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 Abstract—Late-time negative responses in central-loop 

transient electromagnetic (TEM) data are often linked to the 

induced polarization (IP) effect. Early methods for modeling the 

IP effect in TEM data try to avoid calculating the fractional 

derivative arising from considering the Cole-Cole model by either 

using the Fourier transform to convert frequency-domain 

responses to the time domain or approximating the fractional 

derivative in the time domain directly. The frequency-to-time 

conversion method suffer from accuracy issues if the number of 

frequencies calculated is small. The time-domain approximation 

method also has accuracy issues because of simplified Cole-Cole 

models. The Caputo series can approximate fractional derivatives 

accurately if historic electromagnetic (EM) fields are saved. 

However, the storage of historic EM fields leads to a significant 

memory consumption. We introduce the sum-of-exponentials 

(SOE) method to discretize fractional derivatives, which does not 

need to store field values from previous times except for the first 

two time-steps. We discretize the resulting partial differential 

equations from the SOE discretization using a finite-difference 

time-domain (FDTD) approach. Additionally, we improve 

computational efficiency by employing the direct-splitting 

strategy to transform large sparse matrices into smaller 

diagonally dominant tridiagonal matrices. We validate the 

accuracy and efficiency of our algorithm by comparing it with 

the Caputo approximation method using a chargeable half-space 

model. Furthermore, we compare our results with existing 

literature data for a chargeable anomaly in a nonchargeable half 

space. Finally, we analyze the response characteristics of the IP 

effect using a block-in-half space model. 

 

Index Terms—3D forward modeling, induced polarization 

(IP), Sum-of-exponentials (SOE), Finite different time method 

(FDTD), Backward Euler’s direct-splitting (BEDS).  

I. INTRODUCTION 

HE transient electromagnetic (TEM) method is widely 

used in areas such as mineral exploration[1], 

hydrogeology [2], engineering investigation [3], [4] 
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and environmental surveys [5]. Recently, increasing attention 

has been paid to the study of the induced polarization (IP) 

effect in TEM responses. Spies [6] pointed out that for 

coincident-loop devices, the IP effects can cause a sign 

reversal in late-time TEM data and this phenomenon was 

explained using the concept of complex conductivity. Recent 

studies further showed that the IP effect can seriously distort 

TEM field data and emphasized the importance of considering 

them in TEM data processing [7]. Li et al. [8] applied a 

Bayesian framework to decouple the IP effect in TEM data 

and recovered an accurate resistivity estimation from the data 

affected by IP effects. Grombacher et al. [9] carried out a 

survey over the McMurdo Dry Valleys and observed 

substantial IP effects in extensive regions within the survey 

area. that the IP effect in the TEM data caused conventional 

inversion workflows based on resistivity only struggle to fit 

observed data. Conventional inversion approaches treat the 

inductive portion of IP measurements as noise. Hence, its 

removal necessitates additional data processing steps [10]. In 

such cases, the presence of IP effects can lead to data 

becoming uninformative, significantly diminishing the utility 

of data for geological characterization purposes. Therefore, it 

is necessary to invert TEM data with inversion algorithms that 

can take chargeability into consideration when IP effects 

present. Consequently, it is important to develop accurate and 

efficient TEM forward modeling algorithms that consider the 

IP effect.  

Many parametric models have been developed to describe 

the IP effect in TEM data and to explain the physical 

mechanisms behind it [11], such as the Dias model [12], the 

GEMIP model [13], and the Cole-Cole model [14]. The 

generally accepted mathematical model to describe the IP 

effect is the Cole-Cole model. The CCM was originally 

formulated for the complex dielectric constant [14]. For the 

complex resistivity model, Pelton et al. [15] proposed that it 

can be obtained directly from the original CCM equation by 

substituting the complex electrical resistivity for the complex 

dielectric constant: 
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where ρ0 represents the low-frequency electrical resistivity,  

is the chargeability which reflects the polarizing capability of 

the medium [16], τ is the central relaxation time which 

controls the transition from high-frequency electrical 

T 
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resistivity (inductive) to low-frequency electrical resistivity 

(DC) [7], c is the CCM exponent related to the broadness of 

central relaxation time distribution. The CCM becomes the 

Debye model if c is equal to 1 [17].  

For the forward modeling considering CCM dispersion in 

the frequency domain, the constant resistivity should be 

replaced with the frequency-dependent complex resistivity. To 

model TEM data with the CCM dispersion, most of the early 

work first calculate the responses of polarizable bodies in the 

frequency domain and then transform them to the time domain 

[18]–[20]. However, when the electromagnetic field contains a 

broad band of frequency contents, responses of a large number 

of frequencies need to be calculated, and consequently many 

linear systems of equations should be solved to guarantee an 

accurate frequency-to-time transformation [21]. Thus, 

modeling the response of polarizable bodies in the time 

domain are likely more suitable for tackling large datasets 

[22]. However, the frequency-dependent complex electrical 

conductivity described by the CCM results in fractional-order 

time derivatives in the time domain, and their modeling 

directly in the time domain requires convolution calculation 

which is computationally challenging [23].  

To circumvent these difficulties, some researchers presented 

certain approximation methods to simplify the CCM. For 

example, Commer [7] presented the auxiliary differential 

equation (ADE) method which effectively treats a CCM 

medium by approximating it with function expansions that are 

described by a differential equation with derivatives of integer 

order, that is, approximating the CCM by a series of weighted 

sum of different Debye relaxations. Marchant et al. [21] 

adopted the Padé approximation [24] to deal with the 

frequency-dependent dispersion of fractional function [25]. 

However, the accuracy of the resulting Padé approximation is 

determined by the order of the approximation used and the 

center point selected [21], [26], so the same parameter cannot 

match different waveforms. Cai et al. [27] developed a method 

to select the center point and orders for Padé series expansion 

adaptively during the time-stepping process, which improve 

the applicability of the algorithm. Ji et al. [28] used a 

frequency-domain rational approximation method and the 

linear programming technique to convert the fractional order 

system into an integer order one. However, the limitation is 

that the coefficients and relaxation times of approximation 

functions depend on CCM exponent. 

In addition, some effective approximation methods were 

presented to directly solve Maxwell’s equations with the 

CCM. Zaslavsky et al. [29], [30] developed a modeling 

technique based on the rational Krylov subspace projection 

approach to solve the time-domain Maxwell’s equations in 

dispersive media. Zhang et al. [22] introduced the so-called 

Caputo method to approximate fractional derivatives, and they 

showed that their method has high accuracies expect for the 

sign reversal region. Liu et al.[31] used an unequal step length 

for the Caputo operator to consider the Maxwell’s equations 

with heterogeneous medium. However, all electric and 

magnetic fields calculated in previous time steps need to be 

stored in memory to calculate the field values for the next time 

step. When large meshes and a large number of modeling time 

steps are considered, the calculation speed can be low and the 

memory required to store all previous field values can be 

prohibitively expensive.  

To sum up, we note that all previously mentioned methods 

that simplify the CCM by approximations to avoid solving the 

fractional derivatives have limitations, and directly solving the 

fractional derivatives is prohibitively expensive. Therefore, we 

need to find a method that does not require the storage of all 

prior fields at a given time step during the forward modeling 

process. Jiang et al. [32] presented an efficient algorithm for 

the evaluation of the Caputo fractional derivative. The 

algorithm is based on an efficient sum-of-exponentials (SOE) 

approximation for the power function with a uniform absolute 

error. Meanwhile, it consumes less memory because it does 

not require the explicit storage of all fields in the past [33]. Bai 

applied the SOE method to the electromagnetic field 

calculation with frequency-dependent relative permittivity 

functions and demonstrated its convergence [34], [35]. In this 

paper, we apply the SOE method to treat fractional derivative 

problems arising from the modeling of TEM data in dispersive 

media. 

As a crucial tool, the finite-difference time-domain (FDTD) 

method have been widely developed to solve electromagnetic 

scattering issues, such as alternating-direction implicit FDTD 

[36]–[38], Crank-Nicolson FDTD [39]-[40], Crank-Nicolson 

direct-splitting FDTD [41], backward Euler direct-splitting 

FDTD (BEDS- FDTD) [42] and et al. In this paper, BEDS-

FDTD method is used to discretize the partial differential 

equations (PDEs) obtained after the SOE approximation of 

Maxwell’s equation with a CCM dispersion. Then the SOE-

BEDS and Caputo-BEDS method are implemented to 

numerically simulate the fractional derivative. We validate 

SOE-BEDS algorithm by comparing the results with the 

solutions calculated for the Caputo-BEDS method and the 

results from the literature. Finally, we simulate and analyze 

the responses with various IP parameters to better understand 

how the IP effects affect TEM data. 

II. METHODOLOGY 

A. Governing Equation 

Maxwell’s equations in the time domain can be written as 
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,
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h r j r j r  (2b) 

where e and h represent the electric and magnetic fields, 

respectively, which are functions of time, t, and the position 

vector r(x, y, z); js is the source current density and j is the 

conductive current density; ε and μ denote permittivity and 

magnetic permeability, respectively. Then we describe the 

approach used for modeling chargeable materials in time-

domain electromagnetic data. We start with materials 
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exhibiting Debye dispersion and then expand the approach to 

include CCM dispersions. 

B. FDTD updating equations for Debye dispersive media 

We review the relationship between j and e through Ohm’s 

law: 

 ( ) ( ) ( ), , ,   =j r e r  (3) 

where σ denotes the electrical conductivity. Conductivity in 

the Debye model can be expressed by [43] 
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In this equation, σ∞ is the high-frequency electrical 

conductivity. Substituting equation 4 into equation 3, we 

obtain 
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Applying the Fourier transform, , gives 
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Substituting equation 6 into Ampere’s law (equation 2b) 

yields  
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We use the central difference (CD) scheme to discretize the 

above equation in space. The staggered Yee grid [44] is used 

to discretize the computational domain. The electric field is 

defined at the center of mesh edges while the magnetic field is 

defined at the center of mesh faces (Figure 1). 

h

x

z

y

e
Js

 
Fig. 1. A single cell from the Yee grid used for the 

discretization of the computational domain. Electric fields and 

source current densities are assigned on cell edges. Magnetic 

fields are assigned on cell faces. Material properties are 

assigned at cell centers. 

The semi-discretization of equations 2a and 7 can be written 

as 
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where Dζ is defined as the first-order central difference 

operators [41], and ζ denotes the coordinates in the x-, y-, and 

z-directions. The unconditionally stable, first-order backward 

Euler (BE) method is adopted to discretize the time derivatives 

in equation 8:  
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where the superscripts n and n+1 denote the field values at the 

past and current times, tn and tn+1, respectively. The time step 

size can be calculated by Δtn=tn+1-tn. Similarly, applying the 

BE method to equation 6, we can obtain the updating equation 

for current density, with respects to e(r): 
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Then, considering equations 10 and 9, we obtain the 

discretization for the magnetic- and electric-field components 

at time tn+1: 
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where 
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C. FDTD updating equations for CCM dispersive media 

It is widely accepted that for most chargeable materials, the 

value of CCM exponent is a positive real number smaller than 
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1 [47], [48]. For materials that exhibit a CCM dispersion, 

equation 1 can be rewritten as [43] 
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where σ0 is the low-frequency electrical conductivity that can 

be expressed by σ∞, namely, σ0 = σ∞ (1-) [43]. Substituting 

equation 12 into equation 3 gives the following: 
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There are fractional derivatives on both sides of equation 13 

because c is no longer an integer. The Caputo fractional 

derivative of order c is defined as: 
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where Γ is the Gamma function. Dividing the time interval 

from 0 to t into n steps, we have 0 = t0<…<tp<…<tn=t, and 

Δtp=tp+1-tp, where p= 0, 1, …, n-1. Considering the Caputo 

fractional derivative within [tp-1, tp], We discretize equation 14 

using the L1-approximation [49]. The derivation process is 

identical to Appendix A1. Then the following equation is 

obtained: 
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In the above equation, we define ( ) ( )
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The fractional time derivatives of  and  at time tn 

can be expressed as: 
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Substituting equations 17 into equation 13, we have updating 

equation of current density with CCM dispersion at time tn+1: 
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Note,  and  need to be recalculated for each time step, 

and the number of terms in the summation increases as n 

increases. Considering equations 18, full discretization of 

Maxwell’s equations considering the CCM dispersion are 
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D. Approximations for Caputo derivative  

In the above section where we discretized Maxwell’s 

equations considering the CCM dispersion model with the 

Caputo-BEDS Method, we have to recalculate  and  

from equation 19 for each time step [32]. The computational 

complexity of this method is , where Nn and Ns are 

the number of time steps and mesh grids used to discretize the 

model, respectively. We need to store all previous fields, so it 

requires on average  memory and the total 

computational cost is  . And it is evident that both 

memory usage and calculation time increase with the number 

of time steps. 

To improve computing speed and reduce memory 

consumption, we use SOE algorithm to solving equation 15. 

This algorithm is based on an efficient approximation for the 

kernel t−1−c on the interval [0, 1]. 

Equation 15 can be rewritten as the sum of a local term and a 

historical term [32]: 
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where the local term can be calculated using the L1-

approximation [49]: 

 ( )
( ) ( )

( ) ( )

( ) ( )

( )1

1 1

1 1

.
1 2

n

n

t
n n n n

l n c ct
n nn

f t f t f t f tdm
C t

t c t ct m−

− −

− −

− −
= =

  −   −−
  (22) 

For the historical term, integration by parts is adopted to 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3383388

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

eliminate : 
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The kernel (tn-m)-(1+c) (0<c<1) from equation 23 can be 

approximated via the SOE method on the interval [ϑ, t], where 

ϑ=min Δtn and δ represents an uniform absolute error [32]. We 

can obtain 
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The sv and ξv (v=1, …, Nexp) are the nodes and weights for n-

point Gauss-Legendre quadrature [32], however, the number 

of nodes and the value of weights depends on the complier but 

the approximate accuracy is not affected. The number of 

exponentials needed is of the order 

Nexp . 

Considering equation 24, equation 23 can be rewritten as 
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Ignoring δ, which is a positive real number greater than 0 and 

an extremely small value, and setting the initial field value to 

0, then equation 21 can be rearranged as following: 

( ) ( ) ( )

( )

( )

( ) ( ) ( )( )
exp

1

1

1

1

0
11

2

1
.

1

n
v n

c

n n n

c c

n

N
t s t mn

vc
vn

f t f t f t

t t c

f t
c e f m dm

c t


−

−

−

− −−

=−

 −


   −

 
+ − 

 −   
 

 

  (26) 

Substituting equation 26 into equation 13, we can get the 

updating equation of current density with CCM dispersion at 

time Δtn+1: 

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )

( )
( )( )

( )

exp
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0

1 1

0

0

0
10

0

1

21
1

2 1
2

1

2 1

1

1

1

n
i n

i n

c

cc
nn n nc

c c
n c

n c

n

c

c c N
tn s t mn m

ic
i

c

n

c
s t

i

t c

t c
t c

t c

t c c
e dm

c

t c

c
e

c

 


 
 

 

 

 


 

 


+

+ +

− −

=

−

 −
+   

  − −    
+  +        − −       − −     − 

 
 

  − − 
− +

   −
 −
   − 

−
 −

 

j e j

e j

( )( )
exp

1

0
1

.
n

N
t m m

i

dm+ −

=

  e

 

  (27) 

Rearranging equation 27, we have 

 

( ) ( ) ( ) ( )

( ) ( )

1 1 32 4

1 1 1

5 6

1 1

,

nn n
n n n n

n n n

n n

n n

j en n

KK K

K K K

K K

K K

+ + + −

+ −

j r e r j r e r

M r M r

 (28) 

where 

 

( )

( )

( )

( )

( )

( )

( ) ( ) ( )

3 5

0 0 0

4 6

1 1 1
,

12 1

, ,
12 1

c c c

n

c c

n n

c c c

n

c c

n n

c
K K

ct c t c

c
K K

ct c t c

     

     

 − − −
= − =

 −  −   −



= − =
  −  −   −

 (29a) 

 
( ) ( )( )

( ) ( )( )

exp

1

exp

1

0
1

0
1

,

.

n
v n

n
v n

N
t s t mn

j v

v

N
t s t mn

e v

v

e dm

e dm





+

+

− −

=

− −

=


=





=


 

 

m

m

M r j

M r e

 (29b) 

Now we should tackle the complex summation terms in 

equation 29b and define 

 

 ( ) ( ) ( )( )1

,
0

,
n

v n
t s t m

h v nU t e f m dm+− −
=   (30) 

where h represents the e or j, corresponding to e(r, m) and j(r, 

m) respectively. Equation 30 can be easily expressed as the 

recurrence relation: 

 ( ) ( ) ( ) ( )1

1
, , 1 .

n
v nv n

n

t s t ms t

h v n h v n
t

U t e U t e f m dm+

−

− −− 

−= +   (31) 

At each time step, the (1) calculation only needs to 

consider Uh,v(tn) which can be calculated from Uh,v(tn-1) that is 

known from the previous time step. Whole calculation process 

need  memory compared with the Caputo 

approximation method. As a result, the total calculation is 

reduced from  to . Based on numerical 

experiments, it is found that Nexp does not have to be large 

even when the TEM modeling has a long period of time after 

the source current is switched off. For the second term on the 

right-hand side of equation 31, we can calculate by linear 

interpolation and integration by parts method. The derivation 

process is given in detail in Appendix A2 [32]. Eventually, we 

can write the second term of the right-hand side of equation 31 

as 

( ) ( )

( ) ( )

( ) ( )

1

1

1

1 1

1

2

1 1 1

1
.

1

n
v n

n

v n
v n

v n v n

t s t m

t

s t
s t

i n n

s t s t
v n v n n

e f m dm

e s t f te

s t e s e t f t

+

−

−

− −

− −

− 
− 

−

−  − 
− − −

 − + 
 =
  + − − 
 


 (32) 

Considering equations 28-32, the full discretization of 

equations 2 are written as follows: 
1 1 1 1

1 1 1 1 1 1 0 2 3 4

1 1 1

0 1 1 0 1 1

,

,

n n n n n n n n

j e s

n n n n

e a D h a D h a e a j a M a M j

d D e d D e h h

        

     

+ + + +

− + + −

+ + +

− + + −

      + − = − − + +


− + + =

  (33) 
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where:  

 

34 2 2
0 2

1 1 1 1

5 62 2
3 4

1 1 1 1

/ , / ,

/ , / .

nn n n

n n n nn n n n

n nn n

n n n nn n n n

KK K K
a t t a t t

K K K K

K KK K
a t t a t t

K K K K

  

 

      
 = +  +  =  +       

      


     =  +  =  +    
   

 

E. Direct-Splitting Method 

Note that solving the sparse linear system of equations 

(equation 11, equation 20, and equation 33) directly with 

either direct or iterative solvers is a computationally expensive 

process [45]. In this paper, the DS approach is used to divide 

the sparse matrix into smaller tridiagonal matrices so that the 

linear system of equation can be solved more efficiently [41], 

[42]. 

The matrix form of equation 11 can be written as 

 ( ) +1 1

6 1 ,n n n n+

s− − = + +I A B W CW X J J  (34) 

where I6 is an identity matrix of 6 × 6 and 

. Js is the source vector, and other 

matrixes are defined as follows: 

1 1

0 0

0 3 2

1

3

0 0
, ,

0 0

0 0
, .

0 0 0

a a

d d

a a

 −   
= =   

−    


−   
= =   

  

T

T

R R
A B

R R

I
C X

I

 (35) 

The matrix R in A and B is defined as: 

0 0

0 0

0 0

z

x

y

D

D

D

 
 

=  
 
 

R  

Adding a higher-order error term AB(Wn+1-Wn) into both 

sides of equation 34, we get 

 ( )( ) ( )n+1 n 1

6 6 1 .n n+

s− − = + + +I A I B W C AB W X J J  (36) 

Factoring the left-hand side of equation 36 yields 

 
( ) ( )

( )

* n 1

6 1

n+1 * n

6

,

,

n n+

s
 − = + + +


− = −

I A W C B W X J J

I B W W BW
 (37) 

where are auxiliary fields and don’t 

have physical meanings. Substituting equation 35 into 

equation 37 and performing the expansion operation give:  

 

( ) ( )

( )

( )

* n

3 1 0 0 3 1 0

n n 1

1 1 2

n+1 * *

3 0 1 0 1

n+1 n * n+1

0 0

,

,

.

n+

s

a d a a d

a a a

d a d a

d d

 − = −

 + − − +


− = −


= − +

T

T

T T T

T

I RR e I RR e

R R h J J

I R R e e R R e

h h R e Re

 (38) 

Substituting R into the above equation and considering the 

Dirichlet boundary condition, we can get the final full 

discretization of Maxwell’s equations considering the Debye 

dispersion (referred to as Debye-BEDS):  

 ( )( ) *

1 0 0 1 0 1 12 1

1

1 1 1 1 1 1 2

1

,

n n

n n n n+

s

a d D e a e a d D D e

a D h a D h a j j


    

    

− −−

+ − − +

− = −

+ − − +

(39a) 

 
( )( ) 1 * *

1 0 1 0 1 12 1
1 ,na d D e e a d D D e    

+

+ ++
− = −  (39b) 

 1 * 1

0 1 1 0 1 1 ,n n nh h d D e d D e     

+ +

+ − − += − +  (39c) 

where D2ζ in these equations represents the second order 

central difference operator. It should be noted that equation 

39a and 39b can be solved by the Thomas algorithm [46] 

because their coefficient matrices are tridiagonal matrices. 

Meanwhile, the calculation of electric and magnetic field 

values in the three cartesian coordinate directions are 

independent of each other. Consequently, heterogeneous GPU 

parallel algorithms can be implemented to speed up the 

calculation as the calculation of field values in the three 

directions are independent of each other [42]. 

Similar to equation 36, we can rewrite equation 20 to the 

following equation with the direct splitting strategy: 

( )( ) ( )n+1 n 1

6 6 1 2M M ,n n n+

J e s
     − − = + + + +I A I B W C A B W X X J

  (40) 

where  

1 1

0 0

0 3 2 3

1

3

0 0
, ,

0 0

0 0 0
, , .

0 0 0 0 0

a a

d d

a a a

 −   
 = =   

−    


  −     
  = = =     

    

T

T

2

R R
A B

R R

I
C X X

I

 

Therefore, equations 39a and 39b are rewritten as 

( )( ) *

1 0 0 1 0 1 12 1

1

1 1 1 1 1 1 2 3

1

,

n n

n n n n n+

J e s

a d D e a e a d D D e

a D h a D h a a j
  

    

     

− −−

+ − − +

  − = −

   + − − + +

  (41a) 

 
( )( ) 1 * *

1 0 1 0 1 12 1
1 .na d D e e a d D D e    

+

+ ++
 − = −  (41b) 

Equation 39c and equation 41 are the final full discretization 

of Maxwell’s equations with CCM dispersion, which is named 

Caputo-BEDS algorithm in this paper.  

Similar to what has been done in the Caputo-BEDS 

algorithm, we write equation 33 using matrices and add a 

higher-order error term to both sides of it to obtain the 

following equation:  

( ) n+1 n n 1

6 ,n n n+

J e s
     − − = + − + +1 2 3I A B W C W X J X M X M J  

  (42) 

where 

0 3 2 3 4

1

3

0 0 0 0
, , , .

0 0 0 0 0 0 0

a a a a   −       
   = = = =       

      
2 3

I
C X X X

I

Thus, equation 41a can also be rewritten as: 

( )( ) *

1 0 0 1 0 1 1 1 1 12 1

1

1 1 1 2 3 4

1

,

n n n

n n n n n+

J e s

a d D e a e a d D D e a D h

a D h a j a a j
  

      

    

− − + −−

− +

   − = − +

   − − − + +

(43) 
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The updating equations of the electric and magnetic fields 

can be obtained by combining equations 39c, 41b and 43. We 

refer to the algorithm discussed in this section as the SOE-

BEDS algorithm which is illustrated in Algorithm 1. 

 

Algorithm 1 3D forward with IP effects for SOE-BEDS 

Initialize: fields value e0, h0, j0  

Source current density js 

Auxiliary parameter ,  

Calculate time steps Δtn 

do loop=1 →n 

!Saving field to calculate by (32) 

  

  

!Calculating the virtual fields 

←   by (43) 

!Calculating the real fields 

←  by (28b) 

!Calculating the current densities 

 ←  by (28) 

!Calculating the auxiliary fields 

← by (30) (31) 

! There are  memory 

← by (29b) 

!Calculating the magnetic fields 

←  by (39c) 

end do 

III. NUMERICAL EXPERIMENTS 

A. The Verification of SOE Approximation  

In the derivation of the SOE method in [32], the time-step 

sizes are assumed to be uniform (referred to as “uniform” 

type). In TEM simulations, however, the time-step sizes are 

required to be non-uniform for efficiency considerations. For 

example, smaller time steps are required to accurately capture 

the rapidly changing EM fields in early times. At later times, 

larger time steps are more appropriate and can reduce the 

computation time significantly. Um et al. [50] consider a fixed 

time step size for all steps within one section comprising a 

certain number of steps and used an automatic procedure to 

double the time step in the next section (referred to as “linear” 

type). Oldenburg et al. [51] divide the modeling time into P 

sections, each of which has a constant time step that is 

increasing with a predefined rate from early to late sections 

(referred to as “non-uniform” type). To verify the accuracy of 

the SOE-BEDS algorithm with different time-stepping 

schemes, we compare the current density calculated by the L1 

approximation method and the SOE approximation method 

(equations 18 and 28, respectively). We analyze the relative 

errors between both methods. The 46466 random electric field 

values are used as inputs to the current density formula 

(equations 3). Several results are shown in Figure 2a-2c, 

which include three cases: 1) different step interval types, 2) 

different CCM exponents, and 3) different uniform absolute 

errors. The non-uniform step-sizes are adopted in case 2 and 

case 3 and the parameters are listed in Table 1. The relative 

error between the results calculated by L1 approximation and 

SOE approximation methods in Figure 2d-2f. 

For case 1, the purpose is to consider the effect of time-

stepping schemes on SOE method as shown in Figure 2a. For 

the “uniform” type, the step size is set to 1.15×10-7s. For the 

“linear” type, the step size increase from 1.3×10-7s to 3.31×

10-7s and the growth factor is 1.00002. The step value with P 

subintervals is adopted in the “non-uniform” type, in which 

the minimum step size is 1.0×10-9s and maximum step size is 

1.8×10-5s. From Figure 2d, we can see that the relative errors 

are within 1%, with the “linear” and “non-uniform” types 

exhibiting relative errors less than one part per million (the top 

left of Figure 2d). However, the errors of all curves linearly 

increase with time, and there is an increase in the level of 

fluctuation. 

The CCM exponent is a crucial factor in the behavior of 

dispersive mediums. For Case 2, five values are considered 

(Figure 2b). From Figure 2e, the relative errors stay below 4%. 

Clearly, the errors become smaller as c increases. The relative 

error also increases almost linearly with time, with the level of 

fluctuation increasing as well. 

Finally, the curves of relative errors with different uniform 

absolute errors are shown in Figure 2f for case 3. When δ is 

set to 0.1, the amplitude of change in the relative error curve 

gradually increases. Furthermore, at later times, the value of 

error exceeds 5%. However, the relative error remains 

relatively stable within 1% as δ are set to 1e-3, 1e-6, and 1e-9 

respectively. We should note that the relative error 

corresponding to δ=1e-9 is not the smallest when the non-

uniform time-stepping scheme is used. However, the 

calculational accuracy is acceptable for δ < 1e-9 when we 

obtain the nodes and weights for n-point Gauss-Legendre 

quadrature. In general, the relative error of the SOE 

approximation method will increase over time for all cases 

considered here. Also, it is obvious that the non-uniform time-

stepping scheme and δ = 1×10-3 give smallest relative error, 

and they are used for the remaining modeling examples in this 

paper 

After the above analyses about the three cases which 

compares the performance of the L1 approximation and the 

SOE approximation, we conclude that the SOE approximation 

is yields very close results as those from the L1 approximation 

and is therefore a valid method to be considered in the 

calculation of the fractional differential equation. Note that 

Nexp will be obtained when β, δ, ϑ and t are input into equation 

24. However, Nexp has been kept small for all the cases listed 

in Table Ⅰ.  

B. Accuracy Verification  

To verify the accuracy of the SOE-BEDS method, we first 

consider a homogeneous half-space model as shown in Figure 

3 and compare the calculated vertical component of dbz/dt-

field with that of Seidel and Tezkan [52]. The Cole-Cole 
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parameters for the half space are σ∞=0.02S/m, =0.5, c=0.5, 

and τ=0.001s. The transmitter size is 50m by 50m. The 

transmitter and receiver are placed on the ground surface. The 

size of loop is 50m by 50m, and the current in the transmitter 

is set to 1 A. The model is discretized with 101×101×100 

grids. The grid spacing is uniform within the core region 

which contains the source and receiver. The cell size is 

enlarged gradually away from the core region. The smallest 

size of grid is 10m. The conductivity σair and σground are set to 

0.02S/m and 1e-6S/m respectively. Figure 4 shows the decay 

curves calculated using the SOE-BEDS algorithm presented in 

this paper and from [52]. We can see that the two curves have 

a good match over most of the modelling time range. 

TABLE 1 

PARAMETERS FOR FRACTIONAL DERIVATIVE APPROXIMATION 

Project CCM exponent c Uniform absolute error δ Step interval type Nexp 

Case 1 0.5 10-9 uniform/linear/non-uniform 63/64/82 

Case 2 0.1/0.3/0.5/0.7/0.9 10-9 non-uniform 80/81/82/83/84 

Case 3 0.5 10-1/10-3/10-6/10-9 non-uniform 15/33/58/82 
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Fig. 2. Comparison of current density for L1-approximation and SOE-approximation method in different parameters within 10-2s. 

(a) Responses in different step interval types. (b) Responses in different CCM exponents. (c) Responses in different uniform 

absolute errors. (d) Relative errors in different step interval types. (e) Relative errors in different CCM exponents. (f) Relative 

errors in different uniform absolute errors.  
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x

z

σground εground

σ c τ η
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Loop wire

σair εair
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50m

 
Fig. 3. The schematic diagram of a homogeneous half-space 

model. The solid dots are used as the transmitting source and 

the receiver is placed at the center of the loop (hollow dot). 

 
Fig. 4. The decay curves calculated by the SOE-BEDS method 

for the model given in Fig.2 (solid line) and from [52] (hollow 

circle). 

x

y
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σ , c, τ, η
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d1

d2

 
Fig. 5. Diagram of a chargeable block buried in a 

homogeneous half space. 

 The red square loop denotes the transmitter location. The red 

dot denotes the receiver location. 

 
Fig. 6. Comparison of 17.5m × 17.5m coincident-loop 

transient responses to chargeable block in a half-space model 

using SOE-BEDS method and [28]. 

Next, we verify the accuracy of the SOE-BEDS algorithm 

using a model comprising an anomalous chargeable body 

buried in a homogeneous half space (Figure 5). The CCM 

parameters of the block are set to =0.2, τ=0.005s and c=1.0. 

The conductivity of the ground, the air, and the chargeable 

body are set to 1e-3S/m 1e-6S/m, and 1e-1S/m respectively. 

The dimensions of the chargeable body are set to d1=200m 

and d2=d3=250m, respectively. The distance between the top 

of the block and the ground is h2=50m. We use a square loop 

wire frame to approximate a circular, RT=17.5m and h1=30m. 

The transmitter current is set to 1.538A. We discretize the 

model with 201 × 201 × 200 grids. The region containing the 

chargeable body is discretized with 10 ×10 ×10m uniform 

grids. The decay curve calculated by our SOE-BEDS 

algorithm and by [28] are shown in Figure 6, and the two 

decay curves agree well. The sign reversal caused by the IP 

effect can be clearly seen in both curves. 

C. Computational Efficiency Analyses 

To compare the computational efficiency of SOE-BEDS and 

Caputo-BEDS methods, we consider the homogeneous half-

space model (Figure 3) and carry out the forward modeling 

using a Linux workstation equipped with an NVIDIA RTX 

A6000 GPU and an AMD EPYC 7742 CPU. A trapezoidal 

waveform is considered for the source in Figure 7 [53]. During 

the turn-on and turn-off stages, the time-step sizes are fixed at 

1e-9s. Considering the non-derivable points in trapezoidal 

waveform, the switching function is used to smooth the rising 

and the ramp edge, respectively [53]. To shorten the 

simulation time, the time-step sizes are not uniform 

throughout the steady stage. It increases from 1e-9s until it 

reaches 1.2e-4 s at the middle of the steady stage. Then, it 

starts to decrease and stops at 1e-9 s at the end of the steady 

stage. 
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Fig. 7. Schematic diagram of the trapezoidal transmitting 

current waveforms. 

The parameters of the CCM model are c=0.5, =0.5, and 

τ=0.0001s. The value of σ∞ is set to 0.1S/m. The conductivity 

of the air is set to 1e-6S/m. The permittivity of the air and the 

half-space background is set to that of free air [54]. We 

discretize the model with 35 × 35 × 40 cells. The strategy of 

non-uniform grid spacing is adapted. Yu et al. [55] suggested 

the ratio between two adjacent cells should be less than 1.2. 

although the central difference method for non-uniform grid 

only keeps first-order accuracy, the accuracy of the result is 

satisfying. The core region which contains the source and 

receiver is discretized with 10 × 10 × 10m uniform grids. 

There are 18733 time steps in the entire simulation, including 

100 on-time and off-time time steps respectively. 

The dbz/dt-field responses of the half-space model calculated 

with the Caputo-BEDS method (red solid line) and with the 

SOE-BEDS method (black dotted line) are shown in Figure 8. 

The two curves match well with each other throughout the 

entire time range modeled. The relative errors are all below 

5% from 10-5s to 10-3s, except for the time when the negative 

responses appear. 

 
Fig. 8. The forward modeling results calculated by the 

Caputo-BEDS method (red solid line) and the SOE-BEDS 

method (blue dashed line), and the relative error between the 

two methods (black dashed line). The dbz/dt-field response 

calculated without considering the IP effect is plotted with the 

black solid line.  

Another noteworthy aspect is that the Caputo-BEDS 

method requires 43.77G of memory and takes 15.14h to 

complete the forward modeling calculation, but the SOE-

BEDS method only took 44.18s and consumed 831M of 

memory. To illustrate the reason for this significant difference, 

we plotted the calculation time required for each step by both 

methods in Figure 9. 

Crossing position

 
Fig. 9. The calculation time required to finish a single forward 

modeling iteration by the Caputo (dotted line) and the SOE 

methods (solid line).  

It is evident that the time that the SOE method consumed for 

each step remains constant during the entire simulation. In 

contrast, the time required by the Caputo method for each step 

is linearly increasing with iteration steps (except for the first 

two steps), although it is shorter than that of the SOE method 

for the first 10 steps. 

D. Characteristics Analyses of TEM Responses with Different 

Polarization Parameters 

Different IP parameters of the CCM can result in different 

TEM responses. We design some examples to obtain the 

applicability with different CCM parameters by comparing the 

results calculated by SOE-BEDS and Caputo-BEDS method. 

The results are shown in Figure 10. We consider central loop 

configuration with a rectangular loop of 50m, and the 

transmitter current is set to 1A. We first consider a 

homogeneous half-space model and set σ∞ of the chargeable 

half space to 0.1S/m. We consider three groups of modeling 

where we only change one CCM parameter and keep the other 

two fixed: 1) different CCM exponents, 2) different 

chargeability, 3) different central relaxation time constants. 

The specific values of the CCM parameters for the 12 models 

modeled are listed in Table 2.  

The dbz/dt-field response without considering the IP effect, 

as well as the dbz/dt-field response of models considering the 

IP effects calculated using the Caputo-BEDS and SOE-BEDS 

methods are shown in Figure 10. An excellent agreement 

between the results calculated by the two methods is obtained 

for all models. Three types of responses are observed with 

different combinations of c, τ, and : “no sign reversal” 

(Figure 10i) “single sign reversal” (Figure 10f) and “double 

sign reversals” (Figure 10d). The relative error exceeds 5% 

around times when the sign reversal occurs.  

We can see that c affects the time when the sign reversal 

happens and the number of time reversal occurrences (Figure 
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10a-10d). A larger value of c would cause the sign reversal to 

happen earlier. A second sign reversal is found to exist in the 

decay curves for all c values but at much later times for small 

c values, and hence not plotted in panels (a), (b), and (c). 

Having a large c causes the second sign reversal to appear 

within the modeled time range. On the contrary, when c 

decreases, the decay curve becomes more similar to that 

without the IP effect. In the extreme case of c=0, the electrical 

conductivity stops being dispersive, and the decay curve 

would become the same as the one without considering IP 

effect. 

The chargeability  affects the decay curve in a similar way 

as c. A larger  would cause the time reversal to occur earlier. 

However, there remains to be only one sign reversal with large 

values of  ( = 0.9). When =0, equation 2 reverts to Ohm’s 

law without dispersion. 

The central relaxation time τ determines the length of time 

required for the decay in the time domain. When τ=0, σ(t)=σ0 

[56] which implies the medium is no longer dispersive, and 

therefore. Consequently, the dbz/dt-field responses of loop 

center remain constantly positive. Similarly, according to 

equation 1, σ(t)=σ∞ when τ=∞. The model is charged all the 

time. Thus, the dbz/dt-field response of loop center remains 

the same as the TEM response without the IP effect. With τ 

decreasing, the model has less time for charging then 

discharges earlier, which results in appearance of negative 

responses in Figure 10i-10l. 

According to the definition of the Cole-Cole model 

(equation 1), we can deduce that the changes for different 

parameters only have an impact on the complex electrical 

resistivity. The time-variant resistivity expression for Cole-

Cole model can be obtained by using the inverse Laplace 

transform [57]:  
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Using the digital filter algorithm of [19], equation 44 can be 

expressed as 
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where Re(ωk) is the real part of the expression (1-1/(1+(iωτ))c) 

and is defined as 
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  In equations 45, ωk = , where αk is filtering calculation 

node and φk is the filter coefficient. We can obtain the 

electrical conductivity curves with various IP parameters in 

Figure 11. 

Although different parameters (c, , and τ) both affect the 

time when the sign reversal occurs, the causes are different. 

The electrical conductivity decreases with time from σ0 (the 

upper limits) to σ∞ (the lower limits) in each panel. Meanwhile, 

when the electrical conductivity is equal to a constant, the 

phenomenon of sign reversal doesn’t occur. So, we conclude it 

is the change between σ0 and σ∞ with time that causes the 

alternating positive and negative dbz/dt-field responses. The 

slope of curve at any given time represents the rate of change 

from σ0 to σ∞ at that time. 

The slop of the curve is positively correlated with c in Figure 

11a. The electrical conductivity linearly decreases with time 

when c is small enough. Therefore, the negative response 

appears later with smaller c as seen in Figure 10a. The smaller 

chargeability value not only decreases the slope, but also the 

electrical conductivity is close to a constant in Figure 11b. 

Thus, the TEM response is similar to the response without the 

IP effect, and no sign reversal occurs in Figure 10e. Different 

central relaxation times have no effect on the shape of the 

conductivity curve, but the time at which the conductivity 

starts to change from σ0 to σ∞ becomes later as τ increases 

(Figure 11c). So, a large τ also causes the occurrence of 

negative responses to appear later in time. 

To explore the influence of high-frequency electrical 

conductivity σ0 on electromagnetic response, four half spaces 

with five different conductivities: σ0=0.01S/m, 0.005S/m, 

0.0025S/m, 0.00167S/m, and 0.00125S/m. We consider a half-

space model with the same survey configuration as shown in 

Figure 3. The results are shown in Figure 12. According to 

[58], the total field includes fundamental field and polarization 

field. The fundamental field is stronger under high electrical 

conductivity, which overpowers the polarization field in the 

late stages. So, the sign reversal happens earlier when σ∞ 

decreases. Further, the sign reversed twice within the 

modeling time range as σ∞ decreases to 0.0025 S/m.  

E. Characteristics Analyses of TEM Responses with A 3D 

Chargeable Body in A Nonchargeable Half space 

To further study how the TEM responses change with time 

when a chargeable body is present, we consider, again, the 

model with 3D chargeable body buried in nonchargeable half 

space (Figure 5). The transmitter and receiver are placed on 

the ground surface, h1=0. The size of the chargeable body is 

d1=100m, d2=d3=210m, and h2=50m. The transmitter current 

is set to 1A. The model is discretized with 81×81×80 grids. 

The conductivity σground is set to 0.02S/m. we prepare three 

models: Case1: homogeneous half-space model (σ∞=0.02S/m,), 

Case2: containing nonchargeable low-resistance body 

(σ∞=0.1S/m), and Case3: containing chargeable low-resistance 

body (σ∞=0.1S/m, =0.5, τ=0.001s, c=0.5). 

The responses of the dbz/dt-field at the receiver are shown in 

Figure 13. We turn attention on the results of Case3, the red 

dashed line curve in Figure 13. Comparing the results of 

Case2, the decay curve appears the difference near 0.22ms and 

the sign reversal is observed near1.31ms. Both decay curves 

coincide from 0.01ms to 0.22ms, as well as the response value 

increases due to the presence of the underground conductive 

body. After t = 0.22ms, the amplitude decreases rapidly under 

the influence of IP effects. 
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TABLE 2 

PARAMETERS FOR FORWARD MODEL 

Group CCM exponent c Chargeability  Central Relaxation Time τ(s) 

Case 1 0.3/0.5/0.7/0.9 0.5 0.0001 

Case 2 0.5 0.3/0.5/0.7/0.9 0.0001 

Case 3 0.5 0.5 0.0001/0.001/0.01/0.1 
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Fig. 10. The dbz/dt-field responses calculated for the 12 models with different CCM parameters listed in Tabel 2 by the Caputo-

BEDS (red solid line) and SOE-BEDS (blue dashed line) methods. The yellow horizontal line in each panel represents 5% 

relative error. The TEM response without the IP effect is shown with dark gray solid lines in each panel. The relative error 

between the responses calculated by the two numerical methods is shown with black dashed lines in each panel. 

(b)(a) (c)

 
Fig. 11. Comparison of the electrical conductivity with different IP parameters. 

(a) Different CCM exponents, c=0.1, 0.3, 0.5, 0.7, 0.9. (b) Different chargeability, =0.1, 0.3, 0.5, 0.7, 0.9. 

(c) Different relaxation time constants, τ=0.0001s, 0.001s, 0.01s, 0.1s, 1s. 
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Single sign-change

Double sign-change

 
Fig. 12. The dbz/dt-field responses with different electrical 

conductivity for SOE-BEDS method.  

Other CCM parameters are set to c=0.5 and =0.5. 

 
Fig. 13. Decay curves of the dbz/dt-field responses 

with nonchargeable body (blue dotted line), chargeable body 

(red dashed line), and homogeneous half-space model (black 

solid line). 
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Fig. 14. The response maps of dbz/dt-field on the surface and the time channels are 0.18ms (a)-(c), 0.88ms (d)-(f) and 5.54ms (i)-

(k). From left to right, homogeneous half-space model, the anomalous with nonchargeable low resistance body and chargeable 

low resistance body are shown by black frame. 
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Fig. 15. The maps of current density and section views at 100m depth. The time channels are 0.18ms (a)-(c) and 5.54ms (d)-(f). 

From left to right, homogeneous half-space model, the anomalous with nonchargeable low resistance body and chargeable low 

resistance body are shown by black frame. Black arrows and coloured background respectively indicate the direction and 

amplitude of the current. 

1×10-61×10-15

(a) (b) (c) 

 
Fig. 16. The maps of current density of the model with chargeable body shown by black frame and section views at XOZ. The 

time channels are 0.18ms (a), 0.88ms(b) and 5.54ms (c). Black arrows and coloured background respectively indicate the 

direction and amplitude of the current. 

The decay curves shown in Figure 13 show how the dbz/dt 

field is changing with time at the observation point. We focus 

on the dbz/dt-field responses on the surface with three times 

channels. Figure 14 shows contour maps at 0.18ms, 0.88ms 

and 5.54ms. We note that the results are similar between the 

model with the nonchargeable low-resistance body and 

chargeable low-resistance body at 0.18ms. In Figure 14b and 

14c, the negative responses are concentrated inside the 

position of black frame. at 0.18ms. This phenomenon indicates 

that the polarizable anomalous body is probably still charging. 

Observing Figure 14a and 14b, the responses within black 

frame are smaller due to the influences of low-resistance body, 

which phenomenon is the same as shown in Figure 13. 

Then at 0.88ms, it is clearly that the chargeable body has a 

noticeable effect on the results in Figure 14f, and we observe 

the positive results inside the loop. However, the responses are 

negative at same position in Figure 14e. We conclude that the 

polarizable anomalous body is discharging. This phenomenon 

can be explained by the fact that the polarization current 

resulted from IP effect is the opposite to the conduction 

current. With the increase in time, the amplitude of the dbz/dt-

field responses continuously increase, as seen in Figure 14i.  
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At 5.54ms, strong IP effects can be observed because the 

observed data already show signal reversal. Meanwhile, the 

smoke ring effect is also evident through the response 

diffusion phenomenon with the time. Conversely, utilizing the 

IP effect at different times can prove to be highly helpful in 

exploring low-resistance bodies. This insight underscores the 

potential advantages of leveraging the IP effect for improved 

exploration of subsurface structures. 

To understand what is happening physically for the IP 

effects inside the anomalous body, we plot the current density 

at the XOY plane at a depth of 100m in Figure 15 at 0.18ms 

and 5.54ms. The black arrows represent the current direction 

and the background color represent the amplitude of the 

current.  

The current density inside and outside the anomalous body is 

clockwise at 0.18ms, but the amplitude of the current density 

inside the anomalous body in Figure 15b and 15c is larger than 

that shown in Figure 15a. The larger amplitude is the influence 

of low resistance body. The amplitude of body without the IP 

effect is greater than one with IP effect, indicating that the 

chargeable body is probably being charged at early times. At 

the later time when t = 5.54ms, it can be seen that the current 

density inside the chargeable body reverses its direction to 

counterclockwise as opposed to clockwise at t = 0.18ms. The 

direction change is not observed for the other two models at t 

= 5.54ms. This direction change for current density in the 

anomalous body is likely caused by the discharging of the 

chargeable body. 

The current density is also plotted for the XOZ plane cutting 

through the middle of the chargeable body in Figure 16. At 

early times when t = 0.18ms, the current density direction is 

generally the same inside and outside the chargeable body. 

Then a reverse current is formed inside body at 0.88ms and 

5.54ms. The current direction around body is complicated due 

to the influence of low resistance and IP effects. 

Ⅳ. CONCLUSION 

In this paper, we present a novel technique for modeling the 

TEM responses when the model contains chargeable materials. 

We developed the SOE method to approximate the Caputo 

function rather than using a linear interpolation to solve 

fractional derivatives in Ohm’s law. The results of current 

density calculated by SOE method show that SOE method can 

effectively and accurately approximate Caputo function with 

non-uniform step-size.  

Then Caputo functions approximated by linear interpolation 

and SOE methods are introduced into the Maxwell equation 

adopting the finite difference (FD) and backward Euler’s (BE) to 

establish Caputo-BEDS and SOE-BEDS algorithms. The results 

from both methods show that the algorithm we developed has 

higher accuracy expect for the region with field changing, which 

relative error is less than 5%. It should pay attention to which the 

SOE-BEDS algorithm significantly reduces computation time, 

measured in seconds rather than hours. Meanwhile, it only 

occupies lower memory under the same model. 

For various IP parameters in the model, the results show that 

the Caputo-BEDS and SOE-BEDS methods keep high precision. 

By exploring electromagnetic response maps of models 

containing anomalous bodies, it is demonstrated that the IP effect 

is more particularly advantageous for detecting subsurface 

anomalies.  

We hope that this method can provide an efficient and 

accurate computational basis for IP interpretation. 

APPENDIX  

A1 Derivation for discretizing the fractional derivatives 

We restate the Caputo approximation function for fractional 

derivatives: 
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The integration by parts is used, we can obtain 
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Then, equation A2 becomes 
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where Γ is the Gamma function and is expressed as 
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Assuming z=1-c, equation A5 can be expressed as 
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Expanding the summation formula gives 

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3383388

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



3 

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1
1 11

1

0

1 11 0

0 1

0

1 12 1

1 2

1

1 11

1 2

1

...

.

n
c cp p

n p n p

p p

c c

n n

c c

n n

c cn n

n n n n

n

f t f t
t t t t

t

f t f t
t t t t

t

f t f t
t t t t

t

f t f t
t t t t

t

−
− −+

+

=

− −

− −

− −−

− −

−

−
 − − −
  

−
 = − − −
 

−
 + − − −
 

+

−
 + − − −
 



 (A7) 

Rearranging equation A7, we have 
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Allowing the final in equation A8 is written as 
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Substituting equation A9 and A6 into equation A4, equation A1 

can be rewritten as 
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A2 Derivation for discretizing Integral part of equation 31 

We first compute the f(m) via linear function. Assuming the 

field is f(τ) at τ time, the expression can be written as the 

following range from tn-1 to tn:  
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Substituting into equation 30, we get 
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Expending expression and adopting integration by parts, we 

can get 
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For the first term of equation A13, integration by parts is 

adopted again:  
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Combining the equation A11-A14, we can obtain 
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