
1

A Biomimetical Dynamic Window Approach to
navigation for collaborative control

Joaquin Ballesteros, Cristina Urdiales, Antonio B. Martinez and Gonzalo Ramos-Jiménez

Abstract—Shared control is a strategy used in assistive
platforms to combine human and robot orders to achieve
a goal. Collaborative control is a specific shared control
approach in which user’s and robot’s commands are
merged into an emergent one in a continuous way. Robot
commands tend to improve efficiency and safety. However,
sometimes assistance can be rejected by users when their
commands are too altered. This provokes frustration
and stress and, usually, decreases emergent efficiency. To
improve acceptance, robot navigation algorithms can be
adapted to mimic human behavior when possible. We
propose a novel variation of the well known Dynamic
Window Approach (DWA) that we call Biomimetical DWA
(BDWA). BDWA relies on a reward function extracted
from real traces from volunteers presenting different
motor disabilities navigating in a hospital environment
using a rollator for support. We have compared BDWA
with other reactive algorithms in terms of similarity
to paths completed by people with disabilities using a
robotic rollator in a rehabilitation hospital unit. BDWA
outperforms all tested algorithms in terms of likeness to
human paths and success rate.

I. INTRODUCTION

Only in Europe, 8.3% of people aged 16 and over de-
clared a severe disability in 2011 [1]. Assistive robotics
enhance the autonomy of challenged people and their
quality of life [2]. Assistive robots like wheelchairs,
walkers or rollators typically rely on shared control
techniques to manage interaction between user’s and
robot’s navigation commands [3], [4], [5], [6], [7], [8],
[9].

Depending on how much the navigation algorithm
contributes to motion with respect to the user, we find
different forms of shared control. In some approaches,
the navigation algorithm only takes over when a danger-
ous situation is detected [3], [4]. In other approaches,
it totally replaces users to perform a specific behavior
(follow wall, doorway, etc) [5], [6]. In extreme, there
are approaches in which the navigation algorithm has
full control and the user only indicates his/her destination
[7].

Some assistive devices like smart rollators require a
highly collaborative profile because any struggle between

User intention

Navigation command

Emergent command

Weighted by effi
ciency

W
e
ig

h
te

d
 b

y 
e
ffi

ci
e
n
cy

Figure 1. Emergent command in CC

user and robot may produce balance failure, which
increases fall risk [10]. In this case, collaborative control
(CC) [9], [8] presents clear advantages.

Collaborative control is a type of shared control that
analyzes user’s and robot’s commands to decide how
much they should contribute to the emergent motion
command at each time instant. CC increases the robot
contribution when the user moves inefficiently. Besides,
to minimize user’s frustration and prevent loss of residual
skills, it decreases the navigation algorithm contribution
when the user is moving efficiently, even in hazardous
areas. These efficiencies prioritize a contribution which:
i) avoids oscillations; ii) avoids obstacles; and iii) main-
tains a consistent route towards the goal. Fig.1 shows
how an emergent motion command can be calculated by
adding human and robot motion commands, weighted by
their respective efficiency, as proposed in [8]. It must be
noted that collaborative control in [8], [11] was used on
a wheelchair, so efficiency in a rollator would at least
need to take balance into account as well.

CC algorithms tend to combine human input with re-
active navigation algorithms. Deliberative algorithms are
usually dismissed because prediction and optimization is
hard when humans are included in the control loop [12]
[13]. Some well known reactive navigation algorithms
used in CC include Potential Field Approach (PFA) [14],
Dynamic Window Approach (DWA) [15] and Vector
Field Histogram (VFH) [16]. All these algorithms are in
general more efficient than users, more so than people
with disabilities, because humans do not necessarily
optimize efficiency like navigation algorithms do [17].
In these cases, emergent commands may differ signifi-



2

cantly from human input, even when users’ commands
were valid. In previous experiments with collaborative
control, we observed that some users tended to reject
assistance when they realized that their commands were
significantly changed [18]. This mostly happened when
robot commands were much more efficient than their
own even in areas where they did not need that much
help. If reactive navigation commands were more similar
to human input, users would find the corrections less
distracting. Thus, we could enhance ergonomy and us-
ability.

In order to mimic human trajectories, we could rely on
biologically inspired navigation using Neural Networks
[19], genetic algorithms [20] or Case Based Reasoning
[21]. This approach requires intensive training, but the
resulting system navigates like the training person. Al-
ternatively, we could use an existing reactive navigation
algorithm and simply adapt its optimization criteria to
favor human-like trajectories. We are going to use this
approach because it allows us to preserve all the algo-
rithm benefits, e.g. continuity, navigation efficiency and
to mimic humans as well. The goal of this paper is to
adapt and validate a reactive navigation algorithm that
mimics trajectories followed by human rollator users.
Such an algorithm could be used in CC to improve
assistance acceptance.

The next section describes our approach to develop
a reactive biomimetic navigation algorithm. In order
to feed the algorithm, we captured information from
volunteers with different disabilities using a rollator to
navigate in hospital environments. Section 2 presents
our methodology to acquire and pre-process the required
information. Our goal was to analyze how people navi-
gated with a rollator. Section 3 presents our approach
to extract such information from human trajectories.
Section 4 shows several experiments to prove that tra-
jectories provided by our navigation algorithm are very
similar to human trajectories in our tests. Finally, section
5, presents conclusions and future work.

II. METHODOLOGY

This section presents: i) our platform; ii) our test
environments; iii) our volunteers; and iv) how acquired
information is preprocessed to store data on human
paths.

A. The i-Walker rollator

The i-Walker smart robotic rollator [22] relies on a
standard MEYRA® rollator frame. It includes encoders
in both wheels and it has 3 force components in each
handlebar sensor. In addition, it also includes a tilt

Figure 2. Volunteer during a test at Hospital Regional Universitario

sensor, 2 forces sensor to measure the normal and a
2D laser. We work with Robot Operating System (ROS)
framework [23] and we have used the Simultaneous Lo-
calization and Mapping (SLAM) algorithm proposed in
[24] to obtain environment maps (Fig. 3). The i-Walker
in these tests does not provide active help: trajectories
provided by users uniquely depend on their condition and
skills with a rollator. Sensors and encoders are only used
to obtain information about these trajectories and about
obstacles in the environment that might influence paths.
Hence, we could work with any other wheeled rollator
frame and BDWA could be implemented in any robot
with odometry and a range sensor. To implement shared
control in a rollator using BDWA, the rollator should
also have the means to estimate the user intention, e.g.
force sensors.

B. Volunteers in our tests

All volunteers in the presented work were patients
from Hospital Regional Universitario of Malaga (HRU)
or inpatients from Fondazione Santa Lucia (FSL) in
Rome.

It is a common mistake to test assistive devices with
healthy people. Users in need of support distribute their
weight and move very differently from healthy ones
when using a rollator. Some authors rely on asking
therapists to train healthy volunteers to emulate rollator
users [25]. Rather than extracting a navigation model
from healthy individuals that actually do not need assis-
tance to walk, we will extract our model from people
in real need of an ambulatory device. Van Hook et al
describe in [26] which gait disorders can benefit from
ambulatory devices. Our volunteers had to present one
of these disorders. They were also required to have
previous experience with rollators to avoid cold start
related issues. In this work we collected data from 41
volunteers (30 from HRU and 11 from FLS) presenting
physical/cognitive disabilities: 20 females and 21 males.
Users were in average 66.58 ± 12.71 years old (range
31−86 years). Twenty four volunteer presented physical
disabilities: fractures (intertrochanteric hip, prosthetic



3

(a) Hospital Regional Univer-
sitario of Malaga

(b) Fondazione Santa Lucia in
Rome

Figure 3. Maps of test areas

S(1) S(2) S(3)

Figure 4. Example of local situation extraction: Input trajectory
(Line) and destination (Dot), plus situation grids at S(1), S(2) and
S(3)

femur (x2), intertrochanteric fracture femur, knee, tibial
(x2), ankle), lower limb amputation (x5), polytraumatism
(x3), meniscus tear (x2), tetraparesis (x2), total hip
replacement, hip arthroplasty, spinal fusion and rotated
left leg. Seventeen volunteers presented cognitive disabil-
ities: Parkinson (mild or severe, x7), vestibular diseases
(x2), dementia (mild or severe , x4), ischemia, stroke
(x2) and multiple sclerosis.

C. Tests

Tests were performed at hospital corridors at HRU1

and FSL during several weeks (Fig. 3). These locations
are not the same from a global point of view. Neverthe-
less, from a local point of view, both topologies allow
the user to turn (left or right, smooth or sharp) and
move forward in a corridor. No special constraint was
requested, so equipment and furniture could be found in
both places. Volunteers followed different routes to fixed
goals selected dynamically by the therapist, while other
patients and staff moved freely around during 3 minutes
(Fig. 2). According to clinicians, these environments are
representative for indoor assisted navigation.

The user’s trajectories only depended on their target,
nearby obstacles location and their way of walking.
Therefore, for each local situation (per user and path) we
stored: i) location of nearby obstacles; ii) local goal; and

1Collaboration under the framework New technologies in rehabil-
itation: walking aids: a pilot study with robotic walker

iii) trajectory followed by the user. All situations were
stored in 60x40 grids, that we represented as images (e.g.
Fig. 4). We stored a new local situation each time that:
a) the trajectory curvature changed more than 10% of the
maximum curvature variation allowed by out platform,
as extracted from our odometry tests.; or b) the nearby
obstacle configuration changed significantly, i.e. more
than 25% of the cells in the current grid had changed
with respect to the previous one. Thus, any local situation
presents a path with a different curvature and/or obstacle
distribution than the previous one. In Fig. 4 three local
situations, corresponding to two major curvature changes
in the path, are extracted (S(1-3)). All situations are
relative to their departure point (30,0). Our tests returned
19096 different local situations.

User’s trajectories are sampled at a fixed rate, so
they may be represented by a sequence of points in a
2-D space. These trajectories could be represented as
graphs or tensors [27], but we have chosen a matrix
representation rather than a graph because: a) matrix in-
dices implicitly provide space information, so trajectory
matching is computationally cheap; and b) we can use
the same matrix representation to combine all trajectories
within a cluster and obtain prototypes (section IV-D).

Tensors could have been used as an extension of a ma-
trix to include additional information [27], but handling
them increases complexity. A matrix representation can
store all the information we need in our method, so we
chose this option.

III. A NEW REACTIVE NAVIGATION ALGORITHM:
BDWA

Any reactive navigation algorithm typically tries to
generate trajectories to arrive to a goal in a safe, effi-
cient and non necessarily optimal way using only local
information. Fig. 5 shows three examples of reactive
trajectories for PFA, VFH and DWA. In this example,
none of them is too similar to the trajectory returned
by one of our volunteers. As commented, PFA based
solutions are simple and easy to adapt to new restrictions.
However, PFA may return unstable commands in local
situations with a disperse obstacle distribution. Also, they
are reportedly affected by oscillations when paths are
close to obstacles [28], as seen in Fig. 5. Furthermore,
like VFH based methods, in their simplest formulation,
they assume that robots are holonomic and, hence, may
return oversimplistic trajectories. These solutions are
unacceptable for rollators because sharp steering may
produce balance failure and increases fall risk. Addition-
ally, oscillations and unstable commands in narrow areas
may affect stability as well. Therefore, PFA and VFH
solutions can not be adapted to mimic user trajectories.



4

Figure 5. Reactive navigation solutions and human solution for a
local situation

DWA solves these problems, at least partially, because
it explicitly takes the dynamics of the platform into
account to generate a response within the agent physical
framework. First, DWA sets boundaries to the problem
solution space to limit platform movements and avoid
dangerous maneuvers. Then, DWA selects the linear and
angular velocity (υ, ω) within the window of allowed ve-
locities imposed by the mobile dynamics that maximizes
the following reward function:

R(υ, ω, o, g) =

σ(−α·angle(υ, ω, g) + β·dist(υ, ω, o) + γ·vel(υ, ω))

v ∈
{
vini + t ∗∆v | 0 ≤ t ≤ vend − vini

∆v

}
w ∈

{
wini + t ∗∆w | 0 ≤ t ≤ wend − wini

∆w

}
(1)

being:
• vini, vend, ∆v: Minimum, maximum and step linear

velocities.
• wini, wend, ∆w: Minimum, maximum and step

angular velocities.
• angle(υ, ω, g): Function that returns the angle to

goal g if we applied υ and ω.
• dist(υ, ω, o): Function that determines how far ob-

stacles o would be if we applied υ and ω. Its value
is set either to the distance to the nearest obstacle
or to −∞ in case of obstacle collision (invalid
trajectories).

• vel(υ, ω) = υ: This function returns the linear
velocity and ensures that the platform is moving and
not rotating. Its value is set either to the v linear
velocity or to −∞ in case of obstacle collision
(invalid trajectories).

• α, β and γ: Constants to adjust the relevance of each
function. In this work α = 0.2, β = 2 and γ = 0.2
as proposed in[15].

• σ: Smoothing constant.
The trajectory produced by DWA for goal g and ob-

stacles o only depends on reward function R(υ, ω, o, g)

and on the window of possible velocities imposed by
the dynamics of the platform (vini, vend, ∆v, wini, wend,
∆w). Hence, any DWA solution needs to define a reward
function and the velocities window to operate. If reward
functions are based on navigation optimization factors,
paths become efficient, but not necessarily similar to
human trajectories(Fig. 5).

A. Defining a Window of Velocities

Since our platform is physically controlled by a per-
son, the combined system dynamics also depend on the
user. Therefore, we measured the dynamic of users and
selected their boundaries (vusersmin , vusersmax ,wusers

min , wusers
max ).

These boundaries are the Window of Velocities of the
new biomimetical DWA (BDWA) reward function. The
new Window of Velocities reduce balance failure prob-
lems because it limits steering and forward velocities to
the user’s limits according to real experience.

B. Defining a Reward Function

After boundaries have been properly fixed, DWA uses
reward function R (Eq. 1) to choose the best velocities
within the allowed solution space. However, people do
not necessarily rely on optimization to navigate. Fur-
thermore, optimization parameters may differ signifi-
cantly among people with disabilities: depending on their
physical condition, some paths may be preferable to
apparently more efficient ones from a traditional point
of view (e.g. shorter ones).

Analytically defining all potential effects of disability
on walking with rollators for a general population is
almost impossible and it is out of the scope of this
work. We gather data from users with a variety of
physical and cognitive disabilities to generalize how
they cope with the different situations they face. Using
this information, we can generate a new DWA reward
function Rb(υ, ω, o, g) that favors trajectories similar to
human ones.

In order to extract and represent how rollator users
walk and, hence, define Rb, we have gathered data
from several volunteers presenting different disabilities.
Extracted data is clustered into groups of similar sit-
uations. Cluster prototypes are used to generalize how
people deal with each situation. Next section covers the
clustering method we employed.

IV. AN EVIDENCE BASED HUMAN NAVIGATION

MODEL

In this work, we rely on a k-centroids algorithm [29] to
cluster our local situations K-centroids algorithms split



5

data (x ∈ X) into k groups choosing a set of cen-
troids {c1, ..., ck} which minimizes the average distance
d(x, c) : X × C → R+ to each element from its group:

argmin
{c1,...,ck}

1

N

N∑
n=1

d (xn, centroid(xn))) (2)

We have specifically chosen this method because re-
sulting clusters have a representative element (centroid),
as desired. New situations can be easily classified into a
cluster depending on their distance to its centroid.

A. Choosing a distance

Clustering results depend on the employed distance,
the initial set of centroids and how they are calculated
[30]. If centroids are equal to the average of all element
within a group and we use the Euclidean distance, the
resulting algorithm is known as k-means [31]. Another
option is k-median, where centroids are the median of
each element within a group and we use the Manhattan
distance instead. In general, we observe that k−median
preserves better the original data nature, whereas k −
means provides more compact groups. However, it is
often advisable to test both distances and check which
one is more adequate for the data to be clustered.

B. Choosing the correct k

The major drawback of k-centroids algorithms is that
the number of groups, k, needs to be established a priori.
The quality of clustering depends heavily on k.

There are several indexes to measure clustering quality
and, hence, to suggest which k to select [32]. After some
tests, we choose the well known Davies-Bouldin index
[33], because it provided the best clustering results for
our data set. This index basically defines a measure of
separation and compactness for clusters and tests several
values of k to choose which one optimizes those values.

C. A 2-Steps Clustering

Since we are working with a large amount of data,
we have designed a 2-steps clustering process for com-
putational efficiency. First, we pre-cluster all data ac-
cording to target similarity. This process is fast because
it involves only 2 variables from each sample. Resulting
groups are clustered according to obstacle configurations
(2400 obstacles grid). We use Davies-Bouldin index in
each clustering step in order to select the optimal number
of groups.

Figure 6. Users’ goals in our dataset (Greyscale values represent
frequency, white color is the low frequency).

Figure 7. Clustering problem: Both the Euclidean and the Manhattan
distance d are the same for (G1, G2) and (G3, G4)

1) Goal based clustering: Any local situation grid
has 196 (60+60+38+38) potential goals, i.e all boundary
cells of the grid. Figure 6 shows every potential goal in a
grid, where the departure point is marked with a circle.
Most frequent destinations in our tests are represented
in black, and least frequent ones are printed in white.
Locally, users tend to favor goals ahead of their position,
because any significant curvature change leads to create
a new grid.

Unfortunately, paths to reach a goal in a grid may
change significantly, specially when complex maneuvers
are performed. Therefore, our clustering algorithm can
not directly work with the distance between goal co-
ordinates to cluster trajectories. Fig. 7 shows how very
different goals may present the same distance, both using
the Euclidean and the Manhattan distance.

Function genTrajgoal(g1) generates a DWA trajectory
to arrive to goal g1. It uses the windows of velocities
defined in section III-A in a grid without obstacles. We
define the goal based cluster distance between goal g1
and goal g2, as the mean squared error (MSE) between
genTrajgoal(g1) and genTrajgoal(g2) (Eq. 3).

MSEg(g1, g2) =

MSE(genTrajgoal(g1), genTrajgoal(g2))
(3)

Using MSEg as distance function, we can precluster
our data according to goal parameters. In this precluster
stage we use a k-median algorithm because the distance
defined in Eq. 3 requires real goals to work with and
prototypes in a k-means algorithm are averages of real
elements.

In this stage, we chose the lowest Davies-Bouldin
index from 100 repetitions for each k. Fig. 8 shows
the results. We observe how Davies-Bouldin index value



6

Figure 8. Goal based clustering: Davies-Bouldin for 2 ≤ k ≤ 20

Figure 9. Clusters centroids for k = 11.

stabilizes for values over eleven. Other inflection points
are k = {6, 14, 17}. We discarded k = {6, 14} because
they did not return a cluster for the most frequent
trajectories (move ahead). Also, we discarded k = {17}
because resulting centroids were too close (less than
0.3m). Therefore, we chose k = 11.

Fig. 9 shows resulting centroids for k = 11. These 11
centroids roughly correspond to 1 move ahead path, 3
turn right/left maneuvers and 2 right/left U-turn maneu-
vers.

After this stage, each cluster includes paths that share
a similar destination. These paths may be very different
depending on the obstacle configuration in the grid (fig.
10). Our next clustering stage splits the situations in each
bin into classes depending on the obstacle configuration.

2) Obstacle based clustering: Again, we use a k-
median algorithm in this stage because we want cen-

Figure 10. Different obstacle layouts in the same bin after goal-based
clustering

(a)

(b)

(c)

Figure 11. Group centroids: 11.(a) Move ahead, 11.(b) SMT Left
1, 11.(c) SHT Left 1. Gray scale represents obstacles’s location
probability (white is lack of obstacles).

Table I
OBSTACLE BASED CLUSTERING: DAVIES BOULDIN INDEXES PER

BIN

k
Group 3 4 5 6 7 8 9 10 11 12

Move ahead 2.55 2.52 2.91 2.67 2.82 2.74 3.07 2.89 3.00 3.06
SMT left 1 2.89 2.83 2.62 3.62 2.57 2.69 2.64 2.80 2.89 2.61

SMT right 1 3.14 2.83 3.20 2.96 2.46 2.76 3.41 2.57 2.54 2.58
SMT left 2 3.51 3.07 2.45 2.54 2.31 2.59 3.63 3.09 2.94 2.77

SMT right 2 2.59 3.49 3.39 3.60 2.52 2.59 3.43 3.27 2.71 3.52
Turn Left 2.10 2.47 2.88 4.26 2.38 2.00 3.68 2.811 2.24 2.29

Turn Right 3.83 2.80 3.05 3.33 3.18 2.32 3.96 2.72 2.94 2.89
SHT left 1 2.41 2.21 2.43 2.22 2.59 1.83 1.68 2.24 2.05 2.25

SHT right 1 3.56 2.64 3.00 2.78 2.79 1.97 1.54 2.09 2.05 2.25
SHT left 2 3.02 2.46 2.58 2.14 2.80 2.47 1.90 2.65 2.23 2.31

SHT right 2 3.03 2.63 2.60 2.38 2.39 2.23 1.87 2.31 2.62 2.75

troids to reliably represent real obstacle configurations.
Otherwise, even a minimal obstacle dispersion in class
elements would return wide diffuse obstacle areas. Any
two obstacle grids are simply compared cell by cell using
a Manhattan distance.

This clustering process is applied to each of the eleven
bins resulting from our previous goal based clustering
with k ranging from 3 to 12. In this case we simply
selected the lowest local minima of the Davies-Boulding
index in the defined k range (Table I).

Bins like Move Ahead present just a few obstacle
configurations (Fig. 11.(a)). More complex maneuvers
typically result in a larger number of classes. Sharp turns
(SHT) in general require more groups (k = {9}) than
smooth turns (SMT) (k = {7}) because goals are closer
to the origin and then, there are more potential obstacle
distributions in the grid (Figs. 11.(c), 11.(b)).

3) Scalability of the proposed methodology: Scalabil-
ity can be tested by running our method for an increasing
number of volunteers and checking if resulting classes
tend to stabilize. We have performed our 2-steps clus-
tering for {5, 10, 15, 20, 25, 30, 35, 41} volunteers, ran-
domly selected from our full population. Figure 13 shows
the best k values according to the Davies Boulding index
for our goal-based clustering step. As commented, if k is
low no cluster represents the most frequent trajectories
(move ahead) and if k is large, centroids are often too
close. We can observe that k=11 is consistently the best
choice in most cases, except for 5 and 15 volunteers.
The same effect can be observed in the obstacle-based
clustering step (Figure 12). In general, when the number
of volunteers is too low, the best k values may change
significantly, but they tend to stabilize around a fixed
value when the number of volunteers grows.



7

Figure 12. Best k per class in the obstacle-based clustering step.

Figure 13. Best k in goal-based clustering step.

D. Information representation and Reward Function cal-
culation

After our 2-step clustering process was finished, we
obtained 84 clusters. Each cluster includes all (partial)
paths completed by our volunteers to reach a similar
goal g and a similar obstacle distributions o (Fig. 14(a)).
We can represent human trajectory information for each
cluster by averaging all trajectories in that cluster, i.e.
we increase by 1 the values of the cells included in
each trajectory. This average can be stored into a matrix
MPg,o (Fig. 14(c)), where g is the centroid of the goal
cluster and o is the centroid of the obstacle cluster. It
must be noted that obstacle averaging does not return
wide obstacle areas anymore because obstacles in the
same cluster tend to be in similar locations at this point.

The highest elements of MP correspond to locations
included in most users’ paths for each each given goal
and obstacle configuration. Originally, we noticed that all
maxima were close to the starting area. This happened
because all grids have the same departure point, so every
path in our tests started there. To solve this issue, every
MPg,o element is weighted by its distance to the origin.
After this factorization, we obtained weighted matrices
MP f

g,o. Fig. 14(d) shows how peaks are not shifted
towards the departure point anymore after weighting.

Finally, we noticed that discretizing local situations
into 60x40 grids affected generated trajectories nega-
tively: averaging sometimes created valleys in crowded

obstacle areas. In order to reduce these valleys, we
applied a gaussian blur to MPn

g,o to obtain the final
matrices (14(e)).

At this point, element < x, y > in MPn
g,o[x, y] is

a metric for the frequency of users crossing < x, y >
while traveling to a goal close to g with an obstacle
configuration similar to o. Hence, MPn

g,o represents how
people in average navigate towards g given the obstacle
configuration o. Our BDWA reward function (Eq. 4)
uses MPn

g,o to calculate how similar a given trajectory
is to this average user solution. The more similar the
trajectories are the higher its value.

Rb(v, w, o, g) =

∑LEN(TRJ(v,w))
s=0 MPn

g,o[TRJs(v, w)]

LEN(TRJ(v, w))

(4)

being

v ∈
{
vini + t ∗∆v | 0 ≤ t ≤ vend − vini

∆v

}
w ∈

{
wini + t ∗∆w | 0 ≤ t ≤ wend − wini

∆w

}
TRJ(v, w) Trajectory generated with v and w.

LEN(TRJ(v, w)) Length of trajectory TRJ(v,w)

or number of step inside de windows (60x40).

TRJs(v, w) Robot position (x,y) in trajectory

TRJ(v, w) at s step.

In order to use equation 4, we need to calculate which
matrix MPn

g,o is more similar to trajectory TRJ(v, w),
generated with v and w, in terms of goal and obstacle
distribution. This process increases BDWA computa-
tional cost with respect to DWA. Next section shows
how to optimize the process to implement our BDWA
algorithm in a computationally efficient way.

1) BDWA implementation: Given a local situation
with obstacles o and goal g, DWA returns a pair of



8

(a) Local situations in a cluster
(g, o)

(b) Trajectories extracted in a
cluster (g, o)

(c) Averaging of all
trajectories, 3D view
(MPg,o)

(d) Weighted MP f
g,o (e) Smoother MPn

g,o

Figure 14. MPg,o Matrix extraction steps using the whole set of local situations in cluster (g, o).

lineal and angular velocities (vbest, wbest) which maxi-
mizes the DWA reward function in the interval imposed
by the dynamic of the robots (v ∈ [vini, vend] and
w ∈ [wini, wend]) (see algorithm 1).

Data: Obstacle o, Goal g
Result: Best linear vbest and angular wbest

velocities
1 //Initialization;
2 valuebest ← 0;
3 vbest ← vini;
4 wbest ← wini;

5 //Iteration within the robot dynamics;
6 v ← vini;

7 while v ≤ vend do
8 w ← wini;
9 while w ≤ wend do

10 value← R(v, w, o, g);
11 if valuebest ≤ value then
12 valuebest ← value;
13 vbest ← v;
14 wbest ← w;
15 end
16 w ← w +∆w;
17 end
18 v ← v +∆v;
19 end
20 return (< vbest, wbest >);

Algorithm 1: DWA pseudo code

DWA iterates n times, being n equal to vend−vini

∆v ∗
wend−wini

∆w . As commented, we could implement our
BDWA replacing R(v, w, o, g) by Rb(v, w, o, g) in al-
gorithm 1 (line 10), but this approach is too computa-
tionally expensive.

In order to spare online processing in BDWA (algo-
rithm 2), we rely on a 2 stage offline process that needs
to be performed only once:

• In the first stage, we store for each of 197 possible
goals in a local situation, which centroid belongs
to them (see section IV-C1). goalList(g) function
(line 2) implements it, it returns which centroid
belongs to goal g.

• In the second stage, we calculate and store a
sorted list of < v,w > in descending or-
der of Rb(v, w, o, g) for each of our 84 MPn

g,o.
userSolution function (line 3) returns a ordered
list of velocities of matrix MPn

goalCluster,o which
is more similar to the obstacle centroid cluster o if
goal is goalCluster.

At worst, userSolution performs 9 matrices compar-
isons (see table I). Once we have selected matrix MPn

g,o,
getBest(MPn

g,o, cont) function (line 7) returns the best
solution in the evaluated cont group. These additional
costs are decreased by swapping the double loop in
algorithm 1 (lines 7-18) by a simple search in a ordered
list in algorithm 2 (lines 6-9).

Our experiment section proves that BDWA trajectories
are close to human ones, as expected.

Data: Obstacle o, Goal g
Result: Best linear v and angular w velocities

1 //First, we get MPn
g,o;

2 goalCluster ← goalList(g);
3 MPn

g,o ← userSolution(goalCluster, o);

4 //Second, we looking for best solution;
5 cont← 1;
6 repeat
7 < v,w >← getBest(MPn

g,o, cont);
8 cont← cont+ 1;
9 until not(isV alid(< v,w >, o));

10 return (< v,w >);
Algorithm 2: BDWA pseudo code



9

Table II
SUCCESS RATE BY GOAL GROUPS. PAIRED WILCOXON TESTS.

BDWA GREATER THAN: DWA (p = 0.00049). PFA (p = 0.00049)
AND VFH (p = 0.01611).

Algorithm
Group BDWA DWA PFA VFH

Move ahead 99.87 99.05 99.27 99.35
SMT left 1 99.89 83.97 96.80 98.86

SMT right 1 99.69 85.41 97.85 99.08
SMT left 2 99.53 62.31 66.10 95.90

SMT right 2 99.41 70.25 72.66 98.06
Turn left 98.87 63.25 69.79 96.73

Turn right 97.76 64.01 76.46 98.43
SHT left 1 99.17 52.89 83.47 88.43

SHT right 1 98.49 73.37 96.48 94.47
SHT left 2 95.84 89.54 71.29 97.76

SHT right 2 98.35 58.70 82.75 96.22
Average 98.81 72.98 82.99 96.66

V. EXPERIMENTS AND RESULTS

We have completed a k-fold cross validation [34] with
k = 10 for assessing the comparison with the whole data
set. First, we randomly split all samples gathered in our
experiments into k groups of equal size. Then, the cross-
validation process is repeated k times. In each iteration,
k−1 data groups are used to feed all reactive navigation
algorithms.

We have implemented four algorithms in order to
check which trajectories are actually closer to human
ones: PFA, VFH, DWA (algorithm 1) and our BDWA
(algorithm 2). All four algorithms are provided the
same target and they have to autonomously reach it.
The last data group in k-fold is used as reference for
all implemented reactive navigation algorithms, so we
can compare the trajectories they return with real user
solutions, obtained from our volunteer group described
in subsection II-B.

Equation 3 compared two trajectories point by point
using a Euclidean distance between goal coordinates.
This approach is valid for simple trajectories, but MSE
is sensitive to noise and disturbances [35]. Hence, in
these tests we have used an implementation of the
Dynamic Time Warping (DTW) distance [36]. DTW
results depend more on the shape of the paths than in
punctual differences. We have compared human paths in
all our 19096 situations with results provided by PFA,
VFH, DWA and BDWA for each situation conditions
(departure and arrival points and obstacle configuration).
Low DTW values for a given algorithm indicate that
its trajectories are similar to human ones. We have
represented the results in a box-and-whisker format,
including the median, the first and third quartile, and
the maximum and minimum values of our data (Figure
15).

BDWA consistently returns more human-like trajecto-
ries than the other algorithms for all SMT goals (Figs.
15(a)-15(d)) and right/left turns (Figs. 15(e)-15(f)): me-
dian DTW values decrease between 15.58% and 49.18%
in these situations. Unlike other algorithms, BDWA does
not return the shortest path. Instead, it searches for a
path that mimics what our volunteers did in each specific
situation, taking into account the physical constraints of
the rollator. Fig. 16 shows an example of this behavior
for a SMT left 2 goal. It presents the paths returned for a
specific situation by every tested algorithm compared to
the path followed by a female volunteer (77 years old)
with a prosthetic femur fracture. VFH return the shortest
paths, since PFA presents oscillations near obstacles.
BDWA does not reproduce the specific behavior of this
particular user; it is based on the average behavior of all
our volunteers to cope with that specific situation. Still,
BDWA returns the most human-like path: DTW is equal
to 130.71, 165.23 and 220.13 for BDWA, PFA and VFH
respectively.

Improvements are not so significant in SHT situations:
some users may require more space to cope with SHT
than others from the same obstacle cluster (Fig. 19).
Hence, variability within a cluster is larger: some users
are well represented by its prototype, whereas others are
not. This variability provokes an increase in DTW. Still,
median DTW values for BDWA in these situations are
still 7.71% to 39.7% lower than the rest (figures 15(g)-
15(j)).

Other algorithms outperform BDWA only in 1 out of
11 classes: Go forward (Fig. 15(k)). Differences in DTW
medians in this case are small (18.77 at most, VFH vs
DWA), but VFH and PFA outperform BDWA in terms
of human similarity. This happens for two reasons. First,
human trajectories within this class have a very large
variability, because these situations are less constrained
than the rest. Hence, BDWA paths are similar to some
human ones, but not to others. Also, in these cases many
volunteers tended to go straight to the goal, even if they
had to force the rollator sometimes. VFH and PFA do
not operate under constraints, so they outperform DWA
and BDWA in Go Forward situations. DWA follows
on rollator constraints, whereas BDWA combines hu-
man/rollator constraints. Hence, DWA returns the worst
results in terms of human similarity whereas BDWA
balances human similarity and safety constraints. Fig.
17 presents an example of this behavior for a female
volunteer (45 years old) with polytraumatism. All paths
are very similar in these situations, as commented. Still,
it can be noted that VFH returns the most human like
path, followed by PFA, which is affected by oscillations.
The DWA path is shifted towards the left obstacle mass,



10

100 120

VFH
PFA

DWA
BDWA

(a) SMT right 1

100 120 140

VFH
PFA

DWA
BDWA

(b) SMT left 1

150 200 250 300

VFH
PFA

DWA
BDWA

(c) SMT right 2

150 200 250 300

VFH
PFA

DWA
BDWA

(d) SMT left 2

150 200 250

VFH
PFA

DWA
BDWA

(e) Turn right

100 200 300

VFH
PFA

DWA
BDWA

(f) Turn left

200 300 400

VFH
PFA

DWA
BDWA

(g) SHT right 1

200 300 400

VFH
PFA

DWA
BDWA

(h) SHT left 1

300 400 500 600

VFH
PFA

DWA
BDWA

(i) SHT Right 2

300 400 500 600

VFH
PFA

DWA
BDWA

(j) SHT left 2

60 70 80

VFH
PFA

DWA
BDWA

(k) Go forward

Figure 15. DTW distances (X axis) for each local situations between
the reactive navigation solutions (Y axis) and the human one.

Figure 16. Comparative results obtained for a SMT left 2 goal for a
random user.

Figure 17. Comparative results obtained for a Go forward goal for
a random user.

probably because it is safe and preserves curvature. How-
ever, humans usually tend to keep away from obstacles if
possible. Hence, BDWA is shifted towards the right, even
though this choice implies some minor steering. DTW
distances to the human path are 67.94, 73.64, 63.49 and
58.28 for BDWA, DWA, PFA and VFH, respectively.

Given the reactive nature of all tested algorithms, we
need to measure not only likeness to human paths, but
also success rate. Given a situation, a path is successful
if it safely connects the departure and arrival points.
Unsuccessful paths converge to local minima instead.
Fig. 20 shows some examples of unsucessful paths.
BDWA failed due to the commented cluster variability
in sharp maneuvers. DWA failed because its last window
did not detect the obstacle and the robot got too close
to it. PFA failed because forces produced by obstacles
on both sides of the robot almost cancelled each other
and made the robot drift towards a local minimum.
VFH failed because it reached a local minimum and
fell into a loop. Our groups include similar obstacle
configurations and goals (Fig. 11), but there are still
different situations in a group. A navigation algorithm
might solve some of these situations and fail to solve
others. If the success rate of a given algorithm for a
group is not high enough, sometimes it can not return
a path to the goal. In collaborative control, that means
that the robot might not be able to help the user to solve
that situation.

Table II shows the success rate per algorithm to reach
the 11 goals in Fig. 9. BDWA achieves a higher success
rate than any other solutions in average. Besides, paired
Wilcoxon tests [37] validate a significant success rate
improvement using BDWA. BDWA has a higher success
rate than DWA (p = 0.00049), PFA (p = 0.00049)
and VFH (p = 0.01611). Although VFH is second
best in terms of success rate, VFH paths are often not
similar to human ones (Fig. 15). BDWA outperforms
VFH and DWA in terms of success rate, plus they do
not necessarily return trajectories similar to human ones.



11

(a) BDWA (b) DWA (c) PFA (d) VFH

Figure 18. Examples of unsuccessful paths for all tested algorithms.

Figure 19. Different solutions to the same situation (U-turn)

VI. CONCLUSION AND FUTURE WORK

This paper has presented a biomimetic variation of
DWA that we have called BDWA. In a shared control,
the differences between the navigation commands and
the users command may produce rejection and stress in
the users. Hence, integrating BDWA in a shared control
system may help to decrease them.

BDWA is based on defining a new reward function to
generate trajectories that are significantly closer to what
a human in need of a rollator would do. This reward
function has been extracted via clustering from real nav-
igation traces from volunteers with different disabilities
using a passive rollator in a hospital environment. Given
the nature of our input data, this version of BDWA can
work in any rollator. However, it is not extendable to
other support devices like walkers or canes because they
affect trajectories in a different way and their target
population walks differently. The methodology could be
extended to these devices, but it would be necessary
to extract and process data from the correct population
group.

Since BDWA is based on conventional DWA, the risk
of fall is reduced because dynamics are always taken
into account. Besides, we have implemented BDWA in
a fast, efficient way by adding a pre-calculation offline
stage. This implementation is less efficient than DWA
in terms of memory storage, but it works at frequencies
greater than 10 times per second in a embedded system
(Raspberry Pi).

In order to prove that BDWA returns more human like
trajectories than other reactive algorithms, we have com-
pared trajectories from four different algorithms (PFA,
VFH, DWA and BDWA) with human rollator trajectories
gathered from volunteers with disabilities during real
navigation tests with rollators.

BDWA offers the best results in terms of human like-
ness in 10 out of 11 types of maneuvers, plus its success

rate is the best among all tested algorithms. Differences
between BDWA and other navigation algorithms are
particularly noticeable during steering maneuvers, as
expected.

We have tested how much our methodology depends
on the processed number of volunteers to check its
scalability. If this number is larger than 10, we have
observed that our model tends to stabilize. Although
results are promising, we plan to capture and analyze
more experimental traces to validate our model further
and obtain even more similarity to human trajectories.

Future work will focus on implementing BDWA in a
collaborative control framework and exhaustively testing
it for different target groups.

ACKNOWLEDGEMENTS

This work has been partially supported by the
Spanish Ministerio de Educacion y Ciencia (MEC),
Project. TEC2011-29106, Project n. TEC2014-56256-
C2-1-P, Hospital Regional Universitario of Malaga and
Fondazione Santa Lucia of Rome.

REFERENCES

[1] S. Grammenos et al., “European comparative data on europe
2020 & people with disabilities,” 2013.

[2] S. W. Brose, D. J. Weber, B. A. Salatin, G. G. Grindle, H. Wang,
J. J. Vazquez, and R. A. Cooper, “The role of assistive robotics
in the lives of persons with disability,” American Journal of
Physical Medicine & Rehabilitation, vol. 89, no. 6, pp. 509–
521, 2010.

[3] S. Parikh, V. Grassi, V. Kumar, and J. Okamoto, “Usability
study of a control framework for an intelligent wheelchair,”
in Proceedings of the 2005 IEEE International Conference on
Robotics and Automation. IEEE, 2005, pp. 4745–4750.

[4] S. McLachlan, J. Arblaster, D. Liu, J. Miro, and L. Chenoweth,
“A multi-stage shared control method for an intelligent mobility
assistant,” in Rehabilitation Robotics, 2005. ICORR 2005. 9th
International Conference on. IEEE, 2005, pp. 426–429.

[5] D. Bruemmer, D. Few, R. Boring, J. Marble, M. Walton, and
C. Nielsen, “Shared understanding for collaborative control,”
Systems, Man and Cybernetics, Part A: Systems and Humans,
IEEE Transactions on, vol. 35, no. 4, pp. 494–504, 2005.

[6] R. Rao, K. Conn, S. Jung, J. Katupitiya, T. Kientz, V. Kumar,
J. Ostrowski, S. Patel, and C. Taylor, “Human robot interac-
tion: application to smart wheelchairs,” Departmental Papers
(MEAM), p. 29, 2002.

[7] T. Carlson and J. Millán, “Brain-controlled wheelchairs: a
robotic architecture,” IEEE Robotics and Automation Magazine,
vol. 20, no. EPFL-ARTICLE-181698, pp. 65–73, 2013.



12

(a) Go Forward (b) SMT Left 1 (c) SMT Right 1 (d) SMT Left 2 (e) SMT Right 2

(f) Left (g) Right (h) SHT Left 1 (i) SHT Right 1 (j) SHT Left 2

(k) SHT Right 2

Figure 20. Learning curve. Number of volunteers (5,10,15,20,25,30,35) vs error (DTW distances).

[8] C. Urdiales, M. Fernández-Carmona, J. Peula, R. Annicchiar-
icco, F. Sandoval, and C. Caltagirone, “Efficiency based modu-
lation for wheelchair driving collaborative control,” in Proceed-
ings of the 2010 IEEE International Conference on Robotics
and Automation. IEEE, 2010, pp. 199–204.

[9] C. Urdiales, J. Peula, C. Barrué, E. Pérez, I. Sánchez-Tato,
J. del Toro, U. Cortés, F. Sandoval, R. Annicchiarico, and
C. Caltagirone, “A new collaborative-shared control strategy for
continuous elder/robot assisted navigation,” Gerontechnology,
vol. 7, no. 2, p. 229, 2008.

[10] J. Rowe, “The management of falls in older people: from
research to practice,” Reviews in Clinical Gerontology, vol. 10,
no. 04, pp. 397–406, 2000.

[11] Q. Zeng, C. L. Teo, B. Rebsamen, and E. Burdet, “A collab-
orative wheelchair system,” Neural Systems and Rehabilitation
Engineering, IEEE Transactions on, vol. 16, no. 2, pp. 161–170,
2008.

[12] L. Zeng and G. M. Bone, “Mobile robot collision avoidance
in human environments,” International Journal of Advanced
Robotic Systems, vol. 10, no. 41, 2013.

[13] R. Chipalkatty, G. Droge, and M. B. Egerstedt, “Less is more:
Mixed-initiative model-predictive control with human inputs,”
Robotics, IEEE Transactions on, vol. 29, no. 3, pp. 695–703,
2013.

[14] Y. Hwang and N. Ahuja, “A potential field approach to path
planning,” Robotics and Automation, IEEE Transactions on,
vol. 8, no. 1, pp. 23–32, 1992.

[15] D. Fox, W. Burgard, and S. Thrun, “The dynamic window
approach to collision avoidance,” IEEE Robotics & Automation
Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[16] J. Borenstein and Y. Koren, “The vector field histogram-fast ob-
stacle avoidance for mobile robots,” Robotics and Automation,
IEEE Transactions on, vol. 7, no. 3, pp. 278–288, 1991.

[17] S. Zhu and D. Levinson, “Do people use the shortest path?
an empirical test of wardrop’s first principle,” in 91th annual
meeting of the Transportation Research Board, Washington,
vol. 8. Citeseer, 2010.

[18] C. Urdiales, J. Peula, M. Fdez-Carmona, C. Barrue, E. Perez,
I. Sanchez-Tato, J. del Toro, F. Galluppi, U. Cortes, R. An-
nichiaricco, C. Caltagirone, and F. Sandoval, “A new multi-

criteria optimization strategy for shared control in wheelchair
assisted navigation,” Autonomous Robots, vol. 30, no. 2, pp.
179–197, 2011.

[19] L. Wang, S. X. Yang, and M. Biglarbegian, “Bio-inspired
navigation of mobile robots,” in Autonomous and Intelligent
Systems. Springer, 2012, pp. 59–68.

[20] T. W. Manikas, K. Ashenayi, and R. Wainwright, “Genetic
algorithms for autonomous robot navigation,” Instrumentation
& Measurement Magazine, IEEE, vol. 10, no. 6, pp. 26–31,
2007.

[21] C. Urdiales, J. Vázquez-Salceda, E. Perez, M. Sànchez-Marrè,
and F. Sandoval, “A cbr based pure reactive layer for au-
tonomous robot navigation,” in Proceedings of the 7th IASTED
International Conference on Artificial Intelligence and Soft
Computing, 2003, pp. 99–104.

[22] R. Annicchiarico, C. Barrué, T. Benedico, F. Campana,
U. Cortés, and A. Martı́nez-Velasco, “The i-walker: an intel-
ligent pedestrian mobility aid.” in ECAI, 2008, pp. 708–712.

[23] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no.
3.2, 2009.

[24] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-
based slam with rao-blackwellized particle filters by adaptive
proposals and selective resampling,” in Proceedings of the 2005
IEEE International Conference on Robotics and Automation.
IEEE, 2005, pp. 2432–2437.

[25] J. W. Youdas, B. J. Kotajarvi, D. J. Padgett, and K. R. Kaufman,
“Partial weight-bearing gait using conventional assistive de-
vices,” Archives of physical medicine and rehabilitation, vol. 86,
no. 3, pp. 394–398, 2005.

[26] F. W. Van Hook, D. Demonbreun, and B. D. Weiss, “Ambulatory
devices for chronic gait disorders in the elderly.” American
family physician, vol. 67, no. 8, pp. 1717–1724, 2003.

[27] Y. Zheng, “Trajectory data mining: an overview,” ACM Trans-
actions on Intelligent Systems and Technology (TIST), vol. 6,
no. 3, p. 29, 2015.

[28] Y. Koren and J. Borenstein, “Potential field methods and their
inherent limitations for mobile robot navigation,” in Robotics



13

and Automation, 1991. Proceedings., 1991 IEEE International
Conference on. IEEE, 1991, pp. 1398–1404.

[29] A. Jain, M. Murty, and P. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323,
1999.

[30] F. Leisch, “A toolbox for k-centroids cluster analysis,” Compu-
tational statistics & data analysis, vol. 51, no. 2, pp. 526–544,
2006.

[31] J. MacQueen et al., “Some methods for classification and
analysis of multivariate observations,” in Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability,
no. 14. California, USA, 1967, pp. 281–297.

[32] B. Desgraupes, “Clustering indices,” University Paris Ouest Lab
Modal’X, 2013.

[33] D. Davies and D. Bouldin, “A cluster separation measure,”
Pattern Analysis and Machine Intelligence, IEEE Transactions
on, no. 2, pp. 224–227, 1979.

[34] R. Kohavi et al., “A study of cross-validation and bootstrap
for accuracy estimation and model selection,” in Ijcai, vol. 14,
no. 2, 1995, pp. 1137–1145.

[35] H. Wang, H. Su, K. Zheng, S. Sadiq, and X. Zhou, “An effec-
tiveness study on trajectory similarity measures,” in Proceed-
ings of the Twenty-Fourth Australasian Database Conference-
Volume 137. Australian Computer Society, Inc., 2013, pp.
13–22.

[36] T. Giorgino, “Computing and visualizing dynamic time warp-
ing alignments in r: the dtw package,” Journal of statistical
Software, vol. 31, no. 7, pp. 1–24, 2009.

[37] D. F. Bauer, “Constructing confidence sets using rank statistics,”
Journal of the American Statistical Association, vol. 67, no. 339,
pp. 687–690, 1972.


