϵ},
is susceptible to challenges related to poor generalization
and suboptimal robustness. We want to augment the diversity
within the training data while maintaining the integrity of the
noise distribution. Our purpose is to generate novel iterations
from existing data.

Based on the previous motivation, we propose an iterative
noise refinement (INR) method. As illustrated in Fig. 3, INR
skillfully diminishes the bias in the dataset, leading to better
performance in predicting real noise [52]. Specifically, as
illustrated in Fig. 3 (b), given a latent vector z0 and a real
noise ϵ, we create a synthetic noise and real noise pair. That
is, {f(z0, ϵ), ϵ}, where f(·) represents the diffusion process.
This {f(z0, ϵ), ϵ} pair is then used to update the initial weights
θ0 of the UNet, updated based on the previous data batch:

θ1 ← {θ0(f(z0, ϵ)), ϵ}, (14)

where ← signifies the gradient update. We derive the output
θ0(f(z0, ϵ)) corresponding to the iteration θ0. Due to the
design of the diffusion model loss, it is apparent that the dis-
tribution of θ0(f(z0, ϵ)) closely parallels that of ϵ. We denote
θ0(f(z0, ϵ)) as ϵθ0 . ϵθ0 is close to, though not equivalent with,
ϵ, and can be interpreted as the result of ϵ combined with
some unspecified degeneracy. We can leverage ϵθ0 to predict
the authentic noise ϵ. To this end, our strategy involves the
construction of a novel synthetic noise and true noise pair:

{f(z0, ϵθ0), ϵθ0}. (15)

Concisely, INR directly replacing ϵθ0 with ϵ as the new
dataset. The newly created training data pair {f(z0, ϵθ0), ϵθ0}
and the original training data pair {f(z0, ϵ), ϵ} share the same
z0 and Clatent. The distribution of the novel training data pair
exhibits increased intricacy. This improves the refinement of
UNet generalization and robustness. Furthermore, the gradient
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update in the previous moment reduces the disparity between
the authentic noise and the predicted noise, which favorably
increases the accuracy of the model output [52]. Thus, UNet
can be trained with the new training data pair and updated
gradients:

θ2 ← {θ1(f(z0, ϵθ0)), ϵθ0}. (16)

Predicting noise with θ2 is more robust since θ2 handles
more complex noise than θ1. Also, depending on the objective
of the loss function, this is tantamount to incessantly optimiz-
ing the intermediate outputs and incrementally refining the
predicted noise. Then, with z0 and Clatent hold constant, we
can iteratively update θ K times in an uninterrupted fashion.
To elaborate, during the weight update for the K iteration,
ϵθK−1

should replace ϵθK−2
:

θK ← {θK−1(f(z0, ϵθK−2
)), ϵθK−2

}, (17)

After K iterations, θK is used to train the following batch of
{f(z0, ϵ), ϵ} and Clatent.

Algorithm 3 Iterative Noise Refinement.

TRAIN(θ)
Input θ, z0, ϵ
Initialize the weight θ0 = θ
for k = 0, ...,K − 1

θk+1 ← {θk(f(z0, ϵ)), ϵ}
ϵ← θk(f(z0, ϵ))

return θK

IV. EXPERIMENTS

A. Implementation Details

Dataset. We employ RICE [26] as the training and test
datasets. RICE is divided into RICE1 and RICE2, which
correspond to two Pixel-CR models and two diffusion models,
respectively. RICE1 consists of 500 RGB pairs showing the
presence and absence of clouds. Each image has dimensions
of 512 × 512 and is acquired by data collection on Google
Earth. The interval between images is limited to less than
15 days. RICE2 encompasses 736 triples, each comprising
{cloudy, cloud-free, cloud mask}. For our experiments, only
RGB pairs representing cloudy and cloud-free conditions are
considered. These images maintain a size of 512 × 512 and
are derived from the Landsat 8 OLI/TIRS dataset. In the case
of RICE1, 400 images are allocated for the training set, while
the remaining 100 images constitute the testing set. As for
RICE2, 588 images are designated for the training set, with
148 images earmarked for the testing set.

The WHUS2-CRv [27] dataset represents a comprehensive
collection of thin cloud removal data across all Sentinel-2
bands. WHUS2-CRv comprises 24 450 pairs of Sentinel-2
full-band satellite images, with and without clouds. Of these,
18 816 pairs are for training, 1888 pairs for validation, and
the remaining 3746 pairs for testing. To avoid reflectivity
variations, the time interval between cloudy and cloud-free
images is 10 days. The WHUS2-CRv covers the entire globe
and all seasons. The bands with spatial resolutions of 10m,

20m, and 60m correspond to 384×384, 192×192, and 64×64,
respectively.

Implementation. Our model is trained in two distinct
steps. First, Pixel-CR is individually trained using RICE1 and
RICE2. The input to Pixel-CR consists of cloudy RGB images
with dimensions of 512 × 512. The labels consist of cloud-
free RGB images, and the output shape is identical to the
input. The cloud attention matrix M contains the difference
between cloudy and cloud-free, with its magnitude constrained
to the range [0, 1]. The batch size, epoch, and learning rate
parameters are set to 1, 200, and 4× 10−4, respectively. The
middle and embedding layer channels are both set to 96. The
architecture includes 3 Swin transformers, and the window
size is set to 16.

Diffusion is then used for further refinement. Again, RICE1
and RICE2 are used for individual training. The input to
diffusion is the cloud removal output in pixel space, denoted as
IDeCloudy−LQ, coming from Pixel-CR. The reference object is
the cloud-free RGB image. The dimensions and format of the
images remain consistent with those of Pixel-CR. For pixel and
latent space conversion, the pre-trained encoder and decoder
components of VQ-VAE are employed. The batch size, epoch,
and learning rate are configured to 2, 100, and 1 × 10−4,
respectively. During the inference, the DDPM sampler is
utilized to sample 50 steps, generating a high-quality output
for cloud removal. The number of refinement iterations is set
to K = 3.

When training using the WHUS2-CRv dataset, we harmo-
nize the input and output dimensions to 384×384, 192×192,
and 64× 64 while leaving the remaining parameters fixed.

Evaluation Metris. Two sets of evaluation metrics are
established, distinguishing between those with and without
reference. These correspond to evaluations in both pixel space
and latent space for cloud-free images. When the reference is
considered, the comparison is made with cloud-free images.
This approach makes it easy to demonstrate cloud removal and
image reconstruction capabilities using the metrics provided.

The reference evaluation metrics include PSNR, SSIM,
LPIPS [56], and RMSE for comprehensive image evaluation.
PSNR quantifies image quality by evaluating the Peak Signal-
to-Noise Ratio between the original and processed images.
SSIM (Structural Similarity Index) measures the structural
similarity between the original and processed images, con-
sidering attributes such as brightness, contrast, and structure,
providing a comprehensive image quality assessment. LPIPS
(Learned Perceptual Image Patch Similarity) is a metric de-
signed to assess the perceptual similarity between images. It
outperforms traditional pixel metrics such as Mean Square Er-
ror (MSE) or PSNR by capturing human perceptual judgments
of image similarity more accurately. In addition, RMSE is a
widely used metric in statistics, data analysis, and machine
learning to measure the accuracy of predictive models.

The no-reference metrics used in our evaluation include
NIQE [57] (Natural Image Quality Evaluator), MANIQA [58]
(Multi-dimension Attention Network for No-Reference Image
Quality Assessment), BRISQUE [59], and PI [60] (Perceptual
Index). These metrics, which do not rely on reference images,
provide enhanced assessments of image realism and quality.
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Cloudy LabelDiffBIRSwinIRSpa-GAN Pixel-CRC2PNet RIDCP SGID-PFF

Fig. 4. Pixel space qualitative analysis of the proposed and existing methods: C2PNet [53], RIDCP [54], SGID-PFF [55], Spa-GAN [12], SwinIR [51],
DiffBIR [17] for thin cloud removal performance in different natural environments on the RICE1 dataset [26].

Cloudy LabelDiffBIRSwinIRSpa-GAN Pixel-CRC2PNet RIDCP SGID-PFF

Fig. 5. Pixel space qualitative comparison of the cloud removal results from different cloud cover on the RICE2 dataset.

TABLE I
QUANTITATIVE NO-REFERENCE METRICS COMPARISON OF VARIOUS METHODS TRAINED ON THE RICE DATASET.

RICE1 RICE2
Methods

PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ RMSE ↓
C2PNet 12.9429 0.7383 0.4273 0.2329 17.3313 0.7586 0.5626 0.1360
RIDCP 15.9567 0.7000 0.3062 0.1985 11.8673 0.4110 0.6981 0.2699
SGID-PFF 14.5804 0.7215 0.2134 0.2208 19.8470 0.6972 0.4362 0.1161
Spa-GAN 28.8960 0.9100 0.1264 0.0460 26.3599 0.7930 0.4011 0.0546
SwinIR 28.8743 0.7749 0.3727 0.0457 28.2196 0.8439 0.3603 0.0432
DiffBIR 28.2617 0.7111 0.2228 0.0492 28.0600 0.8135 0.2869 0.0440
Pixel-CR 31.1901 0.9507 0.0807 0.0316 30.8970 0.9045 0.2418 0.0394

NIQE, in particular, exhibits a high correlation with human
perceptions of image quality. MANIQA is the champion
algorithm of no-reference metrics in 2022 [61]. BRISQUE
uses natural scene statistics to predict image quality, while
PI proves effective in evaluating image quality under various
types of distortion.

B. Comparisons among Pixel Space Methods

Quantitative Comparison. In the pixel space, we contrast
our method with other SOTA methods. In particular, Spa-
GAN [12] , C2PNet [53], RIDCP [54] and SGID-PFF [55]
represent cloud removal models without radar data refer-
ences. SwinIR [51] and DiffBIR [17] represent our retrained

image reconstruction models. When training on WHUS2-
CRv dataset, we consider Sentinel-2 full-band methods such
as RSC-Net [62], FCTF-Net [63], ReDehazeNet [64], and
CR4S2 [27] as the baseline. Meanwhile, Pixel-CR emerges
as our model designed for pixel space cloud removal.

RICE1. RICE1 is dominated by the thin cloud. Their
removal is comparatively less challenging, resulting in a
better index value compared to RICE2. In contrast to the
Spa-GAN cloud removal model, Pixel-CR exhibits a marked
performance across all metrics, despite achieving a PSNR
that can potentially exceed 31. The performance of Pixel-
CR, as measured by these metrics, significantly exceeds that
of previous works. SwinIR and DiffBIR are retrained with
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TABLE II
QUANTITATIVE REFERENCE METRICS COMPARISON OF VARIOUS METHODS TRAINED ON THE RICE DATASET.

RICE1 RICE2
Methods

NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓ NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓
C2PNet 5.2975 32.5872 0.5543 3.9815 6.4492 43.0618 0.5188 5.2329
RIDCP 4.7313 21.453 0.5261 3.7290 4.7744 23.7242 0.4842 3.6761
SGID-PFF 5.4537 33.8614 0.5640 4.1626 6.4367 43.7672 0.5236 5.1507
Spa-GAN 5.4059 26.6845 0.5078 4.2704 6.7534 30.0323 0.4439 5.2810
SwinIR 10.2660 70.8005 0.3526 8.4845 12.8300 81.7225 0.3793 9.9772
DiffBIR 6.9570 28.7734 0.5206 5.4118 9.8262 30.1499 0.4596 7.9266
Pixel-CR 5.5575 34.7362 0.5317 4.4306 11.6906 69.8941 0.4568 8.6703
Ours 4.6282 18.9136 0.5702 3.7431 4.4217 15.0174 0.5584 3.6600

LabelPixel-CR IDF-CR IDF-CR

RICE2RICE1

LabelPixel-CR

Fig. 6. Latent space qualitative analysis of the proposed methods for refinement performance on both the RICE1 and RICE2 datasets.

RICE1. The configurations for both SwinIR and DiffBIR
remain unaltered and maintain consistency in hyperparameters.
To fair competition, degeneration models within SwinIR and
DiffBIR are excluded. Table I clearly shows that on the RICE1
dataset, our Pixel-CR achieves optimality overall reference
metrics.

RICE2. The RICE2 dataset contains numerous dense cloud-
cover images. Recovering cloud-free images from such volu-
minous cloud formations is a formidable challenge. Conse-
quently, the value of the associated metrics is anticipated to
exhibit a decrement. Our proposed method outperforms the
extant approaches in efficacy. Moreover, the PSNR and SSIM
values exceed 30 and 0.9, respectively. This demonstrates the
robust cloud removal capability of our method in the pixel
space.

Qualitative Comparison. We select a set of visual ex-
emplars of the pixel space. Fig. 4 and Fig. 5 denote the
visual representations corresponding to the RICE1 and RICE2
datasets, respectively. A comparative analysis is performed for
each method.

RICE1. For visualization, we select samples emanating from
three distinct locales for visualization, including mountains
and plains, respectively. The output image brightness of Spa-
GAN is excessively elevated, marked by prominent stripe
artifacts. C2PNet, RIDCP, and SGID-PFF exhibit limitations in
effectively restoring textures with accurate color fidelity. The
cloud mitigation capabilities of SwinIR and DiffBIR, while
passable, are characterized by a tendency to blur. In contrast,
our method not only achieves comprehensive cloud removal
but also excels in the nuanced optimization of detail recovery.

RICE2. We choose three visualization samples, each char-
acterized by varying degrees of cloud cover. The effectiveness
of the network in mitigating the impact of dense cloud
formations is assessed. C2PNet, RIDCP, and SGID-PFF unable
to effectively eliminate small-scale regions dense cloud cover.
Notably, Spa-GAN is affected by significant cloud cover, man-
ifesting in the degradation of image detail in Fig. 5 (column
4). Conversely, both SwinIR and DiffBIR exhibit adeptness in
effectively eliminating clouds when only the cloud layer is of
a thinner nature. However, their proficiency in cloud removal
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TABLE III
QUANTITATIVE RESULTS OF TRAINING METHODS ON THE WHUS2-CRV DATASET.

Index Method B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B11 B12

PSNR ↑

RSC-Net 35.06 34.12 33.51 31.24 32.34 30.51 29.90 29.43 29.32 30.07 29.32 29.40
FCTF-Net 37.19 36.57 35.09 33.77 32.81 30.78 30.25 29.85 29.72 30.50 30.69 32.17
RSDehazeNet 37.64 37.19 36.08 34.05 33.42 31.48 30.76 29.74 30.20 30.74 30.28 31.50
CR4S2 39.55 38.17 37.05 35.55 34.37 32.15 31.40 31.00 30.96 31.32 31.47 33.31
Ours 39.97 38.29 38.00 37.97 35.92 34.84 33.93 33.30 33.91 33.89 35.03 35.69

SSIM ↑

RSC-Net 0.8459 0.8823 0.9203 0.8919 0.9129 0.8991 0.8930 0.8852 0.8910 0.9010 0.9053 0.8937
FCTF-Net 0.8807 0.9103 0.9286 0.9122 0.9167 0.9031 0.8982 0.8842 0.8959 0.9046 0.9109 0.9105
RSDehazeNet 0.8909 0.9203 0.9387 0.9180 0.9221 0.9046 0.9004 0.8893 0.9008 0.9035 0.9145 0.9162
CR4S2 0.9185 0.9315 0.9443 0.9302 0.9355 0.9236 0.9195 0.9002 0.9200 0.9252 0.9317 0.9334
Ours 0.9196 0.9399 0.9475 0.9399 0.9449 0.9330 0.9351 0.9343 0.9376 0.9380 0.9457 0.9429

TABLE IV
ABLATION STUDY ON PIXEL SPACE CLOUD REMOVAL MODULE.

Methods
RICE1 RICE2

NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓ NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓
w/o Pixel-CR 5.8018 19.4767 0.5137 4.8556 7.2966 17.4847 0.4613 6.3716
w/ Pixel-CR 4.6282 18.9136 0.5702 3.7431 4.4217 15.0174 0.5584 3.6600

Labelw/o Pixel-CR w/ Pixel-CR Labelw/o Pixel-CR w/ Pixel-CR

RICE2RICE1

Fig. 7. Effect of the pixel space cloud removal module on the RICE. ’w/o Pixel-CR’: our IDF-CR lacks integration with the Pixel-CR (only INR). ’w/
Pixel-CR’: our cloud removal model (IDF-CR). ’Label’: cloud-free image.

and the nuanced reconstruction of image details falls short
in comparison to the prowess demonstrated by our proposed
method.

C. Comparisons in Diffusion-based Methods

Quantitative Comparison. Once again, our approach is in
contrast to methods such as Spa-GAN, SwinIR, and DiffBIR.
The difference lies in the optimization of Pixel-CR output
through diffusion refinement, a process aimed at increasing
image detail and improving visual quality. In this sense, we

advocate the employment of no-reference metrics as a means
of assessing the visual quality of the resulting images.

RICE1. Table II lists the numerical results of all methods
no-reference metrics. The results show that the diffusion
refinement methods proposed in this paper outperform the
other methods. Spa-GAN uses the GAN method and lacks
precise control of the generation process. And SwinIR, which
simply uses the Swin transformer, is inferior to our Pixel-CR
in both cloud removal and visual quality. However, DiffBIR
proves suboptimal when compared to our IDF-CR. DiffBIR
is refined through exclusive reliance on reconstruction and
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TABLE V
ABLATION STUDY ON ITERATIVE NOISE REFINEMENT MODULE.

Methods
RICE1 RICE2

NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓ NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓
Pixel-CR 5.5575 34.7362 0.5317 4.4306 11.6906 69.8941 0.4568 8.6703

w/ INR K = 1 5.6294 28.6374 0.5582 4.3920 6.1867 24.9482 0.5210 5.6584
w/ INR K = 2 5.2082 20.1492 0.5530 4.1161 4.5958 23.7390 0.5400 4.1918
w/ INR K = 3 4.6282 18.9136 0.5702 3.7431 4.4217 15.0174 0.5584 3.6600

TABLE VI
ABLATION STUDY ON CLOUDY ATTENTION MODULE.

Methods
RICE1 RICE2

NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓ NIQE ↓ BRISQUE ↓ MANIQA ↑ PI ↓
w/o Cloudy Attention 7.4455 41.0575 0.5644 5.2952 14.8397 90.0508 0.3803 10.9435
w/ Cloudy Attention 4.6282 18.9136 0.5702 3.7431 4.4217 15.0174 0.5584 3.6600

LabelCloudy Cloudy Label

w/ INR 𝐾 = 1

w/ INR 𝐾 = 3

w/ INR 𝐾 = 2 w/ INR 𝐾 = 1 w/ INR 𝐾 = 2

w/ INR 𝐾 = 3

Fig. 8. Visualization of ablation experiments conducted on the INR module. The variable K denotes the number of iterations of the noise.

generative networks. Conversely, for the INR, improvements
in visual fidelity and cloud removal efficacy manifest through
the strategic integration of INR to modulate the generative
power of diffusion.

RICE2. Table II lists the quantitative no-reference metrics
values of our approach applied to the RICE2 dataset. Our
method performs best in all metrics, with the partial metrics
significantly outperforming other methods. This demonstrates
the effectiveness of the proposed INR. Due to the increased
complexity of the RICE2 dataset relative to RICE1, all visual
quality metrics of competing methods show degradation on
RICE2 compared to RICE1. Notably, selected metrics within
our framework outperform their RICE1 counterparts on the
more challenging RICE2 dataset, underscoring the ability of
our approach to handle more demanding scenarios.

Qualitative Comparison. We present a visual represen-
tation of the refinement results, as depicted in Fig. 6. In
particular, the second and fifth columns reveal a discernible
similarity between IDF-CR and the cloud-free, both in terms
of chromatic fidelity and structural coherence. In contrast,
the application of the Pixel-CR method results in window
shadows, due to its use of window attention within the
Swin transformer. The incorporation of diffusion proves in-
strumental in effectively mitigating these window shadows
in the Swin transformer, thereby yielding comfortable visual
outcomes. Owing to the formidable generative capabilities of
the diffusion mechanism, IDF-CR demonstrates a heightened
capability to engender intricate textural details.

D. Thin Cloud Removal on WHUS2-CRV dataset

RICE is a dataset consisting of RGB domains. Satellite
imagery includes other spectral bands, each of which has
different applications. In particular, all Sentinel-2 bands play a
key role in distinguishing, classifying and monitoring different
types of vegetation and detecting disturbances. To demonstrate
the effectiveness of our approach, we take all bands from the
WHUS2-CRv dataset for both the training and testing.

Quantitative Comparison. Table III shows comparative
results for the all Sentinel-2 bands. Notably, the image re-
construction methods consistently outperform alternative thin
cloud removal methods. Furthermore, our method demon-
strates optimality in both PSNR and SSIM metrics.

E. Ablation Study

To evaluate the effectiveness of our proposed pixel-latent
two-stage network architecture and INR module, each com-
ponent is systematically extracted for verification. Ablation
experiments are performed on the RICE1 and RICE2 datasets.
’w/’ denotes the incorporation of the given component, while
’w/o’ denotes its exclusion.

Pixel-CR. In this part, we focus our attention on verify-
ing the effectiveness of our proposed two-stage model. Our
method involves the extraction of the cloud removal module
within IDF-CR in the pixel space. Only cloudy and cloud-
free pairs are used to train the diffusion model. As shown in
Table IV, the no-reference metrics values exhibit a decrease in
the absence of Pixel-CR. The visualization results, presented
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in Fig. 7, emphasize that ’w/o Pixel-CR’ both cloud removal
and detail recovery fall short in compared to the ’w/ Pixel-
CR’. This highlights the key role of Pixel-CR in the two-stage
model, contributing significantly to the processes of cloud
removal and detail recovery. It also emphasizes that the mere
adoption of a fine-tuned diffusion model is not sufficient to
effectively perform the cloud removal task.

Iterative Noise Refinement. We conducted an ablation
study on the INR module, and the results are shown in Table V.
Since the INR operation takes place entirely in the latent space,
its effect is confined to that space and does not affect the model
in the pixel space. To ensure fair comparisons, we uniformly
employ an identical Pixel-CR in the pixel space. The object
we ablate is the number of INR. Obviously, Table V reveals an
improvement in network performance with the incorporation
of INR. A discernible upward trajectory in model performance
is observed concomitantly with an increase in the number of
INR. The visual representation of these results is illustrated
in Fig. 8. With an increasing number of iterations, the texture
details exhibit a progressive refinement. Our proposed INR
demonstrates an aptitude for recovering distinct details and
chromatic fidelity while maintaining an elevated standard of
cloud removal effectiveness.

Cloudy Attention. We extend the significance of the cloudy
attention module. Notably, the cloudy attention module is
deployed in the pixel space, necessitating a focused ablation
analysis limited to the pixel space. The cloudy attention
module embedded in Pixel-CR is removed. Owing to the
absence of the cloudy attention module, the calculation of
attention, the removal of the LAttn loss becomes imperative.
The model is then trained in pixel space with identical settings.
The tabulated quantitative results are presented in Table VI.
’w/ Cloudy Attention’ denotes the simultaneous integration
of both the cloudy attention module and the LAttn loss. The
performance associated with ’w/ Cloudy Attention’ exhibits a
remarkable superiority over ’w/o Cloudy Attention’. This ob-
servation illustrates that cloud attention effectively guides the
model to determine the precise location of the cloud location
to competently identify and address the cloudy regions.

V. CONCLUSION

In this paper, we propose an efficient diffusion model for
remote-sensing image cloud removal, referred to as IDF-CR.
By exploiting the robust generative capabilities inherent in the
Stable Diffusion model, IDF-CR strives to achieve realistic
results in the domain of image cloud removal.

However, in scenarios featuring extensive, dense cloud cover
within the image, our method exhibits inefficiency in recov-
ering these substantial cloud formations. This inefficiency is
particularly pronounced in the absence of ground information
guidance, as the dense clouds tend to obscure nearly all
available ground data. To overcome this limitation, we will
propose an extension that incorporates ground information
guidance in future work.
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