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Accelerated Visual Context Classification
on a Low-Power Smartwatch

Francesco Conti, Student Member, IEEE, Daniele Palossi, Renzo Andri,
Michele Magno, Member, IEEE, Luca Benini, Fellow, IEEE,

Abstract—Data produced by wearable sensors is key in con-
texts such as performance enhancement and training help for
sports and fitness, continuous monitoring for aging people and for
chronic disease management, and in gaming and entertainment.
Unfortunately, wearable devices currently on the market are
either incapable of complex functionality or severely impaired
by short battery lifetime. In this work, we present a smartwatch
platform based on an ultra-low power (ULP) heterogeneous
system composed by a TI MSP430 microcontroller, the PULP
programmable parallel accelerator and a set of ULP sensors,
including a camera. The embedded PULP accelerator enables
state-of-the-art context classification based on Convolutional Neu-
ral Networks (CNNs) to be applied within a sub-10mW system
power envelope. Our methodology enables to reach high accuracy
in context classification over 5 classes (up to 84%, with 3 classes
over 5 reaching more than 90% accuracy), while consuming
2.2mJ per classification, or an ultra-low energy consumption
of less than 91uJ per classification with an accuracy of 64%
- 3.2× better than chance. Our results suggest that the proposed
heterogeneous platform can provide up to 500× speedup with
respect to the MSP430 within a similar power envelope, which
would enable complex computer vision algorithms to be executed
in highly power-constrained scenarios.

Index Terms—Machine vision, Wearable computers, Low-
power electronics, Energy efficiency.

I. INTRODUCTION

THE VAST improvements in device miniaturization and
performance due to the continuous advance of Moore’s

Law, along with the availability of ubiquitous wireless con-
nectivity, are today enabling the development of smaller and
smaller devices that can leverage a relatively high amount of
processing performance, and at the same time are always on. A
fast growing class of such devices is smart wearables, where
electronics and sensors are tightly coupled with the human body
[1]; this paradigm proposes to transform everyday life objects
such as wrist watches, necklaces and glasses in “smart” objects
that look promising for a plethora of applications, such as sports
and fitness, augmented reality and personalized health care;
moreover, top-tier hi-tech companies such as Google, Samsung
and Apple look at wearable devices as a new high growth
segment in the consumer market. Smart wearable devices
open up new possibilities in terms of context awareness [2],

The authors are with the Integrated Systems Laboratory at ETH Zurich,
Switzerland. Francesco Conti, Michele Magno and Luca Benini are also with
the Department of Electrical, Electronic and Information Engineering at the
University of Bologna, Italy. This work has been funded by the MicroLearn:
Micropower Deep Learning Swiss SNF project, and by projects IcySoC and
YINS RTD, evaluated by the Swiss SNF and funded by Nano-Tera.ch with
Swiss Confederation financing.

making all devices more conscious of their environment and
therefore more “intelligent”. Continued miniaturization and
power improvements have eased the construction of a wide
variety of wearable multi-sensor systems [3]. In fact, some
forecasts preview up to a trillion connected devices, which are
going to produce a huge amount of data [2]. Even with so
many sensor-rich wearables, however, the sheer amount of data
alone will not provide any value, unless it is possible to turn it
into actionable, contextualized information. Machine learning
technologies are used with great success in many application
areas, solving real-world problems in entertainment systems,
robotics, health care, and surveillance [4]; they are extremely
flexible and can be applied to heterogeneous data. However,
due to their massive requirements in terms of memory and
computational throughput, these high accuracy techniques are
currently considered to be too computationally expensive for
the limited capabilities of wearable devices; instead, sensory
data is transmitted to servers “in the cloud”[5] at a high cost
in terms of latency and transmission energy.

At the same time, one of the main limitations of the
current generation of wearable devices is autonomy, due to the
limited amount of energy that can be stored in the batteries.
Continuous transmission of data is expensive in terms of
energy and severely hinders the autonomy of these devices,
posing a practical limit to the amount of useful information
that a wearable device can send to the cloud for processing.
An alternative approach is that of partially performing the
processing locally to the wearable node, so that what is
sent out via wireless communication is data in a high-level
format (such as visual features) and of reduced dimensionality.
This is a major challenge for a typical low-power wearable
device driven by a low-power microcontroller unit (MCU).
Off-the-shelf MCUs are orders of magnitude less powerful
than it would be necessary to sustain data classification
using state-of-the-art machine learning techniques [4][6]. As
a possible solution to this challenge, parallel programmable
accelerators have been proposed [7][8] as a means to obtain
the necessary level of performance while keeping the power
envelope controllable. Accelerators for wearable computers
need to perform a variety of tasks and algorithms to fuse data
coming from several sensor sources. To provide the necessary
level of performance and energy efficiency for this class of
algorithms, it is necessary to use deeply integrated technologies
that come with high engineering and manufacturing costs. As a
consequence, accelerators need to be flexible, i) to be coupled to
many different host devices (e.g. MCUs) and ii) to be applied to
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a very wide range of scenarios, enabling cost-efficient economy
of scale.

One of the target applications for wearable devices is that
of ego-vision, i.e. vision using a first person video stream as
the primary source of information. Ego-vision enables use
cases such as gesture recognition for augmented reality with
off-the-shelf smartphones [9] or a Google Glass device [10],
sign recognition to assist people with visual impairments [11],
eye movements detection, on top of applicative scenarios
such as assisted living (fitness, entertainment, etc.) [12], health-
care assistance [13], adaptive environments [14], Internet
of Things ecosystems [15], and advanced human-machine
interfaces driven by hand/eye movement. An ego-vision system
can be used to achieve a multi-node assisted environment
(e.g. house, car, gym, office, etc.) where complex multi-device
behavior is triggered by an “intelligent device” always aware of
the user’s activity [14]. As all of the mentioned scenarios are
time-critical applications, fast computation plays an important
role for fast “detect and act” capability [12] - onboard
computation can provide a definite advantage by minimizing
latency, and open the road to these many diverse applications
being continuously running directly on-body. More advanced
ego-vision applications are in the context of a multi-device
system, where several body-coupled sensors interact in real
time with IoT devices in the environment. This would enable
deeper and smarter context understanding scenarios. However,
such a tight interaction necessitates low latency and exchange
of relatively small, semantically rich information as opposed
to raw sensor data - therefore necessitating a computationally
powerful wearable computer. A fast, unintrusive, and low-
power “personal hub” device could be the key enabler for such
a system.

In this work, we propose a low power platform for wearable
computing and ego-vision, based on a heterogeneous system
composed by a Texas Instruments MSP430 microcontroller and
a ultra-low power parallel accelerator, the PULP3 chip. The
system is equipped with ultra-low power sensors: an analog
camera, a microphone, acceleration and temperature sensors.
We deploy this platform on a wearable smartwatch device. The
proposed approach enhances the application scenarios where
on-board processing (i.e. without streaming out the sensor
data) enables intensive computation to extract complex features.
The smartwatch platform forms a challenging environment for
vision due to lighting, obstruction and continuous motion; we
show that by using one of the algorithms enabled by our
platform (a convolutional neural network) it is possible to
extract meaningful information even in this case. We also show
that the proposed platform can potentially support complex and
demanding workloads, which justify its usage in the smartwatch
platform we deployed as well as in other smart wearable
devices. In fact, the proposed platform provides a highly
effective accelerator that could be exploited for other emerging
wearable applications, to perform low power classification
directly on-board of wearable devices [16][17]. Our claims
are i) that the availability of more computing power enables
extraction of more complex features out of the same simple
ultra-low power sensors; and ii) that our platform can support a

workload orders of magnitude more complex than what can be
supported by current off-the-shelf wearables, within a similar
power envelope.

The paper is organized as follows: Section II describes
related work; Sections III and IV detail the system architecture
and classification approach; Section V describes our results.

II. RELATED WORK

Due to the need for performance that is typical of many
approaches based on machine learning, most research on wear-
able sensor systems has focused on smartphones, that provide
an ideal platform from this point of view as they provide a
personal portable, sensor-rich and powerful computing platform
[18][19]; they can also be used as a hub for a network of
smaller sensors. Using the MEMS sensors embedded in most
modern smartphones it is possible to perform tasks such as
activity recognition, crowd sensing and fall detection with great
effectiveness [6][20], using classification techniques such as
decision trees, k-nearest neighbors, support vector machines
(SVMs), naı̈ve Bayes and neural networks [21]. For example,
Porzi et al. [11] build a wearable system for gesture recognition
to help visually impaired using a Sony Xperia Z smartphone
and a Sony Smartwatch. They make use of an optimized kernel
method (global alignment kernel) for discrete-time warping
in SVMs, allowing to map similar gestures when moving at
different speeds.

However, a smartphone-based wearable may not be the best
choice, due to its limited battery duration and the requirement
of wireless connection with the body sensors, non real-time
operation (as it depends on the complex operating system
running on the phone) and loose coupling with the body (e.g.
it is easy to forget the phone anywhere). The main alternative
for body sensing is based on low-power microcontrollers [1]
that usually run either bare-metal code or a very small real-
time operating system such as FreeRTOS. Examples of ultra-
low power microcontrollers that are able to work in a power
budget of less than 50 mW include the SiliconLabs EFM32
[22], the Texas Instruments MSP430 [23] series of MCUs, the
Ambiq Apollo [24], and the STMicroelectronics STM32-L476
[25]. A typical approach is to employ a heterogeneous set of
sensors such as accelerometers, acoustic sensors, gyroscopes
and thermometers on the human body to capture characteristic
repetitive motions, postures, and sounds of activities [26] that
can then be used for context classification. Battery-less and/or
harvesting-based systems including several sensors and based
on simple microcontrollers have been recently proposed in
literature [27][28][29]. These solutions typically enable efficient
data collection but onboard microcontrollers are capable of
only minimally complex data analytics, needing an external
computing platform (smartphone, cloud) if more complex
computation is needed, reducing the portability and constraining
the usability of the system.

Many wearable systems do not include cameras because
it is difficult to extract meaningful data out of them while
keeping a very tight power and energy budget. On the other
hand, it is well known that cameras are a very effective source
of information regarding one’s own body [30][9], especially
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taking advantage of the preferential ego-vision point of view.
To exploit this richness under the tight energy constraints, it
is necessary to couple a very efficient imaging sensor with
a computing platform that can provide enough throughput to
extract significant information out of the frames. Research
on ultra-low power cameras focuses on relatively small gray-
scale imagers [31][32][33]. These cameras often output analog
pixels, needing an external ADC to convert the frames to
the digital domain and complicating the classification task
due to the amount of noise. This further strengthens the need
for a relatively high-performance computing platform to be
embedded in the sensor node.

To try and overcome the energy efficiency limitations of
current commercial ultra-low power platforms, researchers have
to extract as much energy efficiency as possible out of silicon. A
well known approach is near-threshold computing, that exploits
the fact that CMOS technology is most efficient when operated
near the voltage threshold, where delay and dynamic power are
simultaneously small and therefore total energy per operation is
minimal [34]. For example Ickes et al. [35], SleepWalker [36]
and Bellevue [37] show examples of near-threshold ultra-low
power microcontrollers, with the latter also exploiting SIMD
parallelism to improve performance.

Microcontrollers can also exploit accelerators as ASICs
[1][38] to achieve a higher level of performance; however,
such approaches are very limited in flexibility, which negatively
impacts economy of scale and cost. Instead, a key enabler to
achieve high performance with little or no sacrifice to flexibility
is parallel computing, which is an attractive option for highly
parallel workloads such as those of computer vision. Operating
multiple cores in parallel allows for the inherent data- and
task-parallelism of the algorithm at hand to be exploited, while
the energy costs of the platform are partially shared between
the cores improving overall efficiency. Traditionally, in the
embedded world parallelism has been exploited by means
of special-purpose DSPs relying on SIMD or VLIW. Two
examples are the Qualcomm Hexagon DSP [39] that accelerates
a Snapdragon 800 with VLIW DSPs and is effective for vision
and context inference tasks [40], as well as the Neon SIMD
extensions that are integrated in many ARM cores [41]. All
these platforms, however, are not meant to couple with a
low power microcontroller, as they are designed for high end
embedded architectures with DRAM, memory management and
complex operating systems with power budget in the hundreds
of milliwatts at chip level, up to a few watts at system level.

Table I shows an overview of some state-of-the-art activity
recognition works. The proposed algorithms target fall detection
using the camera sensor as main device, coupled with low
power computational resources. In contrast with our work,
neither of the two architectures is based on a low-power
microcontroller. CITRIC [42] is based on the Intel XScale mi-
croarchitecture (with ARMv5 ISA) running at about 600 MHz.
It was initially developed as a standalone video processing node.
Exynos 5410 Octa [43] is a commercial system-on-chip by
Samsung that can be found in several smartphones such as the
Samsung Galaxy S4. It is based on an ARM big.LITTLE
architecture and contains 4 Cortex-A7 and 4 Cortex-A15

Algorithm Architecture Accuracy Power
HOG [13] CITRIC[42] 87% ∼ 1W[42]

Optical Flow [13] CITRIC[42] 85% ∼ 1W[42]

Erden et al. [12] Exynos 5410 [43] 74% ∼ 3W[43]

Table I: Order of magnitude of power consumption and average
accuracy in fall detection and activity classification for several
related works.

cores (with SIMD extensions) plus a PowerVR SGX544 GPU.
Compared to our work, the considered platforms require order
of magnitude more power, while targeting a similar class of
algorithms in terms of computational requirements.

More recently, research has been very active on exploitation
of intrinsic data and task parallelism with sub-100mW multi-
core platforms; by coupling parallel computing with low power
techniques such as near-threshold computing, it is possible to
maximize the overall energy efficiency of a platform. Fick et
al. [7] propose Centip3de, a large-scale fabric of clusters of 64
Cortex M3 cores, integrated in a 3D matrix and clocked at a
very low frequency of 10MHz; it can reach a peak performance
of 0.64 GOPS. Another similar platform is DietSODA [44] that
features 128 SIMD lanes working at relatively low frequency
(50MHz), reaching up to 6.4 GOPS. On the commercial
side, NXP has recently proposed an asymmetric dual-core
microcontroller, the NXP LPC54100 [45], that couples a low-
power Cortex-M0 for sensor control with a more powerful
Cortex-M4 that can be seen as an accelerator.

Our work focuses on enabling high-level visual feature
extraction in a low power wearable device. To this end, we
augment a low power smartwatch platform with a parallel
ULP programmable accelerator that was designed according
to the two guidelines that were described with regard to the
related work: near threshold and parallel computing. Our first
objective is to provide a platform that allows for efficient
context classification using visual features at a low power and
energy budget; moreover, we want to demonstrate how such
a platform can enable many future developments in the fields
of vision and ego-vision embodied in low power wearable
devices.

III. SMARTWATCH SYSTEM ARCHITECTURE

This section describes the system architecture of the proposed
smartwatch, whose high-level diagram is shown in Figure 1.
The smartwatch is composed of a low power micro-controller
coupled with an ultra-low power accelerator and a set of
four different sensors: camera, microphone, accelerometer and
thermistor. The proposed architecture extends a previous work
by Magno et al. [46] that did not include the ultra-low power
accelerator.

The main system runs on a 2V power supply, powered by a
power harvester BQ25570 from Texas Instruments. The power
harvester is connected to a lithium-ion polymer rechargeable
battery and can harvest from solar cells and thermal electric
generators (TEGs). For the camera and for the microphone
additional supply voltages are needed; the microphone is
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Figure 1: Smartwatch system architecture.

supplied at 1.2V by a Linear Technologies LTC3406ES5-1.2
buck converter featuring only 1 µA leakage in active mode and
the camera with a buck converter TPS62740 (with quiescent
current of 460 nA) from Texas Instruments. In idle mode, all
sensors can be switched off: camera and microphone are power-
gated and controlled by the microcontroller. The accelerometer
features a very low-power idle mode that can be set by the
microcontroller, and has wake-up by interrupt capability. During
idle mode the microcontroller can be put in ultra low power
mode or deep sleep, waiting respectively on SPI communication
or alternatively on a pin interrupt.

A. MSP430 core

The central core of the smartwatch is the 16-bit
MSP430FR5969 microcontroller from Texas Instruments [23].
This microcontroller incorporates 2kB of SRAM and 64kB
of non-volatile Ferroelectric RAM (FRAM). The MSP430 is
well known for its ultra-low power consumption as it supports
several power modes (one active mode and seven low-power
modes), enabling fine-grain control of which components of
the MCU are active. Current consumption in active mode is
of 800 µA at a clock frequency of 8MHz; this drops to 20 nA
in low power mode LPM4.5.

B. PULP accelerator

In this work, we augment the smartwatch with an accelerator
based on the PULP platform, a scalable clustered multicore
designed to achieve high energy efficiency over a wide range
of application workloads [47][8]. In particular, we focus on
PULPv3, the third embodiment of the PULP architecture,
fabricated in 28 nm FD-SOI ; we emulated this version of
PULP with a RTL-equivalent FPGA emulator based on a Xilinx
Zynq Z-7045 device. It features a quad-core cluster integrated
with 128 kB of L2 SRAM memory and several IO peripherals
accessible through a system bus such as two QSPI interfaces
(one master and one slave), GPIOs, a bootup ROM and a
JTAG interface suitable for testing. The QSPI interfaces can be
configured in single or quad mode depending on the required
bandwidth, and they are suitable for interfacing the SoC with
a host microcontroller such as the MSP430. In our smartwatch
platform, the MSP430 acts as an SPI master with respect to
PULP allowing to offload code and data and to control the
accelerator. Additionally, two interrupt lines (one per direction)

can be used to notify the accelerator or the host (respectively) of
a notable event, e.g. to wake up the accelerator or to notify the
host of the completion of an accelerated task. The architecture
of the PULPv3 SoC is shown in Figure 2).

The PULP cluster is based on 4 OpenRISC-ISA cores with
a power-optimized microarchitecture called OR10N [48] and a
shared instruction cache (I$ ). The OR10N core is enhanced
with respect to the original OpenRISC reference implementation
by adding a register-register multiply-accumulate instruction,
vectorial instructions for arithmetic on short and char vectors,
two hardware loops and support for unaligned memory access.
To avoid the energy overhead of memory coherency, the cores
have no data cache and no private L1 memory: they all share a
multi-banked tightly coupled data memory (TCDM) that acts as
a shared scratchpad at L1 [49]. The TCDM is further divided
in SRAM and standard-cell memory (SCM) banks to allow
the cluster to work at very low voltage [50]. A lightweight
multi-channel DMA directly connected to the TCDM can be
used for fast communication with the L2 memory and external
peripherals [51]. The PULP platform is fully programmable
using the standard OpenMP programming model [8], which
enables relatively easy implementation of parallel algorithms
leveraging a low-overhead runtime.

To enable fine grained frequency tuning, a Frequency-Locked
Loop [52] and two clock dividers (one for the cluster and
one for peripherals) are included in the SoC. All cores
use the same clock, but they can be separately clock-gated
to reduce dynamic power or boosted with body biasing. A
HW synchronizer helps synchronization between the cores and
manages sleep states and clock gating in a fast, centralized
fashion. This feature is directly integrated in the threading
runtime and transparent to the user.

Figure 3 clarifies in a quantitative way why PULP is
a highly effective accelerator for highly power constrained
microcontroller level systems. The plot shows the power
consumption of several low-power MCUs (including the
MSP430) and of PULP against their peak throughput in terms
of operations per second. The operating points taken into
account include all supply voltages from VDD =0.5V to
VDD =1.0V in 100mV steps. In the case of the MCUs
the operating points are chosen from those reported in their
data sheets, while for PULP they are those considered during
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power analysis (see Section V). Figure 3 takes into account 4
state-of-the-art low-power microcontrollers: Texas Instruments
MSP430 [23], SiliconLabs EFM32 [22], Ambiq Apollo [24]
and STMicroelectronics STM32-L476 [25]; the latter two
feature a relatively powerful ARM Cortex-M4 core. By
comparing the MCUs and PULP in several operating points, the
plot highlights the trade-off between the two kinds of platforms:
on one hand, PULP relinquishes many features as a MCU such
as those for interfacing with many different kinds of analog
sensors and ultra-low current duty-cycle management; on the
other hand, thanks to its architecture optimized for parallel
and near-threshold computing and to its deeper integration
technology, PULP is vastly more energy efficient than the
MCUs. This energy efficiency margin can be used to provide the
same performance at a lower power cost, or higher throughput
within the same power envelope, and it is essentially the
necessary precondition for acceleration [53].

C. Sensors

The smartwatch hosts four different sensors. The first sensor
is an ultra-low power analog gray-scale 112×112 Centeye
Stonyman CMOS camera [33], which has a focal plane size
of 2.8mm×2.8mm and a pixel pitch of 25 µm in an active
power envelope of 2mW@3.3V (with quiescent power as
low as 30 nW). The camera can take a new picture every
∼ 50ms. The brightness values of each pixel is read out row
by row while the pixel address is changed by short pulses
on the control input pins. As the camera is intended for
ultra-low power application, the camera does not do any on-
chip preprocessing (e.g. automated exposure adjustment). The
camera comes on a pre-soldered PCB containing the image
sensor and a lens and is connected to the smartwatch by a socket
connector. The camera is plugged directly to the PULP vision
accelerator via an ADS7042 ADC, as shown in Figure 1, while
the other sensors are plugged to the MSP430 microcontroller
via SPI (accelerometer) and the internal ADC of the MSP430
(microphone, thermometer).

The accelerometer is an ultra-low power ADXL362 from
Analog Devices with high resolution (down to 9.8mm/s2).
While sensing at 100Hz, it needs 1.8 µA at a supply voltage
of 1.8V, which are reduced to 10 nA in standby mode. The
accelerometer features a burst mode including a FIFO buffer,

that allows to store the acquired sensor data inside the sensor
while keeping the MCU asleep. To connect the MCU to the
accelerometer, the SPI interface is used with the addition of
two status signals that can be used to interrupt or wake-up the
microcontroller, e.g. when acceleration exceeds a predefined
threshold or the FIFO buffer is full. As a microphone, the
smartwatch board includes the low power INMP801 which
was mainly designed for hearing aids and consumes 17 µA
at a supply voltage of 1.2V, with an output voltage in the
range of 410mV-730mV. The audio signal is amplified by a
TI LMV951, connected to the internal ADC of the MSP430,
which is set to sample the audio signal at 8 kHz. Finally,
the temperature sensor is a Negative Temperature Coefficient
Thermistor (NTC) from Epcos/TDK used in a voltage divider
configuration and is also connected to the ADC of the MSP430.
The temperature sensor is directly supplied by an output pin
from the microcontroller such that power is only consumed
when temperature is measured and no additional load-switch
is needed.

IV. CONTEXT CLASSIFICATION

In this section, we describe the techniques that were used to
extract features out of the various sensory data and to classify
it in one of several contexts. As target platforms, we consider
both the non-accelerated smartwatch introduced in Magno et
al. [46] and the accelerated version we described in Section III.
As a demonstration of a context classification application, we
used the features extracted to infer whether the smartwatch
user is in one of five “contexts”: morning preparation, walking
outdoors, public transportation, in the car and in the office.
The full dataset used for training the classifiers comprised
∼35000 data points, each including an image acquired from the
Stonyman camera and data from the other sensors. The dataset
was collected by a total of 15 people wearing a smartwatch
prototype for a combined total of 15 hours in different contexts
corresponding to the five classes. Acquired images, recorded
audio and temperature and acceleration measurements were
captured synchronously and kept correlated within the dataset
by timestamping them. Data was divided in time frames of 1 s,
overlapped by 500ms. A single camera shot is shared between
5 frames (a 0.4Hz rate), audio/accelerometer acquisition is
continuous (8 kHz and 100Hz rates, respectively) and there is
a single thermal measurement per frame (at 2Hz). All data
was fed within the various algorithms we describe in Sections
IV-A and IV-B with no preliminary preprocessing. Figure 4
shows an example data point for the temperature, accelerometer
and camera sensors.

A. Feature Extraction on the MSP430

The first step of context recognition is extracting features out
of raw sensor data. To this end, the data is fed into an algorithm
that collapses it into a compact feature space by means of a
reduction operation; one of the simplest conceivable features
is for example the average of all inputs. Most algorithms, such
as SVMs and CNNs, use a more complex technique to extract
features, by first projecting the input data into an intermediate
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Figure 4: Example of the temperature, accelerometer and camera sensor outputs from the dataset.

high-dimensional space where the selected features are linearly
separable and can be more easily extracted. If the features are
selected correctly, the final classifier (e.g. the context classifier
in our case) can be simpler and more effective; however, in the
case of the proposed smartwatch, it is necessary to trade off
the necessity to extract high level features against the limited
available computing capability.

1) Camera: Vision sensors in a smartwatch can potentially
produce a huge amount of useful data on the person wearing
it. However, extraction of high-level features is not possible on
low power microcontrollers used in wearable devices, as the
MSP430, due to the computational burden of complex feature
extractors used in the machine vision field. As a consequence,
we consider only very simple features to be computed on
the MSP430. In the context of this work, we consider three
features: pixel average intensity, intensity variance and max-
min difference.

2) Accelerometer: The accelerometer is widely used in
many applications, being generally recognized as one of the
most important sensor providing contextual information; when
mounted on a smartwatch, it can be used to distinguish the type
of activity that the user is doing (e.g. drinking a coffee, typing,
etc), and hence the most probable context he is in. For each
of the acceleration directions, we define two main features:
energy, defined as the cumulative square sum of acceleration
over a window of samples; and acceleration entropy, defined
as

Haccel =
∑N−1

i=0

(
|âi| · log2 (âi)

)
(1)

where â is the normalized acceleration.
3) Microphone: The microphone is a powerful sensor to

distinguish one context from another, because every environ-
ment can differ in its audio characteristics. The first audio
feature we considered is the zero-crossing rate on frames of
the duration of 0.5 seconds, as a first-order approximation
of the tone pitch. The other features depend on a frequency
domain representation of the audio signal; we used a 1024
point Fast Fourier Transform (FFT) both as a feature itself and
to compute a set of higher level features: 16 Mel Frequency
Cepstrum (MFC) coefficients, which represent the human ear
perception of a given physical frequency and are obtained
by Dirichlet bandpass filtering of the frequency-domain audio
signal.

4) Temperature: Temperature helps distinguishing outdoor
from indoor environments in a given season. Moreover the

Conv
Layer
5x5

32 feat.

Pool
Layer
4:1

32 feat.

Input
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Full
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Figure 5: small CNN architecture for feature extraction on
PULP.

corresponding sensor has by far the lowest power consumption,
which makes it even more attractive. The only feature of interest
we considered is the average over a window of samples.

B. Visual Feature Extraction on PULP

The availability of the PULP accelerator makes it possible to
implement much more complex feature extractors. In particular,
the information coming from the camera is decidedly under-
utilized in the MSP430 due to sheer amount of computations
that would be necessary to extract complex features from an
image. Conversely, PULP is well-suited for acceleration of
vision kernels due to the amount of algorithmic parallelism
available. In the accelerated smartwatch, we can afford to
augment or replace the three features available for the camera
(average, variance, max-min difference) with more complex
algorithms.

In particular, we focused on a simplified version of a
feature that is usually available in higher level computer
vision platforms: a Convolutional Neural Network (CNN) [54].
Full-fledged CNNs are state-of-the-art in many current visual
classification, detection and scene understanding benchmarks
using big networks designed to run on relatively high per-
formance platforms such as GPUs [55][56][57]. However, in
this case (as is shown in Figure 5) we consider a very small
CNN architecture that begins with a strong reduction in the
dimensionality of the input (using a 4:1 max-pooling layer)
to reduce the computational complexity of the model. Our
CNN implementation is based the CConvNet library [43], that
takes advantage of the OpenMP programming model for better
performance on the parallel PULP platform.

C. Sensor fusion and Classification

The sensor fusion and classification stage is based on a
Decision Tree (DT), one of the simplest and most widely



7

applied supervised classification techniques [58]. We selected
this technique in particular because of the need of an algorithm
with low computational complexity and high energy efficiency
in inference, constraints that made the DT a suitable choice
for our specific domain. We use the Decision Tree as the final
classification stage, feeding it with all features described in
Sections IV-A and IV-B. Inference works by exploring the
tree, starting from the root node until one of the leaf nodes
is reached which point to the most probable activity class.
During the tree traversal for classification each node compares
the value of its associated feature to a pre-learned threshold to
decide on which branch to take next.

The specific algorithm we used to create the tree is based on
the continuous C4.5 algorithm [59], resulting in a single tree
that takes in account all the features evaluated by the MSP430
and by PULP. The C4.5 algorithms creates a decision tree which
is iteratively composed of nodes with four attributes: feature f ,
threshold T and two children nodes. When used for inference,
the C4.5 algorithm starts at the root evaluating the value of
its feature froot; then, depending on whether the computed
froot is smaller or bigger than the threshold Troot, it continues
with the left or right child node. This procedure is continued
until a leaf node is reached; this node is tagged with the most
probable context class. For the supervised learning C4.5 uses a
divide and conquer technique. The C4.5 algorithm tries to split
the dataset into two subsets with as much information content
as possible, i.e. with the activity classes as uniform as possible
in each subset; the measure of this uniformity is entropy in the
sense of information theory. We defer to Quinlan et al. [59]
for the detailed learning algorithm explanation.

A possible drawback of the C4.5 algorithm is represented
by overfitting, which can derive from the usage of continuous-
valued features and from the limited amount of training data
available in the dataset. To limit this phenomenon, we used a
top-down pruning approach [60].We used leave-one-out cross-
validation [61] for evaluation. Thus, for each collected sequence
of activity a decision tree was trained based on the full set
excluding the test sequence; the results we present in Section V
are averaged over all test sequences.

V. RESULTS

In this section we evaluate the accelerated smartwatch
platform in terms of power and execution time, as well as
in the accuracy of the context classification task. As a term of
comparison, we use the non-accelerated smartwatch proposed
in Magno et al. [46]. MSP430 code was compiled using the
ti-cgt-msp430 4.4.6 toolchain, while for PULP we used a
custom OR10N toolchain, based on GCC 5.2. We estimated
power consumption for PULP using backannotated switching
activities from three input vectors in power analysis: idle,
matmul (which simulates a case where the cores are all running,
with a low pressure on the shared memory) and dma (which
simulates a case where the DMA is running, with high pressure
on memories). Then, we run our tests on an FPGA-based
emulation platform for PULP [53], collecting active and idle
cycles for cores, DMAs and interconnects. We model leakage
power, dynamic power density and maximum clock frequency

at each operating point after the post-layout backannotated
timing and power analysis results for the latest PULP chip. For
this purpose, we considered the VDD = 0.5V operating point,
that shows the best energy efficiency according to Figure 3. In
this operating point, fclk is 50MHz. The power consumption
for the MSP430 and the peripherals were measured during idle
and active mode where the microcontroller was supplied by
2V and was operating at 8MHz.

A. Context classification

To compare the non-accelerated platform of Magno et al.
with our proposed PULP-accelerated platform, we considered
a set of combinations of several feature extractors, fused inside
the decision tree as explained in Section IV-C. In particular, we
consider the following feature extractors: temp, cam, mic(no
fft), mic, accel and their combinations indicate tests using
the features described in Section IV-A, which work without
using the accelerator in the same way as in Magno et al. [46].
mic(no fft) does not include features based on the frequency
domain representation of the audio signal, while mic includes
all audio features. all(no fft) and all indicate that all the
features described in Section IV-A (temp+cam+mic+accel)
are used (without or with FFT-based features, respectively);
in the case of the non-accelerated platform of Magno et al.
[46], all of them are executed on the MSP430, whereas in
the accelerated platform we execute the extraction of features
from the camera on PULP and that of the other features on
the MSP430. cnn is a test running on the accelerated platform
where the classifier is the small CNN described in Section IV-B;
in this case the Decision Tree is not used. all+cnn, finally,
considers the case in which we use the accelerated smartwatch
with all non-visual features of Section IV-A extracted on the
MSP430, while we also integrate the output of the small CNN
of Section IV-B into the Decision Tree.

Figures 6a and 6b focus on a preliminary analysis of our
baseline, i.e. the non-accelerated platform of Magno et al.
[46]. We show time and energy costs of each sensor divided
in acquisition and feature extraction (i.e. computation); the
thermistor is orders of magnitude less expensive and is thus
not shown. The data shown does not consider the possibility
of overlapping sensor acquisition with computation, which
would further reduce the overall time. The accelerometer
and the microphone need a long time to acquire data (on the
order of 1 s), while in the non-accelerated platform the camera
is more than 20× faster, taking only 61 µs to acquire data.
Similar time/energy are spent in the non-accelerated platform
to extract audio and camera features, but while for the former
it is possible to extract relatively complex frequency-domain
features, for the latter the same energy is spent to extract
very simple average-based features. The Figures also report
energy/time in the proposed accelerated platform when using
the simple CNN of Section IV-B; the external ADC connected
to PULP is also more efficient than the internal MSP430 ADC,
providing a significant efficiency improvement to the platform.
Overall, feature classification energy is reduced by using the
PULP accelerator even if the feature extractor is much more
complex, as more thoroughly exposed in the following.
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Figure 6: Time and energy to acquire and elaborate features in the non-accelerated Magno et al. [46] platform and in the
proposed platform when using the small CNN for camera feature extraction.
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Figure 7: Trade-off between context classification accuracy and energy/power, with annotated Pareto boundary for the non-
accelerated platform (dashed line).

Figure 7a plots accuracy versus energy per classification for
both the platforms being compared. The blue dots in the plot
refer to the non-accelerated case of Magno et al. [46], where
all computation is performed by the MSP430, while the red
ones refer to the PULP-accelerated one. Each dot is tagged
with the set active sensors and with the total classification
accuracy obtained, and the dashed line highlights the Pareto-
dominant points for the non-accelerated platform of Magno et
al. [46] in the accuracy-energy tradeoff. As could be expected, a
clear tradeoff between accuracy and energy is shown here; it is
necessary to spend more energy to obtain a better result in terms
of accuracy. It is interesting to observe that of the four points
where the camera is used in the non-accelerated platform, two
(mic+cam+temp, all) are Pareto-dominant, clearly indicating
that even with the very simple features that can be run on
the MSP430 the camera achieves a good level of separation
over the five classes considered (morning preparation, walking
outdoors, public transportation, in the car, in the office); in
particular, the fact that the results exceed those obtained with
the accelerometer alone confirms that sensor data from the
camera can be significant for the context recognition task.
The two PULP-accelerated points are both abundantly Pareto-
dominant in terms of accuracy per Joule, yielding up to 84%
accuracy when using all features and the CNN (all+cnn
case) while at the same time saving more than 400 µJ per
classification with respect to the best non-accelerated point

(all). The pure cnn case achieves a 64% accuracy comparable
to that available when using the audio features in the non-
accelerated platform, but at an energy budget per classification
that is 25× lower (∼91 µJ).

The two all and all+cnn points are relatively close in
terms of accuracy; adding the CNN we are able to get an
additional 3% of average accuracy on the five classes. Although
the difference in terms of average accuracy is small, a closer
look at the confusion matrices shows that the all+cnn case is
actually a significant improvement over the all one. Figure 8
shows that in the all case there are two sources of inaccuracy:
confusion between in the car and public transportation, and
confusion between walking outdoors and in the office. As a
consequence, only the accuracies of morning preparation and
walking outdoors are above 90%. The all+cnn eliminates the
second of these two inaccuracies, bringing the precision of in
the office above 90%. The confusion between in the car and
public transportation stays also in the all+cnn case; however,
in our opinion this can be justified by the objective similarity
of the two situations (sitting in a bus versus sitting in a car).

Figure 7b expands our analysis with the tradeoff between
accuracy and peak power, an important metric for wearable
systems as their small batteries are typically limited not only
in terms of total energy capacity but also in sustainable power
output. Accelerometer and thermistor contribute relatively little
to the total system power consumption; the main dominant
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costs are therefore the compute units (MSP430 and PULP),
the camera and the microphone. The first interesting point to
raise is that even when all sensors and compute units are kept
on, total system power peaks at ≈9mW, and that the addition
of the PULP accelerator increases this peak power by less
than 15% with respect to the peak power consumption of the
Magno et al. [46] platform. Moreover, by comparing Figures
7a and 7b, it is easy to observe that even if the peak power
consumption in the accelerated platform may be slightly higher,
the overall energy consumption (and thus average power) is
considerably lower, which means that if the platform is able
to provide ∼10mW of peak power, the accelerated platform
is convenient in terms of both energy and average power.

B. Visual feature extraction exploration

The simple visual feature extraction technique that we have
described for the use case of Section V-A demonstrates that it is
possible to use relatively complex ego-vision feature extraction
for the purpose of context classification on a low-power,
low-energy consumption platform. However, the example we
have shown is far from saturating the capabilities of the
PULP accelerator, that could be also used for more complex
functionality. In this section, we showcase how the availability
of PULP enables the implementation of much more complex
vision algorithms to implement more advanced ego-vision tasks
while keeping the power envelope within 10mW to 100mW.
To do this, we expand the set of visual features we consider
with two more tests that are more directly inspired to the
state-of-the-art in computer vision.

The first additional test is a bigger Convolutional Neural
Network, whose architecture is shown in Figure 9. Removing
the initial max-pooling stage and adding additional layers, the
computational complexity of this CNN is orders of magnitude
bigger than that of the one described in Section IV-B, though it
is still simpler than most models targeted at high performance
platforms, such as AlexNet [55] and GoogLeNet [56].

all (no cnn) all (with cnn)

96% 96%

93% 93%

60% 61%

83% 80%

76% 94%

Figure 8: Confusion matrices for all and all+cnn tests.
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Figure 9: big CNN architecture for feature extraction on PULP.

As a second additional test, we implemented an HOG+SVM
pipeline. Support Vector Machines trained on Histogram of
Oriented Gradient (HOG) features represent a de facto standard
across many visual perception tasks [62][63][64][65]. For our
evaluation, we run on PULP the same version of the HOG
algorithm originally proposed in [66]; using a 112x112 pixels
image we obtain 784 features, each one evaluated with respect
to 9 directions, which also correspond to the number of bins in
each histogram. The final descriptor, made up of 7056 elements,
is then used as an input to the SVM, where we consider a
Gaussian kernel with 256 support vectors for classification.
HOG was implemented by extending code from the VLFeat
library, presented in Vedaldi et al. [67], parallelized by using
the OpenMP programming model and optimized to work on
image strides, thus enabling overlap of data transfer and kernel
execution.

Figure 10 highlights how the difference in performance/Watt
between the MSP430 and PULP (first shown in Figure 3)
can be exploited to implement orders-of-magnitude more
complex functionality in terms of feature extraction. We show
a comparison in terms of energy in logarithmic scale; execution
time scales in a similar way; we also show the same tests
on a STM32L476 and Ambiq Apollo for enhanced clarity.
We consider to operate the MSP430 at 8MHz, the Apollo at
24MHz and the STM32 at 80MHz. For PULP we chose the
0.5V operating point that was also used in the previous Section,
corresponding to a 50MHz operating frequency. For the
microcontrollers, power considers only computation, discarding
data acquisition. In our platform, energy consumption is shown
split in four contributions: PULP computation, MSP430 code
offload (via SPI), data transfer from the ADS7420 ADC, and
MSP430 sleep time during the execution on PULP (in LPM4.5
mode while retaining register data). Note that it in the typical
use case, the code offload from MSP430 is performed once and
amortized over all iterations, as PULP will repeatedly execute
the same function. We consider feature extraction of all visual
features defined in this section and in Section IV-B: the original
features for the non-accelerated platform (mean, variance
and max-min difference); the two CNNs (cnn(small) and
cnn(big)); and HOG (divided in the histogram extraction,
hog(hist), and the SVM, hog(svm)).

Figure 10 clarifies how more complex vision pipelines are
within reach of the accelerated platform: the entire hog pipeline
on PULP takes only 69% more time and 4% more energy than
the variance test on the MSP430, while being more than
300× more complex in terms of elementary RISC operations.
For very small kernels, accelerated execution is less convenient
as they are fully dominated by data transfer from the ADC. To
fully appreciate the advantage of local on-sensor computation,
it is also interesting to compare these results with state-of-
the-art techniques for wireless data transmission. The most
efficient transmission techniques have been proposed in the
context of low-bitrate, low-range biomedical devices [68][69].
The transmitter proposed by Ba et al. [68] can work at up to
4.5 Mb/s with an energy consumption of 0.5 nJ per bit (or
even less at 11 kb/s) - which would mean 75 µJ to transfer the
112×112 12-bit image produced by our camera (in the same
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Figure 10: Energy comparison between PULP and several microcontroller platforms.

range of our results). However, these techniques are limited
to extremely low range communication, requiring a secondary
battery-powered device (e.g. a smartphone) to route data to
the cloud using a long range technique. In contrast, long range
transmission technologies for the IoT, such as LoRaWAN, are
at least 100× slower and consume up to 10× more power
[70], resulting in an overall energy consumption on the order
of 10mJ or more. This fully justifies our local computation
approach, which requires less then 1mJ even for the most
complex benchmark (cnn(big)).

C. Battery lifetime estimation

As mentioned in Section III, the system is supplied with two
harvester sources (TEGs and solar cells). On average, these
sources are able to provide ∼41 µW, while the system power
in deep sleep mode (with the MSP430 in LPM4 mode and
PULP and peripherals power-gated) is 38 µW. Assuming that
the platform mounts a small lithium-ion polymer 4V 150mAh
battery, in Table II we estimate the expected lifetime, knowing
the energy per acquisition from Section V-A (2.6mJ for all,
2.2mJ for in all+cnn).

Harvesting all all+cnn

idle (LPM4.5) No 661d 661d

always on No 9d 11d

every minute No 307d 333d

once a day No 660d 660d

always on Yes 9d 11d

every minute Yes 617d 732d

every 14m Yes ∞ ∞

Table II: Lifetime evaluation

Apart from the benefit in accuracy, the accelerated platform
is also beneficial in terms of battery lifetime. This benefit
steadily grows as we increase the interval between consecutive
acquisitions, up to complete autonomy (with harvesting) if
the interval is 14min or more.

VI. CONCLUSIONS

This work demonstrates the importance of vision in context
recognition for wearable applications and how it is possible
to extract meaningful features out of an ego-vision ULP
camera even when working in a very tight power envelope.

Using the PULP programmable accelerator, we enable the
implementation of vision algorithms of significant level of
complexity, while keeping the overall system power budget
below 10mW at peak. Our results have shown that, leveraging
a speedup as high as 500× on the computation of visual
features, the heterogeneous platform we propose can achieve the
same accuracy than our baseline [46] with a 25× reduction in
energy cost; or alternatively a significant accuracy improvement,
with 84% average correctness at 2.2mJ per classification.
Such a platform could be deployed directly on the human body
(on wearables such as watches, glasses, necklaces) and provide
a small, unintrusive device and with no need of mediation
through a smartphone, benefiting applications such as context
detection and advanced human interfaces through ego-vision
techniques. Moreover, it could constitute the “personal hub”
of a complex multi-device system where body-coupled sensors
cooperate with resident environmental IoT devices for enhanced
context understanding.
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[52] I. Miro-Panades, E. Beigné, Y. Thonnart, L. Alacoque, P. Vivet, S. Lesecq,
D. Puschini, A. Molnos, F. Thabet, B. Tain, K. B. Chehida, S. Engels,
R. Wilson, and D. Fuin, “A Fine-Grain Variation-Aware Dynamic Vdd-
Hopping AVFS Architecture on a 32 nm GALS MPSoC,” IEEE Journal
of Solid-State Circuits, vol. 49, pp. 1475–1486, July 2014.

[53] F. Conti, D. Palossi, A. Marongiu, D. Rossi, and L. Benini, “Enabling the
Heterogeneous Accelerator Model on Ultra-Low Power Microcontroller
Platforms,” in Proceedings of the 2016 Design, Automation & Test in
Europe Conference & Exhibition, DATE ’16, (San Jose, CA, USA), EDA
Consortium, 2016.

[54] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, eds.), pp. 1097–1105, Curran Associates, Inc.,
2012.

[56] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
arXiv:1409.4842 [cs], Sept. 2014.

[57] R. Girshick, J. Donahue, T. Darrell, J. Malik, and U. C. Berkeley,
“Rich feature hierarchies for accurate object detection and semantic
segmentation,” in Proceedings of 2014 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 580–587, 2014.

[58] X. Wu, V. Kumar, J. R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.
Hand, and D. Steinberg, “Top 10 algorithms in data mining,” Knowledge
and Information Systems, vol. 14, pp. 1–37, Dec. 2007.

[59] J. R. Quinlan, C4.5: Programs for Machine Learning. Elsevier, June
2014.

[60] C. Drummond, R. C. Holte, and others, “C4. 5, class imbalance, and
cost sensitivity: why under-sampling beats over-sampling,” in Workshop
on learning from imbalanced datasets II, vol. 11, Citeseer, 2003.

[61] P. Refaeilzadeh, L. Tang, and H. Liu, Encyclopedia of Database Systems,
ch. Cross-Validation, pp. 532–538. Boston, MA: Springer US, 2009.

[62] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pp. 1–8,
IEEE, 2008.

[63] H. Ameur, A. Helali, M. Nasri, H. Maaref, and A. Youssef, “Improved
feature extraction method based on Histogram of Oriented Gradients for
pedestrian detection,” in 2014 Global Summit on Computer Information
Technology (GSCIT), pp. 1–5, June 2014.

[64] O. Déniz, G. Bueno, J. Salido, and F. De la Torre, “Face recognition
using Histograms of Oriented Gradients,” Pattern Recognition Letters,
vol. 32, pp. 1598–1603, Sept. 2011.

[65] J. R. R. Uijlings, I. C. Duta, N. Rostamzadeh, and N. Sebe, “Realtime
Video Classification Using Dense HOF/HOG,” in Proceedings of
International Conference on Multimedia Retrieval, ICMR ’14, (New
York, NY, USA), pp. 145:145–145:152, ACM, 2014.

[66] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 886–893 vol. 1,
June 2005.

[67] A. Vedaldi and B. Fulkerson, “VLFeat: An Open and Portable Library
of Computer Vision Algorithms,” in Proceedings of the International
Conference on Multimedia, MM ’10, (New York, NY, USA), pp. 1469–
1472, ACM, 2010.

[68] A. Ba, M. Vidojkovic, K. Kanda, N. F. Kiyani, M. Lont, X. Huang,
X. Wang, C. Zhou, Y. H. Liu, M. Ding, B. Büsze, S. Masui,
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