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Effects of Linear Perspective on

Human Use of Preview in Manual Control
Kasper van der El, Student Member, IEEE, Daan M. Pool, Member, IEEE,

Marinus (René) M. van Paassen, Senior Member, IEEE, and Max Mulder

Abstract—Due to linear perspective, the visual stimulus pro-
vided by a previewed reference trajectory reduces with increasing
distance ahead. This paper investigates the effects of linear per-
spective on human use of preview in manual control tasks. Results
of a human-in-the-loop tracking experiment are presented, where
the linear perspective’s horizontal and vertical deformation along
the previewed trajectory were applied separately and combined,
or were absent (plan-view task). Measurements are analyzed
with both nonparametric and parametric system identification
techniques, in combination with a quasi-linear human controller
model for plan-view preview tracking tasks. Results show that
reduced visual stimuli in perspective tasks evoke less aggressive
control behavior, but that the human’s underlying control mech-
anisms are still accurately captured by the model. We conclude
that human controllers use preview information similar in plan-
view and perspective tasks.

Index Terms—Linear perspective, man-machine systems, man-
ual control, parameter estimation, preview, system identification

I. INTRODUCTION

HUMANS rely heavily on visual information in many

manual control tasks. An important visual cue is pre-

view, information about the future reference trajectory, or

target, to follow. Examples of preview include the road ahead

when driving [1]–[3] or cycling [4], and an artificially dis-

played tunnel-in-the-sky when piloting a helicopter [5] or

aircraft [6]. Preview enables humans to apply feedforward

control to anticipate upcoming trajectory changes [7].

To study the human controller’s (HC) use of preview

information, simplified tracking tasks are often performed with

a plan-view (i.e., two-dimensional or top down) display [8]–

[12]. Removal of all other control-related cues, like physical

motion and optic flow, then allows for explicit measuring and

identification of the HC’s response to preview information.

Recent modeling efforts [11] and subsequent analysis [12]

suggested that HCs apply a dual-mode control strategy: open-

loop control based on a point on the target close ahead, the

“near” viewpoint, and closed-loop control based on a point

farther ahead, the “far” viewpoint.

The novel preview model from [11] extends McRuer et

al.’s [13], [14] famous crossover model for compensatory

tracking; as such, it may facilitate a similar structured, quanti-

tative approach to design and evaluate human-machine systems

(e.g., interfaces), but for more realistic control tasks. However,

general vehicle control tasks differ markedly from the preview

The authors are with the Control and Simulation section, Faculty of
Aerospace Engineering, Delft University of Technology, 2629 HS Delft, The
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tracking experiments in [8]–[12], as the target trajectory is

often viewed from a point within the visual scene, like a

camera on a remote vehicle or the human eye. First, due to

linear perspective, the previewed target trajectory appears in-

creasingly compressed with distance ahead, while the target in

the plan-view tracking experiments is displayed equally large

nearby and far ahead. Second, the visual flow field provides

additional cues of the viewpoint’s rotations and translations

[15], [16]. The HC’s excellent adaptive capabilities [13], [17]

make it difficult to predict if and how these two factors affect

HC behavior.

In this paper, we focus on the effects of linear perspective,

because the reducing visual stimuli from the target farther

ahead, and the corresponding magnification of parts nearby,

may severely affect the near- and far-viewpoint responses

adopted by the HC. On the one hand, it was shown in

compensatory tracking tasks that smaller visual stimuli evoke

less aggressive control behavior and larger response time-

delays [18], [19]. This would suggest that the HC’s response to

preview far ahead, which is strongly affected by perspective,

will be weaker in perspective tasks (compared to plan-view

tasks). On the other hand, perception research has shown that

the human’s visual system compensates visual stimuli with

simultaneously sensed depth cues [20]; as such, HC perception

(and hence control) of a previewed target might still be equal

in plan-view and perspective tasks.

Perspective displays have been extensively studied, and

applied, as they allow for intuitive three-dimensional spatial

information transfer (e.g., see [21]–[23]). Unfortunately, these

studies did not measure – and thus did not increase our

understanding of – the HC’s underlying control behavior. The

HC’s control dynamics were measured in other perspective

control tasks, like driving and flying, but these tasks lacked

preview information [18], [24], or did not explicitly reveal

the effects of linear perspective on the HC’s near- and far-

viewpoint responses [1], [2], [4], [6], [25].

The goal of this paper is to explicitly quantify how lin-

ear perspective affects HC use of preview information, and

specifically the near- and far-viewpoint response mechanisms.

Measurements from a human-in-the-loop experiment are an-

alyzed, in which eight subjects performed a tracking task

with integrator controlled element (CE) dynamics, and 2 s of

preview. The preview was shown either in plan-view, or with

the horizontal and vertical perspective deformations along the

previewed trajectory applied separately, as well as combined.

First, objective measures are calculated to quantify tracking

performance, control activity, and coherence. Next, a non-
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Fig. 1. Plan-view (a) and perspective (b) preview displays, obtained by viewing the target from points “90◦/220 m” and “10◦/60 m”, respectively (c).

parametric, multiloop, frequency-domain system identification

method is applied [26], and the parameters of the HC model

for plan-view preview tracking tasks from [11] are estimated.

The obtained HC dynamics and model parameters explicitly

characterize how HCs adapt their control behavior between

plan-view and perspective tasks.

This paper is structured as follows. In Section II we in-

troduce the preview control task and linear perspective. In

Sections III and IV we elaborate on our methods: the HC

model for plan-view preview tracking tasks from [11], the

applied system identification techniques, and the performed

experiment. Results are presented in Section V, followed by a

discussion and our main conclusions in the final two sections.

II. PREVIEW TRACKING AND LINEAR PERSPECTIVE

A. The Control Task

In this paper, we consider a single-axis, lateral position

tracking task. The HC is required to minimize the lateral

tracking error e(t), which is the difference between the target

signal ft(t) and the CE output x(t):

e(t) = ft(t)− x(t), (1)

at current time t. The HC gives control inputs u(t) to the

CE, which is simultaneously perturbed by a disturbance signal

fd(t). The task, illustrated in Figs. 1 and 2, is thus two-fold:

target tracking and disturbance rejection.

In preview tracking tasks, the target ahead ft([t, t + τp]) is

visible up to preview time τp. A plan-view of the previewed

target is shown in Fig. 1a; this view corresponds to looking

straight down from a point high above the previewed tar-

get (i.e., 90◦ elevation in Fig. 1c). Due to the viewpoint’s

movement parallel to world frame axis Xw, the previewed

ed(t) u(t) x(t)

fd(t)

fd
t ([t, t+ τp])

xd(t)

ft(t) human

controller
side-stick

controlled

element
display

Fig. 2. The HC in a target-tracking and disturbance-rejection task.

target moves down over the screen and forces the current

target (cross) left and right. Note that, in a forced-pace

(fixed velocity) task as we consider, time and distance are

linearly related, so all signals can be written with time as the

independent variable without loss of generality.

The same scene observed from 10◦ elevation yields a

perspective view (see Fig. 1b). Viewed from this particular

point, the displayed target trajectory is compressed in verti-

cal display direction V and magnified in horizontal display

direction U . Vertical display coordinate va is much smaller on

the perspective display than on the plan-view display, for the

same point a on the previewed target τa s ahead. Horizontally,

the display coordinate ub is larger on the perspective display

for any arbitrary point b on the previewed target. Clearly, the

displayed signals ( f d
t , ed , and xd in Fig. 2), hence the visual

stimuli from the previewed target, are markedly different in

plan-view and perspective tasks.

B. Perspective Projection Method

Central projection is a technique to map a three-dimensional

visual scene to a two-dimensional display surface [27]. The

basic principle is similar to that of a camera, which produces

a picture (i.e., a two-dimensional representation) of a three-

dimensional visual scene. The center of projection (COP),

or viewpoint, is the location from which the visual scene is

supposedly observed (see Fig. 3). Light rays, or projectors,

emanate from each point in the visual scene to converge

in the COP. When a certain viewplane is defined at finite

distance κ from the COP, the intersection of passing light-

rays with this viewplane yields a two-dimensional image:

the perspective projection. Alternatively, when κ is infinite, a

parallel projection is obtained, yielding a plan-view. The COP

is the origin of the view reference frame (superscript v), with

the central viewing axis Xv defining the viewing direction. The

boundaries of the visualized volume are characterized by the

horizontal and vertical field of view (FOV):

HFOV = 2arctan
( w

2κ

)

, VFOV = 2arctan

(

h

2κ

)

, (2)
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Fig. 3. The perspective projection method and its principal terminology.

with w and h the viewplane’s width and height, respectively.

For an arbitrary point a in the visual scene, the corresponding

viewplane coordinates ua and va are obtained from:

ua = κ
yv

a

xv
a

, va =−κ
zv

a

xv
a

, (3)

with xv
a, yv

a and zv
a the coordinates of point a in the view

reference frame.

C. Perspective Display Gains

HC task performance depends on the appearance of a

perspective scene, as demonstrated by Kim et al. [21] for

three-axis pursuit tracking tasks. It is possible to use the

perspective projection’s parameters (like FOV and elevation)

to compare the appearances of perspective scenes; however,

when analyzing HC behavior, it is more convenient to express

perspective deformations as display scaling gains, as a function

of time τ along the previewed trajectory ahead. In horizontal

display direction, we define display gain Kd,u(τ) as the ratio

of the display and world coordinates of an arbitrary point a in

the visual scene:

Kd,u(τ) =
ua(τ)

yw
a (τ)

. (4)

In vertical display direction, we define gain Cd,v(τ) as the ratio

of the displayed and real (i.e., in world coordinates) lengths

of an element with length dτ as:

Cd,v(τ) =
va(τ +dτ)− va(τ)

yw
a (τ +dτ)− yw

a (τ)
. (5)

Notations K and C are adopted to emphasize the task’s

controlled and non-controlled directions: HCs can only control

the CE laterally, so in horizontal display direction.

As an example, consider the situation in Fig. 1c: a target

trajectory is visible for 30 m ahead, corresponding to 2 s of

preview at a velocity of 15 m/s. Fig. 4 shows the display

gains for all four COP’s, for a κ of 75 cm. Looking straight

down from 220 m height, each point on the previewed target

is approximately equally far away from the COP, yielding a

near-uniform scaling in both horizontal and vertical display

directions with a ratio of 1:κ/220, or 1:0.0035 (black solid

lines in Fig. 4). This projects the 30 m of preview to about

10 cm on the display, which corresponds roughly to the plan-

view preview tracking task in [11] and [12]. Fig. 4 shows that a
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Fig. 4. Horizontal (a) and vertical (b) display scaling gains for various
viewpoints, as a function of time τ along the previewed trajectory ahead.

smaller object distance (i.e., moving the COP down vertically)

yields higher display gains in both directions (gray solid line).

For large object distances this magnification is nearly uniform,

as all points of the previewed target remain approximately

equally far from the COP.

Viewed from a non-vertical elevation, the object distance to

the nearer part of the previewed target (small τ) is smaller than

that of far parts (large τ). Therefore, the horizontal and vertical

display gains will be larger for near points compared to far

points, as illustrated for an elevation angle of 10◦ in Fig. 4

(black and gray dashed lines). This effect is more pronounced

when the COP is closer to the previewed target, because the

relative difference in object distance between near and far parts

increases.

Fig. 4 also shows the display gains for an immersed and a

tethered viewpoint, for a κ of 5 cm. The immersed viewpoint

corresponds to a view from a car or bicycle, at 1 m height

above the start of the previewed target (at τ=0 s), yielding

display gains that are a strong nonlinear function of τ (black

dash-dotted line). The display gains increase asymptotically

to infinity for points close ahead (small τ), as these parts

are outside the (forward aimed) viewing volume. A tethered

viewpoint located 3.5 m above and behind the start of the

previewed target yields similar display gains, but with the near

points still in sight (gray dash-dotted line). Our experiment

will include the display gains from this tethered view. For

comparison, the right axis in Fig. 4a shows the horizontal

display gains relative to that of the tethered view at τ=0 s.

III. HUMAN CONTROLLER MODELING AND SYSTEM

IDENTIFICATION

To investigate how linear perspective affects HC use of

preview information, we analyze the experimental data with

system identification techniques, in combination with a quasi-

linear cybernetic model. This approach is explained here.

A. HC Model for Plan-view Preview Tracking Tasks

The HC model for plan-view preview tracking tasks

from [11] is shown in Fig. 5, together with a display model.

The display gains Kd,u(τ) scale the previewed target horizon-

tally at the indicated time τ ahead. The relative display gains

are used, such that the CE output x(t) (located at τ=0 s) has

unity scaling, as Kd,u(0)=1. It is mathematically equivalent to
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Fig. 5. Control diagram of the HC model for preview tracking tasks, adapted from [11] and augmented with a simple display model.

use the absolute display gains from Fig. 4, but this changes

the interpretation of the gains in the HC model and makes

comparisons with previous work less straightforward.

The HC model extends McRuer et al.’s [13], [14] crossover

model for compensatory tracking tasks, with two viewpoints

on the previewed target as inputs. It was found that this

two-viewpoint model structure is sufficient to account for

the HC’s total response to a previewed target [11], [12].

A far-viewpoint ft(t+τ f ) is the input to a feedback model

for compensatory control behavior (similar as in the model

by Modjtahedzadeh & Hess [28]), while a near-viewpoint

ft(t+τn) is the input to a parallel, additive open-loop response.

The near- and far-viewpoints are located τn and τ f s ahead on

the previewed target, respectively. The model is quasi-linear,

so linear functions describe most of the HC’s behavior. Neither

nonlinear and time-varying behavior, nor perception and motor

noise are explicitly modeled; these are injected together as

filtered white noise through the remnant n(t).
Central to the model is the feedback response to an internal

error e⋆(t): a hypothetical, cognitively calculated signal, which

cannot be measured. Fig. 5 shows that e⋆(t) is the difference

between the target in the far viewpoint, low-pass filtered by

Ho f
( jω), and the CE output:

E⋆( jω) = Ho f
( jω)Fd

t (τ f , jω)−Xd( jω). (6)

The signals written in capitals denote the Fourier transform

of the respective time domain signals, and Ho f
( jω) is the

following low-pass filter:

Ho f
( jω) = K f

1

1+Tl, f jω
. (7)

The time constant Tl, f characterizes the bandwidth of the far-

viewpoint response. It models the HC’s cognitive elimination

of the target signal’s high frequencies from the far-viewpoint

response, facilitated by the preview [12]. Gain K f reflects

the HC’s ability to respond relatively more aggressive to the

target (K f>1) or to the CE output (K f<1). When K f=1 and

Tl, f=τ f=0 s, (6) and (7) show that e⋆(t) = e(t), so that the

HC responds to the real error.

The internal error response Hoe⋆
( jω) is identical to McRuer

et al.’s [14] simplified precision model:

Hoe⋆
( jω) = Ke⋆

1+TL,e⋆ jω

1+Tl,e⋆ jω
, (8)

with Ke⋆ the error response gain, and TL,e⋆ and Tl,e⋆ the lead

and lag equalization time constants, respectively. In compen-

satory tracking tasks, humans apply only proportional control

when the CE has integrator dynamics [13] (as considered in

this paper); however, estimated human control dynamics in

preview tasks point to some low-frequency lag-lead equaliza-

tion [11], [12].

At the target signal’s high frequencies the far-viewpoint

response is attenuated by the low-pass filter in Ho f
( jω). Here,

HCs predominantly apply open-loop control, which is captured

in the model by the near-viewpoint response Hon( jω). A gain

Kn with a differentiator generally suffices to describe these

control dynamics [12]:

Hon( jω) = Kn jω. (9)

A near-viewpoint response is not always clearly present in

preview tasks, and some HCs do not apply this control

mechanism at all [11], [12].

The model also includes the HC’s main physical limi-

tations. Visual response time-delay τv combines perceptual,

cognitive and transport delays, while Hnms( jω) represents the

combined side-stick and HC neuromuscular system (NMS)

dynamics [29]:

Hnms( jω) =
ω2

nms

( jω)2 +2ζnmsωnms jω +ω2
nms

, (10)

with ωnms and ζnms the natural frequency and damping ratio.

B. Nonparametric System Identification

The HC dynamics can be objectively estimated without

making any assumptions, besides the model’s inputs and

outputs, using a nonparametric system identification method

based on Fourier coefficients [26]. The resulting estimates,

called describing functions, can validate the parametric model

structure from the previous section.
1) Forcing Functions: Nonparametric system identification

allows for the estimation of an equal number of describing

functions as there are uncorrelated external inputs, called

forcing functions [30]. To closely resemble common control

tasks, only two forcing functions can be inserted in the

considered preview tracking task: a target and a disturbance.

By choosing multisine forcing functions (here with 20 sines

each) high signal-to-noise ratio’s are obtained at the input

frequencies:

ft(t) =
20

∑
i=1

At [i]sin(ωt [i]t +φt [i]), (11)

fd(t) =
20

∑
i=1

Ad [i]sin(ωd [i]t +φd [i]), (12)
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with amplitude A[i], frequency ω[i] and phase φ [i] of the ith

sinusoid (see Section IV for the values used in the experiment).

Selecting different input frequencies for the target and distur-

bance is sufficient for these two signals to be uncorrelated.

2) Model Restructuring: The two forcing functions allow

for the identification of only two describing functions, so the

model in Fig. 5 must first be converted to a two-channel model.

The structure in Fig. 6 is convenient, as it separates the target-

to-control dynamics Hu
ft
( jω) from the CE-output-to-control

dynamics Hu
x ( jω) [11], [12]. These dynamics can be expressed

in terms of the HC dynamics and the display gains using block

diagram algebra (for details, see [11]):

Hu
ft
( jω) =

[

Kd,u(τ f )Ho f
( jω)Hoe⋆

( jω)eτ f jω

+Kd,u(τn)Hon( jω)eτn jω
]

Hnms( jω)e−τv jω , (13)

Hu
x ( jω) =Hoe⋆

( jω)Hnms( jω)e−τv jω . (14)

Note that the HC dynamics and the display gains must be

lumped in (13) and (14), as the visual stimulus provided by the

perspectively transformed, displayed target f d
t is unsuitable for

linear frequency-domain analysis. The HC and display gains

in (13) can be lumped together into effective gains:

Kn,e f f = Kd,u(τn)Kn, K f ,e f f = Kd,u(τ f )K f , (15)

to easily compare results from plan-view and perspective tasks.

3) Multiloop Describing Function Estimation: Using

Fig. 6, the control output can be written as:

U( jω) = Hu
ft
( jω)Ft( jω)−Hu

x ( jω)X( jω)+N( jω). (16)

A second equation is required to solve for the two unknown

describing functions. Evaluating (16) only at the target signal

input frequencies ωt , a second equation can be obtained by

interpolating the measured signals (U , Ft , X) in the frequency

domain from the disturbance input frequencies ωd to these

same ωt (indicated by Ũ , F̃t , X̃). Neglecting the remnant,

which is small compared to the HC’s response to the forcing

functions at the input frequencies, it follows that [11], [26]:

[

U( jωt)
Ũ( jωt)

]

=

[

Ft( jωt) −X( jωt)
F̃t( jωt) −X̃( jωt)

][

Hu
ft
( jωt)

Hu
x ( jωt)

]

. (17)

Solving (17) for Hu
ft
( jωt) and Hu

x ( jωt) yields the describing

function estimates at ωt . Replacing ωt by ωd in (17), and

interpolating all signals from ωt to ωd , yields the describing

functions at ωd . The method’s complete derivation was pub-

lished in [11], [26], [30]; examples of successful identification

of HC behavior are found in [11], [12], [16], [30].

ft(t)

x(t)
Hce

fd(t)

u(t)

n(t)

+

−
+

+

+

+
Hu

ft

Hu
x display &

human

Fig. 6. Two-channel model used for system identification purposes; the
display and HC models are lumped.

C. Parameter Estimation and Model Fitness

1) Parameter Estimation: The HC model’s parameters can

be estimated in the frequency domain by minimizing a crite-

rion J that is based on the difference between the measured

and the modeled control outputs [12]:

J(Θ̂) =
Nl

∑
l=1

|U( jωl)−Û( jωl |Θ)|2. (18)

The modeled output Û( jωl |Θ) is given by (16) with

remnant N=0; the model parameter vector Θ is

[K f ,e f f τ f Tl, f Kn,e f f τn Ke⋆ TL,e⋆ Tl,e⋆ τv ωnms ζnms]
T .

Nl is the number of measured frequencies below a chosen

cut-off frequency, here 25 rad/s. A Nelder-Mead simplex

algorithm is often used to minimize J, constrained only

to avoid solutions with negative parameters. Selecting the

best solution from many randomly initialized optimizations

(here we use 100) yields a high chance to find the global

minimum. In a second step, the display gains Kd,u(τ) can be

calculated at the estimated τn and τ f , which can then be used

to calculate the HC gains Kn and K f with (15).

2) Variance Accounted For (VAF): The VAF is a measure

for the similarity of two signals; its maximum, 100%, indicates

that two signals are equal. When applied to compare the

measured and the modeled control output the VAF inherently

quantifies the model’s ability to describe the measured HC

behavior [31]. Because a signal’s variance is equal to its

integrated power-spectral density, the VAF can be calculated

as follows:

VAF =









1−

Ns−1

∑
l=0

Pεuεu(lωb)

Ns−1

∑
l=0

Puu(lωb)









×100%, (19)

with Ns the number of samples in the measured time-traces

and ωb the fundamental radial frequency. P is the estimated

periodogram of the subscripted signals, and εu is the difference

between the measured and modeled control outputs:

εu( jω) =U( jω)−Û( jω|Θ). (20)

3) Coherence: The coherence is a measure for the linear

relationship between two signals. A high coherence between

the external input signals and the HC’s control output can jus-

tify using a quasi-linear HC model to analyze the experimental

data [31]. The value of the coherence is always between 0 (no

linear relation) and 1 (perfect linear relation). The coherence

Γ ft u between the target signal and the control output is given

by:

Γ ft u(ω̃t) =

√

|P̃ft u(ω̃t)|2

P̃ft ft (ω̃t)P̃uu(ω̃t)
, (21)

The tilde indicates the average periodogram between the

neighboring frequencies in a double band of input frequen-

cies [31]. The coherence between the disturbance input signal

and the HC output is calculated similarly.
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IV. THE EXPERIMENT

A. Independent Variables

The experiment had two independent variables, namely hor-

izontal and vertical display scaling. Each had two levels: con-

stant (plan-view) and perspective scaling. This design allows

to investigate the difference in HC behavior between plan-view

and perspective tasks, while separating the individual effects

of horizontal and vertical perspective deformations. The full

factorial of the two independent variables was tested, yielding

four conditions: 1) constant scaling, or no perspective (NP),

2) horizontal perspective with constant vertical scaling (HP),

3) vertical perspective with constant horizontal scaling (VP),

and 4) horizontal and vertical perspective combined (HVP).

The applied perspective scaling was in accordance with

the tethered view in Fig. 4, so the entire previewed target

was visible on the display. The plan-view’s vertical scale was

set to 5.08 cm/s of preview, which was similar as in [11]

and [12], and corresponds to the “90◦/220 m” condition in

Fig. 4. The plan-view had unity horizontal scaling, equal to

the tethered view at τ=0 s (see Fig. 4), yielding an equally

large displayed error ed(t) in all four conditions; thereby, any

measured changes in control behavior must be due to linear

perspective. Pictures of all four displays are shown in Fig. 7,

video’s that further illustrate the conditions are available at

http://ieeexplore.ieee.org.

B. Control Variables

1) Controlled Element: The CE had integrator dynamics,

Hce( jω)=1.5/s, with its gain of 1.5 tuned such that the

operator could give accurate inputs, but would not reach the

stick deflection limits during a normal run.

(a) (b)

(c) (d)

Fig. 7. Layout of the four experimental displays: NP (a), HP (b), VP (c), and
HVP (d); the grid was not visible during the experiment.

2) Display: The display showed the previewed target tra-

jectory and the CE output in white, on a brown background.

Grid lines, as included in Fig. 7 for clarification, were not

shown. The CE output (circle) was a two-dimensional overlay,

so subjects could only distinguish between conditions from the

previewed target.

3) Preview Time: The visual preview time τp was set to 2

s, well beyond reported critical preview times for integrator

CE dynamics [8]–[10].

4) Forcing Functions: The target and disturbance signals’

input frequencies were chosen such that an integer number

k of their sinusoid periods exactly fitted the measurement

time of 120 s. Double bands of input frequencies were used,

to allow calculation of the coherence. The bandwidth of

both signals was approximately 1.5 rad/s, above which the

sinusoids’ amplitudes were attenuated 20 dB. The target and

disturbance signals standard deviations were 1.27 cm and

0.508 cm, respectively. Five different realizations of the target

signal were used during the experiment to prevent subjects

from remembering it, after repeated exposure. All forcing

function parameters are given in Table I.

C. Apparatus

The experiment was conducted in the fixed-base part-task

simulator at TU Delft, Faculty of Aerospace Engineering.

Subjects were seated directly in front of the screen on which

the display was shown, at a distance of approximately 75

cm. The screen was 36 by 29.5 cm, had a resolution of

1280 by 1024 pixels, and an update rate of 100 Hz. The

image generator time delay was in the order of 20-25 ms.

To generate control inputs, subjects used an electro-hydraulic

servo-controlled side-stick, positioned at their right-hand side.

It had a moment arm of 9 cm and could only rotate around its

roll axis. The side-stick’s torsional stiffness was 3.58 Nm/rad,

its torsional damping 0.20 Nm·s/rad, its mass moment of

inertia 0.01 kg·m2, and its gain 0.44 cm/deg.

D. Subjects and Experimental Procedure

The experiment was performed by eight motivated, male

volunteers; their tracking experience ranged from novice to

experienced. We explained that the experimental goal was to

investigate the effect of linear perspective on HC behavior,

without giving further information about the individual con-

ditions. Subjects were simply instructed to track the target as

well as possible, hence to always minimize the current tracking

error e(t). They were informed of their rights and agreed to

these by signing a consent form.

The experiment was divided in two sessions of two con-

ditions. Each session took place on a different day to reduce

fatigue effects. To get subjects accustomed with the task and

the displays, each condition was practiced at least twice before

the measurements were started. Then the conditions were

presented to the subjects in an order dictated by a balanced

Latin-Square design. When stable performance was achieved

in a condition, generally after three to eight (128 s long) runs,

the five actual measurement runs were recorded, after which

subjects moved on to the next condition. On the second day,
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TABLE I
FORCING FUNCTIONS PARAMETERS, FIVE TARGET SIGNALS AND ONE DISTURBANCE SIGNAL.

target signals ft disturbance signal fd

i, - kt , - At , cm ωt , rad/s φt,1, rad φt,2, rad φt,3, rad φt,4, rad φt,5, rad kd , - Ad , cm ωd , rad/s φd , rad

1 2 0.630 0.105 5.017 5.185 2.676 4.473 4.483 5 0.252 0.262 0.939

2 3 0.630 0.157 4.313 0.570 1.602 1.772 2.604 6 0.252 0.314 2.487

3 8 0.630 0.419 0.000 1.297 3.207 0.721 4.614 11 0.252 0.576 5.016

4 9 0.630 0.471 3.158 4.984 5.360 0.904 4.954 12 0.252 0.628 1.985

5 14 0.630 0.733 6.193 4.283 5.540 1.954 0.557 18 0.252 0.942 1.359

6 15 0.630 0.785 0.044 2.953 4.250 2.709 3.057 19 0.252 0.995 1.105

7 26 0.630 1.361 0.257 5.641 4.175 0.208 4.215 31 0.252 1.623 4.734

8 27 0.630 1.414 0.650 2.567 6.001 5.051 5.770 32 0.252 1.676 1.821

9 40 0.063 2.094 3.791 4.138 2.878 1.891 3.604 58 0.025 3.037 4.937

10 41 0.063 2.147 0.290 6.022 5.151 2.129 3.005 59 0.025 3.089 5.563

11 78 0.063 4.084 2.651 1.896 3.165 0.190 5.865 93 0.025 4.869 4.183

12 79 0.063 4.136 2.236 4.554 6.094 5.892 1.513 94 0.025 4.922 0.350

13 110 0.063 5.760 4.384 4.724 3.065 1.727 2.292 128 0.025 6.702 5.330

14 111 0.063 5.812 2.281 1.166 4.500 1.281 4.865 129 0.025 6.754 4.830

15 148 0.063 7.749 2.039 3.571 0.499 4.448 1.819 158 0.025 8.273 6.123

16 149 0.063 7.802 4.257 0.384 2.712 1.652 1.398 159 0.025 8.325 3.631

17 177 0.063 9.268 3.665 4.293 4.570 5.477 1.165 193 0.025 10.105 5.327

18 178 0.063 9.320 1.511 4.202 2.161 0.959 2.601 194 0.025 10.158 5.996

19 220 0.063 11.519 2.355 0.843 4.464 4.042 2.919 301 0.025 15.760 2.593

20 221 0.063 11.572 1.286 5.611 3.022 1.221 2.209 302 0.025 15.813 3.733

all four conditions were practiced once before the final two

conditions were tested.

After each run the subjects were informed of the root-mean-

square of their tracking error in that run, to motivate them to

optimize their performance. The total experiment lasted about

3.5 hours per subject, approximately evenly distributed over

the two sessions. In-between each two conditions a 15 minute

break was taken to further reduce fatigue effects.

The time-traces of the error e(t), the CE output x(t), and

the operator’s control actions u(t) were recorded during the

experiment with a sampling frequency of 100 Hz. From the

128 s of each of the recorded time-traces only the last 120 s

were used for our analysis; the first 8 s, which contained most

of the subjects’ transient response, were used as run-in time.

E. Dependent Measures

First, time-traces of the control output were used to compare

control behavior between conditions. Second, the variances of

the error σ2
e and the control output σ2

u were used as measures

for tracking performance and control activity, respectively.

Third, the coherence was used as a measure for the linearity

of the subjects’ response. Fourth, the nonparametric describing

functions were used to compare HC behavior in the frequency

domain. Fifth, the describing functions were compared to

the model fits to validate the model’s ability to describe

the measured HC dynamics. Sixth, the VAF was used as a

second measure for the model’s fitness. Finally, the subjects’

control behavior was quantified using the estimated model

parameters, the response gains Kn and K f , and the vertical

display coordinate v responded to.

F. Data Processing

The error and control output variances and the coherence

were calculated per run. Before applying system identifica-

tion, all signals were averaged over the five runs in the

frequency domain to reduce the remnant contribution in the

estimates [26]. Statistics were used to test for significant

effects on the error and control output variances, and the

model parameters. To reflect within-subject effects only, 95%

confidence intervals were calculated after removing between-

subject variability, by compensating each subject’s data both

with that subject’s mean over the four condition and the

grand mean over all subjects. A repeated-measures two-way

ANOVA was used to deal with the experiment’s two cate-

gorical independent variables: horizontal and vertical display

scaling. Each dependent measure was analyzed with a separate

test. For some measures, the collected samples in specific

conditions were not normally distributed, thereby violating

the normality assumption for parametric statistical tests. With

no nonparametric equivalent test for a two-way repeated-

measured ANOVA, and ANOVAs’ known robustness against

violations of the normality assumption [32], the ANOVA was

still performed.

G. Hypotheses

Due to linear perspective, the previewed target trajectory

ahead is horizontally compressed by Kd,u(τ) (see Section II).

Considering that the task involves lateral control, HCs can

adapt to horizontal perspective by increasing their control

gains Kn and K f . Although ideally the HC inverts the display

gains (so the closed-loop dynamics remain equal as in plan-

view tasks), subjects in compensatory control tasks increased

their control gains insufficiently to compensate for smaller

displayed errors, while also increasing their response delay

τv [18], [19]. Therefore, we hypothesize that:

I: From constant to perspective horizontal scaling, HCs

increase their response gains Kn and K f , but insufficiently
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to invert the display gain (Kn,e f f and K f ,e f f decrease);

HCs also increase their response delay τv [18], [19].

Due to linear perspective, the previewed target ahead is also

compressed vertically, by Cd,v(τ). Assuming that this vertical

compression does not affect perception, we hypothesize that:

II: With and without vertical perspective scaling HC behav-

ior is similar: subjects select the same two viewpoints

on the previewed target ahead (characterized by τn and

τ f ); due to the perspective transformation, however, these

correspond to other vertical display coordinates v.

V. EXPERIMENTAL RESULTS

A. Nonparametric Results

1) Control Output: Fig. 8 shows representative time-traces

of the measured control outputs. At low frequencies (slow,

large amplitude oscillations) the control outputs are similar in

all conditions, but at high frequencies (fast, small amplitude

oscillations) the control outputs have different amplitudes and

are out-of-phase.

2) Performance and Control Activity: Fig. 9 shows the

tracking performance and control activity, the corresponding

ANOVA results are given in Table II. Overall, task perfor-

mance is good, considering that the target signal’s variance

was 1.61 cm2. The total tracking performance decreases signif-

icantly when either horizontal or vertical perspective is added

to the plan-view task (NP). However, when horizontal perspec-

tive is already present and vertical perspective is added (HP to

HVP), performance improves (significant interaction effect).

The total control activity is slightly lower when horizontal

perspective is present (not significant).

At the disturbance input frequencies (black bars in Fig. 9),

both performance and control activity are identical in all condi-

tions (although some differences are significant, see Table II).

At the target and remnant frequencies performance drops

markedly with horizontal perspective, while control activity

decreases at the target frequencies and increases at the remnant

frequencies (all significant effects); this suggests that subjects

apply a less consistent and less effective control strategy.

Similar as for the total performance, vertical perspective has

a negative effect on performance at the target and remnant

frequencies when added to plan-view tasks (NP to VP), but a

positive effect when horizontal perspective is already present

(HP to HVP; significant interaction effect).
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Fig. 8. Measured control outputs for a representative subject, single run data.
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Fig. 9. Variances of the error (a) and the control output (b), mean of all
subjects; errorbars indicate 95% confidence intervals.

TABLE II
ERROR AND CONTROL OUTPUT ANOVA RESULTS.1

horizontal vertical hor.×vert.

NV F sig. F sig. F sig.

total 0 174 ** 8.04 * 180 **
target 1 29.0 ** 21.4 ** 30.4 **
disturb. 0 1.04 - 0.01 - 6.28 *

error, e

remnant 1 49.6 ** 2.04 - 36.5 **
total 2 4.18 - 0.44 - 6.55 *

control target 0 49.0 ** 0.40 - 1.97 -
output, u disturb. 0 2.47 - 21.5 ** 11.0 *

remnant 3 49.0 ** 0.40 - 1.97 -

1 NV is the number of samples that violate the Lilliefors normality test
(p < .05). Symbols **, *, and - indicate the result is highly significant
(p < .01), significant (p < .05), and not significant (p > .05), respectively.
Degrees of freedom (df) is always (1,7).

3) Coherence: The average coherence (Fig. 10) between

the input signals and the control output is often close to 1,

and always above 0.7. The closed-loop human-machine system

is thus predominantly linear, even in perspective tasks, which

justifies using a quasi-linear model to analyze the experimental

data. Especially at frequencies below 2 rad/s the coherence

is high. Here, the input signals’ amplitudes were large (see

Section IV) and well visible, allowing for little observation

noise. At higher frequencies, the input signals’ amplitudes

were 10 times smaller; consequently, more observation noise is

present and the coherence drops. With horizontal perspective

scaling, the displayed excursions are attenuated even more

along the previewed target ahead, yielding a lower coherence
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Fig. 10. Coherence between the target (a) and disturbance (b) input forcing
functions, and the HC control outputs; mean of all subjects.
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Fig. 11. Nonparametric describing function estimates, mean of all subjects.

in the HP and HVP conditions. In these conditions where the

coherence is low, the remnant is typically large (see Fig. 9b).

4) Describing Functions: Fig. 11 shows the nonparametric

describing function estimates. Hu
x ( jω) is similar in all con-

ditions over the full input frequency range, which indicates

that subjects hardly adapted their neuromuscular dynamics,

response time delay, and internal-error feedback dynamics,

see (14). In plan-view tasks (NP), Hu
ft
( jω) approximates

the dynamics that result in perfect target-tracking (gray line;

Hu
x ( jω) + 1/Hce( jω), see [12]). Because Hu

x ( jω) is identical

in all conditions (see Fig. 11b and d), the perfect target-

tracking dynamics are also similar. With horizontal perspective

(HP and HVP) the phase and magnitude required to perfectly

track the target signal are matched less well, especially at

high frequencies. This corresponds to a lower target-tracking

performance in these conditions (see Fig. 9a).

B. Modeling Results

1) Model Fits: Fig. 12 shows both the nonparametric de-

scribing function estimates (markers) and the model fits (lines)

for a representative subject. The full model fits (including lag-

lead equalization) coincide well with the estimated describing

functions, which indicates that the model captures most of

the subject’s control dynamics, also in perspective tasks. A

fit with the original model from [11], which lacked lag-lead

equalization in integrator tasks (i.e., Hoe⋆
( jω) = Ke⋆ ), clearly

lacks the capacity to match the describing functions, and has

a consistently lower VAF than the full model.

2) Variance Accounted For: For most subjects, the model

VAFs (Fig. 13a) are between 80% and 95%, which is higher

than in similar manual control modeling attempts [11], [12],

[33]. In the HP condition the VAFs are slightly lower, which is

in line with the larger remnant (see Fig. 9b). The consistently

high VAFs indicate that the model describes all subjects’

control behavior well, even in perspective tasks.

3) Model Parameters: Fig. 13 also shows the estimated

model parameters, corresponding ANOVA results are given in
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Fig. 12. Estimated describing functions and model fits, single subject data.
The reduced model lacks the internal error response lead-lag equalization.

Table III. The far-viewpoint response gain K f ,e f f (Fig. 13d)

is most consistently affected by linear perspective; this was

expected, as perspective deformations are largest far ahead.

K f ,e f f is substantially lower with horizontal perspective (sig-

nificant effect). The smaller visual stimulus in control direction

thus evokes less aggressive control behavior, similar as in

compensatory tracking tasks [18], [19]. Vertical perspective

results in a higher K f ,e f f , but only when horizontal perspective

is already present (HP to HVP; significant interaction effect).

Higher values of K f ,e f f correspond closely to a better tracking

performance (see Fig. 9a). Effects of linear perspective on the

effective near-viewpoint gain Kn,e f f (Fig. 13e) are similar to

K f ,e f f , but due to larger between-subject variations the statis-

tical results are less pronounced. No systematic adaptation is

visible for the near- and far-viewpoint look-ahead times, τn

and τ f (Figs. 13h and 13g), nor for the low-pass filter time-

constant Tl, f (Fig. 13j).

The internal-error response gain Ke⋆ (Fig. 13f) is slightly

lower in all three perspective tasks (compared to NP), but this

effect is only significant for vertical scaling. The lead and lag

equalization time constants, TL,e⋆ and Tl,e⋆ (Figs. 13b and 13c),

are both significantly lower with horizontal perspective. The

lag time constant is always about twice as large as lead time

constant, reflecting the low-frequency lag-lead equalization

visible in Fig. 12. The response time-delay τv (Fig. 13i) is

slightly, but not significantly, higher in all conditions with

perspective scaling, compared to the NP condition, which is

similar as in compensatory tracking tasks where the error is

displayed smaller [18], [19]. Finally, subjects also adapt the

properties of their neuromuscular system, but only to horizon-

tal perspective; here, the neuromuscular break frequency ωnms

is significantly higher (Fig. 13k), while the neuromuscular

damping ratio ζnms (Fig. 13l) is significantly lower.

C. Human Controller Adaptation

1) Horizontal Display Direction: The effective gains Kn,e f f

and K f ,e f f (Figs. 13e and 13d) are lumped combinations of the
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Fig. 13. Estimated model parameters: raw individual subject data (gray
lines), and means with 95% confidence intervals corrected for between-subject
variability (errorbars).

TABLE III
ESTIMATED PARAMETERS ANOVA RESULTS.1

horizontal vertical hor.×vert.

NV F sig. F sig. F sig.

K f ,e f f 0 80.7 ** 3.77 - 17.6 **
τ f 1 0.01 - 1.67 - 0.65 -
Tl, f 1 0.00 - 2.60 - 0.47 -
Kn,e f f 0 17.2 ** 0.21 - 1.23 -
τn 0 3.54 - 5.54 - 2.93 -
Ke⋆ 2 5.50 - 6.34 * 0.08 -
TL,e⋆ 1 7.90 * 0.23 - 0.46 -
Tl,e⋆ 0 8.53 * 0.06 - 0.47 -
τv 1 3.28 - 0.81 - 0.53 -
ωnms 1 11.2 * 1.26 - 3.04 -
ζnms 0 15.2 ** 0.32 - 1.85 -

1 NV is the number of samples that violate the Lilliefors normality
test (p < .05). Symbols **, *, and - indicate the result is highly
significant (p < .01), significant (p < .05), and not significant
(p > .05), respectively. Degrees of freedom (df) is always (1,7).

HC and the display gains, see (15). To better illustrate HCs’

control adaptation to horizontal perspective, Fig. 14 shows the

separate contributions of the far-viewpoint gains K f , K f ,e f f ,

and Kd,u(τ f ), which are most strongly affected by perspective.

HCs more than double their response gain K f (black markers)

to compensate for the reduced display gains (white markers)

with horizontal perspective. In other words, subjects respond

much more aggressively to the reduced visual stimulus. This
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Fig. 14. Estimated far-viewpoint response gain adaptation.
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Fig. 15. Vertical location of the near- and far-viewpoints on the display.

adaptation is still less than required to fully invert the display

gains, as the combined gain K f ,e f f is consistently lower with

horizontal perspective (HP and HVP conditions). Results for

the near-viewpoint gains are similar, see also Fig. 13.

2) Vertical Display Direction: Due to the perspective trans-

formation, the same point on the previewed target ahead

corresponds to a different vertical display location in plan-

view and perspective conditions. Fig. 15 shows the points on

the display that subjects responded to, which clearly illustrates

the substantial adaptation required to compensate for vertical

perspective deformations. With the introduction of vertical

perspective (NP and HP to VP and HVP), subjects shift their

near-viewpoint from about 3.5 to 1.5 cm below the screen

center, and their far-viewpoint from about 3 to 0.5 cm below

the screen center. Moreover, the viewpoints’ locations shift

from about 25% above the start of the previewed target (at

τ=0 s in Fig. 15) to about 25% below the end of the previewed

target (at τ=2 s).

VI. DISCUSSION

In the experiment, we measured how linear perspective

affects HC use of preview information. With horizontal per-

spective scaling, we indeed found the hypothesized increase of

the response gains Kn and K f (H.I). Subjects thus responded

more aggressively to lower amplitude of the displayed target

ahead, but, as expected, not aggressively enough to completely

invert the display gain (Kn,e f f and K f ,e f f were lower than in

the plan-view task). HCs also slightly increased their response

time-delay τv, confirming H.I. HC adaptation to perspective

scaling of a previewed target trajectory appears to be similar
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to their adaptation to a reduced scaling of the visual error

in compensatory tracking tasks, which also evokes a less

aggressive, and more delayed response [18], [19]. Due to

the wider variety of HC behavior compared to compensatory

tracking, we recommend future preview tracking investigations

to test more than the eight subjects used here, to avoid

normality violations and improve confidence in the results.

We further hypothesized that vertical perspective scaling

would not affect HC behavior (H.II). Indeed, subjects selected

approximately the same viewpoints τn and τ f s ahead on

the previewed target in conditions with and without vertical

perspective, despite their different vertical locations v on the

display. However, H.II cannot be fully confirmed, as our

results point to a substantial interaction between horizontal

and vertical perspective. When vertical perspective is added

to a task where horizontal perspective is already present

(HP to HVP), subjects reduce their remnant, respond with a

higher gain K f ,e f f , and improve their tracking performance.

Comparison of the displays in Figs. 7b and 7d yields a possible

explanation: the “unnatural” exponential magnification of the

approaching previewed target in the HP condition is likely

more difficult to anticipate on than the familiar full linear

perspective in the HVP condition.

The results in the plan-view condition differ from those

in [12], where a similar experiment was performed. Compared

to the experiment in [12], our forcing functions contained

less high-frequency power, and the displayed signals were

magnified horizontally (to keep the target far ahead well visible

in perspective conditions). Amongst others, this resulted in a

much more aggressive internal error response, as visible from

the magnitude of Hu
x ( jω), which is about two times higher

than in [12]. Likely, the higher horizontal display scaling

evoked the more aggressive control behavior, which again

emphasizes the importance of proper display scaling in manual

control tasks. However, future work should also investigate the

effects of forcing function characteristics on human control

behavior in preview tracking tasks, as these have not been

quantified to date.

The model for plan-view preview tracking tasks from [11]

accurately described the measured behavior, also in our per-

spective tasks. For such perspective tasks, it is convenient

to lump the linear perspective transformation and the HC

dynamics, so the model is mathematically equivalent as for

plan-view tasks. Although the lumped model’s inputs are

no longer the visual stimuli as sensed by the HC, but the

actual target and CE output signals before the perspective

transformation, the effective gains can be interpreted similar

as the HC gains in plan-view tasks.

All subjects were found to apply lag-lead equalization at the

lower frequencies, opposed to the pure proportional control

strategy often observed in compensatory tracking tasks with

integrator CE dynamics [13]. While it was not yet recognized

as such, similar lag-lead equalization is visible in the preview

tracking results in [11]. Preview information seems to evoke

such behavior, which is perhaps best explained as “waiting”

(i.e., lagging) for the low-frequency portion of the cognitively

calculated, internal error to build up, before more aggressively

responding to it. Future investigations into preview tracking

tasks with integrator CE dynamics can include the lag-lead

equalization in the error response model.

The estimated describing functions showed that HCs use

similar control mechanism in perspective and plan-view pre-

view tracking tasks, for perspective transformations that ap-

proximate the view on the road during driving or cycling.

Unfortunately, several other aspects of HC behavior in such

vehicle control tasks are not yet fully understood. For example,

the viewing direction generally rotates with the vehicle’s

attitude. The resulting optical flow can be used by HCs to

close an inner feedback-loop [3], [25], which can alleviate

the requirements on the outer-loop position control, as tested

here. Furthermore, instead of tracking a line, it is generally

acceptable to keep a vehicle between two boundaries, like the

road’s edges. We intend to investigate and model the effects

of these elements on HC behavior in our future work.

VII. CONCLUSION

This paper quantified how linear perspective affects human

use of preview information in manual control tasks, using

experimental results and both nonparametric and parametric

system identification techniques. The compression of the tra-

jectory ahead due to linear perspective evokes less aggressive

control behavior and inferior task performance, mainly due to

reduced visual stimuli in the control direction (i.e., horizontal

perspective scaling). Perspective deformations in the non-

controlled (vertical) direction affect human control behavior

only marginally. We conclude that humans use preview infor-

mation similarly in plan-view and perspective tracking tasks.

The validity of the previously derived quasi-linear model for

preview tracking tasks is extended to perspective tasks, and can

thereby be used to design and evaluate man-machine systems

in more realistic control tasks.
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