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Abstract—Recent advances in technology are delivering robots
of reduced size and cost. A natural outgrowth of these advances
are systems comprised of large numbers of robots that collaborate
autonomously in diverse applications. Research on effective au-
tonomous control of such systems, commonly called swarms, has
increased dramatically in recent years and received attention from
many domains, such as bioinspired robotics and control theory.
These kinds of distributed systems present novel challenges for the
effective integration of human supervisors, operators, and team-
mates that are only beginning to be addressed. This paper is the
first survey of human—-swarm interaction (HSI) and identifies the
core concepts needed to design a human-swarm system. We first
present the basics of swarm robotics. Then, we introduce HSI from
the perspective of a human operator by discussing the cognitive
complexity of solving tasks with swarm systems. Next, we introduce
the interface between swarm and operator and identify challenges
and solutions relating to human-swarm communication, state es-
timation and visualization, and human control of swarms. For the
latter, we develop a taxonomy of control methods that enable op-
erators to control swarms effectively. Finally, we synthesize the
results to highlight remaining challenges, unanswered questions,
and open problems for HSI, as well as how to address them in
future works.

Index Terms—Human-robot interaction (HRI), human-swarm
interaction (HSI), multi-robot systems, swarm robotics.

1. INTRODUCTION

OBOT swarms consist of multiple robots that coordinate
R autonomously via local control laws based on the robot’s
current state and nearby environment, including neighboring
robots. Key advantages of robotic swarms are robustness to
failure of individual robots and scalability, both of which are
due to the simple and distributed nature of their coordination.
Multirobot systems that are not swarms have explicitly repre-
sented goals, form and execute both individual and group plans,
have different capabilities, and can assume different roles [1]—
[3]. Robots in these multirobot systems could act independently
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without coordinating, e.g., multiple robots searching a different
area for victims in a search and rescue scenario. Conversely,
they could also cooperate as a team in which all members work
toward known shared goals, or coalitions in which members are
self-interested. Swarms, on the other hand, involve coordination
between robots that relies on distributed algorithms and infor-
mation processing. Because of this, global behaviors are not
explicitly stated and, instead, emerge from local interactions. In
such cases, the individual robots themselves likely could not act
independently in any successful manner.

Swarm robotics was originally studied in the context of bio-
logical swarms found in nature, but has since become its own
distinctive engineering discipline [4]-[7], since it promises to
be useful in a wide range of potential applications including re-
connaissance, environmental monitoring, tracking, exploration,
search and pursuit-evasion, infrastructure support, protection,
and even space exploration [8]. Despite their potential, most
robot swarms are still confined to laboratory settings and sim-
ulations. There are a variety of robot simulation platforms that
have been used for studies and benchmarking, such as the widely
used Stage platform [9], which offers 2-D simulations that scale
to thousands of robots.

A number of recent projects have made some progress de-
veloping swarm hardware. The Micro Autonomous Systems
and Technology project has created numerous microvehicles
[10]. The “Swarmanoid” Towards Humanoid Robotic Swarms”
project [11] developed a swarm of heterogeneous mid-sized
robots, including the popular SWARM-BOT platform s-bot
[12]-[14]. Other projects and experiments used available plat-
forms including the Kobot [15], E-puck, and Kilobot [16], [17].
These examples, along with growing development of robotic
hardware and its decreasing cost suggest that real-world appli-
cations for swarms are within reach. To achieve this, a number
of challenges remain to be addressed—primarily, the study of
human interaction with such swarms. For the most part, swarms
are expected to operate autonomously. However, the presence
of a human operator can be beneficial and even necessary since
the operator could: 1) recognize and mitigate shortcomings of
the autonomy; 2) have available “out-of-band” information not
accessible to the autonomy and that can be utilized to increase
performance; and 3) convey changes in intent as mission goals
change.

There is currently a dearth of studies investigating effective
ways in which human supervisory control of swarms could be
performed. This paper is an attempt to fill this gap by outlining
the basic concepts, requirements, and challenges of human-—
swarm interaction (HSI), and by reviewing related literature
within this emerging field to identify issues and important areas
for further work.
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In the following, we will first briefly discuss swarm robotics
in Section II. This will set the context and provides the unini-
tiated reader a cursory glance on this growing field. Then, in
Section III, we will discuss HSI from an operator perspective.
Section III-A establishes the operator’s perspective by intro-
ducing cognitive complexity and a notion of difficulty for the
control of large swarms. Within this context, we address the
following research questions.

1) How do the properties of the communication channel be-
tween operator and swarm affect HSIs, such as the ability
to observe and control the swarm?

2) How can an operator observe a swarm and its dynamics?

3) What are the different control methods used, and how do
they affect the ability of an operator to control a swarm?

4) What is the relevance of the notion of levels of automation
in HSI and how has it been exploited and studied?

5) How do swarm dynamics affect the ability of the operator
to control the swarm?

Question 1 is addressed in Section III-B by discussing issues
of operator—swarm communication. This is followed by Section
III-C in which we address question 2 by discussing swarm state
estimation and visualization. Then, in Section III-D, we develop
a taxonomy for methods of control with which an operator
can impart intent to the swarm, thereby addressing question 3.
Question 4, relating to levels of automation, is addressed in
Section III-E. Question 5 is addressed in Section III-F with an
emphasis on the timing of operator inputs. Finally, we conclude
with a discussion in Section IV and present suggestions for
further work in Section V.

II. ROBOT SWARMS

In one of the first surveys discussing swarms, Dudek et al.
[18] propose a taxonomy that emphasizes tasks. They distin-
guish between tasks that 1) require multiple agents, 2) are tradi-
tionally multiagent, 3) are inherently single-agent, and 4) may
benefit from the use of multiple agents. For the latter types of
tasks, using a multirobot system has to be justified with re-
spect to some performance criteria. These criteria are usually
expressed in terms of efficiency, effectiveness, robustness, flex-
ibility, or design complexity. Tasks corresponding to 1) or 2)
are frequently mentioned in other surveys [1], [2], [19]-[21]
and are most often spatially distributed tasks. In addition to
tasks, a taxonomy based on system properties is also found in
[18] which classifies systems according to 1) size, 2) commu-
nication range, 3) communication topology, 4) communication
bandwidth, 5) reconfigurability 6) processing capability of each
unit, and 7) composition. A clear distinction between swarms
and multirobot systems is not made. In fact, earlier versions of
[18] used these terms interchangeably.

Other taxonomies, such as [2], [19], [20], and [21], distin-
guish multirobot systems not based on hardware features but
rather on problems, solutions, issues, and research areas. In
[19], Cao et al. distinguish between systems based on group
architecture, resource conflicts, origins of cooperation, learn-
ing, and geometric problems. Parker, in [2], focuses on different
approaches to designing a distributed intelligence, namely the

bioinspired paradigm, the organizational and social paradigms,
and the knowledge-based, ontological, and semantic paradigms.
Similarly, and also focused on coordination, in [1], Farinelli ez al.
propose a taxonomy of multirobot systems that distinguishes
whether robots are aware or unaware of each other.

An emphasis on swarm systems, rather than more general
multirobot systems, is found in [5], which focuses on the com-
monly desired swarm properties of robustness, scalability, and
flexibility. In [6], Brambilla et al. propose two taxonomies: one
classifying methods for design and analysis of swarms and the
other classifying types of swarm behaviors. Another recent sur-
vey [7] also includes a list of recent projects and descriptions of
physical robots, projects, and simulation platforms.

From this vast trove of taxonomies and descriptions of mul-
tirobot and swarm systems, we will present selected examples
and problems to give a brief introduction to swarm robotics as a
whole. We will not rely on a specific taxonomy, but rather dis-
cuss swarm systems from the perspective of different method-
ologies, selected tasks, and algorithms that one may run on a
swarm in practice.

A. Swarm Models

Swarms have been studied from a number of perspectives,
including bioinspired, control theoretic, amorphous computing,
and physics-inspired. The models and methods that originated
from these differ not only with regard to the source of inspiration
but also with regard to theoretical guarantees, operating condi-
tions, and suitable metaphors. The latter may have some bearing
with regard to the interpretation of a swarm behavior by human
operators. Thus, it is necessary to understand these commonly
used swarm models if one is to design a human—swarm system
around them.

1) Bioinspired: Biological systems have long since been an
inspiration for the design of robotic systems in terms of hardware
[22] as well as behavior [23]. Much of the work on swarm
robotics originated from the study of biological swarms and
swarm intelligence [4]. A recent survey [6] reviewed swarm
engineering efforts and identified four areas that require further
attention to support the development of real-world applications,
namely 1) modeling and specification of requirements, 2) design
of swarm behaviors, 3) verification and validation of swarm
models, and 4) HSI. The most interesting for the perspective
of this paper is the fourth area, concerned with operation and
maintenance of swarms. In this area, particular concern is given
to enabling effective control when lacking a centralized instance.

One of the better known examples of a swarm algorithm de-
rived from a biological inspiration is presented in [24]. Therein,
Couzin et al. model the spatial behavior of animal groups with
simple local interaction rules. These rules are determined by
three parameters, the radii of three zones, namely zones of repul-
sion, orientation, and attraction. In the paper above, this simple
model can generate four qualitatively distinct swarm behaviors:
1) swarm; 2) torus; 3) dynamic parallel; and 4) highly parallel.
Which of the resulting behaviors a swarm generates depends on
the choice of parameters and initial conditions and raises the
obvious question on how a human operator could interact with
such a biological swarm model to induce transitions between
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these four types or change the direction of motion for a given
type. This question has been investigated in [25] through the in-
jection of leaders and predators under the control of an operator,
a paradigm that will be discussed further in Section III-D4.

Another strand of bioinspired research is related to
pheromone-based communication [26], [27]. Pheromones have
been used in [28] to coordinate a swarm to for surveillance,
reconnaissance, hazard detection, and path finding. On a more
general note, in [29], Sumpter identifies several principles that
describe biological systems that exhibit collective behavior. Ap-
plying these principles to engineered systems has led to a wide
range of bioinspired systems; some of which are surveyed in
[30].

2) Control Theory: There has been a considerable amount of
work done on swarms from the perspective of control theory—a
brief survey of which is found in [31]. Some of this work has
been done under the heading of distributed robot networks [32].
The authors of [32] unify prior work on connectivity mainte-
nance [33], rendezvous [34], deployment [35], [36], boundary
estimation [37], and tracking [38], and present a rigorous model
for control and communication in such networks. The physical
model of individual robots is defined in [32] as a continuous-
time continuous-space dynamical system with a state space,
input space, allowable initial states, and a control vector field
that determines robot motion given a state and input. The net-
work aspects are modeled as a communication edge map, which
determines whether a communication link between any two
robots exists. This is followed by a formal definition of control
and communication laws, with discrete-time communication but
continuous-time motion.

The practical advantage of this approach is the generalized
consideration of physical dynamics, which have received less
attention in bioinspired work. While the formal results are im-
portant, their underlying assumptions are necessarily simpli-
fied to make them tractable. Yet, resulting formal guarantees
and analysis tools could still be useful for human operators
and system designers. For instance, in [39], formal methods
are used to determine whether human control inputs for cer-
tain swarm tasks are theoretically possible. Control-theoretic
approaches are, therefore, an important complementary contri-
bution to bioinspired works.

3) Amorphous Computing: Amorphous computing [40]
refers to the programming of many small computers distributed
irregularly throughout some surface or volume, with no a priori
knowledge of their location or neighbors [41]. These small com-
puters are each controlled through identical programs, which
dictate their behavior through interactions with nearby nodes.
These computers form a discrete approximation of the continu-
ous space they inhabit and, thus, can be controlled programmati-
cally through gradients or vector fields. The amorphous comput-
ing idea is thus strikingly similar to swarm robotics in general.
Amorphous computing assumes few capabilities of the individ-
ual units—typically only an on-board clock, some method of
short-range communication, a power source, and the sensors
and actuators necessary for their application. The setup is also
robust to communication failure or failure of a unit as a whole,

because mechanical failure simply means one less point with
which to estimate the continuous medium.

A programming language Proto was developed to deal with
distributed computers in a medium, and to determine the specific
engineering problems that need to be solved before real-world
applications of swarms operating under the amorphous abstrac-
tion can come to fruition [42]. Proto allows an operator to com-
pose behavioral primitives for their swarm. The authors of [43]
and [44] have used Proto to create an amorphous computing
system comprised of about 10 000 individual robots and a real-
world system of 40 robots where they tested swarm behaviors.
Tests using the real robots indicate that the system is relatively
robust to communication message drops and lag times, and that
swarms programmed under amorphous computing can success-
fully demonstrate simple swarm behaviors, such as rendezvous
and dispersion.

4) Physics-Inspired: Physical systems are yet another im-
portant source for algorithms with emergent properties. A well-
known example is [45], where the authors present a system of
self-propelling particles that achieve alignment following sim-
ple update rules. Subsequently, Jadbabaie et al. [46] provide
a rigorous formal analysis of such types of systems from a
control- and graph-theoretic perspective. The neighbor-based
rules therein for coordinating the motion of particles are not
unlike some flocking algorithms inspired by biological systems.
In [47], also inspired by artificial forces, an inverse-power law
is used to determine attraction and repulsion forces between
robots and groups of robots, coined social potential fields. An-
other example of using a force-based law is found in [48], which
also includes obstacles in the force equations. Yet another ap-
proach that seeks inspiration from the natural world is known as
physicomimetics [49]-[51]. The key idea here is that physics in
and of itself is a discipline that describes large-scale emergent
phenomena in terms of well-understood equations, but which
arise from a multitude of lower level interactions (of particles
and forces). The approach has been applied in [52] and [53].

Despite the similarities to bioinspired approaches for flock-
ing, the physics-inspired work has a distinctly different per-
spective on the individuals in a swarm. The focus is more on
passive than active interactions with a different perspective on
agency (e.g., particles do not communicate actively and only
influence each other tacitly through forces). One of the main ad-
vantages of a physics-inspired approach is the considerable body
of experimental and formal work relating to self-organization in
physical systems that one can borrow from. For example, work
on predictive self-assembly [54] of polyhedra has been useful
for determining how to generate self-assembled structures, i.e.,
in [55], it was shown how to generate a self-assembled structure
by setting desired nearest neighbor distances. In a swarm, this
could be expressed by having each member move to a position
that most closely achieves the desired interrobot distances.

B. Swarm Tasks and Behaviors

Existing surveys on swarm robotics provide an excellent and
detailed overview of the large number of swarm behaviors that
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have been studied, most of which solve a specific task. Some
include categories for these behaviors, such as in [6], which
distinguishes spatially organizing, navigation, and collective
decision-making behaviors. In the following, we will present
a few selected examples.

1) Aggregation and Rendezvous: One of the simplest swarm
behaviors is aggregation, a process often found in natural swarm
systems [56] and adapted to artificial swarms (see, for example,
[57]). From a control-theoretic perspective, a similar problem
has been studied as the rendezvous problem [34]. The basic
objective for both is to move all swarm robots toward a common
location.

Bioinspired aggregation behaviors have been implemented
on real swarm robots in [57]. Therein, the authors start with
a model for a specific swarm robot, the s-bot, equipped with
an omnidirectional speaker, three-directional microphones, and
eight infrared proximity sensors. Weights for a neural network
controller, with direct connections from every sensor to every
actuator, are evolved under a fitness function that measures ag-
gregation via the average distance of robots from the center of
mass of the swarm. Two distinct aggregation behaviors were
discussed: one leads to multiple static aggregates, while the sec-
ond leads to a single moving dynamic aggregate that resembles
a flocking behavior.

The rendezvous problem has been studied in [34]. Therein,
the authors define an abstract model of a robot that knows its
own location and can transmit it to neighbors within its com-
munication network. The authors prove theoretical guarantees
for the convergence of the swarm to the circumcenter under dif-
ferent static and changing communication topologies. The main
assumptions for guarantees to hold are the ability to sense or
receive the locations of neighboring robots and having an en-
vironment without obstacles. Further work on the rendezvous
problem has led to a reduction in the required sensor capabil-
ities. For example, in [58], Yu ef al. present a solution to the
rendezvous problem that does not require knowledge about ex-
act location of other robots, but instead uses only a quantized
bearing sensor that reports the presence of another robot in a
small range ahead of the robot.

2) Deployment and Area Coverage: Deployment of swarms,
i.e., swarm dispersion governed by local control laws, is a swarm
behavior typically used for area coverage. Swarms are expected
to be ideal for area coverage, because this task requires cover-
ing, with sensors, a large area in order to observe some phe-
nomena of interest or discover and track targets. One of the first
to apply a force metaphor (a physics-inspired perspective) for
the distribution of large robot teams are Howard et al. in [48].
Therein, robots are repelled by obstacles and other robots and,
as a consequence, distribute throughout an environment with
obstacles. Experiments with 100 robots show successful disper-
sion in a realistic office environment and convergence to a static
equilibrium.

A different approach to area coverage, with the goal of seeing
every part of an environment, akin to the art gallery problem,
is taken in [36]. Therein, the environment is given by a polyg-
onal boundary and robots cover the environment by creating
an incremental partition of the environment as they progress to

cover it. Some results regarding convergence time and guaran-
tees for a given number of robots are provided. A fleet of 56 real
robots was used in [59] to test and compare five area coverage
algorithms showing significant differences between the time to
reach various goal locations and to fully disperse in the entire
environment.

3) Flocking and Formation Control: A more complex set of
swarm behaviors is the formation of specific patterns of mo-
tions, specifically flocking, or consensus on a direction and
speed of movement. One of the first algorithms to enable a
swarm of robots to flock was presented by Reynolds in [60],
with the motivation to simulate flocks of birds for computer
graphics. Therein, individuals would follow simple local rules
to avoid collisions (separation), match velocities to their neigh-
bors (alignment), and center themselves among their neighbors
(cohesion). Together these generate a flocking behavior. One of
the earlier demonstrations of how to control a flock of animals,
with robots influencing the flock, was presented in [61]. A sim-
ple controller for the robot was tested in a simulation with a
swarm model similar to [60]. In [62], work on flocking is ap-
plied and implemented on robots with particular emphasis on
the translation of control inputs to robot motion. More precisely,
the force vectors resulting from the flocking rules for cohesion,
separation, and alignment are translated into forward and angu-
lar velocity. The experiments in [62] show improved effective
travel distance when considering magnitudes of the forces.

An overall framework for the analysis of flocking algorithms,
including analysis of swarm fragmentation, is presented in [63]
(following a line of work from [46], [64], and [65]). One of
the most interesting aspects of [63] is the first introduction of a
formal definition of what constitutes flocking. This definition is
established with regard to 1) how much the flock differs from
a lattice (i.e., a formation with all neighbors having a desired
distance to each other) in terms of a deviation energy, 2) to
what extent velocities are matched, and 3) connectedness and
cohesiveness of the flock.

4) Foraging and Transport: Formation of chains between
two locations, akin to ant trails, constitute a more complex be-
havior [66]. The key challenge for the chain formation is to
establish shortest paths that can also be used by a larger number
of swarm robots without leading to congestion. Other works
have dealt with cooperatively transporting a single object with
multiple robots [67]. An overview of a range of the work done
on this problem is found in [68]. A bioinspired perspective for
foraging is given in [69], whereby a stigmergy-based approach,
inspired by the pheromone markers of ants, is presented for a
heterogeneous swarm composed of ground and aerial robots.

III. HUMAN—-SWARM INTERACTION

In this section, we present the key components of a human—
swarm system while focusing on the perspective of the operator.
These are illustrated in Fig. 1. We begin in Section III-A by dis-
cussing general issues of cognitive complexity when interacting
and completing tasks with swarms. The operator interacts with
the swarm through an interface that is constrained by the means
of communication and relies on methods for state estimation and
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Fig. 1. Key components of a human—swarm system, with an operator solving
complex tasks and communicating with a swarm through an interface to receive
state feedback and send inputs using appropriate control methods. The entire
system is influenced by levels of automation and input timing and neglect
benevolence. Section indices show our organization.

visualization and control that facilitate the interaction between
human and swarm. Communication is discussed in Section III-
B, followed by state estimation and visualization in Section
II-C. Subsequently, we discuss different methods with which
the operator can control a swarm in the form of a brief taxonomy
in Section III-D. Issues regarding levels of automation as well
as input timing and neglect benevolence, which influence the
overall human—swarm system, are discussed in Sections III-E
and III-F, respectively.

A. Cognitive Complexity of Human—Robot Systems

Earlier taxonomies of multirobot systems have focused pri-
marily on physical characteristics, tasks, and methods, while
human-robot interaction (HRI) taxonomies have considered
roles and structure. Few, however, have addressed the diffi-
culty of the operator’s tasks. In computer science, the notion of
computational complexity—the time that must be used to solve
a problem as a function of the size of its input—has proven
fruitful for separating scalable and tractable algorithms from
nonscalable ones. Algorithms with high complexity may work
for small problems, but fail or grow inefficient for even slightly
larger ones. The task of controlling multiple robots is similar
to an algorithm in that the operator must perform a repetitive
sequence of decisions and actions to enable the system to reach
some desired goal state.

In [3] and [70], HRI was defined in terms of operator’s cog-
nitive effort akin to computational complexity. If a group of
homogeneous robots are performing independent activities, the
operator can devote the same attention to each in turn, resulting
in a complexity of order n, written O(n), because each of the
n robots requires the same set of operator interaction with it.
Thus, the total operator effort/attention is linearly related to the
number of robots. Applications of this O(n) interaction com-
plexity are search and rescue when the area has been divided in
regions that are searched by robots operating independently of
one another, and authentication of weapons release where the
operator must authenticate each release sequentially, etc. A ben-
efit of this independence is that more robots can be controlled

Operator Resources
A

O(n)

Cognitive limit

o)

Number of Robots

Fig.2.  Graphical illustration of the concept of control complexity in a human—
multirobot system.

simply by adding more operators in a linear manner. Indeed, the
fan-out model proposed in [71] to estimate the number of robots
an operator can control within some time interval is a special
case of the cognitive complexity of control scheme proposed
by Lewis [3], [70]. The fan-out model makes the assumption of
Neglect Tolerance, namely that a robot’s performance will de-
grade if the robot is left unattended by the operator for some
time (neglect time) and that some interaction time must be
periodically devoted to the robot by the operator. More so-
phisticated formal schemes for scheduling operator attention
have been recently developed [72], [73] as well as human
studies to determine operator behavior under those scheduling
schemes [74]-[76].

A different form of control, such as designating a region to
be searched by drawing it on a map, can command an arbi-
trary number of robots with a single operator action, as long
as the interactions between the robots (such as preventing col-
lisions) can be handled autonomously. In this case, the number
of actions the operator must take are independent of the number
of robots, and thus, control is O(1), allowing one (or a fixed
number of) human operator(s) to control any number of robots.
Given a robotic swarm where the members are coordinating au-
tonomously to provide useful behaviors, such as flocking and
rendezvous, control of the swarm can be O(1), thus making
swarms a desirable multirobot organizational scheme, where
the operator need only focus on the goal of the swarm overall.
This, in effect, means that the operator can treat the swarm as a
single entity much of the time, and multiple robots can be added
or removed without impacting the cognitive burden of the hu-
man operator. However, in cases where the operator must divide
the swarm, or issue separate commands to different subswarms,
control complexity may more realistically lie between O(1) and
O(n), or potentially worse.

In contrast with the above two scenarios, there also exist tasks
where robot-to-robot interaction is not handled autonomously;
yet, the robots must coordinate to perform some common task,
such as box pushing with robots controlled by an operator [77].
Such a scenario would have superlinear command complexity,
O(> n), because dependences between robots create cascad-
ing demands as the number of robots grows. See Fig. 2 for a
graphical illustration of these concepts.

The primary purpose of the cognitive complexity scheme is to
emphasize the effort of the human operator required to control
a multirobot system, and as such, the basic notion is applicable
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to swarms as well, and contextualizes HSI. The notion and
scheme of cognitive complexity is useful in HSI in that it can
be used to guide development of algorithms that remove the
necessity to manage interdependences between robots in the
swarm. The overall cognitive difficulty for swarm control is,
however, also determined by the parts of the control loop detailed
in the following sections and is not always O(1).

B. Communication

The majority of research on HSI has focused on remote inter-
actions (i.e., when the human operates separately from outside
the swarm). For such interactions, the dominating issue is that of
communication, usually with an operator at a computer termi-
nal. Communication is also one of the main challenges in swarm
robotics in general, in particular with regard to the topology of
the swarm network. As briefly noted in Section II, most proofs
of guarantees for swarm behaviors have to carefully take into
account changes in the communication topology, as these are
influenced by robot motion, which in turn depends on inputs
that may change when the topology changes. The difficulty here
lies primarily in guaranteeing certain properties of the evolution
of the communication topology that hold regardless of how they
influence swarm motion. Fragmentation of a swarm into mul-
tiple connected components is a particular concern. A human
operator will likely have to account for these communication
difficulties as well. In addition, a remote swarm operator needs
remote access to relevant information about the swarm, a prob-
lem that an autonomous distributed control algorithm does not
face since it runs directly on the robots. Some challenges re-
garding communicating this information to an operator and the
effect of resulting uncertainty from incomplete information are
briefly discussed in [78].

Proximal interactions, on the other hand, assume that oper-
ators and swarms are in shared environment. Such interactions
are suitable to support local interactions between swarms and
operators and generally do not require a communication in-
frastructure. Multiple operators can easily be distributed across
the swarm and environment. Some swarm robotics surveys that
discuss the need for HSI research [5], [6] desire such a local
interaction scheme in order not to interfere with the distributed
design of swarms. In the following, we discuss communication
issues related to remote and proximal interaction schemes.

1) Remote Interaction: Despite the difficulties mentioned
above, remote interaction is likely to be the default option for
swarms that are entering otherwise inaccessible or dangerous
areas. In fact, one of the key motivations for using swarms in
real-world applications is their ability to be deployed in exactly
such areas. Hence, one of the primary challenges of HSI is to
reconcile the distributed nature of swarms with a central human
element of control and the ability to collect information about
the swarm and environment. Part of this is a technical challenge,
addressed in the study of sensor networks [79], [80] and mobile
ad hoc networks [81], [82]. It is noteworthy that swarm methods
and algorithms are also used to manage networks, e.g., they are
used in [83] to improve bandwidth and latency and in [84] to
design routing protocols.

There may still be individual robots that are capable of global
communication with an operator. An operator might also be able
to broadcast a command to an entire swarm. Therefore, we can
have global one-to-one or global one-directional one-to-many
communication. For example, underwater gliders that resurface
to establish a brief satellite connection and then return to the
swarm enable one-to-one global communication.

An example of a distributed swarm network that is controlled
by a central operator is found in [85]. Therein, the authors ad-
dress a number of practical challenges for maintaining a swarm
with 112 robots. A so-called gateway robot receives new soft-
ware and broadcasts it into the swarm to enable the programming
of these robots. A centralized user interface allows an operator
to receive data from the gateway robot about the swarm state.

The important practical problems facing a swarm operator are
latency, bandwidth, and asynchrony. From the existing swarm
literature, one can draw the conclusion that for swarm systems,
bandwidth is more limited and latency and asynchrony higher
than in other types of systems. There are few experiments re-
garding the impact of bandwidth limitations on HSI although.
One first attempt was made in [86] by exploring three bandwidth
conditions in a foraging task. In the low-bandwidth condition,
the operator only receives a location update from a single robot
per time step. In the medium-bandwidth condition, the swarm
utilizes local bandwidth to estimate the swarm centroid and av-
erage orientation, which is then transmitted to the operator. In
the high-bandwidth condition, all swarm robots communicated
their location to the operator at every time step. The perfor-
mance of operators in the medium- and high-bandwidth condi-
tions was statistically indistinguishable, suggesting that not all
position data from each robot in a moving swarm are necessary
for proper control. The effect of latency on human control of
a foraging swarm was investigated in [87]. Increase in latency
was associated with deteriorating performance; however, a pre-
dictive display that took into account swarm dynamics helped
to lessen the negative effects of latency.

2) Proximal Interaction: Proximal interactions with a
swarm enable an operator to observe the whole or part of a
swarm directly and interact in a shared environment. In cases
when the swarm can sense the operator, the latter can act as a
special swarm member and thereby influence the behavior of
the swarm through local interactions. This also opens the pos-
sibility for having multiple human operators who can influence
and control the swarm in a distributed manner.

Most of the research on proximal swarm interactions has fo-
cused on enabling the interaction through gesture recognition
[88]-[90] as well as face engagement and speech [91]. The dis-
tributed gesture recognition presented in [88] and [90] facilitates
the communication of a wide range of instructions to all swarm
robots within sight. The human wears an orange glove that is
easily recognizable by the cameras on board the robots. The
robots that can see the glove then participate in a consensus
protocol to determine the meaning of the gesture. Line of sight
is also required for the face engagement and speech approach
used in [91]. Therein, the operator can select one or multiple
robots via face engagement, which is detected via a camera on
each robot, and speech commands. With speech commands, the
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operator can add or remove engaged robots to a group or trigger
a desired behavior. Both mechanisms would, in theory, enable
the integration of multiple operators into a swarm, although such
experiments have not been carried out yet. Proximal interactions
were envisioned in the GUARDIANS project [92] as beneficial
for firefighters in a rescue scenario, and in [93], the human oper-
ator interacted with the swarm as a special swarm member that
acted as an attractor.

Proximal interactions with a swarm that actively engage an
operator, such as speech or gestures, are similar to proximal
interactions with other robot systems [94] or interactions in
the context of peer-to-peer teaming [95]. The added difficulty
for swarms results primarily from limited sensing and compu-
tational power on individual robots. Distributed methods may
mitigate this shortcoming and additionally benefit from multiple
sensor estimates (e.g., multiple perspectives for cameras). Prox-
imal interactions that treat the operator as an ordinary or special
swarm member are usually not found in other human-robot
systems. However, such passive proximal interactions have re-
ceived little to no attention in the literature so far, and it is not
clear how one would utilize them for controlling large swarms.

C. Swarm State Estimation and Visualization

Proper supervision of a semiautonomous swarm requires the
human operator to be able to observe the state and motion of
the swarm, as well as predict its future state to within some
reasonable accuracy. How good the prediction must be depends
on the scenario, but there must be some ability to forecast future
behavior in order to relate to the effects of control inputs. A key
distinction between swarms and multirobot systems is a focus
on the swarm as a single entity rather than multiple individual
robots.

An important function of the human operator is to estimate
the state of the swarm over time so as to be able to provide
appropriate control inputs. The main difficulty here is not only
to visualize the swarm state but also to facilitate the under-
standing of swarm dynamics as well as the impact of control
inputs. The swarm models, i.e., bioinspired, control-theoretic,
amorphous computing, and physics-inspired models, may offer
suitable metaphors for this problem. For example, a visualiza-
tion of forces might aid comprehension for an operator familiar
with attractive and repulsive forces. Very little research, how-
ever, has investigated these ideas.

State visualization is particularly difficult for the operator in
situations with incomplete information. Such situations arise in
the real world from constraints on bandwidth and communi-
cation latency that arise in operations taking place in remote
locations as well as sensing errors and uncertainty. Several re-
cent studies explored how different types of displays could help
the operator effectively visualize the state of the swarm. In [86],
the authors show that when information is restricted to just
the swarm centroid and standard deviation of positions, human
performance on a target search and navigation task was un-
hindered, despite localization errors of individual robots. Simi-
larly, in [87], the authors focus on latency in the communication
channel between the swarm and human. This also mimics sim-

ilar scenarios to the bandwidth case, where a human operator
may be controlling a swarm that is far away, or in an environ-
ment difficult for radio waves to penetrate. Here, the authors
found that even a simple predictive display was beneficial to
operators performing a target-searching task. These early stud-
ies indicate that simplifying the large state of a swarm to a
lower dimensional representation can be beneficial to control.
Other researchers [96] have shown that small samples of angu-
lar velocities and concentration of neighbors can be sufficient to
classify the behavior of a swarm following a common flocking
algorithm [97] as either flocking (moving in a common direc-
tion) or torus (moving in a circle). Reducing the amount of noise
and aggregating and fusing information to simplify the problem
of determining a swarm’s state are promising research areas.

Besides displays, multimodal feedback to the operator has
also been investigated [98]. Here, the authors used a potential
field approach for controlling the swarm for a convoy protec-
tion scenario and designed an interface that provides feedback
regarding the swarm speed, strength, capability, and dispersion.
The feedback was presented as visual, auditory, and tactile or a
combination thereof. A study with 16 participants was carried
out in which operators had to respond to swarm feedback with
lower response times in the multimodal feedback conditions.

Besides the aspect of designing appropriate algorithms that
provide aids to humans for swarm state estimation, there is a
very important issue of whether humans may be able to learn to
understand swarm dynamics, given appropriate feedback. This
question has hardly been investigated and is essential for op-
erators that wish to change or properly assess swarm behavior.
In [99], the authors investigate whether human operators can
learn to predict the effects of different input behaviors to a
simulated swarm. The authors use a two-choice control task,
whereby operators choose either a dispersion or a rendezvous
algorithm for a swarm randomly distributed in an environment
with obstacles. The goal was to cover as much of the environ-
ment as possible in each trial. Results from the experiments
showed that human performance increased over the 50 trials
from an average of 60% to 80% correct, thus indicating that
humans could learn to estimate the results of deploying a partic-
ular behavior on task performance. The results of this study are
interesting from another perspective as well, because they were
used to create a computational cognitive model of the human
operator that mimicked the human performance [100]. To our
knowledge, this is the only study using a cognitive architecture
to model human operators in an HSI task.

In [101], the authors investigate whether human operators can
acquire enough understanding of swarm dynamics to estimate
the effects of the timing of their control input. In this study,
operators were tasked with observing a swarm moving from a
random initial state to some first formation, and determining the
optimal time to give an input signaling the swarm to move to
a second, goal formation. The operators had to give the input
at the time that would minimize the convergence time to the
second formation. However, due to the phenomenon of neglect
benevolence (see Section III-F), the optimal input time was not
necessarily as early as possible. The argument in [101] is that
an aided display is important in such cases because it is difficult
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to perceive the optimal input time by simply looking at the
emergent behavior of the swarm. An aided display, informed by
the control algorithm, seemed to help operators overcome this
issue.

D. Control Methods—Conveying Operator Intent
to the Swarm

We will now focus on the other side of the control loop: how
to properly convey input from the operator to the swarm. Due to
the fact that the human control of swarms is desired to be O(1),
it stands to reason that in many cases, a swarm can be viewed as
a single entity, much as a system with one robot and one human
would be, except that the properties and behavior of this system
would be very different than that of a single robot. This may not
always hold, as some swarms contain heterogeneous members,
and some will require splitting into disconnected parts, or giving
different members of a swarm different commands. Therefore,
there is a need to operationalize the types of control an operator
can exert on the swarm. We identify the following types:

1) switching between algorithms that implement desired

swarm behaviors;

2) changing parameters of a swarm control algorithm;

3) indirect control of the swarm via environmental influ-

ences;

4) control through selected swarm members, typically called

leaders.

Within these swarm-specific types of control, we will some-
times distinguish between discrete and continuous inputs. For
example, leader-based influence can be achieved with a contin-
uous input to a leader (teleoperation) or with a discrete input.
The above types are not mutually exclusive, interact with other
properties of the human—swarm system such as the communi-
cation scheme (proximal or remote), and they impose varying
constraints on the swarm.

1) Algorithm and Behavior Selection: Control via algorithm
and behavior selection assumes that the human operator is giv-
ing control inputs at discrete time points by selecting a specific
swarm algorithm, such as those discussed in Section II-B. It
also presupposes that operators have at their disposal a library
of algorithms that implement different swarm behaviors. By
choosing different algorithms, human control is akin to control-
ling hybrid systems with the human acting as a switch. During
the time that a behavior is active an algorithm, usually a local
control law implements the behavior autonomously. A compar-
ison between behavior selection and environmental influence in
[102] indicated superior performance for behavior selection for
novice operators. Behavior selection was also used in [103] and
[104]. Successful control with behavior selection also presup-
poses that the operator can develop an understanding and has
access to an appropriate visualization of the swarm dynamics
[101], discussed earlier in Section III-C.

Overall, control via algorithm/behavior selection appears to
be an effective method of swarm control when the robots have a
high degree of autonomy and can operate largely without error
or human oversight in between human inputs. Once instructed
to execute a certain behavior, an operator relies on the auton-
omy of the swarm as well as the autonomy of individual robots

to deal with obstacle avoidance, robot-to-robot communication,
and local coordination. The transmission of commands from
the operator for this type of control does generally not pose sig-
nificant constraints on the communication network. The greater
challenges here relate to the selection of the right behavior, input
timing, and state estimation—the operator needs to understand
what different swarm behaviors look like in order to employ
proper selection and switching.

2) Control via Parameter Setting: Most systems depend on
a set of parameters for their operations, and so can many swarm
algorithms. The values for these parameters offer a clear avenue
for control and influence for an operator, in both discrete and
continuous input settings. The key difference for swarms is that
parameters do not directly influence the behavior, but rather have
indirect effects through behaviors emerging from interactions
within the swarm and its environment.

In [24], the wide range of behaviors that can be generated
with a simple flocking algorithm given different parameters is
presented in great detail. These insights have not yet lead to
a human-controlled transition between emergent behaviors by
changing the parameters of the system, however. One of the
few studies that considered the setting of parameters is found
in [105]; yet, it focused on indirect parameter setting aided by
an autonomous algorithm rather than allowing an operator to
directly modify parameters. Therein, Kira and Potter present
preliminary work for a top-down and bottom-up approach for
physicomimetic swarm control. For the top-down approach, an
operator can set desired global characteristics, such as swarm
radius and maximum interagent distance (i.e., a parameter set-
ting interaction). For the bottom-up approach, virtual agents
(point particles) are placed in the swarm and interact with it via
simulated gravitational forces. Evolutionary computation is then
used to learn an appropriate placement and parameterization of
these virtual agents to bring about a particular behavior (e.g.,
a split into two groups). Placement of the virtual particles re-
sembles an environmental interaction (see Section III-D3). The
algorithms were tested on a “defend a resource” scenario first
in simulation with one resource, six agents, and three virtual
particles and also on six Pioneer robotic platforms in the lab. No
experiments with human subjects have been reported regarding
the effectiveness of this approach.

Another example of parameter setting to control a swarm is
found in [106]. Therein, an operator controls a swarm of UAVs,
in simulation, by setting the parameters for the “personality” of
UAVs, defined by four characteristics: conformity, sociability,
dedication, and disposition. These relate to thresholds in a target
assignment and bidding process. In addition, the operator can
designate regions in the environment as either hot or cold. Hot
regions are suggestions to nearby UAVs that this region will con-
tain targets, while cold regions suggest the opposite. Whether a
UAV incorporates the operator’s suggestion depends on its con-
formity. There were no user studies carried out in [106], nor any
results presented. Some results for a similar system are found
[107], but are also lacking user studies.

Despite the examples shown above, parameter setting is most
often done during the design state of the swarm, and partic-
ular parameters that enable an operator to generate multiple
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emergent behaviors are often desired. An example of this is
found in [108]. Therein, the authors investigate the parameter
space for a flocking algorithm to determine a set of parameters
that allows flocking and torus formations to emerge. An oper-
ator then influences a subset of the swarm via teleoperation to
switch between flocks and torus formations. The results in [108]
indicate that it is easier for an operator to switch from a torus
to a flock when the teleoperated robots influence the rest of the
swarm via their orientation. These results were obtained using
simulation runs in a “Oz of Wizard” style study [109], i.e., with
simulated human input.

3) Environmental Influence: One of the distinctly “swarm
ish” interaction types is to influence a swarm through environ-
mental factors. Environmental influence involves altering part of
the environment, usually virtually, but sometimes physically, to
influence the behavior of a swarm within that part. Environmen-
tal influence has been implemented as a variety of constructs,
including virtual pheromones, virtual beacons, and amorphous
computing. The key characteristics of this interaction type are
that it is location-dependent and persistent through time (or
slowly vanishing in the case of pheromones). Behavior selection
in contrast sends a single instruction that can be independent of
location and affects robots when it is received and subsequently
propagated.

Environmental influence on the swarm is mediated via di-
rect or virtual sensing of environmental changes. Robots in the
swarm continue to operate under the same rules they were de-
ployed with and interact with the environment in a consistent
manner throughout their operation. It may be argued this is a
more suitable way to control the swarm, as it does not directly
interfere with the autonomous emergence of different swarm be-
haviors, i.e., if it can be guaranteed that a behavior will emerge,
environmental control should not necessarily affect that guaran-
tee. This, however, depends on the type of environmental influ-
ence available, particularly when using virtual pheromones and
beacons, and whether the emergent properties are guaranteed in
the particular environment.

An example of environmental influence is found in [110].
Therein, the authors use the analogy of a digital display to
represent a swarm of robots, whereby each robot represents a
“pixel” in the environment and gives information only from its
local environment and neighboring robots to a human operator.
The example they give is that of a search and rescue scenario
inside a building, where a deployed swarm can spread out, and
once a victim is identified, the robot viewing them can propagate
its information back through the swarm via virtual pheromones
to the human operator. In their case, the rescuers can then view
the combined information from all nearby robots on a head-
mounted display as they travel through the environment looking
for the victims. Furthermore, the human operator can influence
the swarm by injecting pheromone information to nearby robots
via a handheld display. Another example of virtual pheromones
is given in [111], wherein operators demonstrate the ability to
use virtual pheromones to control up to 50 000 robots in sim-
ulation. Another example of environmental influence is given
in [112] and [102], where the authors use simulated beacons
that can be placed by an operator and signal to nearby robots

to execute a certain behavior. A set of seven different behaviors
are implemented. The beacons can be placed anywhere in the
environment to allow the operator to modify the overall swarm
behavior via the perceived environment as he or she sees fit.
Experimental results indicate, however, that behavior selection
for the same set of behaviors leads to superior performance, as
compared with placing beacons, for untrained operators on a
foraging task.

Environmental interactions are also a natural type of interac-
tion mode for amorphous computing algorithms, discussed in
more detail in Section II-A3. The advantage that an amorphous
computing paradigm provides lies primarily in the enforcement
of a local context when writing swarm programs. It also eases
the maintenance of a set of variables that requires distributed
computation across the swarm medium. In principle, this could
enable all types of HSI, but is ideally suited for environmen-
tal influence due to its in-built emphasis on spatial distribution.
Yet, no studies investigating human control of swarms based
on amorphous computing principles have been carried out. The
emphasis on expressive instructions that depend on and persist
with regard to time and location suggest that there is ample room
for investigation.

4) Leader Selection: One method to deal with the complex-
ity of controlling a swarm is to allow an operator to select and
control a subset of the swarm, thereby reducing the number of
robots that have to be considered simultaneously. Individuals
or groups of robots selected by an operator are frequently de-
noted as leaders since they are expected to influence and lead
the remaining swarm, as a proxy for the operator. The selection
of a small set of individual robots as leaders opens up the pos-
sibility for more engaging forms of control that are also used
for single and multi-robot systems, such as teleoperation. The
key difference between swarms controlled via leaders and other
systems is that leaders have an influence that propagates through
the swarm, and an operator should attempt to control the entire
swarm via this propagated influence. The main questions for
leader-based control are: 1) how to best select the leader; 2)
whether a selected leader remains a leader throughout a sce-
nario or whether leadership is transient; 3) how to control for
propagation effects on the remaining swarm; and 4) how leaders
should interact with nearby swarm members.

Persistent Influence via Leaders: In cases where more pre-
cise control over a swarm’s operation is needed, or when a
desired emergent behavior cannot be generated autonomously
and without significant human influence, continuous inputs may
be given by a human operator. These continuous inputs will have
a persistent influence on selected leaders and indirectly on the
swarm, and such situations require significantly more training
and attention on the part of the operator. In its basic form, per-
sistent influence is akin to teleoperation. It generally involves
some notion of the state of the system fed back to the opera-
tor who can then modify the inputs accordingly. Such control
usually requires a tight feedback loop with low latency and a
representation of the system state that is interpretable for the
operator. However, proximal interactions are also conducive to
continuous control since the human can always be sensed by
the robots continuously and can direct them much like a leader
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robot, and thus, any movement of the operator is potentially an
input to the swarm. In Section III-C, we briefly discussed the
difficulties of estimating and visualizing the state of a swarm.
For controlling motion of single- and multirobot systems, visual
and haptic feedback has been used predominantly, and these do
not easily translate to swarms. The selection of swarm leaders,
however, can enable such control. In this case, the control of a
single leader or a group of leaders is similar to single- or mul-
tirobot teleoperation. The key difference is the influence of the
motion of swarm leader on the remaining swarm that has to be
taken into account.

In [113], a leader robot in the swarm is teleoperated in or-
der to aid in the localization of a radiation source. The swarm
is influenced indirectly through the motion of the teleoperated
robot. The influence is determined by the mode of the robot
and can “push” other robots or direct them into one of four
directions (up, down, left, right). Once deselected, the robot
can be instructed to maintain its mode and thereby its influ-
ence on neighboring robots. Results of a small user study in-
dicated that human-operated swarms were significantly better
than a fully autonomous swarm at finding the radiation sources
within the environment. Goodrich et al. [25], [114]-[116] have
also worked extensively on leader-based control of swarms that
follow Couzin’s control laws [24]. Therein, the authors inves-
tigate using teleoperated leaders, which will either attract or
repel neighboring robots, to allow a human operator to control
the swarm. The authors also consider swarm members, the so-
called stakeholders, that are influenced by the operator as well
as other swarm members in contrast to the teleoperated leaders
(also called predators in the case of repelling leaders). An em-
phasis is placed on determining under what conditions operator
influence can lead to different emergent behaviors and forma-
tions. In [117], the authors implement a leader-based model both
in simulation and on real robots, using both virtual agents and
a human operator as leaders in a swarm, and found that this
method scales reasonably well to larger swarm sizes in an in-
formation foraging task without obstacles, i.e., it is reasonably
close to O(1) type control. In [118], the authors propose two
methods for propagating operator intent from a single leader
to the rest of the swarm. The first is explicit, where the leader
can be distinguished from other neighboring robots, and thus,
its neighbors can explicitly follow the leader’s heading; and the
second is facit, where the leaders are indistinguishable, and im-
plicitly biases the average speed and heading of neighboring
robots. Here, the authors found that the explicit method gave
human operators better control over the swarm, but hypothe-
sized that the tacit method could be more robust to sensing error
if a larger percentage of the swarm were leader robots, to allow
for faster propagation of used intent. In [119] and [120], the
authors further this work by presenting an algorithm for select-
ing multiple leaders dynamically in a swarm as the topology of
the communication graph changes. They found that, while the
explicit method of propagation was again superior overall, the
tacit method performed better under significant sensing error.

The selection of single leaders or small groups of leaders
has been the default choice for much of the work on HSI that
involves persistent and continuous influence. One of the few

exception is found in [121]. Therein, operators used a haptic
joystick to give continuous inputs to the entire swarm during
a target-searching task. The human teleoperated the swarm via
broadcast commands by manipulating the joystick. The swarm
itself handled obstacle avoidance and maintenance of proper
robot-to-robot distances, but global goal direction and speed of
the robots were controlled by the human. The haptic feedback
given to the operator is computed as the average of all forces
exerted on all swarm robots resulting from repulsion from ob-
stacles, similar to the approach in [48]. The authors found that
giving continuous inputs with haptic feedback allowed for su-
perior control and more targets found.

In general, teleoperation of robots has been studied exten-
sively, but the primary emphasis has been on single robots.
Here, we are going to review some of the work done for bi-
lateral teleoperation of multirobot systems, for which there is
usually a master robot that a human uses to control a slave
robotic system. Information is fed back and forth (as forces)
between the human and the slave system through the master
robot or haptic device. Haptic feedback can be used to augment
existing methods like continuous visual feedback. Recent ef-
forts in this area are found in [122]-[124]. These can be broadly
put in two categories depending on the communication (and
control) architecture between the master and slave systems: 1)
centralized approaches—where each robot communicates in-
dividually with the master system [122], [123], [125]; and 2)
decentralized approaches—where the robots coordinate among
themselves, and only a single robot communicates with the mas-
terrobot [124], [126]-[128]. Control and communication should
ensure safety and stability, i.e., avoid collision and track a de-
sired reference trajectory (e.g., maintaining a certain formation).

A decentralized strategy was proposed by Franchi et al. [124]
based on a leader—follower approach where the slaves are as-
sumed to have second-order point mass dynamics [124]. The
key contribution of [124] is to design a potential function (and
hence a control law) that ensures that the overall system is pas-
sive. The controller has been tested with a human controlling a
team of up to six simulated UAVs. Although the authors allow
the agents to make or break links, there is no guarantee that the
connectivity of the robotic network is maintained. In [126] and
[129], the authors have extended the work from [124], [127]
to ensure that the designed haptic control laws ensure stability
even in the presence of delays. Similar techniques have also been
used for haptic control of UAV formation where the UAV's only
use the bearing information of their neighboring agents [128].
The above control schemes have been limited to either forma-
tion control or target tracking. Haptic control schemes for other
multirobot tasks (e.g., area search and coverage, foraging, co-
operative mapping, etc.) are not available. To apply this work on
teleoperation to a swarm, in particular, a selected subgroup of
leaders in the swarm, the repercussions and effects of the motion
of this subgroup on the overall swarm behavior and dynamics
would need to be integrated into the control scheme so that
an operator can control the subgroup while being aware of the
implications and compensating for the overall swarm behavior.

Discrete Influence via Leaders: Numerous works have im-
plemented discrete control systems in which the operator sends
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messages to selected robots intermittently. This method is easy
to implement and requires little training for the human operator.
It is also well suited for both homogeneous and heterogeneous
swarms, as different commands can be easily and distinctly
given to each type of robot. For example, in [104], operators
effectively deployed a heterogeneous swarm in an ocean setting
to test the viability of swarms in monitoring data in waterways.
The operators had sparse intermittent communication with the
robots—being able to send and receive data only when the robots
surfaced, and sending commands to correct errors in the robots’
trajectories due to sensing error and ocean currents.

In [130], the authors present a method for the user to select
and assign tasks to a single leader robot out of many in an
indoor environment (with a distance between the human and
robot between 1 and 4 m). Each robot first recognizes how
directly the human is looking at it through facial recognition.
It then uses a ring-based leader election algorithm to determine
the single robot with the highest face detection score. The user
then commands this robot with gestures. Pilot experiments with
human participants produced encouraging results; yet, it is not
clear how the approach scales and how appropriate it is for larger
distances between user and robots. Also suitable for discrete
control inputs is the work presented in [88], [90], and [91], which
enables proximal interactions with operators by transmitting
commands to the swarm with gestures, face engagement, and
speech.

E. Levels of Autonomation in Human—Swarm Interaction

In [131], Sheridan and Verplank propose a ten-point level
of automation (LOA) scale to characterize the degrees of au-
tonomy possible for human—machine systems, ranging from a
system where the machine has full autonomy (10) to one where
the human controls everything (1). This scale has been used and
modified extensively to describe and evaluate levels of automa-
tion for a number of supervisory control systems on differing
robotic platforms [132]-[134]. A human—swarm system would
fall high on the scale—greater than or equal to 7. This model for
levels of automation has been used in numerous works studying
HRI and HSI (see [103] and [135] for recent examples).

One of the earlier discussions on LOAs in swarms is found
in [136]. In particular, the author distinguishes between levels
of automation within the swarm and levels of automation for
the decision making of the operator. Much of the autonomy
in a swarm serves the purpose to coordinate the entire system
and does not necessarily impact the amount of information an
operator has access to nor the level of involvement for certain
decisions. Yet, as pointed out in [136], the level of autonomy
for coordination does have an indirect impact on the situational
awareness of the operator.

In [135], the authors introduce the autonomy spectrum for
HSI, which extends the LOA model by allowing different user-
selectable modes at each control task corresponding to different
possible LOAs for each task. Furthermore, their model includes
predefined pathways between different LOA combinations at
each stage, corresponding to the different possible methods of
operation. The approach has been tested with human operators
in an elaborate application scenario involving patrolling and

pursuit. The primary conclusion is that operators had some pos-
itive impact on system performance but that much further work
remains to be done to better integrate human and swarm auton-
omy. Similarly, in [103], the authors use two switchable modes
of operation for a swarm to allow the human operator to switch
between high and low autonomy. The high autonomy was cap-
tured via a dispersion algorithm whereby the swarm members
spread to cover the open space in the environment, and the low
autonomy mode allowed the user to select subsections of the
swarm to direct via waypoints. Here, the authors found that op-
erators found the most success when using a mix of the two
modes, instead of solely one or the other.

Further work is needed before we are able to say properly
whether flexible levels of automation in HSI are beneficial;
however, this preliminary work suggests it could be. Yet, one
of the unstudied issues is how humans react to flexible auton-
omy with swarms. Because the emergent properties of swarms
are often unpredictable, and because we have little knowledge
of human operators’ understanding of swarms, it is possible
that introducing task switching between different levels of au-
tomation may significantly degrade the situational awareness of
operators, and may interfere with their understanding, leading
to decreased performance. As this and other cases of LOAs im-
pact nearly all aspects of the control loop, they are essential to
investigate if we desire a true understanding of human—swarm
systems.

F. Input Timing and Neglect Benevolence

Not only is the method of giving different commands of con-
cern to human operators and those designing the HSI system,
but also the timing of those commands. Since some swarm
algorithms require time to converge and stabilize after an op-
erator command 1is issued, it is possible for the same types
of commands to have different—sometimes adverse—effects
depending on the state of the swarm. To capture the idea
that humans may need to observe the evolution of the swarm
state and wait some time before acting, a novel concept called
neglect benevolence was investigated. This concept is in some
sense the converse to neglect tolerance [137], [138] in HRI of
independent and noncoordinating robots, where it is assumed
that the performance of an individual robot degrades with time,
and hence, the attention of the operator needs to be scheduled
so that the time between servicing robots (the neglect time) is
minimized [139].

Consider, for example, a generic flocking algorithm. One of
the issues that may occur for flocking is the fragmentation of the
swarm, and frequent instructions for changes in direction of the
flock may lead to such fragmentation, unless the swarm regains
its cohesion before the next instruction. The risk of fragmenta-
tion is increased by delays in coordination, errors in motion and
sensing, as well as external perturbations. In [140], it was shown
that improper timing of control input could lead to swarm frag-
mentation. In [87], the authors show evidence of neglect benev-
olence in swarms during a simple target-searching task. They
found that operators who issued commands frequently showed
lower levels of performance than those who allowed the swarm
to adjust between new commands. This was the first study to
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give evidence to the concept of neglect benevolence by show-
ing that commands given too frequently to a swarm exhibiting
emergent behavior could actually degrade performance.

Neglect benevolence formally defined in [140], where the
authors proved the existence of neglect benevolence for linear
time-invariant systems, developed an algorithm to determine
the optimal input time for such a system. In [101], the authors
further investigate human performance in the face of neglect
benevolence and showed that human study participants learned
to approximate the optimal time over the course of the experi-
ment in a formation control task. Neglect benevolence and op-
timal timing studies are just beginning to emerge, and they are
an interesting area for future research. Additionally, algorithms
to determine optimal human timing could be incorporated to
provide operator decision support.

IV. DISCUSSION

In the previous section, we presented and discussed our orga-
nizational structure from Fig. 1, centered around the operator’s
perspective and our set of research questions, and reviewed
existing HSI studies within this structure. We also reviewed as-
pects of a human—swarm system that impact all parts of the
control loop (input timing and neglect benevolence and levels of
automation). Table I summarizes the key issues for each topic
including the context in which it was studied. HSI research is
still in its early stages, and identifying the right context and
methods for studies is still a challenge, but a few themes have
started to emerge. Here, we will briefly discuss these and how
they relate to the problem of isolating the various interacting
components in complex swarm systems.

Our organization, illustrated in Fig. 1, emphasizes that levels
of automation and input timing and neglect benevolence may
interact with all components of the human—swarm control loop.
As such, they are studied in setups with specific control algo-
rithms, visualizations, swarms, and tasks. Also expressed in our
organization is the fact that the communication infrastructure,
which supports the interface between human and swarm, has sig-
nificant influence on state estimation as well as control methods.
Hence, research on these two components needs to clarify the
underlying assumptions about the communication infrastructure
and ideally deal with the implications of limited reliability, con-
nectivity, bandwidth, and latency. State estimation and control
methods can be studied somewhat independently, as prior work
has demonstrated. In fact, many of the studies to date have been
concerned with the interactions between the chain of compo-
nents from the operator, control methods, up to the swarm. The
chain of components from swarm to state estimation and visual-
ization up to the operator has received less attention, particularly
how the estimation relates to operator cognition.

Broadly speaking, HSI research has employed three basic
methods of inquiry. Theoretical analysis and models have been
proven useful to determine feasible and optimal control inputs,
e.g., with behavior selection [100] and investigating neglect
benevolence [101]. When closed-form solutions are not avail-
able, simulations have proven useful, such as in [25]. Finally,
user studies and prototype systems in simulation or with real

robots are used to address more complex scenarios or verify
theoretical insights.

One of the main problems tackled in much of the HSI research
is the large and divisible state space of swarms. This problem
is also at the core of our cognitive complexity perspective dis-
cussed in Section III-A. Consequently, in Section III-D, we have
presented control methods that aim to reduce the complexity of
controlling a swarm, namely behavior selection, parameter set-
ting, environmental and leader influence. The aim for each of
these methods is to enable interactions that scale to large num-
bers of robots, i.e., O(1) style interactions. All these methods,
however, when integrated into complex systems, involve some
form of implicit or explicit selection of robots. Leader influence
is explicitly concerned with which robots should be the gateways
of information between the swarm and operator. Environmental
influence selects robots implicitly by determining which robots
can sense the real or virtual change in the environment. Behav-
ior selection and parameter setting are swarm-wide controls, but
in practice a user often selects a subswarm to which to apply
the desired behavior or parameter (with the exception of a few
studies). Without selection, these two methods do not allow fine-
grained control, which on the other hand makes them easier to
model, as in [100]. However, even when using leader influence,
current methods do not allow the swarm to solve complex tasks,
and these will likely also involve a division into subswarms.

In fact, the formation of subgroups is a common feature in
studies with complex application scenarios as in [102], [103],
and [135], and envisioned in [88], [90], and [91]. Therefore, it
can be argued that the problem of dividing a swarm into sub-
swarms is superimposed over our control taxonomy and that
most operators are going to be confronted with the issue of se-
lecting and managing multiple groups of swarm robots. Once
operator-controlled selection of robots is permitted, in the best
case, n swarm robots become k independently operating swarms
and their management would be O(k). In this case, the multi-
robot concept of neglect tolerance and fan-out models would
apply. In the worst case, robots in different subswarms continue
to interact and interfere with each other and management be-
comes O(> k). Now, k may not depend on n, but instead on the
task at hand, e.g., when viewing the swarm as an approximation
of a continuous medium while using environmental influence.

At this point, it becomes important how a control method
performs when it controls a subswarm that is embedded in a
larger swarm. In particular, one should determine the conse-
quences of interactions between multiple subswarms. This sort
of investigation is very much needed for future work. Each
individual interaction should be still be an O(1) style interac-
tion within an overall system that may become more complex.
Our presented framework also provides the means to study the
individual methods in isolation and generalize to the broader
context. For example, one can investigate the neglect benevo-
lence and neglect tolerance properties of a particular interaction
method, such as a particular behavior selection scheme, and then
study the consequence of embedding said scheme into a larger
system that allows multiple subswarms. At this point, meth-
ods from human interaction with multirobot systems could be
applied to, e.g., schedule the operator’s attention to individual
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TABLE I

SUMMARY TABLE FOR OUR SECTION ORGANIZATION, INCLUDING THE CONTEXTS IN WHICH HSI TOPICS ARE STUDIED

Cognitive complexity

Proximal Interactions

Remote Interactions

v - v - v - - - - -V i.e.: studied with remote interactions & behavior selection through user studies

A general framework [70], [3] for scalable human control to deal with large state spaces and complex dynamics; basic
swarm control schemes aim to be O(1); extensions to other cognitive factors have been considered in the context of
remote interactions and behavior selection with formal models of cognition [99], [100];

N

Largely studied with real robots and focused on enabling any interaction at all; current results enable relaying of instructions
[130], [88], [89], [90], [91]; a key challenge is to scale these to multiple operators, large environments and swarms, as
well as to conduct comprehensive user studies;

N A

Most user studies assume remote interactions; latency [87] and bandwidth [86] limitations have been investigated in the
context of behavior selection; connectivity maintenance and loss was possible in [102]; communication constraints can
require the use of aggregate statistic that may be sufficient for effective control [96]; adaptive networks still have to be
investigated; the key challenge to reconcile a distributed remote network with a central operator underlies many HSI issues.

State Estimation/Visualization - v v v v - - Vv Vv vV V

Behavior Selection

Parameter Setting

Environmental Control

Leader Influence

Levels of automony

Neglect benevolence

Key issues are predicting consequences of control actions, understanding of swarm dynamics as well as aggregate statistics;
studied in a number of contexts such as communication constraints, leader influence, and behavior selection [96], [87], [86];
predictive displays have been proven useful for behavior selection [87], [101]; aggregate state descriptions can be sufficient
in some scenarios; no work on general human perception of swarms, e.g., involving Gestalt principles, is available.

N T SV

The simplest form of swarm control, behavior selection has been considered in a number of contexts [113], [112], [102],
[103]; a comparison between behavior selection and environmental influence revealed superior performance and significant
differences in the strategies employed by operators [102]; a crucial consideration is the timing of instructions, time to
convergence of emergent behaviors, and whether subgroups of robots are permitted to run different algorithms leading to
heterogeneous swarms, causing a possible increase in cognitive complexity.

N Y

A form of swarm control not investigated in detail in user studies, but typically used during the design stage [25] or with
automation [105], [106], [107];

N A A

Swarm control via real or virtual changes in the environment sensed by the swarm; first studies in [102] revealed this
form of control to be more difficult for novice operators than behavior selection; [135] also reports difficulties interacting
with pheromone controlled swarms; also used in [110], [111] with visualizations of pheromones but generally less studied
than behavior selection and leader influence; potentially a suitable control method for the problem of controlling many
sub-swarms;

N T

Control complexity is reduced by controlling leaders that influence the swarm; key questions are the selection of leaders
and propagation of influence; a comparison between strong or weak influence is found in [118]; algorithmic dynamic
selection of leaders improves control over the swarm [120], [119]; swarms with parameters optimized for allowing human
controlled transitions between emergent behaviors are used in [25], [117], [108]; Teleoperation of selected leader groups
in simulated and real swarms is feasible and enabled by [123], [124], [125], [126], [127], [128].

A A A N

First mentioned for swarms in [136]; introduction of autonomy spectrum in [135] which connects levels of automation to
task sequences; results are focused on performance in a specific application scenario with the conclusion that more HSI
research is warranted to close the representation gap between swarm and operator intelligence; [103] suggests that levels
of automation should be dependent on environmental conditions; despite the high reliance of swarms on autonomy the
impact of varying levels of automation has not been studied extensively;

B A A A N 4

Neglect benevolence is a swarm-specific concept that is concerned with input timing and the resulting impact on the swarm
state; Potentially disturbances of stable states and emergent behaviors by poorly timed human inputs are at the core; Neglect
benevolence was first observed in [87] and analyzed in more detail in [140]; user studies showed that operators are able to
approximate optimal input timing [101]; neglect benevolence is a useful concept for swarms to reinforce the importance
of temporal dynamics for HSI designers.
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subswarms appropriately. The study of individual interaction
schemes for behavior selection and leader influence has po-
tentially progressed to a stage where such investigations and
experiments are made possible. Moreover, we conjecture that
leader influence methods will likely lead to fewer interferences
between subswarms but will also be less powerful within a larger
system and suffer more from neglect tolerance. Behavior selec-
tion on the other hand will lead to larger interference between
subswarms, may suffer due to high neglect benevolence, but will
likely scale better to many subswarms and benefit from better
neglect tolerance.

The management of multiple subswarms also offers an insight
into the qualitative differences within our control taxonomy.
Behavior selection influences all members of a subswarm, leader
influence only a few, and environmental influence implicitly
creates and influences new subswarms. Hence, environmental
influence interacts differently with the problem of subswarms
and has the potential to deal directly with subswarm hierarchies
due to its implicit selection mechanism. Because there are few
studies using this control approach, we believe more are needed
before we can really make determinations about the interaction
between multiple subswarms using environmental influence.

V. FUTURE WORK AND CONCLUSION

This review is meant for researchers that are attempting to
further the field of HSI. Hence, we gave a brief introduction to
swarm robotics to provide an overview of the kinds of properties
one should expect of swarm systems, as well as an introduction
to HSI structured and centered around the operator. We began
with a discussion on cognitive complexity, and then with an
examination of the control loop, with particular attention to
communication, perceiving the swarm, and exerting control.
Finally, we discussed some overarching issues that pertain to the
entire control loop in sections on levels of automation as well
as input timing and neglect benevolence. Throughout, we have
noted a number of challenges, in our discussion as well as within
each specific category, some of which have been addressed, but
most of which remain unsolved. Here, we briefly summarize
what we envision as the main challenges, in addition to the
management of subswarms discussed in the previous section,
that HSI research can address in the near future based on the
current state of HSI research. These are related to the three main
sources of difficulty in swarm control: tasks, communication,
and uncertainty and size of the state space. Some of the resulting
challenges can be addressed fairly independently of each other
and were also discussed in the previous sections.

A. Suitability of Control Type Relative to Task and
Environment

A set of important research questions for HSI relates to the
characteristics of the control types. It is essential to determine
which general types and their various implementations are suit-
able for what kinds of tasks, environments, communication and
timing constraints, and other swarm-specific circumstances. In
addition, when multiple types are suitable, one should attempt
to compare effectiveness, scope, and impact of these control
types, i.e., how many robots they affect directly and indirectly.

In addition, entirely novel interaction techniques, beyond those
we presented in this paper, may also have to be investigated
when the existing types fall short.

What we know so far about the characteristics of the control
types is fairly limited. Behavior selection is perhaps a natural
choice for many swarm applications, suitable for untrained oper-
ators and shown to be superior to environmental control, partic-
ularly when existing behaviors already solve the tasks. Yet, it is
likely to be more affected by neglect benevolence, depending on
the behaviors available. As a consequence, it benefits strongly
from predictive displays that aid the operator in determining the
effects of commands. On the other hand, it may well be more
robust to communication issues, i.e., latency, bandwidth, and
asynchrony.

Environmental interactions, however, appear to be a partic-
ularly swarm-like type of interaction. This becomes more ap-
parent when considering a swarm as an approximation of an
amorphous medium. The complexity of controlling it does not
scale with the number of robots but rather the size of the medium
and environment. Regarding this type of interaction, little work
has been done so far; yet, it seems a fruitful area for further
HSI research. It may well be that effective environmental inter-
actions require operator training and more advanced interfaces
than the simpler interaction types.

Another difficulty in swarm control that has not received
much attention is how to enable effective leader-based control.
Predicting, limiting, or correcting for leader propagated influ-
ence is one immediate issue. In addition, direct control of leaders
requires a low latency network. As such, it is a more difficult
type of control to implement reliably for swarms and no studies
have been carried out with real swarms.

B. Swarm Visualization and Understanding of Dynamics

Humans are structured to find groups and patterns in everyday
life, and these skills could potentially be applied to swarms as
well. Because swarms often operate under emergent behaviors
and large-scale group patterns that come from local interactions,
humans may be uniquely suited to identify, categorize, and alter
the global swarm behavior. It is an open research area whether
it is possible to design algorithms having in mind human un-
destandability of their results. Some work, discussed in Section
III-C, has been carried out to investigate visualization of swarm
states and behavior, but little is known with regard to general
principles of swarm visualization and perception by operators,
particularly for noisy or partially accessible states. This is es-
pecially important for an operator’s understanding of swarm
dynamics that unfold over time and therefore provide a further
challenge for visualization. Exactly what information an opera-
tor needs access to and how it should be visualized for the various
swarm algorithms and tasks is, therefore, an important question
for swarms, particularly if 1) it can reduce the amount of state in-
formation that the swarm needs to communicate to the operator
and 2) aid in human understandability of swarm dynamics.

C. Input timing and Neglect Benevolence

We have discussed the issue of input timing and the resulting
concept of neglect benevolence in some detail in Section III-F. A
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few studies have begun to emerge that approached the issue from
a formal perspective as well as from an experimental perspec-
tive, albeit in simulation. Neglect benevolence and optimal input
timing seem to be particularly relevant for swarms and may well
be exhibited by many of the algorithms currently envisioned for
use in real swarm applications. In particular, for control with
behavior selection, the dominating issue becomes input timing
and the prediction of swarm dynamics. Further studies are re-
quired to determine under which conditions, human operators
can learn to time their inputs optimally.

D. Cognitive Complexity and Levels of Automation

In the existing human interaction literature, cognitive com-
plexity was primarily considered in terms of cognitive effort in
relation to the number of robots. Task difficulty was primarily
dealt with when considering workload, fatigue, and other human
factors issues, while levels of automation dealt with access to
information and decision-making roles. Rarely are these three
issues considered jointly, and swarms present a suitable context
in which to investigate the interactions between these as well
as novel notions of cognitive complexity that take into account
system size, task difficulty, levels of automation, and their re-
spective interactions. One early study that points in the right
direction is conducted in [135], subsequently extended in [103],
and has been discussed in prior sections. This is clearly an area
that warrants further work to move toward real swarms solving
more complex missions and tasks.

E. Swarm Metrics and Experiments

Most of the guarantees and metrics that have been devel-
oped thus far are concerned with convergences to an emergent
goal behavior for a particular task under specific assumptions.
Reliable metrics regarding the performance of a swarm in real
applications are not available, apart from some early results in
[141] and [142], and their general need is identified in sev-
eral swarm surveys [5]-[7]. From the perspective of HSI, this
is a promising area of research, and when monitoring swarms,
operators can greatly benefit from such metrics, e.g., when man-
aging competing tasks while monitoring the quality of service
in the communication network. These metrics can also help by
overcoming the problem with running HSI studies in practice,
particularly the lack of studies with real robot systems. Mea-
suring and monitoring the behavior of real swarms will also
enable the reproduction of more realistic swarm behavior in
simulation. On the other hand, it is also desirable to have more
studies with real robots and real human operators to provide a
firm foundation for HSI studies.

In this paper, we have attempted to draw the outlines of HSI
research, a young subdiscipline and one not yet well understood.
Experimental studies in cooperation with researchers in swarm
robotics and the anticipated development of swarms outside the
confines of laboratories will inevitably shed further light onto
the topic.
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