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Sensor Independent Cloud and Shadow Masking
with Partial Labels and Multimodal Inputs

Alistair Francis

Abstract—A paradigm shift is underway in Earth Observation,
as deep learning replaces other methods for many predictive
tasks. Nevertheless, most deep learning classification models for
Earth Observation are limited by their specificity with respect
to both the sensors used (inputs) and classes predicted (outputs),
leading to models which only perform well for specific satellites
and on specific datasets. Cloud masking is typical of this, but
is one of the most important tasks to generalise across sensors,
given that it is required for all optical instruments. This work
sets out a framework to relax deep learning’s constraints on
specific inputs and outputs, using cloud and shadow masking as
a case-study. Centrally, a model which is sensor independent,
and which can simultaneously learn from different labelling
schemes is developed. The model, Spectral ENcoder for SEnsor
Independence version 2 (SEnSeI-v2) extends the original version,
by permitting multimodal data (in this case Sentinel-1 SAR
imagery and a DEM) to be ingested, along with several other
architectural improvements. SEnSeI-v2, attached to SegFormer,
is shown to have state-of-the-art performance, whilst being usable
on a range of multispectral band combinations, alongside SAR
and DEM inputs, without retraining. The labelling schemes of
eight datasets are not made compatible through a reductive
approach (e.g. converting to cloud vs. non-cloud), rather, an
ambiguous cross-entropy loss is introduced that allows the model
to learn from the different labelling schemes without sacrificing
the class distinctions of each, leading to a model which predicts
all of the constituent classes of the different datasets.

Index Terms—Optical data, Thermal data, Synthetic Aperture
Radar Data, Image analysis, Multisource data fusion, Deep
learning, Atmosphere

I. INTRODUCTION

DEEP Learning (DL) approaches have shown great suc-
cess when applied to satellite imagery for a number of

predictive tasks, often with higher performance in comparison
to traditional methods [1]. These traditional methods, though,
are often applicable (or translatable) to multiple sensors by
virtue of their use of physical rules. For example, Fmask [2]—
originally developed for Landsat sensors—was straightfor-
wardly translated to Sentinel-2, by removing the thresholding
tests related to the thermal bands, which Sentinel-2 data does
not include. Meanwhile, DL models are not readily adaptable
to new sensors, because of their expectation of a fixed input
structure (e.g. the same set of spectral bands, or for multimodal
models, the same combination of instruments). The lack of
immediate generalisability of DL models to multiple satellite
sensors slows adoption and operational deployment. This is
because the cycle of model development and validation, and
the creation of datasets for training (in the case of supervised
models) and validation (for all models) must be repeated for

A. Francis is with the Φ-lab, ESRIN, Frascati, Italy

each sensor. Having previously introduced sensor indepen-
dence with Spectral ENcoder for SEnsor Independence (SEn-
SeI) [3]—whereby a single model may be trained and used on
multiple multispectral sensors—this work extends that effort,
creating a cloud masking model which is further generalised
than before, whilst achieving state-of-the-art performance.

Building on SEnSeI-v1, three main novel contributions
are offered here. (1) several architectural improvements are
proposed for both SEnSeI and the DL model it is attached
to, leading to a more accurate predictor. (2) cloud masking
is reformulated as a partial label learning problem, and a
novel ambiguous cross-entropy loss is proposed, whereby the
different labelling structures of the datasets are retained by
the model, rather than simplified and reduced. (3) support for
multimodal inputs in SEnSeI is developed, with the model able
to ingest data from other sources of raster data, e.g. Sentinel-
1 Synthetic Aperture Radar (SAR) and a Digital Elevation
Model (DEM) as optional, extra inputs complementing the
primary multispectral image.

Regarding the partial label learning paradigm, more con-
cretely, labels in the ground-truth represent possibilities (com-
monly referred to as candidates in the field of partial label
learning), rather than precise, known solutions. This is a dif-
ferent scenario to both fuzzy and multilabel processes, which
assert that AND statements can exist between different labels
in the real world. Instead, one can consider partial labels as
expressing OR statements in the labels. So, whilst it is assumed
that a given input cannot truly correspond to multiple classes
in the real world, the ground-truth doesn’t necessarily pinpoint
which specific class is true, only conveying possibilities.

The usefulness of multimodality is of great interest in
contemporary remote sensing research, but so far little focus
has been given to how it may affect the performance of cloud
masking algorithms. Perhaps this is because neither of the
two other obvious modalities one might use besides multi-
spectral instruments (SAR and DEM) are sensitive to cloud.
Nevertheless, it may be that the information from SAR and
DEM can help to disambiguate cloud from non-cloud, despite
not being sensitive to them. This hypothetical disambiguation
could occur when spatial features between the multispectral
image being masked and the SAR and DEM rasters correlate
or not. When spatial features from the different instruments
align and correlate, then it is likely that they are looking at
the same surface (non-cloud), and when they differ, then it is
possible that it is because the multispectral sensor is viewing
cloud features whilst the others still give information from the
Earth’s surface. This work seeks to explore such possibilities,
using the sensor independent model that is developed as a
useful tool for rapidly testing different possible combinations
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of modalities, without any retraining being necessary.
Previous experiments with SEnSeI [3] tested a set of

hypotheses about the generalisability of SEnSeI to different
sensors, and how it affected the performance of the model it
was attached to. These showed SEnSeI’s generalisation across
different multispectral satellites (conveyed by its performance
on multiple labelled datasets over different sensors). However,
given the differences in labelling styles between these different
datasets, the previous work simplified the classification task to
a binary one: cloud vs. not-cloud.

In view of those previous findings, this work moves forward
to explore the topic further with three points of focus:

1) Model Improvements: The effects of the improve-
ments to the model architecture are measured against
the previous version of SEnSeI, and other published
methods. Results found in Section V-A.

2) Partial Label Learning: The ability of a model to
learn from partial labels, and how such a framework can
unlock new capabilities whilst maintaining performance
in simplified tasks when compared to an non-partial
labelling approach. Results found in Section V-B.

3) Multimodality: The effect of adding different modali-
ties (SAR from Sentinel-1, and DEM data) to the inputs
of a cloud masking algorithm, measuring whether this
extra data is helpful or not, and in what circumstances.
Results found in Section V-C.

The results for these three experiments are measured on
Sentinel-2 cloud masking datasets. Therefore, a final exper-
iment is included to verify that SEnSeI-v2 is indeed sensor
independent, by showing it’s performance on Landsat 8 and
9 data. Then, Section VI moves on to discuss—in light
of the results—how a data-centric approach could be more
efficacious for the cloud masking community than a model-
centric one. In particular, prioritising the quality and quantity
of available data, considering its sampling biases, and probing
the utility of multimodal inputs.

II. RELATED WORK

A. Cloud Masking

Locating where clouds and their associated shadows ob-
struct the view of the Earth’s surface from space is a core
problem that impinges on all optical satellite sensors’ gath-
ering of data. Cloud masking remains a challenging problem
that both satellite operators and end-users of their data have a
stake in. Understandably, many studies in cloud masking focus
primarily on the quantitative performance of their methods
against others. However, this work does not primarily seek
to compete with other methods, but rather offer concepts
(sensor independence and partial label learning) that can
complement and augment any approach. Given this focus, it
does not make sense to solely focus this section on describing
the various choices of model design, and their concomitant
effects on performance, that exist in the literature. For this,
several excellent review papers have compared and contrasted
the different methods employed to mask clouds in satellite
imagery [4], [5], [6], [7]. This section will focus instead on

some of the remaining challenges that routinely degrade the
practical utility of cloud masks.

Thin cloud and shadow detection is still unsatisfactory for
many end-users of cloud masking algorithms. This is in part
because the definition of cloud—and in particular thin cloud—
is inherently difficult to pin down. Skakun et al. [8], for
example, found large disagreements between expert annotators
due to the subjective and diverse definitions used for thin
cloud. As Tarrio et al. [6] note, cirrus clouds are often
situated at the boundary between what would be classed as
cloudy and clear. Of course, as thin cirrus clouds demonstrate,
cloudiness is not truly a categorical variable, it is a family
of atmospheric phenomena which we typically associate with
several parameters, including optical depth [9], cloud top
height [10], and cloud type (e.g. cumulus, cirrus, etc.) [11],
among others. All these parameters impact how clouds appear
in the different spectral channels of a sensor situated in space
above them.

Whilst the underlying physics and processes governing
clouds are complex and diverse, the data with which we work
is generally not capable of representing such rich information.
Thermal sensors can provide important physical measurements
of cloud and aerosol properties [12], but most multispectral
sensors (e.g. Sentinel-2)—for which cloud masks are needed—
do not give us much information regarding cloud physics or
composition. Therefore, we are necessarily still in a situation
where the majority of models output a coarse, categorical
representation of the complex underlying system, and this
coarse categorical representation is judged against an equally
coarse categorical ground-truth dataset for validation. In the
end, a boundary between what is and isn’t cloud must be drawn
(both spatially at their edges, but also in terms of opacity and
thickness), and this semantic boundary is always a site where
inter-dataset [8], [13] and inter-model [4], [7] disagreement is
high.

Motivated to optimise performance at this semantic bound-
ary, the designs of several models are guided by the difficult
issue of thin cloud retrieval. For example, Wu et al. [14] offer
a rule-based model based on the observation that thin cloud
removes dark pixels from a given region. Many algorithms
rightly focus on the 1.38 µm cirrus band in Sentinel-2 and
Landsat 8 to detect thin clouds [2], [15], [16]. For DL
approaches that consider larger spatial extents, the smoothness
of thin cloud areas vs. clear areas can be seen as a useful
discriminative feature for the model to detect thin clouds
(e.g. [17], [18]), whilst Zhang et al. [19] show a vision
transformer-based architecture performs well for thin cloud
detection.

B. Beyond Supervised Learning

Partial label learning, as will be shown in Section III-B, is
a mode through which strict supervised learning is relaxed. It
has long been recognised as a more general learning paradigm
to strict supervised learning (e.g. [20], [21]). Two common
families of methods can be defined for learning from partial la-
bels: average-based strategies, and identification-based strate-
gies. As Lv et al. [21] define them, average-based strategies
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treat all classes labelled as possible as equally likely, whilst
identification-based strategies seek to disambiguate the labels
and treat the most likely label as the true class. Both of these
approaches aim to disambiguate the problem, converting it into
something resembling standard supervised learning. However,
disambiguation-free learning has also been proposed by Zhang
et al. [22].

Whilst partial label learning has not been previously pro-
posed for cloud masking (or, to the author’s knowledge, any
other problem in remote sensing), other approaches which
reduce the need for precise labels have been. For example,
Li et al. [23] show how weak supervision can be leveraged
to train a high-performance cloud masking model, where each
patch during training is simply marked as cloudy or not cloudy,
rather than using a pixel-wise mask. Several papers combine
this patch-wise labelling approach with Generative Adversarial
Networks (e.g. [24], [25]). These patch-wise label methods
show promise in reducing the amount of labelling time needed
for cloud masking. However, it is not straightforward to extend
this approach to cloud shadow detection, because patches
containing only shadow pixels are difficult to find, given
their tendency to be located close to clouds [23], [25]. The
difference between these methods and partial label learning, is
the fact that they introduce ambiguity in the spatial dimension,
whereas partial labels retain spatial exactness, but permit
semantic ambiguity in the output classes of each pixel.

Categorising the previous approaches as ‘weakly super-
vised’, we can also consider training paradigms considered
to be ‘unsupervised’. For example, Xie et al. [26] recently
proposed Auto-CM, a method that exploits the different spatio-
temporal characteristics of atmospheric (clouds) and surface
(clear) features, to perform unsupervised masking and cloud-
free mosaicking on time series, through a self-supervised
learning approach. By not using any specific labelled training
datasets, this method is also somewhat sensor independent
(though still requiring unlabelled multitemporal data from a
new sensor), and is shown to perform well on Landsat 8,
Sentinel-2 and PlanetScope data.

C. Multimodality
There has been a recent focus on multimodal models for

Earth Observation [27], given that many problems are poorly
constrained when considering a single sensor’s data. For ex-
ample, Manakos et al. [28] fuse Sentinel-1 and Sentinel-2 data
to accurately predict flood maps, noting that Sentinel-2 is com-
monly used for this task but is impractical when atmospheric
conditions are unfavourable. Change detection using fused
Sentinel-1 and Sentinel-2 data also shows promise [29]. Using
the same combination of instruments—Sentinel-1 and -2—
Orynbaikyzy et al. [30] demonstrate a system for the mapping
of crop types, remarking on the improvement in performance
of the multimodal approach versus single sensor models. These
positive results are reinforced by Blickensdorfer et al. [31]
who perform data fusion across Sentinel-1 and -2, Landsat 8,
as well as topographical, meteorological, climatological, and
environmental data to map crop types.

Closer to the field of cloud masking, cloud removal (where
cloudy areas are inpainted with a predicted surface reflectance)

approaches often use a multimodal approach, where a sensor
typically unaffected by atmospheric conditions (most often
SAR) is used to inpaint the cloudy regions [32], [33], [34].
Clearly, in a range of domains, fusion across different data
sources permits more performant models, but necessitates the
creation of multimodal datasets. Until the publication of the
CloudSEN12 dataset [13], an openly available multimodal
dataset for cloud masking did not exist. With this dataset, the
community may now experiment with the utility of both SAR
and DEM information when masking clouds.

III. METHODS

This section provides an overview of the proposed approach,
before moving on to detail the technical details of each of
the primary contributions. The initial overview provides a
context that is relevant to both this work and the previous
implementation of SEnSeI [3].

Sensor independence can, presumably, be achieved through
many different approaches, which do not necessarily correlate
to the approach of SEnSeI. Where a non-sensor independent
model is specialised to the specific physical measurements
made by its respective sensor, a sensor independent one should
be able to ingest and—with some level of success—use data
that may come from some range or family of sensors. The
level of sensor independence of a given method can be loosely
defined by the breadth of different sensors that it can be used
on. A restricted form of sensor independence, then, could be
a model which is trained and used on a set of spectral bands
which many different sensors measure (e.g. a model that uses
only red green and blue bands from many satellites). A more
ambitious form of sensor independence, as examined in this
work, can be achieved by designing a model which permits
arbitrary combinations of spectral bands (and possibly other
data, e.g. SAR or DEM) by a model.

In practice, SEnSeI achieves this by considering each band
of data as a separate input. This contrasts with the standard
approach of most multispectral vision models, which assume
that the same physical measurement (e.g. ’Red’) appears at the
same place in the inputted data, and that that data consists of
a fixed and unchanging set of bands. So, the task of a sensor
independent model, is to use some arbitrary set of physical
measurements (here assumed to be raster images), that come
from sensors with different characteristics, to achieve some
task. In both SEnSeI-v1 and -v2, the problem is split into
two relatively independent steps. The first is to encode the
information from the set of physical measurements into an
embedding space that is of a fixed dimensionality. The second
is to pass this embedding of fixed dimensionality to a deep
learning model, such as DeepLabv3+ or SegFormer, or any
other model that one might choose to apply.

In both versions of SEnSeI, descriptions of the physical
characteristics of the sensor are given to the model, via
a ‘descriptor vector’. Whilst not exactly the same between
versions 1 and 2 of SEnSeI, these descriptor vectors give the
model a way to understand what data it is being given. Similar
to the changes to the format of the descriptor vectors, the inner
workings of each version of SEnSeI are different, however
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both achieve the same goal. Namely, to build a representation
of the data in a space of a fixed size, which is independent
of the number of bands it is given. In both versions, this is
achieved via a pooling operation at the end of SEnSeI, which
creates collapses the representation, making it independent of
the number of input bands it is given.

Having covered the general approach taken by both versions
of SEnSeI in pursuit of sensor independence, the follow-
ing section focuses on the differences and novel aspects of
SEnSeI-v2, the ambiguous loss function, and the models that
SEnSeI-v2 are used with.

A. Model Improvements

Spectral Encoding: SEnSeI uses descriptor vectors to pro-
vide information about the spectral characteristics of the
satellite sensor’s bands. Previously, in SEnSeI-v1 [3], the
descriptor for a given band is a vector of length 3, with the
minimum, peak, and maximum wavelengths of the spectral
response curve of the band. This is a simple but somewhat
crude representation, which has two obvious drawbacks.

The first drawback is that the exact shape of the spectral
response curve is lost. The second failing is more complex.
Using a single number to describe the change in wavelength
between 400 nm and 12 µm does not adequately reflect
the sharp non-linearities in physical behaviour that satellite
observations have as a function of wavelength within that
range. Whilst neural networks are able to represent non-linear
functions, it is difficult for a model to map the complex
changes in the different sections of the spectrum (e.g. the ‘red
edge’ in the region around 700 nm, where a sharp change in
reflectance occurs over vegetation).

One possible solution could be to fully describe the spectral
response over the entire wavelength range, such that the
descriptor is a long vector in which each value represents the
detector’s sensitivity in that wavelength region. This, however,
creates several other issues. First, it adds a layer of complexity
and pre-requisite knowledge about the sensors that is not
always available, in that the spectral response curve (or some
approximation of it) is needed. Second, without careful regu-
larization during training, it could lead quickly to overfitting.
This is because of the large number of completely independent
parameters each descriptor would have, and the still relatively
small pool of possible spectral bands that one might encounter
in the set of sensors used during training. Such a situation
risks encouraging the model to focus on very small differences
in the spectral response curves of different sensors (a single
value in the descriptor representing the sensitivity at a specific
wavelength on the edge of a spectral response curve, for
example) in order to overfit to each sensors’ datasets’ biases,
rather than on what we might expect are more useful features
(larger discrepancies between spectral responses, which could
cause measured top-of-atmosphere (TOA) reflectance values
to differ significantly over the same surface).

Another solution is inspired by the work of Vaswani et
al. [35] who propose positional encodings to give transformer
architectures explicit information about each input’s position
in a sequence. Transferring this idea directly to wavelength, a

spectral encoding is the output of a set of sinusoidal functions,
with a range of frequencies multiplied by the wavelength’s
value. Lower frequency components of the encoding change
slowly with wavelength (giving coarse information about the
wavelength), whilst high frequency components oscillate more
rapidly with wavelength (giving the model rich information
about each local part of the wavelength range). For a wave-
length λ, which is logarithmically scaled as

λnorm = log10 (λ− 300)− 2, (1)

where λ is given in nanometres. so that the large differences
between optical bands and thermal bands are not too extreme
in the normalised value range. Then, a set of sinusoidal
embeddings fi(λ) are computed as

fi(λ) =

{
sin (ωiλnorm) if i even
cos (ωiλnorm) otherwise

where ωi = 10000−2i/Nω for i = 1, . . . , Nω.

These spectral encodings have some advantageous charac-
teristics. Like the original descriptor vectors of SEnSeI-v1,
they do not need the full spectral response function, requiring
only the minimum and maximum wavelengths. They also
provide the model with both coarse and fine details across the
wavelength range, and change continuously and smoothly with
wavelength, unlike a full spectral response function’s features,
which may be used by the model to overfit more easily to a
specific band. These spectral encodings form the first part of
the descriptor vectors shown in Fig. 1, with Nω set as 32.

Multimodal Support: The spectral encoding described in
the previous section is able to represent diverse multispectral
bands, and these encodings form part of the descriptor vector
used by SEnSeI-v2. However, descriptor vectors can also be
constructed for non-optical datatypes, with a straightforward
scheme to extend the vector features. To do this, as shown in
Fig. 1, some binary features are added to the end of the vector,
denoting whether the data is from a certain instrument type.
In the context of this work, data from multispectral (including
thermal bands), SAR, and DEM are used, however one can
extend this concept to any other datatype—assuming it can
be represented as a raster over the same area as the other
bands used. When these binary variables are used, the space
that the wavelength encodings occupy for multispectral bands
is liberated, allowing for information (e.g. VV vs. VH in the
case of SAR) to be given to the model.

Multi-head Attention: Computations within SEnSeI’s per-
mutation equivariant layers are done band-wise; each input
band’s descriptor corresponds to an output feature vector at
each layer. Whilst a one-to-one correspondence between input
descriptors and output feature vectors is needed, factoring
in information from all other bands’ corresponding feature
vectors is also desirable, as it allows SEnSeI to consider
the combinatorial effects of different bands on the outputted
representation.

In SEnSeI-v1 this information sharing was performed with
a ‘permutational block’ which made N2

b pair-wise combina-
tions for Nb bands, by concatenating their feature vectors in
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Maximum wavelength encodingMinimum wavelength encoding Unused

1  1  1  …  1  1  1 0  0  0  ...  0  0  0

1  1  1  …  1  1  10  0  0  ...  0  0  0

1  1  1  …  1  1  1 1  1  1  …  1  1  1

VV

VH

Angle

32 32

Fig. 1. Schematic of descriptor vectors used for SEnSeI-v2. The first 64 entries contain the spectral encodings of a band’s minimum and maximum wavelength
(if it is a spectral or thermal band). The later section of the vector contains binary flags used to add support for other kinds of non-optical data. For SAR
data, the first 64 positions—which for multispectral bands are used to encode the wavelengths—are instead used to indicate to the model whether a band is
VV or VH backscatter, or the incidence angle. DEM data is also indicated with its own binary flag, in which case the first 64 entries are simple filled with
0. Some positions in the vector remain unused, allowing for future expansion to other data types.

pairs, and then sent them through a set of fully connected
layers. Then, it pooled those pair-wise combinations back to
Nb feature vectors. In this way, whilst each output of the
block corresponded to one of the inputs, each had access to
information from the other bands. SEnSeI-v2 utilises multi-
head attention to perform this same information-sharing with
the Transformer architecture [35], motivated by it’s remarkable
recent performance in a number of applications, perhaps most
notably natural language processing.

An attention layer has three learnable weight matrices,
known as the query, key, and value matrices (WQ, WK

and WV respectively). The layer uses correlations between
different members of the input sequence to generate useful
information (in our case, the sequence is an unordered set of
bands). A multiplication between the query and key weight
matrices, and the inputs, xi, are computed to generate the
queries and keys (Q = xiWQ and key K = xiWK respec-
tively). A dot product of each pair of query and key is then
taken (leading to N2

b dot products for Nb bands). These dot
products are softmaxed (conventionally scaled by the square
root of the dimensionality of the vectors d) and multiplied by
the value matrix, WK , to produce the output yi of the layer
corresponding to each input xi, such that

yi = softmax

(
QKT

√
d

)
WV . (2)

Extending this concept to multi-head attention, this opera-
tion is repeated with several weight matrices, and the outputs
of each concatenated, then transformed by a linear layer into
the desired final dimensionality of the output. The Transformer
block’s specific hyperparameters used and its placement within
SEnSeI-v2 can be seen in Fig. 2.

Band Embedding: The previous version of SEnSeI used
‘band multiplication’ to mix the spectral information of each
band with the spatial array of values. This consisted of
multiplying each feature vector outputted by SEnSeI’s neural
network layers with the respective band’s pixel values at every

point in the image, leading to an X-by-Y-by-N output tensor,
where C is the number of embedded channels in SEnSeI’s out-
putted feature vector. At each spatial point, then, was a linearly
scaled copy of the feature vector corresponding to that band.
These tensors (each containing information corresponding to
an input band) were then pooled, to produce a fixed size output
which could be straightforwardly used in a sensor independent
fashion for a downstream task such as cloud masking (by a
model expecting a fixed number of input channels).

In SEnSeI-v2, this approach is improved by using learnable
embeddings for the band values, rather than a fixed multi-
plication (Fig. 2). For each band, b, with values in a spatial
array S(b), the corresponding feature vector from SEnSeI’s
fully connected layers, v(b), is sent to three further sets of fully
connected layers, whereby embedding parameters—gains α(b),
frequencies ω(b) and phase offsets ϕ(b)—are computed. These
parameters are used to embed the band’s information into
the output tensor with a sinusoidal function. Many families
of functions could have been used, but sinusoidal functions
are a natural choice because of their simplicity and their
bounded output range, which ensures the outputs do not
diverge with extreme values. The embeddings are computed
band-wise, meaning each band will be assigned different group
of parameters, but those parameters remain constant across the
spatial extent of a single image. The values of the embedded
output for each band, E(b), at spatial position x, y are

E
(b)
i (x, y) = α

(b)
i sin(ω

(b)
i S

(b)
i (x, y) + ϕ

(b)
i ) (3)

where the ith index corresponds to one of the embedding
space’s C channels. This process is also demonstrated graph-
ically in Fig. 2. Finally, the embedded representations are
pooled across all Nb bands, by mean averaging their values,
in order to produce the final fixed size output of SEnSeI-v2,

E(x, y) =
1

Nb

∑
b

E(b)(x, y) (4)
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Fig. 2. Flowchart of SEnSeI-v2 model. The red, green and blue inputs
represent a set of bands, with corresponding descriptor vectors. In reality, an
arbitrary number of such inputs can be used, but only three are visualised here
for simplicity. Grey boxes represent neural networks with trainable parameters.
The specific hyperparameters shown here are the ones used during training
and testing of the model, however performance did not seem strongly linked to
these hyperparameters, and were found through trial-and-error. This diagram
can be compared and contrasted with [3, Fig. 2] to see how the design of
SEnSeI has changed.

As with the original version of SEnSeI, a variable number
of input bands and their corresponding descriptor vectors have
been translated into an output representation with a fixed
number of channels. By necessity, pooling is used to create
this shared, universal feature space, but this pooling risks a
loss of information, especially for SEnSeI-v1, as the signal
from each band is overlaid crudely on top of one another in a
linear sum. The embedding parameters of SEnSeI-v2 give the
model a far greater ability to coordinate how (and where in
the space) it will represent each band’s values in a manner that
is potentially less prone to information loss, in comparison to
the linear, parameter-free multiplication used in the original
work.

Histogram Statistics: For computational simplicity, SEnSeI
performs most of its neural calculations on the descriptor
vectors, leaving the integration of the spatial image data held
in the bands until the very end. This is because, once spatial
data is introduced into the model, the subsequent layers must
all compute their outputs across image space, multiplying
the computational complexity enormously. However, failing to
consider any information held within the images is something
of a limitation, because SEnSeI-v1 could not use the TOA
reflectance values within each band to inform how it encodes
those same values. By analogy, this is akin to deciding
precisely where every piece of furniture will go in a room
that is to be decorated, without having any idea how big each
piece is beforehand.

In SEnSeI-v2, histograms of the image are computed, and
percentiles across this distribution for each band are fed into
the model (Fig. 2). This allows SEnSeI-v2 to gain some
useful information about the kind of image it is dealing
with, without having to compute different outputs across each
and every pixel before the band embedding is performed.
It can then learn to embed the different bands in a way
which depends on the image statistics, if it is helpful to do
so. Through experimentation, it was found that taking five
percentile values of the histogram—1%, 10%, 50%, 90%, and
99%—enhanced performance while not adding much to the
computation time. These five percentiles are calculated for
each band, and then concatenated to the end of the descriptor
vector before continuing to be ingested by SEnSeI-v2’s neural
layers. Returning to the interior decor analogy, it is now
possible to see the overall size and shape of different pieces
of furniture before the delivery truck arrives, and to plan the
room’s layout accordingly.

B. Ambiguous Loss Functions

Whilst SEnSeI translates the varied inputs from different
sensors into a shared representation, there is also a need
for a strategy to use the outputs of the DL model (in this
case SegFormer [36] or DeepLabv3+ [37]) with labels from a
variety of different datasets with different class structures.

One way to understand the difference between partial la-
belling and other binary labelling strategies (for fuzzy labels,
the following distinction is not so informative) is to consider
the labels’ precision as judged against the real world truth.
Unambiguous labels are assumed to be maximally precise.
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This means (ignoring whatever errors are made in the anno-
tations themselves) that a positive annotation of a given class
corresponds to its existence in the real world 100% of the time.
By contrast, for partial labels, the precision of the labels can
be less that 100%, because a partial label will contain classes
marked as possible, that are not true.

By combining sensor independence with partial label learn-
ing, a framework is established to build models that have the
advantage of generalising across sensors, whilst eliminating
the need to simplify the output class structure (usually this
is a simplification to cloudy vs. non-cloudy pixels). Instead,
partial label learning leads in a sense to a model which can
predict the union of classes included in the multiple datasets,
rather than their intersection. In this work, sensor independent
models are trained which predict 7 classes: land, water, snow,
thin cloud, thick cloud, cloud shadow, and no data (which is
included primarily to make inference easier on the edges of
large scenes) despite no dataset containing exactly all these
classes.

Training a model using partial labels requires us to find
a way of backpropagating useful information in the labels
without penalising the model for making strong predictions
within the set of possible answers. For example, if a pixel is
known to be cloudy, but it is unknown whether it is thin or
thick cloud, then the model should be penalised for predicting
other, non-cloud classes, but it should not be penalised for
strongly predicting either thin or thick cloud, or both of them
with equal confidence. Here, two partial label losses which
exhibit this behaviour are offered, based on the standard cross-
entropy and mean squared error losses.

For the set of all Nc classes ci ∈ C, let a partial label y
be defined as a vector with its ith entry, yi, corresponding
to the possibility of class ci being present. These are binary
values, where 0 means the class is impossible, and 1 means
it is possible. Similarly, let the predictor’s softmax output, p,
have entries pi, which are the confidences associated with each
of the Nc classes in C.

Our goal is to define differentiable loss functions to train
the multiclass predictor with partial labels. First, we can use
p to calculate the predictor’s possibility score, ϕ, which we
can define as the sum of the values of p for which the class
is labelled as possible,

ϕ =
∑
i

yi · pi (5)

This value, ϕ, allows us to calculate an ambiguous ana-
logue to the standard cross-entropy loss, used commonly in
classification tasks,

LCE = − log(ϕ) (6)

Alternatively, if we wish to compute a loss that is analogous
to the mean squared error, we can create a proxy prediction
vector, π, which replaces the values of p where a class is
possible, with an equal fraction of ϕ, such that at the index
of each possible class there is ϕ divided by the number of
possible classes,

πi = (1− yi) · pi +
yi · ϕ∑

i yi
(7)

Notably, ϕ (and by extension π) have the useful feature that,
unlike p, they are not dependent on the individual confidence
values that the model outputted in p amongst the possible
classes, only their summed total, which allows the model to
freely distribute confidences amongst the classes which are
deemed possible for that sample.

The loss, LMSE , is then defined as the mean squared error
between y (divided by the number of possible classes) and π,

LMSE =
1

Nc

∑
i

(
yi∑
i yi

− πi

)2

(8)

It is also useful to consider the case that the labels are
exact and not partial, and see what happens to the two loss
functions that have been introduced. In the non-partial, fully
supervised case, where class k is the only possible label, then
ϕ = pk. Therefore, π = p in the non-partial case, and so LCE

and LMSE equal the standard cross-entropy and mean squared
error between y and p. In the models trained in Section V, the
LCE is used, as it was found to perform better, converging to a
good solution faster than LMSE . Nevertheless, the derivation
of this loss may be of use to other applications and domains
for which cross-entropy is less well-suited.

C. Model Selection

Whilst one could use SEnSeI to directly predict values for
a supervised task such as cloud masking, in practice, it is
better to instead pass the embedded space outputted by SEnSeI
to a DL model, because the computations within SEnSeI do
not use the spatial information of the image. In this work,
DeepLabv3+ [37] and SegFormer [36] are used. DeepLabv3+
is a convolutional segmentation model. It uses a backbone
(in this work, the ResNet34 backbone is used) with atrous
convolutions. Atrous convolutional kernels are constructed
with gaps, and are used to efficiently gather both local and
global information from the image. Meanwhile, SegFormer is a
transformer-based model, which uses an efficient self-attention
mechanism that allows the model to consider complex relation-
ships between different areas of an image. In picking these two
quite different models (a convolutional one and a transformer-
based one), it is hoped that sensor independence with SEnSeI
is shown to not be contingent on pairing with a specific kind
of DL model.

IV. EXPERIMENTAL SETUP

A. Datasets and Class Structure

In total, eight labelled datasets are used during training and
testing of the models in this work. Four from Sentinel-2, two
from Landsat 8, and one each from Landsat 7 and a PerùSat-
1. Each one of these has a different labelling structure. In
order to use these different datasets to train a single model, a
class structure must be defined that can be mapped via partial
labelling to each of the pre-existing class structures used by
the datasets. Table I outlines how these mappings are defined
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from the model’s 7-dimensional classification to the different
datasets. This section first describes the format into which all
datasets were pre-processed, and then details some specifics
about each of the datasets used.

All input images were made into 512-by-512 pixel tiles,
where the resolution of all bands is made the same. In cases
where datasets were smaller than this (e.g. the scenes from
CloudSEN12 are 509 pixels across) they are bilinearly resam-
pled to 512. For those larger than 512 pixels, cropped patches
were taken with a sliding window. TOA reflectance values are
kept as physical, unitless values (typically between 0 and 1,
although certain geometrical and illumination conditions can
create values higher than this).

The masks are pre-processed in different formats, depending
on whether the partial or non-partial loss is used. In the non-
partial case, masks are simply one-hot encoded arrays with the
same spatial dimensions as the corresponding images (512-by-
512 pixels). The classes used depend on the labelling strategy
of the dataset. Meanwhile, for the experiments using partial
label learning, masks are not one-hot encoded, but can contain
values of 1 in multiple classes per pixel. These classes are held
constant across every dataset: land, water, snow, thin cloud,
thick cloud, cloud shadow, and no data.

As well as an image and mask, each pre-processed sample
also comes with a metadata file, containing information about
the bands within the image, and the classes in the mask. This
information is useful in creating the descriptor vectors that are
given to SEnSeI, and handling datasets with different class
structures.

CloudSEN12: CloudSEN12 is the largest cloud masking
dataset for Sentinel-2, with the most diverse set of annotated
images by some margin. Whilst the full dataset contains
many partially labelled and unlabelled images, in this work,
only the fully labelled portion of dataset is used, comprising
10,000 image patches of 509-by-509 pixels. Each image patch
is labelled with four classes: clear, thick cloud, thin cloud,
and cloud shadow. The annotations were made using the
IRIS annotation tool [38], which allows for semi-automated
labelling at a significantly higher speed than when using purely
manual tools.

A compelling aspect of this dataset is its inclusion of
multimodal input data. For each Sentinel-2 image patch, a
coregistered Sentinel-1 GRD product from a similar date is
also provided, as well as a MERIT DEM patch. These are
used in Section V-C to test how auxiliary multimodal data (as
an optional addition to the primary sensor data) can impact
cloud masking performance.

Across the dataset, 2000 regions of interest are sampled,
each 5 times, leading to the total of 10,000 images. In the
experiments of Section V, training, validation and testing splits
follow exactly those used by Aybar et al. [13], in order to
maintain comparability. CloudSEN12 is used as the primary
dataset for testing and comparison of models in cloud and
shadow masking performance because, unlike some other
datasets used, shadows are consistently marked, and thin and
thick cloud distinguished, making it the most complete and
suitable of the datasets for testing. Another advantage is that
the dataset comes with several models’ results pre-computed,

allowing for comparisons across different cloud and shadow
masking models.

Sentinel-2 Cloud Mask Catalogue: The Sentinel-2 Cloud
Mask Catalogue [39], contains 513 patches, each 1022-by-
1022 pixels across, with 3 labels (clear, cloud, cloud shadow)
marked. However, in some images, where shadow was too
difficult to mark, the annotations revert to simply cloud, non-
cloud. Similar to CloudSEN12, the Sentinel-2 Cloud Mask
Catalogue was annotated semi-manually using IRIS [38].

Alongside these pixel-wise annotations, non-mutually-
exclusive patch-wise tags are provided, offering details on
properties such as surface type and cloud thickness. In this
work, these are used to partially constrain the partial labels of
the training set. By way of example, if a patch in the dataset is
described as having ‘forest/jungle’, ‘mountainous’, and ‘open
water’ attributes, but not ‘snow/ice’, then all clear pixels in
the image would be partially labelled as possibly land and
water, but not snow. Similarly, if ‘thin cloud’ is marked as
present but not ‘thick cloud’, then all cloud pixels are treated
as unambiguously thin cloud, whereas if both ‘thin cloud’ and
‘thick cloud’ tags were associated with the patch, then all
cloudy pixels would be classed as possibly being thin cloud
or thick cloud, in a partial label.

KappaSet: The KappaSet cloud masking dataset comprises
9251 patches, from 1038 Sentinel-2 products, of 512-by-512
pixels at 10 m/pixel. The dataset is labelled with classes
including clear, cloud shadow, thin cloud, and thick cloud.
Whilst globally distributed, there is a more dense sampling
over Europe than elsewhere, with a roughly equal split be-
tween the different seasons.

CESBIO Reference Masks: Baetens and Hagolle [40] pro-
vide labels for 31 full Sentinel-2 products, taken between 2016
and 2018 (seven other masks are also provided, primarily to
test the labelling scheme against the Hollstein [41] dataset, and
are usually excluded in model validation [7], [40]). The scenes
cover 10 specific regions of interest, with between two and
four scenes from each location. The classification scheme used
separates clouds into low cloud and high cloud classes, which
do not correspond directly to thin and thick clouds. Because
of this, these classes are combined during the experiments
presented here, producing a single cloud class.

Interestingly, this is the only Sentinel-2 dataset used in this
work for which there are comprehensive pixel-wise classifica-
tions for land, water, and snow (where the Sentinel-2 Cloud
Mask Catalogue only provides scene-wise classification tags).
For this reason, this dataset is used in Section V-B to test the
models’ abilities in distinguishing between land, water and
snow.

SPARCS: SPARCS [42] is a relatively small but high-
quality dataset of diverse cloud and cloud shadow masks in
Landsat 8. Consisting of 80 1000-by-1000 pixel masks at 30
m/pixel, the dataset has labels for land, water, snow, flooded,
cloud, cloud shadow, and cloud shadow over water. During
training, the flooded pixels are treated as having partial labels
where both land and water are possible, and the cloud shadow
over water pixels are simplified to just cloud shadow. This
dataset is very useful for training in Section V-B because it
offers pixel-wise labels for land, water, and snow.

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3391625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, SEPTEMBER YYYY 9

TABLE I
OVERVIEW OF THE EIGHT DATASETS USED IN THIS STUDY. TARGET CLASSES ON THE LEFT REFER TO THE CLASSES OUTPUTTED BY THE MODELS

TRAINED IN SECTIONS V-B AND V-C.

Satellite Sentinel-2 Landsat 7 Landsat 8/9 PeruSat-1

Dataset CloudSEN12 CMC KappaSet CESBIO CCA SPARCS CCA CCA-Ext CloudPeru2

Used for training? ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✓

Used for testing? ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

SAR & DEM data? ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

No. of scenes 10, 000 513 1038 38 206 80 96 126 153

No. of megapixels 2600 540 2400 130 7600 80 4000 4400 5700

Land Land* Land Land‡

Water Water* Water Water‡

Snow

Clear

Snow*

Clear

Snow

Clear

Snow

Clear No Cloud No Cloud

Thin Cloud Thin Cloud Thin Cloud Thin Cloud Thin Cloud Thin Cloud

Thick Cloud Thick Cloud
Cloud

Thick Cloud
Cloud†

Thick Cloud
Cloud

Thick Cloud Thick Cloud
Cloud

Shadow Shadow Shadow* Shadow Shadow Shadow* Shadow Shadow* No Cloud No Cloud

Ta
rg

et
C

la
ss

es

No data No data No data No data No data No data

* Class labels are incomplete because in certain images of the dataset they were not considered, or not disambiguated from other classes. In these images,
partial labels are created between the possible target classes. E.g. when shadows are not labelled, all non-cloud pixels are marked as possibly shadow. Or,
when land, water and snow are not separable, all are marked as possible.
† Cloud class of CESBIO dataset is in fact labelled as two separate classes: ‘low’ and ‘high’ cloud. Given that these do not map directly onto ‘thick’ and
‘thin’ cloud, they are combined and labelled ambiguously as both.
‡ SPARCS defines a class for ‘flooded’ areas. These pixels have characteristics of both the ‘land’ and ‘water’ target classes, and so are given partial labels.

Landsat 8 CCA: The USGS released a dataset of labelled
Landsat 8 images, totalling 96 full scenes, referred to here as
Landsat 8 Cloud Cover Assessment (CCA) [43]. From each of
eight biomes, 12 scenes are sampled globally, with a range of
different cloud cover conditions. Pixels are labelled manually
as clear, thin cloud, thick cloud, and cloud shadow, however
there are only annotations for shadows in a subset of scenes,
as some were too difficult to annotate. In training, the pixels of
those scenes without specific cloud shadow labels are treated
as partial labels, possibly being cloud shadow, land, water, or
snow.

Landsat 8/9 CCA-Ext: A set of annotated scenes from
Landsat 8 and 9 were taken from the various validation
datasets [44], [45], [46] released by USGS (separate to the
Landsat 8 CCA dataset) in what is referred to in Table I as
“CCA-Ext”. Whilst it was originally planned to use all scenes
from the datasets, some were not possible to retrieve and so
were omitted. This dataset is used in Section V-D to test
models on Landsat data that has been unused during training
by any published algorithm to date.

The annotations were created with a similar style, and by
the same annotator, as the Landsat 8 CCA dataset. Annotations
of shadows cast by cloud, however, are omitted, leaving three
annotated classes. In practice, when used in Section V-D, the
thin cloud and thick cloud classes are combined to reduce the
problem to binary classification of cloud vs. non-cloud.

Landsat 7 CCA: Similar in class structure and annotation
style to the Landsat 8 CCA, this dataset includes 207 scenes

(although, as in [3], only 197 could be processed properly).
The 197 scenes are sampled from a range of different latitu-
dinal bands, providing a diverse set of scenes with manually
derived labels [47].

CloudPeru2: Launched in 2016, PerúSat-1 is an RGB-NIR
instrument with a resolution of around 2 m/pixel. Cloud-
Peru2 [48] is a labelled dataset of 153 scenes scenes from
this satellite, split into 22,000 patches. The dataset is labelled
as cloud and non-cloud.

B. Model Training

All models developed for this study were implemented and
trained using the PyTorch framework. The AdamW optimizer
was used with an initial learning rate of 1e−4 (after a warmup
schedule beginning at 5e−6), and a weight decay term of
1e−4. After validation loss reached a plateau, the learning
rate was then lowered to 2e−5 and then finally again to 5e−6.
All models were trained with a batch size of 8, on a 24 GB
Nvidia RTX 3090 GPU. Training took between ten hours for
the simplest, smallest model (SegFormer-B0, without SEnSeI,
trained on a single dataset) to two and a half days for the
most complex (Segformer-B2, with SEnSeI-v2, trained on all
available datasets).

Rather than pretraining SEnSeI as was done previously, it
can now trained simultaneously during the main supervised
learning task, using the same autoencoder architecture for
estimating band values from SEnSeI’s outputs [3]. The au-
toencoder is constructed by using another neural network,
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which takes SEnSeI’s output and predicts the original values
of each band that was given to SEnSeI, optimized using a
mean squared error loss. For each band that was inputted, its
descriptor vector is concatenated onto SEnSeI’s output at every
pixel. Then, the neural network (a set of two fully connected
layers with 128 channels each, and a final layer which had one
output channel), predicts the value of each pixel for that band.
This ensures that the output of SEnSeI carries information
about the precise values that it was given, and was found to
greatly improve training speed, whilst simplifying the training
procedure by completely removing the pretraining step that
was implemented previously.

V. RESULTS

In all experiments, similar metrics are used to judge the
models’ performance. In all the tables of results, P refers to
precision, R to recall, F1 to the harmonic mean of precision
and recall, BA to the balanced accuracy (the mean of recalls of
the positive and negative classes), and IoU to the intersection-
over-union (the ratio of successful positive detections to the
combined set of positives in predictions and labels).

A. Model Improvement Experiment

This first experiment compares performance in the non-
multimodal, non-ambiguous case. The goal of the comparative
exercise is to ascertain whether and by how much SEnSeI-
v2 outperforms SEnSeI-v1, and which DL model performs
best both in isolation and when working with SEnSeI when
compared against other published methods. DeepLabv3+ and
SegFormer are used as archetypal examples of convolutional
networks (DeepLabv3+) and vision transformers (SegFormer),
to show SEnSeI’s ability to be paired with a diverse range of
models.

The other published methods are those provided by Aybar et
al. [13] and are not re-computed, with the exception of the UN-
etMobV2 model, for which the authors’ github package [49]
was used. Instead of recomputing masks for each method, the
masks provided alongside the CloudSEN12 dataset are used.
Unlike [13], the metrics reported here are pixel-wise metrics
across the entire dataset (rather than medians of the metrics
across each image). Both methods of presenting the results
have advantages, as a user may indeed be more interested in
median performance, whilst in a statistical sense it is difficult
to compare precision and recall across images with very
different relative distributions of classes. Given the interest
here is on general model performance, the standard pixel-wise
approach is used.

For each of the four classes labelled in the dataset (clear,
thick cloud, thin cloud, cloud shadow), precision P and recall
R are calculated, alongside metrics for super-classes. These
super-classes (cloud vs. non-cloud and invalid vs. valid) are
formed by combining the separate classes to find relationships
that are of more interest and utility to a user of cloud masking
algorithms. They also allow for comparison with methods
(such as Fmask and s2cloudless) that do not distinguish
between all the original classes.

Table II summarises the results of the experiment. When one
considers the three models used with SEnSeI (DeepLabv3+
and the two SegFormer models) a general trend emerges.
Performance of the non-sensor independent models are all
very high, with SegFormer-B2 consistently best in global
metrics (F1, BA and IoU ), although DeepLabv3+ performs at
almost the same level. Meanwhile, each model receives a hit
to performance when SEnSeI-v1 is used to make it sensor
independent (as has been previously shown [3]). However,
SEnSeI-v2 reverses this loss; sensor independence is achieved
with a negligible reduction in performance. Models are created
that can mask clouds using any and all combinations of bands
from Sentinel-2, whilst maintaining performance when using
all the bands, meaning models with added utility—applicable
to RGB, RGB-NIR, and other satellite sensors which consist
of a subset of Sentinel-2 bands—have been created with
essentially no loss in accuracy. A visual comparison between
several of the models can be found in Fig. 3.

Looking at all models, including those taken from Aybar
et al. [13], it seems that models trained on CloudSEN12
(DeepLabv3+, SegFormer-B0 and -B2, and UNetMobV2) all
consistently outperform those which are not (KappaMask,
s2cloudless and Fmask). Whilst the differences are large
enough to assume that there is some real gap in objective
performance, it should still be noted that training on different
datasets gives a model different biases, leading to masks which
are not necessarily incorrect but that can disagree with the test
dataset’s labels. The implications of these trends are discussed
further in Section VI.

B. Partial Labelling Experiment

This experiment introduces the partial labelling framework
to the model training, using the ambiguous cross-entropy loss
function detailed in Section III-B. The benefits of partial
labelling are more qualitative, than quantitative, in that it
expands the functionality of a model (by creating a richer,
more specific output), whilst not necessarily effecting the
performance in the simpler, original task. That being said,
it is nevertheless important to measure any difference in
performance between models with or without the ambiguous
loss applied, to verify that there is not a deleterious effect on
performance.

Three models were trained using a standard (non-
ambiguous) cross-entropy loss, with two classes (cloud vs.
non-cloud) or four classes (clear, thin cloud, thick cloud,
cloud shadow). When training with two classes, it is possible
to combine training across different datasets and sensors, by
reducing all their respective class structures to this more basic
one. However, for a model with four classes, only datasets
containing those four classes can be used, which means
only the CloudSEN12 training split can be considered. These
models allow us to compare how performance is affected
when adding the ambiguous loss, with the two models trained
using ambiguous learning. Table III shows the performance of
all these models on the CloudSEN12 dataset. Fortunately, all
models perform similarly with respect to cloud/non-cloud and
invalid/valid classification. This result is strong evidence that

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3391625

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. X, NO. Y, SEPTEMBER YYYY 11

RGB Labels KappaMask L1C Fmask UNetMobV2 SegFormer+SEnSeIv2

Fig. 3. Visual results across random sample from the CloudSEN12 test split. Not all models tested are displayed here, for the sake of conciseness. Thick
cloud is marked in , thin cloud in , and cloud shadow in , whilst clear areas are left transparent. Fmask does not separate thin and thick cloud classes
and so is just marked with the colour of thick cloud.
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TABLE II
RESULTS OF EXPERIMENT ON SENSEI’S MODEL DESIGN COMBINED WITH DIFFERENT DL MODELS (FIRST NINE ROWS), AND OTHER PREVIOUSLY

PUBLISHED METHODS (LAST FIVE ROWS). METRICS CALCULATED OVER THE TEST SPLIT OF CLOUDSEN12 DATASET. IN THE FINAL FOUR COLUMNS,
‘INVALID’ PIXELS (CLOUDS AND CLOUD SHADOWS) ARE TREATED AS THE POSITIVE CLASS, SO THAT THE DEFINITION OF PRECISION AND RECALL ARE

CONSISTENT BETWEEN IT AND CLOUD/NON-CLOUD.

Model SEnSeI
Clear Thick Cloud Thin Cloud Shadow Cloud/non-cloud Invalid/valid

P R P R P R P R P R F1 BA IoU P R F1 BA IoU

DeepLabV3+ - 93.06 95.26 92.31 90.83 70.14 65.06 80.51 79.90 94.07 95.64 94.85 93.09 90.20 93.75 94.65 94.20 93.93 89.03

DeepLabV3+ v1 92.87 94.11 90.86 91.42 67.82 62.02 78.95 78.42 93.82 94.66 94.24 92.44 90.10 93.75 93.18 93.46 93.24 87.73

DeepLabV3+ v2 93.55 94.77 92.02 91.12 69.02 68.26 82.00 79.50 94.57 95.02 94.79 93.22 90.10 94.32 94.12 94.22 94.01 89.07

SegFormer-B0 - 92.87 95.52 91.84 91.48 71.41 62.91 80.71 78.64 93.92 95.66 94.78 92.97 90.08 93.34 95.13 94.23 93.91 89.08

SegFormer-B0 v1 91.94 94.13 89.26 92.16 71.43 56.85 77.60 75.43 93.56 94.98 94.26 92.36 89.15 92.71 93.53 93.12 92.81 87.12

SegFormer-B0 v2 92.74 94.84 91.39 91.89 71.53 61.86 79.07 78.56 93.91 95.42 94.66 92.85 89.86 93.34 94.38 93.86 93.57 88.43

SegFormer-B2 - 93.26 95.52 91.93 91.63 71.89 63.84 79.97 79.10 94.22 95.81 95.01 93.29 90.49 93.62 95.23 94.42 94.12 89.43

SegFormer-B2 v1 85.53 95.37 91.75 88.57 67.44 45.58 67.79 54.08 90.39 96.45 93.32 90.17 87.48 86.26 94.90 90.37 89.32 82.44

SegFormer-B2 v2 93.42 94.94 91.78 91.76 70.53 65.29 81.16 79.98 94.31 95.26 94.78 93.12 90.08 94.05 94.46 94.25 94.01 89.13

UNetMobV2 [13] - 93.65 94.08 88.98 93.30 68.05 61.67 81.12 74.24 94.84 94.12 94.47 93.03 89.54 94.40 93.33 93.86 93.69 88.43

KappaMask L1C [50] - 85.79 85.38 78.76 72.04 34.35 51.32 64.27 48.08 89.89 86.45 88.14 85.39 78.79 84.02 84.46 84.24 84.92 72.77

KappaMask L2A [50] - 86.14 74.32 70.04 81.54 29.16 48.54 65.18 36.72 91.49 74.95 82.40 81.86 70.07 75.48 86.86 80.77 80.59 67.74

Fmask [51] - - - - - - - - - 89.53 89.77 89.65 86.42 81.24 86.64 84.01 85.30 86.11 74.38

s2cloudless [52] - - - - - - - - - 81.94 80.84 81.36 84.89 68.61 - - - -

using the ambiguous loss to introduce more specific classes
does not affect the model’s ability to classify pixels with the
original simpler classes.

Interestingly, the only large difference in performance be-
tween the models is seen in the model trained on all datasets
with an ambiguous loss, which shows a lower precision
and somewhat higher recall than the models trained only on
CloudSEN12. As discussed in II-A, this may be a sign that
the definitions of thin and thick cloud differ somewhat in the
other datasets, meaning that the model’s understanding of thin
cloud drifts further away from CloudSEN12’s definition, when
other datasets are introduced.

Next, the CESBIO dataset is primarily used to explore
the ability of the model to learn to separate land, water,
and snow classes. The results from this experiment can be
found in Table IV. Results for other models on the cloud/non-
cloud task are taken from [7], which does not report the
performance on other classes for any of the models. SEnSeI-v2
with SegFormer is able to learn how to separate land, water,
and snow classes when given training datasets that include
such distinctions, however the recall of water and snow is
somewhat lacking. Visually, the model seems able to pick up
larger bodies of water and snowy regions, but misses smaller
areas (Fig. 4).

It is worth considering how challenging the task of sepa-
rating land, water and snow is in this context, given the data
available to the model during training. Only two datasets—the
Sentinel-2 Cloud Mask Catalogue, and the SPARCS dataset—
contain any annotations which separate land, water and snow
from each other. Whilst partial labelling allows the model to
output several classes where previously it outputted fewer, it
remains necessary for there to be enough training samples
that disambiguate those classes, for the model to successfully

learn to separate them. To this end, the Sentinel-2 Cloud
Mask Catalogue is of limited use, because there are only
image-wise classifications which never provide the model with
sharp boundaries between the three classes within a patch
(Section IV-A). This leaves only the 80 images from the
SPARCS dataset—the smallest of the seven datasets used
in training, and from a different sensor to the test set—to
fully disambiguate these classes. Therefore, model accuracy
between these classes is not expected to be high. Rather, it
is a success that the model learns something useful from this
relatively small number of labels, whilst also retaining the
ability to disentangle the more well-labelled class boundaries
(e.g. cloud vs. non-cloud).

C. Multimodality Experiment
The third experiment in this study concerns the effect of

multimodal inputs on the performance of the cloud masking
algorithm. The experiment was conducted by using a single
model (SegFormer-B2 with SEnSeI-v2, trained on all training
datasets) and using different band combinations (multispectral,
SAR, and DEM) at inference. Whilst this model has the same
architecture as some of those used in previous experiments, it
has been trained separately, with the multimodal data included,
hence the weights are not shared between this model and those
in other experiments.

Four different multispectral combinations from the Sentinel-
2 bands are used for testing. RGB (bands B02-4), RGB and
cirrus (bands B02-4 and B10), NIR and SWIR (B05-12) and
finally a combination of all 13 Sentinel-2 bands. The results
of these, with and without SAR and DEM inputs, can be
seen in Table V. Overall, some interesting patterns emerge
when looking at the impact of the multimodal inputs to the
performance metrics. For band combinations with fewer bands,
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Fig. 4. Examples from the Sentinel-2 CESBIO dataset. Predictions made using the model in the second row of Table IV, using all the available Sentinel-2
bands. In the masks, land is left transparent, whilst water is marked in , and snow in . Meanwhile, cloud (both thick and thin) is marked in , and cloud
shadow in . The model is able to pick out larger areas of snow and water, but fails to segment smaller regions, misclassifying them as land. Meanwhile,
cloud and cloud shadow segmentation is generally good.
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TABLE III
RESULTS OF PARTIAL LABELLING EXPERIMENT ON THE TEST SPLIT OF CLOUDSEN12. ALL MODELS USE THE SAME ARCHITECTURE (SENSEI-V2 WITH

SEGFORMER-B2), GIVEN IT’S HIGH PERFORMANCE IN SECTION V-A. THE FIRST THREE MODELS ARE TRAINED USING A ‘REGULAR’ CATEGORICAL
CROSS-ENTROPY LOSS, EITHER PREDICTING CLOUD VS. NON-CLOUD (TWO CLASSES), OR ON THE FOUR CLASSES FROM CLOUDSEN12. MEANWHILE,
THE OTHER TWO ARE TRAINED WITH AN AMBIGUOUS CROSS-ENTROPY, AS DESCRIBED IN EQ. 6, WITH THE SEVEN TARGET CLASSES FROM TABLE I.

Loss Classes
Datasets used

in training
Clear Thick Cloud Thin Cloud Shadow Cloud/non-cloud Invalid/valid

P R P R P R P R P R F1 BA IoU P R F1 BA IoU

regular 2 CloudSEN12 - - - - - - - - 94.23 95.62 94.92 93.22 90.33 - - - - -

regular 2 ALL - - - - - - - - 93.80 95.42 94.61 92.76 89.76 - - - - -

regular 4 CloudSEN12 93.42 94.94 91.78 91.75 70.53 65.29 81.16 79.98 94.31 95.26 94.78 93.12 90.08 94.05 94.46 94.25 94.01 89.13

ambiguous 7 CloudSEN12 93.60 95.06 91.76 91.70 70.52 65.22 80.97 80.26 94.43 95.38 94.91 93.28 90.30 94.05 94.71 94.38 94.13 89.36

ambiguous 7 ALL 93.65 94.62 92.77 88.91 61.57 68.71 81.39 77.78 94.72 94.69 94.70 93.20 89.94 94.15 94.18 94.17 93.94 88.97

TABLE IV
RESULTS ON THE SENTINEL-2 CESBIO DATASET. NO SCENES FROM THIS DATASET WERE USED IN TRAINING (‘ALL’ MEANS ALL AVAILABLE DATASETS

EXCEPT CESBIO). THE FIRST TWO MODELS WERE TRAINED AND TESTED FOR THIS WORK, AND ARE THE SAME MODEL WEIGHTS AS THOSE OF THE
FINAL TWO ROWS OF TABLE III. ALL OTHER MODELS’ RESULTS ARE TRANSCRIBED DIRECTLY FROM [7]. THE ‘OVERALL’ METRICS ARE CALCULATED

ACROSS THE 5 CLASSES, WHILST ‘CLOUD/NON-CLOUD’ COLLAPSES THE land, water, snow, AND cloud shadow CLASSES INTO A SINGLE CLASS.
UNSURPRISINGLY, THE MODEL TRAINED WITH ONLY CLOUDSEN12 HAS LARGE CONFUSION BETWEEN THE land, water, AND snow CLASSES, BECAUSE

IT IS NEVER GIVEN EXAMPLES THAT DISAMBIGUATE THEM. THE RELATIVELY LIMITED NUMBER OF LABELS WHICH DO DISAMBIGUATE land, water, AND
snow CLASSES IN THE OTHER DATASETS GREATLY IMPROVE THE MODEL’S PERFORMANCE IN THOSE CLASSES WHEN TRAINED ON ‘ALL’ DATASETS.

Model
Datasets used

in training
Land Water Snow Cloud Shadow Overall Cloud/non-cloud

P R P R P R P R P R Av. Prec. BA OA BA OA

SegFormer-B2 CloudSEN12 87.33 25.81 4.08 18.77 0.91 61.93 88.03 83.73 50.81 77.14 46.23 53.48 41.12 91.45 93.37

SegFormer-B2 ALL 93.75 95.79 97.01 52.61 95.31 34.17 89.51 84.39 54.68 79.25 86.05 69.24 91.34 92.35 93.89

ATCOR [15] - - - - - - - 84.9 64.4 - - - - - 80.4 88.6

CD-FCNN [53] - - - - - - - 94.1 60.3 - - - - - 79.5 89.5

Fmask [51] - - - - - - - 90.8 80.4 - - - - - 88.9 93.3

FORCE [54] - - - - - - - 79.9 84.7 - - - - - 88.9 91.1

Idepix [55] - - - - - - - 86.9 77.5 - - - - - 86.9 91.7

InterSSIM [56] - - - - - - - 93.1 77.8 - - - - - 88.0 93.2

LaSRC [8] - - - - - - - 57.6 85.6 - - - - - 82.7 81.2

MAJA [57] - - - - - - - 72.7 92.9 - - - - - 90.5 89.2

s2cloudless [52] - - - - - - - 90.2 80.4 - - - - - 88.8 93.1

Sen2Cor [58] - - - - - - - 88.7 72.3 - - - - - 84.7 91.0

a substantial increase in thin cloud recall is found when adding
SAR data, which becomes negligible (even slightly negative)
when using all Sentinel-2 bands. This amplified positive effect
of Sentinel-1 data when using fewer spectral bands suggests
that the model is able to use the SAR in a complementary way,
which subsequently becomes redundant when all of Sentinel-
2’s bands are used. Meanwhile, the effect of adding the DEM
seems to be negligible for most band combinations, with a
minor exception being the NIR and SWIR, where a very
small increase in performance across most metrics is seen.
This band combination contains more low-resolution bands
that the others, and perhaps the DEM, which has a resolution
of 30 m/pixel, gives the model slightly more information about
small-scale features in the image, that aid in its predictions.

Interestingly, whilst SAR data boosts certain performance
metrics considerably for band combinations with fewer bands
(e.g. RGB), it has a limited effect on the metrics regarding
more simplistic classifications (cloud vs. non-cloud and invalid

vs. valid). This seems to suggest that the information from
SAR data is particularly helpful for the classification of a
relatively small population of pixels, whilst there is a large
majority of pixel for which there is no real impact.

D. Sensor Independence

This final experiment is used to verify that SEnSeI-v2 does
indeed have sensor independent characteristics as designed.
Three SegFormer models with SEnSeI-v2 were tested, only
differing in the training data used. The first is a model
specifically for this experiment, trained on only Landsat 8
(SPARCS and CCA datasets). The second and third models
are trained on Sentinel-2 data, and all available data respec-
tively, and are the exact same models used in the final two
rows of Table III. For additional comparisons, several well-
known openly-available Landsat cloud masking algorithms
(Fmask [51], Cloud-Net [59], and ukis-csmask [60]) were also
used to process the scenes. A comparison with the model
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TABLE V
EXPERIMENTAL RESULTS FOR MULTIMODAL MODEL. ALL ROWS IN TABLE COME FROM A SINGLE SENSEI-ENABLED SEGFORMER-B2 MODEL, TRAINED

ON THE CLOUDSEN12 DATASET, INCLUDING THE SAR AND DEM BANDS. THE EFFECT OF ADDING SAR AND DEM DATA TO FOUR SPECTRAL BAND
COMBINATIONS IS DISPLAYED AS THE RELATIVE DIFFERENCE IN PERFORMANCE VERSUS THE NON-MULTIMODAL INPUT (GREY LINES). LARGER

CHANGES ARE MORE STRONGLY COLOURED, WITH ANY CHANGE LARGER THAN ±1% HAVING THE STRONGEST COLOUR.

Spectral
Bands

SAR? DEM?
Clear Thick Cloud Thin Cloud Shadow Cloud/non-cloud Invalid/valid

P R P R P R P R P R F1 BA P R F1 BA

RGB

[B02-4]

✗ ✗ 91.23 94.71 90.72 90.84 68.24 57.94 78.16 73.21 91.83 94.2 93.0 92.59 93.17 95.23 94.19 92.14

✓ ✗ +0.35 0.0 +0.03 +0.18 +0.32 +2.11 +0.64 -0.21 +0.36 +0.01 +0.19 +0.22 +0.33 -0.14 +0.09 +0.21

✗ ✓ +0.01 +0.01 +0.02 0.0 +0.02 +0.03 -0.01 +0.04 +0.01 0.0 0.0 +0.01 +0.01 +0.01 +0.01 0.0

✓ ✓ +0.37 0.0 +0.05 +0.18 +0.34 +2.16 +0.64 -0.14 +0.38 +0.01 +0.2 +0.23 +0.33 -0.14 +0.1 +0.22

RGB &
Cirrus

[B02-4, B10]

✗ ✗ 91.6 94.81 90.88 90.68 68.93 60.26 78.27 73.5 92.19 94.31 93.24 92.86 93.47 95.31 94.38 92.43

✓ ✗ +0.26 0.0 +0.01 +0.16 -0.02 +1.27 +0.66 +0.02 +0.27 +0.01 +0.14 +0.16 +0.22 -0.13 +0.05 +0.12

✗ ✓ 0.0 +0.01 +0.01 -0.01 +0.03 0.0 -0.01 +0.05 +0.01 +0.01 +0.01 +0.01 0.0 +0.02 +0.01 +0.01

✓ ✓ +0.27 +0.01 +0.03 +0.16 +0.01 +1.3 +0.65 +0.08 +0.29 +0.02 +0.15 +0.18 +0.22 -0.12 +0.05 +0.13

NIR &
SWIR

[B05-12]

✗ ✗ 90.69 94.94 91.2 89.54 64.73 52.88 79.44 78.07 91.26 94.51 92.85 92.38 91.88 95.14 93.48 90.97

✓ ✗ +0.16 0.0 -0.07 +0.06 +0.4 +0.62 +0.01 +0.09 +0.16 -0.01 +0.08 +0.1 +0.12 -0.01 +0.06 +0.1

✗ ✓ +0.03 +0.02 -0.01 +0.03 +0.15 +0.08 -0.01 +0.03 +0.04 +0.02 +0.03 +0.04 +0.03 +0.02 +0.03 +0.04

✓ ✓ +0.19 -0.01 -0.08 +0.1 +0.44 +0.68 0.0 +0.11 +0.19 -0.02 +0.1 +0.11 +0.15 -0.01 +0.07 +0.12

ALL

[B01-12]

✗ ✗ 93.12 95.12 91.75 91.67 71.2 62.98 80.56 80.62 93.51 94.79 94.15 93.86 94.09 95.64 94.86 93.1

✓ ✗ +0.02 +0.03 -0.03 +0.03 +0.13 -0.12 -0.03 -0.04 +0.02 +0.03 +0.02 +0.02 +0.01 +0.01 +0.01 +0.01

✗ ✓ 0.0 0.0 +0.01 0.0 +0.01 0.0 -0.02 +0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

✓ ✓ +0.02 +0.05 -0.02 +0.03 +0.16 -0.14 -0.05 -0.03 +0.02 +0.04 +0.03 +0.03 0.0 +0.02 +0.01 +0.02

of Mohajerani and Saeedi [61] was not possible because no
open-source implementation was available, and because the
results in their work seem to include large no data regions
at the sides of each scene in their final statistics, making any
intercomparison without full recomputation invalid.

In Table VI, results from SEnSeI-v2 with SegFormer-B2 are
shown with various band combinations, which align with the
bands used by the other models that were tested. Overall, the
models show mixed success on the dataset, with a large spread
in performance. Focusing first on the model trained with only
Sentinel-2 data, the performance is, as one might expect, worse
than the models trained with Landsat 8 data, although, it
is relatively similar in performance to Cloud-Net and ukis-
csmask. The model trained with Landsat 8 data performs well,
with a substantial increase across all metrics from the model
trained with Sentinel-2, and outperforming the other models
by some margin. Finally, and most promisingly, the model
trained with all available data outperforms all others. This is
evidence that the model has the capacity to learn from multiple
sensors in a mutually beneficial, additive way, suggesting that
sensor independence does not just lead to the wider usability
of models, but also to higher performance.

VI. DISCUSSION

The partial labelling strategy is extremely helpful when
combining different cloud masking datasets. However, par-
tial labelling could have general applicability in the domain
of supervised learning. Currently, classification datasets are

TABLE VI
RESULTS ON THE LANDSAT 8/9 CCA-EXT DATASET. THE

SEGFORMER-B2 MODEL WHICH WAS ONLY TRAINED WITH SENTINEL-2
WAS SHOWN ONLY THE BANDS OF LANDSAT 8/9 WHICH ARE SIMILAR TO

ONES FOUND IN SENTINEL-2 (SIX BANDS IN TOTAL). THE THREE MODELS
WHICH ARE FROM OTHER WORKS WERE RUN USING THEIR DEFAULT

PARAMETERS.

Model
Datasets used

in training
Cloud/non-cloud

P R F1 OA BA IoU

SegFormer-B2

S2 80.33 79.45 79.89 87.37 85.24 66.51

L8 93.53 86.07 89.65 93.72 91.66 81.24

ALL 91.81 90.48 91.14 94.44 93.38 83.72

Fmask [51] - 81.73 87.20 84.38 89.67 89.01 72.97

Cloud-Net [59] - 78.76 86.49 82.45 88.24 87.77 70.14

ukis-csmask [60] - 85.87 77.72 81.59 88.80 85.86 68.91

generally created with the assumption of precise labels, such
that if an annotator is unsure of the label because multiple
interpretations could be considered valid, then they still must
chose a single class for that sample. In this work, ambigu-
ous class structures were found in the mapping of differing
categorisations, offering a coherent, joint representation to the
unaligned labelling schemes. However, in the future, datasets
could be created that more naturally reflect ambiguities, at the
point of annotation. For fields such as cloud masking in which
considerable uncertainty exists at the semantic boundaries
between classes (e.g. what is thin cloud vs. thick cloud), an-
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notating with partial labels may produce a less biased dataset.
Clearly, the strict adherence to precise per-pixel labelling leads
to datasets which must define a boundary in a fuzzy region
of the input space, whilst permitting ambiguity in labels may
allow for consistent, comparable definitions across different
sensors and datasets. Whilst the models trained in this paper
did not seem to be negatively impacted by the more complex
class systems permitted by the ambiguous loss (Table III), it
is possible that for significantly smaller models, where the
capacity to learn the more specific class structures is limited,
that partial label learning may hurt performance in the more
basic tasks such as binary cloud/non-cloud classification.

Cloud masking datasets don’t only differ in their output
structures and semantic class definitions, but also in the
sampling distribution of input data. As demonstrated clearly
by the violin plots of Jeppesen et al. [62, Fig. 3], the Landsat
8 SPARCS and CCA datasets differ greatly with respect to
their reflectance distributions, for example. Differences like
these inevitably exist between many of the datasets used here,
because of the varied aims and priorities of their creators. The
diversity of dataset sample distributions impinges strongly on
any claims made about a cloud masking method’s generalis-
ability from results on a single datasets. To this end, sensor
independence and partial labelling offers a way of smoothing
such sampling biases, whereby the combination of multiple
datasets entails a more diverse spread of data, both in training
and validation.

Moreover, the specific architecture and size of DL cloud
masking models seems to have a minimal effect on per-
formance when trained on the same data. For example, in
Section V-A, there is less than half a percent difference in all
F1 and BA metrics (Table II) for DeepLabv3+, SegFormer-
B0 and -B2, with or without SEnSeI-v2, and also the UN-
etMobV2 of Aybar et al. [13]). This remarkably consis-
tent performance—across convolutional networks and vision
transformers—is a strong indication of the singular importance
of data, over model design, in the current state-of-the-art of
cloud masking. Many near-optimal architectures exist, and
measured performance is in fact modulated primarily by the
size and quality of training data available. CloudSEN12 has
increased by an order of magnitude the quantity of Sentinel-2
available for training and testing, however, it is likely that this
is still a limiting factor to supervised methods’ performance.
Rather than creating or tweaking state-of-the-art models, it
may be more fruitful for the cloud masking community to
follow a data-centric approach, prioritising a continual increase
in the quality, quantity, and diversity of available data, through
large, open, collaborative dataset creation.

The recent focus of the Earth Observation community on
multimodality is well-founded. Richer, more diverse input
spaces permit more complex, non-linear relationships to be
found, with the results of Section V-C being but one example.
One potential drawback to multimodality, however, are the
extra dependencies it attaches to the deployment of a model. If
all modes of data used in training are necessary for the running
of the model, then gaps in data availability may become
an issue (and an evermore serious one as the number of
different input modes increases). Multimodality, in this work,

is treated as an auxiliary, optional feature of the model, through
SEnSeI’s ability to ingest and fuse different combinations of
data. Therefore, if those auxiliary inputs are not available for a
given scene, then cloud masking may still be performed with
reasonable performance. The same logic is also true during
training, as the optional nature of the auxiliary inputs means
that SEnSeI can be trained both on data with and without those
auxiliary bands.

Whilst the results of Section V-C show limited value for
multimodal inputs when used alongside the full set of Sentinel-
2 bands, satellites with fewer spectral channels stand to gain
from utilising multimodal models. Of particular interest to the
cloud masking community, the boost to thin cloud recall seen
from SAR inputs should motivate future works to include
SAR in model inputs, given how challenging thin cloud
retrieval can be, as is argued in Section II-A. Tentatively, these
results may aid operational satellite providers to weigh up
the additional engineering requirements of multimodal models
against the potential gain in performance, for a given spectral
combination. SEnSeI’s design certainly lessens the difficulty
of including multimodal inputs in a cloud mask, however for
operational products it may nevertheless be challenging to
access other modalities in real-time during cloud masking.

VII. CONCLUSION

SEnSeI-v2 is considerably more capable than SEnSeI-v1,
adding sensor independence to models that maintain their per-
formance in comparison to specialised single-sensor versions
(Section V-A), or even surpassing them (Section V-D), and
extends the descriptor vector scheme to permit SAR and DEM
data (Section V-C). The partial labelling and loss strategy
leads to a model which can learn more specific classes (e.g.
land, water, snow) from datasets that have such labels, whilst
also being able to continue to use datasets for which those
classes are not disentangled. The ambiguous loss, however,
still assumes that classes are mutually exclusive. In reality,
such a constraint is not always desirable (e.g. the surface
under thin cloud can still be seen, and therefore perhaps
classified). In the future, the ambiguous loss could be extended
or replaced to allow for these complex inter-class relationships
to be expressed by the model, whereby certain classes could
remain mutually exclusive (e.g. a pixel cannot be both land
and water) but others are permitted (e.g. cloud shadow falling
over snow).

Assumptions and constraints remain in the descriptor vec-
tor’s parameter space that future work could relax. For exam-
ple, temporal information is not provided in the descriptor
vectors’ parameters, which would allow SEnSeI to ingest
multitemporal time series data. By doing so, this could boost
performance of cloud masking directly, with information from
other times giving the model a helpful prior with which to
judge the cloudiness of the target scene. In addition, such
temporal information could also allow a model to perform
cloud removal, as done by Ebel et al. [63] and Stucker et
al. [64], but with the ability to do so on a flexible, cross-
sensor basis. Temporal information in the descriptors could
also permit masking of clouds at night, which is important for
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sensors that observe the Earth at night (e.g. [65]). Resolution
(and other geometric factors) are not encoded by the current
descriptor vectors, but could also be included in future work
to allow the model to treat different resolutions of data in
different ways, given that clouds’ spatial nature changes with
the resolution one uses.

This paper necessarily focused on a single, well-known case
study: cloud masking. However, neither the architecture of
SEnSeI-v2, nor the definition of the ambiguous loss function,
are in any way specific to this task. For many tasks (e.g.
land cover and land use, crop type mapping, etc.) there are
multiple existing datasets that could be combined using the
partial labelling strategy in a similar fashion to here.

A repository with code relating to this project can be found
on GitHub [66].
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