
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

1 

Abstract—The increasing use of Active Front Steering (AFS) 

technology for obstacle avoidance raises the question of drivers’ 

interaction with vehicle automation. Mathematical models 

capable of representing such interaction are in demand for driver 

behaviour study. This paper presents the application of open-loop 

Stackelberg equilibrium to modelling a driver’s interaction with 

vehicle AFS control in an obstacle avoidance scenario, where both 

the driver and the AFS controller are exerting steering control to 

the vehicle. In this paper, such driver-AFS interactive steering 

control is modelled as a leader-follower game. Mathematical 

expressions of the driver’s and the AFS controller’s steering 

control strategies are derived using the Linear Quadratic 

Dynamic Optimization (LQDO) approach and the Distributed 

Model Predictive Control (DMPC) approach. These two 

approaches are found to give identical control gains, which 

suggests their equivalence in representing driver-AFS interaction. 

The DMPC approach is found to consume far less computation 

time due to its numerical nature. Mathematical modifications to 

the steering control strategies are then introduced to allow 

practical implementation for a future experimental study. 

Simulation results including time histories of steering angles and 

vehicle responses are illustrated and discussed. 

 
Index Terms—Driver, Vehicle, Active Front Steering (AFS), 

Modelling, Game Theory  

 

I. INTRODUCTION 

HE use of Active Front Steering (AFS) technology [1] for 

assisting drivers in obstacle avoidance [2], [3] tended to 

increase the degree of complexity of the interaction between 

driver and vehicle. Since AFS technology allows a steering 

angle to be applied to vehicle road wheels independent of driver 

steering wheel angle, there is the possibility that the driver and 

the vehicle AFS controller compete for control, especially 

when the two hold different objectives. Such competition may 

jeopardize road safety. To this end, understanding drivers’ 

interaction with vehicle active steering control becomes an 

important need. In vehicle engineering process, mathematical 

models able to represent driver steering control behaviour have 

been widely used to support vehicle product development [4]. 

However, little effort so far has been put in to model a driver’s 

interaction with vehicle active steering control. It is expected 

that such models may allow deeper insights into cognitive 

behaviours of human drivers so that optimization of present and 

future vehicle automation becomes a possibility. 

Game theory has been widely used to model situations where 

two or more individuals make decisions that influence one 

another’s welfare [5]. Of particular note here is the work done 

by Braun et al. [6] who constructed a noncooperative game 

model for predicting human players’ hand movements in a 

rope-pulling game. Good agreement was found between model 

prediction and experimental measurements. This indicated that 

human sensorimotor interaction can be quantified in a game 

theoretic framework. Enlightened by this, game theory is used 

in this paper to represent a human driver’s steering interaction 

with vehicle AFS control, where the driver and the AFS 

controller are modelled as game players. Particular focus is the 

application of Stackelberg equilibrium to the derivation of the 

driver’s and the AFS controller’s steering control strategies, 

with the information pattern restricted to be open-loop. In 

preparation for such work, definitions of strategy, Stackelberg 

equilibrium, leader-follower game, and information pattern are 

given in the next paragraph, followed by a discussion on the 

rationality of using Stackelberg equilibrium for investigating 

driver-AFS interactive steering control problem. 

A strategy of a game player represents a mapping of the 

game’s states to the player’s action [7]. An equilibrium is a 

strategy set composed of each player’s optimal strategy, i.e., the 

strategy maximizing the player’s welfare [8]. A Stackelberg 

equilibrium is an equilibrium that emerges in a leader-follower 

game. In such a game, one player acts as the leader and the 

other players act as followers. The leader determines his or her 

strategy by taking into account all the followers’ strategies 

whilst each of the followers responds to the leader’s action by 

sticking to his or her optimal response [9]. Accordingly, a 

Stackelberg equilibrium is composed of the optimal strategies 

of the leader and the followers. These strategies are therefore 

named Stackelberg strategies. The information pattern of a 

game depicts players’ knowledge of the states of the game [10]. 

The open-loop information pattern indicates that only the initial 

states of the game is known to players whilst closed-loop 

information pattern means that some of the intermediate states 

of the game are known. Such a difference can be illustrated 

using Fig. 1. This figure shows how a discrete system evolves 

as its players play games continuously. )0(w  represents the 
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initial state of the system, i.e. the state at time step 0 along the 

system evolution axis. At this time, the players start to play a 

game. The game comprises a number of stages from stage 0 to 

N. The state of this game at stage 0 is expressed as )0|0(w  

where the 0 to the right of the vertical bar symbol “|” represents 

time step whilst that to the left indicates game stage. At stage 0, 

each player applies an action to the system, causing the state of 

the game to transit to )0|1(w  and the game to move to stage 1. 

This then repeats over the following stages, causing the state of 

the game to transit in succession and finally to reach )0|(Nw  

at stage N. As a result of the N-stage game played, the state of 

the system evolves to )1(w  and time step 1  comes. At each 

future time step the players play a N-stage game, which pushes 

the system to evolve. At this point, a conclusive remark can be 

made that at an arbitrary time step k , the state of the system is 

)(kw , the initial state of the game at this time step is )|0( kw  

which should equal )(kw , and the following intermediate 

states of the game can be expressed respectively as )|( kjw  

for Nj  ,3... ,2 ,1 . With regard to the N-stage game played at 

time step k, the open-loop information pattern refers to the 

situation where players only know )|0( kw whilst the 

closed-loop information pattern implies that the players have 

knowledge of some of the intermediate states )|( kjw . 

The interaction between driver and vehicle AFS control in 

obstacle avoidance may be modelled as a leader-follower game. 

Assuming that an obstacle ahead of the vehicle was detected by 

an on-board sensing device, the vehicle AFS controller will 

plan a collision-free target path in response and, if necessary, 

apply steering angles to guide the vehicle to follow the target 

path, such as that described in [3] or [4]. However, the driver 

might try to control the vehicle to follow another path generated 

according to his or her cognition of the situation. If these two 

paths conflict, the driver and the AFS controller would possibly 

struggle for the governance of vehicle path following. Now, 

considering that the AFS controller employs a steering control 

strategy that partly neutralizes the driver’s steering wheel angle 

action, such as the one proposed by Anderson et al. [4], or 

similar to that developed by Tamaddoni et al. [11], the driver 

might react by taking the AFS controller’s strategy into account 

and compensating for its effects by applying additional steering 

wheel angle actions. In this case, the AFS controller bears close 

similarity to the follower in a leader-follower game whilst the 

driver behaves in a comparable way to the leader. 

Founded on the discussion made in the previous paragraph, 

the present paper addresses the application of Stackelberg 

equilibrium to the modelling of steering interaction between a 

driver and an AFS controller in a collision avoidance scenario, 

where the two controllers tend to follow different target paths. 

The driver and the AFS controller are respectively modelled as 

the leader and the follower of a leader-follower game, and their 

Stackelberg strategies for steering control are derived. The 

information pattern is restricted to be open-loop to reduce 

complications concerning intermediate game states. The 

present paper extends the authors’ initial study of the 

application of Stackelberg equilibrium to driver modelling [12] 

with a closer look at 1) the application of two mathematical 

approaches, i.e. Linear Quadratic Dynamic Optimization 

(LQDO) and Distributed Model Predictive Control (DMPC) to 

the derivation of the driver’s and the AFS controller’s 

theoretical Stackelberg steering control strategies, and 2) the 

necessary modifications to the theoretical strategies to allow 

experimental investigation of driver steering behaviour. To the 

authors’ knowledge, the research presented in this paper is 

amongst the first attempts to apply Stackelberg equilibrium in 

automotive engineering. Elsewhere in this area, there exist 

applications of Stackelberg equilibrium to energy management 

cases for hybrid electric vehicles, e.g. [13], [14]. 

The remainder of the article is organized as follows. Section 

II describes the driver-AFS interactive steering control scheme. 

Section III describes the use of LQDO and DMPC approaches 

to the derivation of the driver and AFS theoretical Stackelberg 

steering control strategies. Section IV presents comparisons of 

the numerical results from the two approaches. Section V 

explains modifications to the theoretical Stackelberg strategies 

for practical implementation. Section VI draws conclusions. 

II. DRIVER-AFS INTERACTIVE STEERING CONTROL SCHEME 

The driver-AFS interactive steering control scheme to be 

discussed throughout the paper is illustrated in Fig. 2. This 

scheme is identical to the one proposed in [12]. It outlines how 

a human driver might interact with an AFS controller via 

steering control in a leader-follower game. 

Under such a scheme, the AFS controller is designed to 

determine its steering angle action )(2 k  at time step k based 

on the AFS target path )(2 kR , the vehicle state vector )(kx , 

and the driver’s steering wheel angle )(1 k . Conceptually, the 

AFS controller’s steering control strategy can be expressed as a 

function of )(2 kR , )(kx , and )(1 k , such as 

))( ),( ),(()( 1222 kkkfk  xR                        (1) 

)(2 kR  can be planned by using various trajectory planning 

techniques, as described in [3]. )(kx  comprises vehicle lateral 

velocity )(kv , yaw rate )(k , lateral displacement )(ky  and 

yaw angle )(k . )(kx  can be sensed by motion sensors found 

in most commercialized vehicle dynamics control systems. 

)(1 k  can be sensed by the AFS controller via an angle sensor. 

)(2 f  represents a rule that the AFS controller adopts for 

determining its steering angle )(2 k . The )(2 f  discussed in 

 
Fig. 1.  Evolution of  a discrete system with continuous game play 
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the present paper incorporates two aspects: 1) determination of 

a steering angle able to guide the vehicle to follow the AFS 

target path )(2 kR , and 2) determination of an extra steering 

angle able to partially neutralize the driver’s steering wheel 

angle )(1 k . The latter aspect aims at mitigating possible 

negative impact of driver error in steering control. The AFS 

angle )(2 k  determined according to (1) is eventually a 

combination of the angles resulted from the two aspects. 

Similar implementations have been reported by Anderson et al. 

[3] and Na and Cole [15], separately. In both cases, the AFS 

strategies were found effective in controlling a vehicle to avoid 

obstacle while neutralizing driver erroneous steering activities. 

On the other hand, the driver is modelled to derive his or her 

steering control strategy through a cognitive process involving 

using his or her previewed road path )(1 kR , sensed vehicle 

state vector )(kx , and perceived AFS control strategy (1). 

Specifically, the driver is assumed to take into account the AFS 

steering control strategy (1) and intentionally compensates its 

effects via his or her own steering wheel control. Therefore, the 

driver’s steering angle )(1 k  satisfies the following equation: 

)))( ),( ),(( ),( ),(()( 122111 kkkfkkfk  xRxR         (2) 

where )(1 f  represents a rule of mapping.  

It can be seen from (1) that the AFS controller acts as the 

follower in the leader-follower game by simply responding to 

any driver steering angle )(1 k . On the other hand, the driver 

acts as the leader who takes into account the AFS strategy (1) in 

deriving his or her own strategy. Therefore, the driver’s and the 

AFS controller’s optimal steering angle actions would satisfy: 

)))( ),( ),(( ),( ),(()( 122111 kkkfkkfk    xRxR       (3) 

))( ),( ),(()( 1222 kkkfk    xR                         (4) 

where )(1 k  and )(2 k respectively denote driver and AFS 

optimal steering angles, and )(1 f and )(2 f are corresponding 

mapping rules. Here the word “optimal” indicates that )(1 k  

and )(2 k  respectively maximize the driver’s and the AFS 

controller’s individual welfare, or mathematically, minimize 

their individual cost functions. Details on the establishment of 

driver and AFS cost functions will be given in Section III.  

By rearranging (3), )(1 k  can be expressed conceptually as 

a function of )(kx , )(1 kR  and )(2 kR , that is 

))( ),( ),(()( 2111 kkksk RRx
                         (5) 

By substituting (5) into (4), )(2 k  can be also expressed as a 

function of )(kx , )(1 kR  and )(2 kR : 

))( ),( ),(()( 2122 kkksk RRx
                           (6) 

Following the definitions provided in Section I,  (5) and (6) can 

be therefore named the Stackelberg steering control strategies, 

and )(1 s  and )(1 s  are the mapping rules. It should be noted 

that (5) and (6) are essentially theoretical Stackelberg strategies, 

where the word “theoretical” is used against its counterpart 

“practical”. Detailed analytical expressions for (5) and (6) will 

be later provided in Section IV, where the differences between 

“practical” and “theoretical” strategies will also be explained. 

It can be seen from Fig. 2 that the dynamics of the vehicle are 

under influence of both driver and AFS control. In this paper, 

the vehicle is modelled to operate in linear regime at constant 

speed to reduce the complexity of driver-AFS interaction. To 

this end, the linear time-invariant “bicycle” model described in 

[16] is used. The vehicle dynamics equation can be written as:  

)()(      

)()()()1( 2211

kk

kkkk

Cxz

BBAxx



 
                 (7) 

where A  is the state matrix, 1B  and 2B  are respectively the 

input matrices associated with driver and AFS, and C is the 

output matrix converting )(kx  into output vector )(kz . )(kz

comprises vehicle lateral displacement )(ky and yaw angle )(k . 

 

III. DERIVATION OF THEORETICAL STACKELBERG STEERING 

CONTROL STRATEGIES 

In the Section II, both the driver’s and the AFS controller’s 

theoretical Stackelberg steering control strategy are written as 

functions of driver target path )(1 kR , AFS target path )(2 kR , 

and vehicle state )(kx , as shown by (5) and (6). In this section, 

two approaches, namely the Linear Quadratic Dynamic 

Optimization (LQDO) and the Distributed Model Predictive 

Control (DMPC) are used to derive the detailed expressions of 

(5) and (6) under the open-loop information pattern. Numerical 

results produced by the two approaches are then compared. 

 

A. Linear Quadratic Dynamic Optimization (LQDO) 

The Linear Quadratic Dynamic Optimization (LQDO) 

approach is widely used to treat game theoretic problems where 

the environment system can be described by a linear differential 

equation and the objectives of players can be represented as 

functions containing just affine quadratic terms [17]. In this 

subsection, the procedure for taking the LQDO approach to the 

driver-AFS interactive steering control problem as illustrated in 

Fig. 2 is discussed. This involves three steps: construction of 

environment equation, establishment of cost functions, and 

derivation of theoretical Stackelberg strategies. 

 

 
Fig. 2.  Driver-AFS interactive steering control scheme 
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1) Environment Equation 

In using the LQDO approach, an equation describing the 

environment system in which game players interact is required. 

Therefore this equation should be able to delineate both the 

evolution of vehicle dynamics and the updating of driver and 

AFS target paths. Following Sharp and Valtetsiotis [18], the 

driver’s target path can be updated using a shift register: 

)()()1( next

11r11r1 kkk rBRAR                        (8) 

where 



























)|(

)|1(

)|0(

)(

p

11

1

1

1

kN

k

k

k

r

r

r

R


, 





















0000

100

0

010

A






1r
, 





















1

0

0

B


1r
, and 

 )1|()( p

11

next

1  kNk rr . 

Here )(1 kR  is the target path previewed by the driver at time 

step k. )(1 kR  comprises a sequence of vectors from )|0(1 kr  

to )|( p

11 kNr , denoting future target vehicle orientations up to 

the driver’s preview horizon 
p

1N . Each )|(1 kjr  set 

) ,...2 ,1 ,0( p

1Nj   consists of two elements: target lateral 

displacement )|(1 kjr y  and target yaw angle )|(1 kjr , that is 










)|(

)|(
)|(

1

1
1

kjr

kjr
kj

y


r . 

)(next

1 kr  is a vector representing the target orientation set that will 

become )1|( p

11 kNr , i.e. the vehicle orientation set previewed 
p

1N  stages ahead at time step 1k . By repeating (8) the driver’s 

target path )(1 kR  can be updated in time. 

Similarly, the AFS target path can be updated using: 

)()()1( next

22r22r2 kkk rBRAR                     (9) 

)(2 kR , 2rA , 2rB , )(next

2 kr  and )|(2 kjr  ) ,...2 ,1 ,0( p

1Nj   

take similar structures to their counterparts in (8). A note to 

make here is that the dimension of vector )(2 kR  is 
p

2N  which 

denotes the AFS controller’s preview horizon. 
p

2N  can be 

different from the driver’s preview horizon
p

1N  in theory. 

Consequently, the environment system equation can be built 

up by merging target path updating equations (8) and (9) into 

vehicle dynamics equation (7), which gives: 

)()()()()1( next

22w11ww kkkkk FRBBwAw       (10) 
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2) Cost Functions 

In the driver-AFS interactive steering control problem, the 

driver at each time step k attempts to control the vehicle to track 

his or her target path )(1 kR  while considering the amount of 

steering effort. Hence, the driver’s objective can be formulated 

as to minimize a linear quadratic cost function that penalizes 

both vehicle path-following errors along )(1 kR  and his or her 

steering wheel angle actions. By adopting the style used by 

Lewis et al. [19], the driver’s cost function can be written as:  


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    (11) 

where )|(1 kjy  and )|(1 kj  ) ,...2 ,1 ,0( p

1Nj   respectively 

denote the lateral displacement and yaw angle errors evaluated 

by the driver along )(1 kR  at time step k, that is, 

)|()|()|( 11 kjrkjykj yy                           (12a) 

)|()|()|( 11 kjrkjkj                           (12b) 

and yq1  and 
1q  are corresponding path-error weights. 

The AFS controller can be designed to hold a similar cost 

function that weighs its path-following errors and steering 

control actions, such as the one proposed in [3] or [20]. Hence, 

the AFS controller’s cost function can be expressed as: 



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   (13) 

where  

)|()|()|( 22 kjrkjykj yy                           (14a) 

)|()|()|( 22 kjrkjkj                           (14b) 

and yq2  and 
2q  are corresponding path-error weights. 

It is worth noting that the essentials of a leader-follower 

game were not embodied in either of the two steps described 

above, i.e. construction of environment equation and 

establishment of cost functions. In other words, these two 

steps are in general use for several categories of driver-AFS 

interaction issues, as described in [12]. It is the methods by 

which cost functions (11) and (13) are optimized to derive 

the theoretical Stackelberg strategies that will distinguish the 

essentials of a leader-follower game. This will be explained 

in the following few paragraphs. 

 

3) Theoretical Stackelberg Strategies 

Since the information pattern is restricted to be open-loop in 

the present paper, the derivation of open-loop Stackelberg 

strategies reported by Hungerländer and Neck [21] is followed, 

adapting to the driver-AFS interactive steering control problem 

discussed. In preparation for the derivation, the driver’s and the 

AFS controller’s cost functions (11) and (13) are rewritten to 

(15) and (16) respectively: 
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Here 1H  is a matrix that transforms each intermediate 

environment state )|( kjw  ) ,...2 ,1 ,0( p

1Nj   into )|(1 kjwH

which consists of vehicle lateral displacement error )(1 ky  and 

yaw angle error )(1 k  from the driver’s perspective, that is 




























)|()|(

)|()|(

)|(

)|(
)|(

1

1

1

1
1

kjrkj

kjrkjy

kj

kj
kj

yy

 
wH . 

1Q  is the weight matrix for the driver’s path-following errors. 

2H  and 2Q  are corresponding matrices for the AFS controller. 

Based on the analysis provided by Hungerländer and Neck 

[21], the optimization problem of the AFS controller (follower) 

at time step k can be formulated as: 

1 ,...2 ,1 ,0for   )|(           

)|()|()|()|1(   ..

)(  min                                      

p

2

next

22w11ww

LQDO

2
                                                              2





Njkj

kjkjkjkjts

kJ

FR

BBwAw 



 

where the constraint is the equation governing the progression 

of the game played at time step k, or in other words, the game 

progression equation at time step k. It can be seen that this 

equation takes the same form as the environment system 

equation (10). The optimization problem (17) can be treated by 

using the Lagrange multiplier method [19] which starts with 

constructing the augmented cost function (18) with respect to 

the AFS controller’s original cost function (16): 

)]}|1()|()|(              

)|()|([)|1({
2

1
    

])|()|()|([
2

1
    

)|()|(
2

1
)(

next

22w

11ww

1

0

T

1

0

2

222

T

2

T

p

222

T

2

p

2

TLQDO

2

p
2

p
2

kjkjkj

kjkjkj

kjkjkj

kNkNkJ

N

j

N

j





















wFRB

BwAp

wHQHw

wHQHw






 (18) 

In (18), each )|1( kj p  where 1 ,...2 ,1 ,0 p

2  Nj  denotes 

a Lagrange multiplier at a particular stage of the game played at 

time step k. It can be seen that each )|1( kj p  is associated 

with an expression derived from the game progression equation. 

Hence the augmented cost function (18) equals its origin (16). 

(18) reaches its minimum when its partial derivatives with 

respect to all its variables equal zero, that is 

0
w






)|( 

)( LQDO

2

kj

kJ
 for 1 ,...2 ,1 ,0 p

2  Nj , and  0
w






)|( 

)( 
p

2

LQDO

2

kN

kJ
 

 (19a) 

0




)|( 

)( 

2

LQDO

2

kj

kJ


 for 1 ,...2 ,1 ,0 p

2  Nj             (19b) 

0
p






)|1( 

)( LQDO

2

kj

kJ
 for 1 ,...2 ,1 ,0 p

2  Nj          (19c) 

As a result, the necessary conditions for a minimum (18), or 

equivalently, a minimum (16) are: 

)|1()|()|(
T

w22

T

2 kjkjkj  pAwHQHp  

for 1 ,...2 ,1 ,0 p

2  Nj , with terminal condition 

)|()|( p

222

T

2

p

2 kNkN wHQHp   

)|1()|(0
T

w22 kjkj  pB  for 1 ,...2 ,1 ,0 p

2  Nj  

(20b) 

Three notes shall be made here. Firstly, the calculation 

involved in (19a) needs determination of )|( /)|( 1 kjkj w  

and )|( /)|( 2 kjkj w  over 1 ,...2 ,1 ,0 p

2  Nj . Since the 

open-loop information pattern was assumed, only )|0( kw , or 

equivalently )(kw  is known to the driver and the AFS 

controller whilst none of the intermediate states )|( kjw  for 

1 ,...3 ,2 ,1 p

2  Nj  will be known, as explained in Section I. 

Hence, both )|( /)|( 1 kjkj w  and )|( /)|( 2 kjkj w  

become zero over 1 ,...3 ,2 ,1 p

2  Nj . As a result, calculation 

of the partial derivatives involved in (19a) leads to (20a). 

Secondly, the calculation involved in (19b) gives (20b). Finally, 

the calculation involved in (19c) yields the game progression 

equation (17) and it is therefore not repeated here. 

Continuing to follow Hungerländer and Neck [21], the 

optimization problem of the driver (leader) can be expressed as: 

(20b)equation         

and (20a),equation         

and ,1 ,...2 ,1 ,0for   )|(           

)|()|()|()|1(   ..

)(  min                                      

p

1

next

22w11ww

LQDO

1
                                                              1





Njkj

kjkjkjkjts

kJ

FR

BBwAw 



 

where it can be seen that (20a) and (20b), that is, the necessary 

conditions for minimizing the AFS controller’s cost function, 

serve as the constraints. This correlates to the presumption that 

in a leader-follower game the driver (leader) takes into account 

the AFS steering control strategy in deriving his or her own 

strategy. (21) is fundamentally a multi-constraint optimization 

(17) 

(20a) 

(21) 
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problem and thus can be tackled by again using the Lagrange 

multiplier method. To this end, the augmented cost function 

with respect to the driver’s original cost function (15) shall be 

constructed. In doing so, a conflict over the driver’s and the 

AFS controller’s preview horizons 
p

1N  and 
p

2N  arises: from 

the driver’s perspective, the augmented cost function needs to 

be evaluated over 
p

1N  stages whereas both (20a) and (20b) are 

evaluated over 
p

2N  stages. In light of this, 
p

1N  and 
p

2N  have to 

be set equal, that is, 
pp

2

p

1 NNN  . As a result, the driver’s 

augmented cost function can be expressed as: 







































1

0

T

w22

T

T

w

1

0

22

T

2

T

next

22w

11ww

1

0

T

1

0

2

111

T

1

T

p

11

T

1

pTLQDO

1

p

p

p

p

)]}|1()|()[|({
2

1
    

)]}|()|1(              

)|()[|({
2

1
    

)]}|1()|()|(              

)|()|([)|({
2

1
    

])|()|()|([
2

1
    

)|()|(
2

1
)(

N

j

N

j

N

j

N

j

kjkjkj

kjkj

kjkj

kjkjkj

kjkjkj

kjkjkj

kNkNkJ

pBν

ppA

wHQHμ

wFRB

BwAλ

wHQHw

wHQHw









  (22) 

where )|( kjλ , )|( kjμ  and )|( kjν  are respectively the 

Lagrange multipliers associated with the game progression 

equation, (20a), and (20b) for 1 ,...2 ,1 ,0 p  Nj . (22) reaches 

its minimum when the partial derivatives with respect to all its 

variables equal zero, that is 

0
w






)|( 

)( LQDO

1

kj

kJ
 for 1 ,...2 ,1 ,0 p  Nj , and  0

w






)|( 

)( 
p

LQDO

1

kN

kJ
 

 (23a) 

0
p






)|1( 

)( LQDO

2

kj

kJ
 for 1 ,...2 ,1 ,0 p  Nj          (23b) 

0




)|( 

)( 

1

LQDO

1

kj

kJ


 for 1 ,...2 ,1 ,0 p  Nj             (23c) 

0




)|( 

)( 

2

LQDO

1

kj

kJ


 for 1 ,...2 ,1 ,0 p  Nj             (23d) 

0
μ






)|( 

)( LQDO

1

kj

kJ
 for 1 ,...2 ,1 ,0 p  Nj             (23e) 

0
ν






)|( 

)( LQDO

1

kj

kJ
 for 1 ,...2 ,1 ,0 p  Nj             (23f) 

0
λ






)|( 

)( LQDO

1

kj

kJ
 for 1 ,...2 ,1 ,0 p  Nj             (23g) 

As a result, the necessary conditions for a minimum (22) are: 

)|()|()|()|1( 22

T

2

T

w11

T

1 kjkjkjkj μHQHλAwHQHλ 

for 1 ,...2 ,1 ,0 p  Nj  with terminal condition 

)|()|1( p

11

T

1

p kNkN wHQHλ                  (24a) 

)|()|()|1( ww kjkjkj νBμAμ   for 2 ,...2 ,1 ,0 p  Nj  

with initial condition 0μ )(k  and terminal condition 

0νBμ  )|1()|1( p

w

p kNkN                 (24b) 

        )|()|(0
T

w11 kjkj λB   for 1 ,...2 ,1 ,0 p  Nj    (24c) 

)|()|(0
T

w2 kjkj λBν   for 1 ,...2 ,1 ,0 p  Nj    (24d) 

Here (23a) to (23d) respectively lead to (24a) to (24d). (23e), 

(23f) and (23g) respectively lead to (20a), (20b) and (17). 

Hungerländer and Neck [21] explained that (20a), (20b), 

(24a), (24b), (24c), and (24d) all together constitute a two-point 

boundary-value problem the solution to which results in the 

open-loop Stackelberg strategies of the players (driver and AFS 

controller in this case). To solve the problem, Hungerländer and 

Neck [21] supplemented two linear equations:  

)|1()|1()|1(    

)|1()|1()|1(

kjkjkj

kjkjkj





mμM

wMp

μ

w

 

for 1 ,...2 ,1 ,0 p  Nj                                (25) 

)|1()|1()|1(    

)|1()|1()|1(

kjkjkj

kjkjkj





lμL

wLλ

μ

w

 

for 1 ,...2 ,1 ,0 p  Nj                                (26) 

where )|1( kj m , )|1( kj l  )|1( kj w
M , )|1( kj μ

M , 

)|1( kj w
L  , and )|1( kj μ

L  are matrices of appropriate 

dimensions. Due to space limitation, the intermediate algebraic 

steps are omitted whilst the driver and AFS steering control 

strategies across the game at time step k are presented. Details 

of the derivation can be found in [22]. It should be noted here 

that all the steps involved in the derivation are purely 

analytical-based; no numerical method is used. 

 T

21

LQDO

11 )()()|( )|()|( kkkjkjkj RRxK  

for 1 ,...2 ,1 ,0 p  Nj                                (27) 

 T

21

LQDO

22 )()()|( )|()|( kkkjkjkj RRxK  

for 1 ,...2 ,1 ,0 p  Nj                                (28) 

 (27) and (28) represent sequences of steering angles each of 

which corresponds to a particular game stage j. However, in 

reality only one steering angle can be applied to the vehicle at 

time step k. To this end, the “receding horizon” idea [23] is 

adopted involving taking the first element of each sequence, i.e. 

)|0(1 k and )|0(2 k  as the steering angles to apply. 

Consequently, the driver and AFS theoretical Stackelberg 

steering control strategies can be respectively expressed as: 

 
















 

)(

)(

)(

)(

2

1

-LQDO

1

-LQDO

1

LQDO

11
21

k

k

k

k

R

R

x

KKK
RRx      (29) 

 
















 

)(

)(

)(

 )(

2

1

-LQDO

2

-LQDO

2

LQDO

22
21

k

k

k

k

R

R

x

KKK
RRx     (30) 
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x
K

-LQDO

1  is the driver’s gain array associated with vehicle 

state )(kx . It is thereby named the driver’s state gain array. 
1-LQDO

1

R
K  is the gain array associated with the driver’s 

previewed path )(1 kR . It is thereby called the driver’s preview 

gain array with )(1 kR . Accordingly 2-LQDO

1

R
K  is called the 

driver’s preview gain array with )(2 kR . Similarly, x
K

-LQDO

2 , 
1-LQDO

2

R
K  and 2-LQDO

2

R
K  are respectively the AFS controller’s 

state gain array, preview gain array with )(1 kR , and that with 

)(2 kR . These six gain arrays are all functions of matrices A , 

1B , 2B , 1Q  and 2Q , and are thus time-invariant. Their 

determination can also be found in Appendix C in [22]. It can 

be seen that (29) and (30) agree in format with their conceptual 

expressions (5) and (6) developed in Section II. 

 

B. Distributed Model Predictive Control (DMPC) 

The application of Distributed Model Predictive Control 

(DMPC) approach to dynamic game problems was introduced 

by Rawlings and Mayne [24] in which derivation of Nash 

strategies was discussed. In this subsection, the procedure for 

taking the DMPC approach to the same driver-AFS interactive 

steering control problem as treated in the previous subsection is 

described. This involves four steps: construction of the AFS 

controller’s prediction equation, derivation of the AFS optimal 

response, construction of the driver’s prediction equation, and 

derivation of the driver’s and the AFS controller’s Stackelberg 

steering control strategies. It is noteworthy that the analysis 

presented below is, to the authors’ knowledge, the first attempt 

of using the theory of Model Predictive Control (MPC) to 

addressing the equilibrium solution to a leader-follower game. 

The style of expression used by Maciejowski [23] is followed. 

 

1) AFS Controller Prediction Equation 

During the game played at time step k, vehicle orientations at 

at game stages 1 and 2 can be predicted by iterating (7) as:  

)]|0()|0(                               

)|1()|1()|1([)|2()|2(

)]|0()|0()([)|1()|1(

2211

2211

2

2211

kk

kkkkk

kkkkk







ABAB

BBxACCxz

BBAxCCxz







 

By continuing the iteration, the AFS controller could predict 

vehicle orientations up to p

2N  stages ahead. Hence, the AFS 

controller’s (follower’s) prediction equation at time step k is: 

)()()()( 221222 kkkk UΩUΘxΨZ             (32) 

where 
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In (32), u

2N  represents the AFS controller’s control horizon 

which indicates the stages over which the AFS steering angle 

action varies. Since stage u

2N  the AFS steering action is held 

constant as )|1( u

22 kN   up to the preview horizon p

2N . 

Therefore u

2N  must satisfy p

2

u

2 NN  .  

 

2) AFS Controller Optimal Response 

Given the AFS controller’s prediction equation (32), the AFS 

controller’s original cost function (13) can be rewritten as: 

2

2

2

22

DMPC

2 )()()()( DMPC
2

kkkkJ URZ
Q

           (33) 

where 
2

Y
X  means YXX

T  and DMPC

2Q  is a diagonal matrix: 





















2

2

2

DMPC

2

Q00

0Q0

00Q

Q









. 

In (33) the AFS controller’s control horizon u

2N  involved in 

)(2 kU  is made equal to the AFS controller’s preview horizon 
p

2N  to fit the formulation of the original cost function (13). 

At this point, the AFS controller’s “zero-input tracking error” 

)(2 kε  is defined according to Maciejowski’s observation [23]: 

)()()()( 12222 kkkk UΘxΨRε                    (34) 

where )(2 kε  represents the difference between the AFS 

controller’s target path )(2 kR , and the predicted vehicle 

orientations )(2 kZ  determined under the circumstance that the 

input )(2 kU  is set zero. Substituting (34) into (33) then gives: 

2

2

2

222

DMPC

2 )()()()( DMPC
2

kkkkJ UεUΩ
Q

        (35) 

or equivalently, 

(31) 
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2

2

2222DMPC

2
)(

)}()({
)( 







 


k

kk
kJ

U

εUΩS
             (36) 

where 2S  satisfies DMPC

22

T

2 QSS  . 

The AFS steering action sequence )(2 kU  that minimizes 

cost function (36), or (13) must be the least-squares solution to 

)()( 2

2

2

22
kk ε

0

S
U

I

ΩS

















                          (37) 

where I  is an identity matrix of appropriate dimension. 

Maciejowski [23] explained that a problem of this form can 

be solved by using the QR algorithm (invoked in Matlab using 

the backslash operator ‘\’). This leads to a numerical solution to 

)(2 kU  which can be expressed as 

)()( 2

DMPC

22 kk εKU                                   (38) 

where DMPC

2K  is a matrix resulting from the QR algorithm: 



















0

S

I

ΩS
K

222DMPC

2 \                              (39) 

DMPC

2K  is a function of A , 2B , C  and 2Q , and is time-invariant. 

Substituting (34) into (38) then gives: 

)]()()([)( 1222

DMPC

22 kkkk UΘRxΨKU         (40) 

 (40) implies that the AFS controller’s steering action sequence 

)(2 kU  depends on vehicle state )(kx , AFS target path )(2 kR  

and driver steering angle sequence )(1 kU . In other words, (40) 

embodies that as the follower, the AFS controller responds to 

the driver’s (leader’s) action )(1 kU  by adopting a specific 

strategy. Therefore, (40) is named the AFS controller’s optimal 

response to any driver steering angle. 

 

3) Driver Prediction Equation 

The driver is assumed to make a preliminary estimation of 

vehicle orientations up to his or her preview horizon p

1N  at 

first. This can be accomplished by iterating vehicle dynamics 

equation (7) over p

1N  stages ahead, which leads to: 

)()()()( 2

pre

11

pre

1

pre

11 kkkk UΩUΘxΨZ            (41) 

where pre

1Ψ , pre

1Θ  and pre

1Ω  hold similar structures to 2Ψ , 

2Θ  and 2Ω  respectively, and both )(1 kU  and )(2 kU  are 

evaluated up to the driver’s control horizon u

1N . At this point, 

it should be noted that (41) does not represent the driver’s 

prediction equation but just an intermediate equation.  

The driver then tends to improve his or her preliminary 

estimation (41) by taking the AFS controller’s optimal response 

(40) into account. This is achieved by substituting (40) into (41). 

It can be found that such substitution cannot be implemented 

unless the dimension of )(2 kU  in (40). i.e. 1p

2 N  ( u

2N  has 

been made to p

2N  for constructing (33)) equals that of )(2 kU  

in (41), i.e. 1u

1 N . To this end, pp

2

u

2

u

1 NNNN   is 

assumed. As a result, the substitution yields: 

)()()()( 211111 kkkk RΩUΘxΨZ               (42) 

where 2

DMPC

2

pre

1

pre

11 ΨKΩΨΨ  , 2

DMPC

2

pre

1

pre

11 ΘKΩΘΘ  , 

and DMPC

2

pre

11 KΩΩ  . (42) is the driver’s prediction equation. 

 

4) Theoretical Stackelberg Strategies 

Given the driver’s prediction equation (42), his or her cost 

function (11) can be then rewritten as: 

2

1

2

11

DMPC

1 )()()()( DMPC
1

kkkkJ URZ
Q

            (43) 

where DMPC

1Q  is a diagonal matrix: 





















1

1

1

DMPC

1

Q00

0Q0

00Q

Q









, 

and the driver’s control horizon u

1N  involved in )(1 kU  needs 

to be made equal to the driver’s preview horizon p

1N  to fit the 

formulation of the driver’s original cost function (11). 

Accordingly, pp

2

p

1

u

2

u

1 NNNNN   holds hereinafter. 

Grounded in (42), the driver’s “zero-input tracking error” 

)(1 kε  can be defined in a similar way to that for )(2 kε  

)()()()( 21111 kkkk RΩxΨRε                     (44) 

On this basis, the driver steering angle sequence )(1 kU  that 

minimizes cost function (43), or equivalently (11) can be 

described as the least-squares solution to 

)()( 1

1

1

11
kk ε

0

S
U

I

ΘS

















                           (45) 

where 1S  satisfies 1

T

1

DMPC

1 SSQ   and I  is an identity matrix 

of appropriate dimension. 

Hence, )(1 kU  can be determined as 

)()( 1

DMPC

11 kk εKU                                  (46) 

where DMPC

1K  is calculated through the QR algorithm as 



















0

S

I

ΘS
K

111DMPC

1 \                              (47) 

It can be seen from (47) that DMPC

1K  is a function of A , 1B , 

2B , C , 1Q  and 2Q , and is time-invariant. 

Substituting (44) into (46) then gives: 

)]()()([)( 2111

DMPC

11 kkkk RΩxΨRKU           (48) 

Here )(1 kU  is a vector of 
pN  elements comprising )|0(1 k  

to )|( p

1 kN . These elements denote respectively the driver’s 

optimal steering wheel angles determined at each stage from 0 

up to pN  across the game played at time step k. However, as 

explained previously, in reality the driver can only apply one 

particular steering angle at time step k. In view of this, the 

“receding horizon” idea [23] is used again and the first element 

in )(1 kU , i.e. )|0(1 k  is chosen as the steering wheel angle 
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applied at time step k. Therefore the driver’s theoretical 

Stackelberg steering control strategy can be expressed as:  

        
















 

)(

)(

)(

 )(

2

1

-DMPC

1

-DMPC

1

DMPC

11
21

k

k

k

k

R

R

x

KKK
RRx     (49) 

where x
K

-DMPC

1 , 1-DMPC

1

R
K  and 2-DMPC

1

R
K  respectively denote 

the driver’s state gain array, preview gain array with , 

and preview gain array with )(2 kR . These three gain arrays are 

all functions of matrices A , 1B , 2B , C , 1Q  and 2Q  and are 

thus time-invariant. Specifically, x
K

-DMPC

1  is determined as the 

first row of 1

DMPC

1 ΨK , 1-DMPC

1

R
K  is the first row of DMPC

1K , 

and 2-DMPC

1

R
K  is the first row of 1

DMPC

1 ΩK . 

By substituting (48) into (40), and applying the receding 

horizon approach, the AFS controller’s theoretical Stackelberg 

steering control strategy can then be achieved: 

 
















 

)(

)(

)(

 )(

2

1

-DMPC

2

-DMPC

2

DMPC

22
21

k

k

k

k

R

R

x

KKK
RRx     (50) 

where x
K

-DMPC

2 , 1-DMPC

2

R
K  and 2-DMPC

2

R
K  have similar format 

to x
K

-DMPC

1 , 1-DMPC

1

R
K  and 2-DMPC

1

R
K , respectively. 

By comparing (49) and (50) respectively to (29) and (30), it 

can be seen that the DMPC and the LQDO approaches give 

comparable expressions of open-loop theoretical Stackelberg 

steering control strategies. However, the two approaches differ 

in the algebraic procedures for strategy derivation. Specifically, 

the LQDO approach develops the Stackelberg strategies by 

identifying and solving a two-point boundary-value problem. 

Each algebraic step involved in the solution procedure is 

derived analytically. On the other hand, the DMPC approach 

develops the Stackelberg strategies by solving least-squares 

problems, during which the QR algorithm is used and 

numerical solutions are yielded. In the next section, numerical 

results obtained using these two approaches are compared. 

 

IV. NUMERICAL RESULTS 

In this section, studies towards the LQDO and the DMPC 

approaches are performed via simulation. Two types of 

numerical results are compared: 1) gain arrays of the driver and 

the AFS controller, and 2) computation time.  

 

A. Gain Array Comparison 

The driver’s and the AFS controllers’ gain arrays resulting 

from the LQDO approach, i.e. the gain arrays appearing in (29) 

and (30) are compared with those generated using the DMPC 

one, i.e. the gain arrays in (49) and (50). Such a comparison is 

conducted to examine whether the two approaches give similar 

numerical results in terms of driver and AFS control actions. 

The vehicle parameters used are measured from an Opel 

Signum car, and are exactly the same as those listed in [12]. It is 

should be noted that the dynamics of the AFS actuation system 

is ignored and the ratio of AFS steering motor angle to vehicle 

road wheel angles is set equal to that between driver steering 

wheel and road wheels. On this basis, the following driver and 

AFS parameters are used: 2e6.31 yq , 2e0.21 q , 

2e5.22 yq , 2e0.12 q  and 200p N . These values may 

not represent realistic behaviour of a human driver and an AFS 

controller but are employed simply for gain array comparison. 

Comparison of the driver’s state gain arrays, i.e., of x
K

LQDO

1  

and x
K

DMPC

1  is presented in Fig. 3 (a). Comparison of the AFS 

controller’s state gain arrays x
K

LQDO

2  and x
K

DMPC

2  is shown 

in Fig. 3 (b). Comparison of the driver’s preview gain arrays 

with )(1 kR , i.e. of 1-LQDO

1

R
K  and 1-DMPC

1

R
K  is presented in Fig. 

4 (a) while that of the AFS corresponding gain arrays 1-LQDO

2

R
K  

and 1-DMPC

2

R
K  is shown in Fig. 4 (b). Finally, comparison of the 

driver’s preview gain arrays with )(2 kR , i.e. of 2-LQDO

1

R
K  and 

2-DMPC

1

R
K  is presented in Fig. 5(a) while that of the AFS gain 

arrays 2-LQDO

2

R
K  and 2-DMPC

2

R
K  is shown in Fig. 5 (b). It can be 

seen that the LQDO and the DMPC yield visually identical gain 

arrays. Besides the driver and AFS controller values used above, 

more values have been tested and identical results were always 

obtained between the two approaches. This suggests that the 

LQDO and the DMPC are equivalent in representing driver and 

AFS open-loop Stackelberg steering control strategies. It is 

noteworthy that it is impossible to have a comparison between 

the analytical expressions of Stackelberg strategies derived 

from the two approaches. The reason is that in the DMPC 

approach intrinsically involves the use of QR algorithm which 

results in numerical solutions, as described by (39) and (47). 

 

B. Computation Time Comparison 

The computation times consumed by the two approaches are 

compared in three cases where the game stage 
pN  is set 

respectively 50, 100 and 200. Values of all the other parameters 

are kept the same as those used in the previous subsection. The 

computer used has a 2.40 GHz CPU and an 8.00 GB RAM. The 

recorded CPU times are presented in Table I. It can be seen that 

in comparison to the LQDO approach, the DMPC one 

consumes far less CPU time in all cases. Besides, as 
pN  

increases, the CPU time cost by the LQDO approach increases 

severely. This is because the  )|0(LQDO

1 kK  and  )|0(LQDO

2 kK  

required in the LQDO approach are derived analytically 

through a backward iteration process, starting from game stage 

1p N  back to 0 [22]. Such iteration is computationally 

expensive, especially when 
pN  is relatively large, as those 

assumed in the present study. By contrast, the 
DMPC

1K  and 
DMPC

2K  required in the DMPC approach are determined 

numerically via the QR algorithm which does not involve 

time-consuming iteration and is thus more efficient. 

)(1 kR

LQDO

DMPC

LQDO

DMPC

LQDO

DMPC

TABLE I 
COMPARISON OF CPU TIME CONSUMPTION 

Game stage Np LQDO CPU time (s) DMPC CPU time (s) 

50 9.80 0.10 

100 141.45 0.16 

200 2199.77 0.66 
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(a) Driver gain array comparison                                                                (b) AFS gain array comparison 

Fig. 3.  Comparison of state gain arrays 

          

(a) Driver preview array comparison (sampled every 10 stages)                               (b) AFS preview array comparison (sampled every 10 stages) 

Fig. 4.  Comparison of preview gain arrays with R1 

         

(a) Driver preview array comparison (sampled every 10 stages)                     (b) AFS preview array comparison (sampled every 10 stages) 

Fig. 5.  Comparison of preview gain arrays with R2 

         

(a) Steering angle actions versus longitudinal displacement                       (b) Vehicle lateral displacement versus longitudinal displacement 

     

(c) Vehicle yaw angle versus longitudinal displacement                                       (d) Vehicle yaw rate versus longitudinal displacement 

Fig. 6.  Time histories of steering control actions and vehicle lateral response. Solid: driver parameter set 1); dashed: driver parameter set 2) 
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V. DERIVATION OF PRACTICAL STACKELBERG STEERING 

CONTROL STRATEGIES 

The driver-AFS interactive steering control outlined in Fig. 2 

suggests a possible way of modelling a driver’s interaction with 

a vehicle AFS system compensating for the driver’s steering 

angle. Validation of the driver model using measured driver 

behaviour is needed. In preparation for such work, the steering 

control strategy of the AFS controller should be implemented in 

a driving simulator or instrumented vehicle. However, it would 

be unpractical to use the AFS theoretical Stackelberg steering 

control strategy (30), or equivalently (50) derived in Section III. 

The reason is that it is technically difficult for the AFS to 

identify the driver’s previewed target path )(1 kR . To solve 

this difficulty, modifications are introduced to the development 

of the AFS open-loop Stackelberg steering control strategy in 

the DMPC framework. This results in a “practical” Stackelberg 

strategy for the AFS, which acts as the counterpart of the 

“theoretical” strategy (30), or equivalently (50). Accordingly, 

the driver’s “theoretical” Stackelberg strategy (29), or 

equivalently (49) is modified. On this basis, time histories of 

driver and AFS control actions and vehicle response are 

simulated in an obstacle avoidance scenario. 

 

A. Practical Stackelberg Strategies 

It was described in Section III that in the DMPC context 

control horizon can be set different from preview horizon. In 

view of this, modifications are applied to both the driver and the 

AFS by reducing their respective control horizons to unity, i.e. 

1u

2

u

1  NN . Controllers with such unity control horizon 

have been utilized by Ungoren and Peng [25] for driver 

modelling and by Keviczky et al. [26] for vehicle steering. As a 

result, the AFS controller’s prediction equation (32) becomes: 

)()()()( 2

prac

21

prac

2

prac

2

prac

2 kkkk  ΩΘxΨZ         (51) 

where )(prac

2 kZ  and 
prac

2Ψ  hold the same structure as )(2 kZ  

and 2Ψ in (32) whilst 
prac

2Θ and 
prac

2Ω  are now column vectors 

as per 2Θ and 2Ω in (32). Based on (51), the AFS practical 

Stackelberg steering control strategy (52) can be derived by 

following the same procedure as presented from (32) to (40): 

)]()()([)( 1

prac

22

prac

2

prac

22 kkkk  ΘRxΨK        (52) 

(52) suggests that the AFS controller’s steering action )(2 k  at 

time step k can be determined as a function of AFS target path 

)(2 kR , driver’s steering wheel angle )(1 k   and vehicle state 

)(kx . Since the rationality of assuming available )(kx , )(2 kR  

and )(1 k  was declared in Section II, (52) can be implemented 

in an AFS system in a test vehicle. 

Comparable modifications are then applied to the driver’s 

prediction equation (42). This leads to: 

)()()()( 2

prac

11

prac

1

prac

1

prac

1 kkkk RΩΘxΨZ           (53) 

By following the procedure from (41) to (48), the driver’s 

practical Stackelberg steering control strategy can be derived: 

)]()()([)( 2

prac

1

prac

11

prac

11 kkkk RΩxΨRK         (54) 

At this point, human drivers’ steering control behaviour in 

response to the AFS practical Stackelberg steering control 

strategy (52) can be then measured through carefully designed 

experiments. The driver Stackelberg steering control strategy 

(54) can be then used to fit the measured driver behaviour so as 

to examine its validity. It should be noted that the modifications 

described above cannot be applied in the LQDO framework 

since the LQDO does not allow the control horizon to be set 

independent of the preview horizon. In the next subsection, 

simulated time histories of the driver and AFS steering angles 

and vehicle responses in an obstacle avoidance scenario will be 

displayed. Driver behaviour measurements or model validation 

is not presented but reserved for a future paper. 

 

B. Time Histories 

An obstacle avoidance scenario is designed for simulation 

study. Specifically, the AFS controller is assumed to have 

detected an obstacle ahead and is about to execute a lane change 

for collision avoidance. However, the driver is assumed to keep 

the vehicle travelling straight ahead. Such a conflict may occur 

when the driver believes that his or her control will not cause a 

collision to the obstacle, e.g. a pedestrian dashing across the 

road, or the driver thinks that his or her control will result in an 

outcome which is more ethically acceptable, e.g. collision with 

a car rather than a pedestrian, as illustrated by Gerdes and 

Thornton [27]. The vehicle parameters are set the same as those 

used in Section VI. The AFS practical strategy (52) is set to 

adopt 4e62 yq , 02 q  and 200p

2 N . It was reported in 

[22] that such a set gave good path-following accuracy whilst 

offered drivers the opportunity to override the AFS controller. 

With regard to the driver model, two sets of values are used: 1) 

)200 ,0 ,2e1( p

111  Nqq y 
 which represents a driver who 

applies stronger steering control than the AFS controller, and 2) 

)200 ,0 ,4e3( p

111  Nqq y 
 which represents a driver 

who exerts weaker control. Fig. 6 (a) displays the driver and 

AFS steering angles over vehicle longitudinal displacement. 

Fig. 6 (b) shows the driver and AFS target paths and the vehicle 

lateral displacement. Fig. 6 (c) and (d) respectively exhibits 

vehicle yaw angle and yaw rate. Since the vehicle is modelled 

to travel at a constant speed of 20 m/s, the two subplots are 

essentially time histories. It can be seen that the driver and the 

AFS gave steering angles in opposite direction as they tried to 

follow their individual target paths. For the driver parameter set 

1) (solid lines), the vehicle tracked a straight line much closer to 

the driver’s target path. For set 2) (dashed lines), the vehicle is 

predominantly controlled by the AFS to track its lane change 

target path. Consequently, the vehicle yaw responses as shown 

in Fig. 6 (c) and (d) are more severe than that of set 1). Fig. 6 

also suggests that by altering the driver’s path-error weights 
yq1  and 


1q , various driver steering control behaviour can be 

yielded, varying from the situation where the vehicle path 

following is dominated by the driver (solid lines) to that by the 

AFS controller (dashed lines). 
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VI. CONCLUSION 

This paper concerns the adoption of Stackelberg equilibrium 

to modelling a human driver’s interaction with a vehicle Active 

Front Steering (AFS) controller in a dynamic game framework. 

The driver and the AFS controller’s open-loop steering control 

strategies are derived firstly following a procedure reported in 

literature based on the Linear Quadratic Dynamic Optimization 

(LQDO) approach and then another procedure introduced by 

the authors based on the Distributed Model Predictive Control 

(DMPC) approach. The following conclusions were obtained: 

The LQDO approach derives the theoretical Stackelberg 

strategies by identifying and solving a two-point boundary- 

value problem. Each algebraic step involved in the derivation is 

on a purely analytical basis. On the other hand, the DMPC 

approach derives the Stackelberg strategies by identifying a 

least-squares problem and solving it using the QR algorithm. 

This leads to numerical solutions. Such differences suggest that 

comparison of analytical expressions of theoretical Stackelberg 

strategies derived from the two approaches cannot be made. 

The two approaches were compared via a simulation and 

were found to yield visually identical control gain arrays. This 

suggests that these two approaches are equivalent in terms of 

representing driver and AFS steering control behaviour. 

The DMPC approach used much less CPU times than the 

LQDO one in simulating driver and AFS control gains. 

A modification to the AFS theoretical Stackelberg steering 

control strategy was made in the DMPC framework involving 

reducing the AFS controller’s control horizon to unity. Such a 

modification resulted in the AFS controller’s practical 

Stackelberg steering control strategy that can be implemented 

in a driving simulator or a test vehicle for driver behaviour 

measurement. This modification cannot be made in the LQDO 

framework due to that the LQDO approach does not in theory 

accept a “control horizon” independent of a “preview horizon”. 

A case study was performed to illustrate how a driver might 

interact with a vehicle AFS controller in an obstacle avoidance 

scenario. Simulation results indicated that by altering the driver 

path-error weights, various driver steering control behaviour 

can be produced by using the driver model developed. 
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