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Dual-Axis Manual Control: Performance
Degradation, Axis Asymmetry, Crossfeed,

and Intermittency
Sarah Barendswaard , Daan Marinus Pool , Member, IEEE, Marinus M. Van Paassen , Senior Member, IEEE,

and Max Mulder , Member, IEEE

Abstract—Vehicle control tasks require simultaneous control of
multiple degrees-of-freedom. Most multi-axis human-control mod-
eling is limited to the modeling of multiple fully independent single
axes. This paper contributes to the understanding of multi-axis
control behavior and draws a more realistic and complete pic-
ture of dual-axis manual control. A human-in-the-loop experiment
was performed to study four distinctive phenomena that can occur
in multi-axis control: performance degradation, axis asymmetry,
crossfeed, and intermittency. In a simulator, three conditions were
tested in the presence and absence of physical motion: the full
dual-axis control task, single-axis roll task, and single-axis pitch
task. Controlled element dynamics, stick dynamics, and forcing
functions were equal in all cases. Results show that performance
is worse in dual-axis tasks. Performance in roll axis is consistently
worse than pitch, thereby proving axis asymmetry. Physical mo-
tion improves the performance and stability of the system. The
application of independent forcing function signals in both con-
trolled axes resulted in the detection of crossfeed in dual-axis tasks
from spectral analysis. Using a novel extended Fourier coefficient
method, the identified crossfeed dynamics can explain up to 20%
of the measured control inputs and improves modeling accuracy
by up to 5%. Dual-axis control behavior is less accurately modeled
with linear time-invariant models and is more intermittent.

Index Terms—Crossfeed, cybernetics, dual axis, manual control,
man-machine systems, modeling.

I. INTRODUCTION

D ESPITE the fact that most operationally relevant man-
ual control tasks–especially those in the vehicle domain–

typically require human controllers (HC) to perform simultane-
ous control of multiple degrees-of-freedom, our understanding
of the intricacies of such multi-axis control is still severely lim-
ited. In fact, the current state-of-the-art for the analysis and
modeling of multi-axis manual control takes accounts only for
multiple independent single-axis tasks [1]–[4]. While somewhat
successful, such approaches cannot account for the inherently
multi-input-multi-output nature of the HC in a multi-axis case.
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Furthermore, due to task and operator limitations, additional
multi-axis phenomena may occur. We argue that for meaningful
understanding and prediction of human operator performance
in multi-axis tasks, the presence of such phenomena needs to be
verified, if not explicitly accounted for in our analysis methods
and operator models.

Early investigations into human control in dual-axis tasks
have shown that marked differences with single-axis manual
control do indeed exist [1], [5]–[8]. Degraded task performance
has been reported in dual-axis tracking, in addition to increased
operator remnant and nonlinear control behavior levels [6]. Fur-
thermore, a focus on one axis or a consistent prioritization has
been observed [9], an effect referred to as axis asymmetry. While
some studies have postulated that such asymmetry may be ex-
plained by a systematic reduction in operator aggressiveness
(reduced crossover frequency) compared to the single-axis case
[10], [11], others have proposed that the characterization of
multi-axis control should include task interference phenomena,
such as those resulting from divided attention (e.g., switching
between axes), prioritization between axes–axis asymmetry [9]
and time varying axis prioritization–intermittency [1]. A number
of earlier investigations [1], [5], [7], have proposed to analyze
and model crossfeed between axes, which occurs when opera-
tors are unable to fully decouple their separate tasks. The first
study to date that has successfully used objective human opera-
tor identification techniques to verify the presence and dynamics
of the hypothesized crossfeed is in the preliminary paper [12].
This study needs significant elaboration in crossfeed, through
quantifying the crossfeed response by parametric identification,
and by investigating the other postulated in dual axis: nonlinear
intermittency, performance degradation and axis asymmetry.

The state-of-the-art has not been able to open up the black
box of human control in dual-axis tracking and only focused
on performance, control activity, and time domain metrics [1],
[9]. These do not dissect the HC response in the multiple axes,
instead lumping all responses. This means that in the design
of interfaces that intend to support HC’s in manual control
multiaxes tasks (such as in aircraft or helicopter control, where
one manipulator is typically used to control two or even three
“dimensions” of vehicle movement) we have no idea how
strong the effects of crossfeed, axis asymmetry, performance
degradation, and intermittency are, so we also cannot compen-
sate for these phenomena in a systematic fashion. For the case of
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helicopters, this may be an even larger issue, crossfeed could
result in possibly even bigger undesired effects in the closed
loop with the already existing asymmetrical cross-coupled
dynamics [13].

This investigation narrows its focus from multi-axis to only
dual-axis manual control. Following the traditional (quasi-
linear) analysis of human control behavior [3], this paper studies
the fundamental characteristics of human behavior in dual-axis
manual control, through a representative yet abstracted exper-
iment where human behavior is sufficiently linear and time-
invariant to allow for its objective analysis with linear time
invariant (LTI) human control identification and modeling tech-
niques [14].

To achieve this, this paper introduces and extends modern
identification techniques to analyze the occurrence and nature
of crossfeed and intermittency in manual dual-axis control, us-
ing a model-based approach. A human-in-the-loop experiment
is performed in the SIMONA Research Simulator (SRS), TU
Delft, to collect measurements of human operators in a simu-
lated aircraft dual-axis roll and pitch control task with phys-
ical motion feedback. Application of two independent multi-
sine forcing functions in each controlled axis facilitates the
detection of crossfeed through analysis of measured signals
with spectral methods [15]. Furthermore, the multichannel hu-
man operator identification method developed by [16] is newly
extended, as in [12], to objectively identify the dynamics of
the additional crossfeed responses (nonparametrically) and the
changes in other responses. Based on this nonparametric iden-
tification, parametric modeling of the crossfeed response is per-
formed for the first time. In addition, to detect possible inter-
mittency in dual-axis control, we explicitly compare the occur-
rence of instantaneous large fitting errors for our LTI human
control models–indicative of expected but “missing” control
inputs in the experiment data–between single and dual-axis
conditions. Performance degradation and axis asymmetry are
investigated by comparing the performance metrics; error vari-
ance, control variance, crossover frequency, and phase margin,
along with the parameter estimates, for both axis type and axis
dimension.

This paper is structured as follows. Background informa-
tion can be found in Section II. The dual-axis control task,
experimental design, and the system identification approach are
elaborated in Sections III and IV, respectively. Results are pre-
sented in Section V and the paper ends with a discussion and
conclusions in Section VI and VII, respectively.

II. BACKGROUND

Single and dual-axis tasks are critically different. There are
four main additional phenomena that come into play with dual-
axis (compared to single-axis control) in literature: i) perfor-
mance degradation, ii) crossfeed, iii) asymmetry, and iv) inter-
mittency. Understanding and, if possible modeling these four
phenomena forms the focus of this paper.

Multiple investigations have clearly found a degradation in
performance with dual axis in comparison to single axis tasks
[1], [7], [17]. In fact, the relation between crossover frequency

(the frequency up to which the HC is able to track) and the num-
ber of axis was postulated to be proportional to the reciprocal
of the square root of the number of axis [18]. That is, with dual
axes, the crossover frequency is 1/

√
2 of that of the single axes

case. A similar relation deduced by [11] states that the crossover
frequency is proportional to the reciprocal of the number of axes
used. These relations are based on modeling the human brain
as a multichannel processor, the more channels being used, the
less amount of continuous attention given to each of the tasks
[19], [20].

Asymmetry of manual control behavior in each axis is shown
by the performance measures being distinctly different in each
axis, even with equal controlled element dynamics [1]. This
can be a consequence of the differences in visual representa-
tion, control manipulator design, or emphasis on a particular
axis during training, or different overall lumped neuromuscular
properties in each axis [21]. Furthermore, it can also result from
the human operator consciously prioritizing one axis over the
other [9].

Crossfeed is described as a type of task interference, or the
human operators’ inability to decouple the two tasks. Cross-
feed can have motoric causes (e.g., hand geometry, manipulator
geometry) affecting the HC’s actuation or output dynamics, or
perceptual causes (e.g., visual and vestibular thresholds, display
resolution, display position) both affecting the HC’s inputs. Ev-
idence for linear time-invariant perceptual crossfeed was found
in a task that used a separate manipulator for each axis [7].
Bekey et al. [1] did not find any consistent evidence for cross-
feed, rather crossfeed was only found for a short period of time,
making the phenomenon time varying. Previous investigations
have either used subjective time-domain iterative model match-
ing techniques [1], [5] or open-loop frequency-domain methods
[7]. Neither of the techniques used in [1], [5], or [7] could
accurately capture the dynamics of crossfeed in the frequency
domain, however.

The phenomenon of time-varying prioritization or intermit-
tency is found with integrated displays and separated displays
alike [17]. When one axis has a larger error than the other, this
axis can be (temporarily) prioritized over the other [1], [9]. In-
termittent behavior has been found to be smaller with the use
of motion [10], thereby producing more consistent, linear time-
invariant pilot behavior. Intermittency is traditionally lumped
up with pilot remnant [2], and has been found to proportionally
increase with each additional axis used [6].

In this paper, we aim to obtain an accurate description of per-
formance degradation and axis asymmetry. Novel metrics are
used to detect intermittency: peak time. For crossfeed, an ob-
jective extended identification algorithm [16] is used to identify
crossfeed nonparametrically first, supplemented with paramet-
ric identification of crossfeed for the first time. Finally, the effect
of motion on these phenomena is analyzed for the first time.

III. CONTROL TASK

The control architecture is elaborated in this section using
Fig. 1, illustrating the full control task: dual axis with mo-
tion, including its dual-axis display, with all other tasks being
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Fig. 1. Schematic representation of a dual-axis tracking task with physical motion feedback and crossfeed.

derivatives. The single axis cases are realized when only con-
sidering two independent axis with Hpe r

for roll and Hpe p
for

pitch. With dual axis, the human crossfeed contributions Hpc r

and Hpc p
are included. Finally, the cases with motion include

the additional motion responses Hpφ
and Hpθ

, respectively.
The distinctiveness of this control structure is that it combines

the multiple independent single axis with motion from [21] and
the crossfeed component from [7].

In our experiment, participants performed both dual-axis
and single-axis tasks in the presence and absence of sim-
ulator motion. For the dual axis with motion case, the pi-
lot simultaneously controls the aircraft’s roll and pitch atti-
tude θ and φ as depicted in Fig. 1. For the single-axis cases,
the participant would either control roll or pitch. For the
sake of identification, our subjects performed a simultaneous
target-following and disturbance-rejection task, being excited
with two independent forcing functions per axis; ft and fd ,
respectively [22].

The roll and pitch axis tracking errors, eφ and eθ , were pre-
sented on a compensatory visual display matching Fig. 1, similar
to an aircraft attitude indicator. It was the participants’ task to
continuously minimize these tracking errors. Physical roll and
pitch motion feedback was taken as vestibular input provided
by SIMONA’s motion system without any scaling or filtering.
Due to the motion limitations of the SRS, the specific forces
resulting from simulator rotations, could not be compensated
for. However, this effect was very small.

The human can be modeled through six different operator
responses: Hpe r

and Hpe p
respond to the error signals in each

respective axis, Hpφ
and Hpθ

respond to the matching vestibu-
lar inputs, and the crossfeed responses Hpc r

and Hpc p
react

to the off-axes error signals. Note that this choice for the in-
put to the crossfeed is consistent with earlier work [7], with
this convention, it is expected that the dynamics of the cross-
feed response will be similar to that of the visual response.
The addition of the output of these responses; ue , uc , and uφ

or uθ , along with the addition of operator noise n(t), result
in the complete operator output: ur (t) for roll and up(t) for
pitch. The output is multiplied with the control stick gain Ks ,
having a fixed value of 0.08, and with the addition of the dis-
turbance, the signals are transformed by the controlled element
(CE) Hc .

The specific areas in the control architecture illustrated in
Fig. 1 that relate to the four phenomena of interest here, are
indicated in the figure as A, B, C, and D. When looking for
performance degradation in dual axis, an adaptation of both
the performance parameters of the visual and motion blocks
in comparison to the baseline single axis case, are focused on,
as indicated by A. When looking for axis asymmetry, the HC
model parameters and performance of the visual and motion
blocks of pitch and roll are compared, as given in B. Crossfeed
is found with the existence of a crossfeed transfer block, as
given in C. Intermittency can be studied through analyzing the
time-domain pilot output signals, as given in D.

The following sections elaborate on particular elements of the
control architecture: the controlled element dynamics, forcing
functions, and pilot model.

A. Controlled Aircraft Dynamics

The aircraft roll and pitch CE dynamics are both defined
by Hc as given in Fig. 1. It is found in literature that using
cross couplings or different CE dynamics can change the HC
control strategy considerably [5], [17]. Therefore, although in
real nonlinear aircraft dynamics the roll and pitch axes have
different and cross-coupled dynamics, in this investigation, they
are kept uncoupled and identical to avoid obscuring the plain
differences between single and dual-axis manual control. The
dynamics in both axes are defined by a second order transfer
function

Hc(s) =
67.9

s(s + 3)
. (1)
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The system defined by (1) is at a transition between single
integrator dynamics K/s and double integrator K/s2 at the
frequency 3 rad/s. Therefore, this CE requires the HC to generate
mid- to high-frequency lead, which causes them to use physical
motion feedback, when available [2], [3]. A break frequency
of 3 rad/s was chosen such that the difficulty level of the most
demanding tested scenario, i.e., the dual axis no motion task,
remains at an acceptable level. Decreasing the break frequency
makes the task more challenging, possibly creating a greater
distinction between single and dual-axis manual control, but
also induces human operator fatigue.

B. Forcing Functions

The target and disturbance forcing functions in both axes were
quasi-random multisine signals, as defined by ftr

, ftp
, fdr

, and
fdp

in Fig. 1 and by

fd,t(t) =
10∑

k=1

Ad,t [k] sin(ωd,t [k]t + φd,t [k]). (2)

Each kth sinusoid in each forcing function is defined by its ex-
citation frequency ωd,t [k], amplitude Ad,t [k], and phase φd,t [k].
All signals are a sum of 10 sinusoids, spanning frequencies
between 0.1 and 20 rad/s, approximately equally spaced on a
logarithmic scale. The sampling frequency is 100 Hz and the
measurement time equals 81.92 s. The amplitude distribution of
the sine components in all forcing functions follows a low-pass
filter amplitude distribution:

Ad,k (k) =
∣∣∣∣
1 + TA1jωd,t(k)
1 + TA2jωd,t(k)

∣∣∣∣
2

. (3)

Here TA1 = 0.1 s and TA2 = 0.8 s identical to those used in
[23]. The amplitudes were scaled such that the variance of the
target forcing functions is 2.25 deg2 and that the disturbance
signals have a variance of 25% of the target. This ratio of target
to disturbance was successfully applied in previous pilot iden-
tification investigations [23] and creates a task in which target
following is dominant. Disturbance signal amplitudes were pre-
filtered by the inverse of the CE dynamics as they are inserted
into the loop before the CE (see Fig. 1).

Four sets of phases φd,t were chosen from a large number
of randomly generated phase sets, such that all signals have a
Gaussian distribution and an average crest factor, as outlined by
the forcing function requirements in [24]. The resulting forcing
functions are listed in Tables I and II.

C. Pilot Model

The most elaborate model structure is the dual axis with
motion scenario as illustrated in Fig. 1. There are six different
operator response functions to consider: two visual response
functions, Hpe p

and Hpe r
, the motion responses (in the presence

of motion), Hpθ
and Hpφ

and the crossfeed responses (for dual
axis), Hpc p

and Hpc r
.

It is known that with a compensatory display the HC adapts
their dynamics such that the open-loop dynamics resemble a
single-integrator in the crossover region [3]. The visual response

TABLE I
PITCH-AXIS FORCING FUNCTION DATA

TABLE II
ROLL-AXIS FORCING FUNCTION DATA

in (4) is equivalent to the precision model [2] as appropriate for
the CE dynamics given in (1)

Hpe
(s) = Kv (1 + Tls)e−sτv

ω2
nm

ω2
nm + 2ζnmωnms + s2 . (4)

The HC response to motion, models the HC vestibular re-
sponse

Hpm
= sKm e−sτm

ω2
nm

ω2
nm + 2ζnmωnms + s2 . (5)

Both the motion and visual responses are in line with previous
research on dual-axis tracking with motion feedback [23]. The
equalization dynamics are defined by the parameters Kv , Tl ,
and Km , while the neuromuscular dynamics are defined by
a neuromuscular frequency ωnm and damping ζnm. Delays are
defined by a visual τv and vestibular τm delay. Hence, there
are seven parameters per axis. Note that the structure of the HC
crossfeed responses Hpc

are unknown at this point. These will be
determined after discussing the frequency domain identification
results in Section V.

IV. METHODOLOGY AND DATA PROCESSING

Data for this investigation are obtained by performing an ex-
periment in the SRS with the control tasks defined in Section III.
Here, we describe the experimental methods, data processing
techniques, dependent measures, and hypotheses.

A. Experiment Method

1) Independent Variables: Two independent variables were
varied in the experiment: axis configuration and motion. Axis
configuration has three levels: single axis pitch, single axis
roll, and dual axis. Motion has two levels: motion and no
motion. Both crossfeed and intermittency only need the dual-
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axis configuration. However, to analyze performance degra-
dation, both the dual-axis and single-axis configurations are
needed for comparison. Hence, in total six scenarios are
tested.

2) Apparatus and Cueing: The experiment was performed
in the SRS. Participants used a Moog FCS Ecol-8000 electrical
manipulator stick for giving pitch and roll inputs. The settings
of the control loaded manipulator were set to a linear force-
displacement characteristic with a stiffness of 1.5 N/deg. The
stick was left unlocked for the single-axis cases, to detect pos-
sible motoric crossfeed. Control inputs were limited to ±15◦,
whereas the input scaling (Ks , see Fig. 1) was set to 0.08 for
both axes. The SRS hexapod motion system supplied the partic-
ipants with physical roll and pitch motion cues. The motion cues
were designed such that the center of rotation is aligned with
the subject’s vertical body axis and 0.7 m below their design
eye position. The time delay of the SRS motion system is 30 ms
[25]. To not hear the motion base actuators, participants were
asked to wear noise-cancelling headphones.

The only visual cue available for the participants was the dis-
play illustrated in Fig. 1. Other visual cues such as the outside
visuals were switched OFF. The 15 in cockpit display show-
ing the experiment display had a 1074 by 768 pixels resolution
and an image generation delay of around 25 ms. The artificial
horizon display was and average of 90 cm away from the partic-
ipants’ eyes and dark brown and blue were used for presenting
the ground and sky, respectively. For the single-axis cases, the
inactive display axis was locked at 0◦. The compensatory display
only presents the pitch and roll errors eθ and eφ , respectively.
For any artificial horizon display–where the chosen virtual field
of view determines the vertical target line movement due to eθ ,
but the target line rotation due to eφ is independent of this field
of view–there is a resolution difference in pixels and thereby
degree of error illustrated for both axes. For equal eθ and eφ of
5◦, the pixel area swept by the moving target line on our display
was 2.3 times larger for pitch than for roll.

3) Participants and Experimental Procedures: Twelve
right-handed participants performed the experiment. Half of the
invited participants were trained pilots whereas the other half
were skilled nonpilots, with extensive experience from earlier
experiments. Participants performed a minimum of four to five
training runs for every experiment condition to allow their per-
formance to stabilize, eliminating learning effects. Thereafter,
five more runs at a constant, fully learned level of performance
were collected as the measurement data. Each tracking run lasted
90 s, of which the final 81.92 s were used for data analysis. Par-
ticipants were instructed to minimize the roll and pitch tracking
errors. After each run, the participants were notified of their
performance (RMS of the tracking errors), to motivate them to
perform consistently.

B. Data Processing

1) Identification Approach: In literature, numerous different
methods for the identification of human control dynamics have
been proposed and applied, e.g., methods based on autoregres-
sive exogenous identification [26], [27], Kalman filtering [28],

[29], and time-domain maximum likelihood estimation [30].
However, these methods, which all fit an assumed LTI model
structure to time-domain data, generally result in overdeter-
mined and inconsistent human controller identification results
for multiple-input-single-output type systems. This is partic-
ularly an issue for human control dynamics characterized by
multiple parallel and dynamically similar control responses,
as is the case with dual-axis tasks, especially with the added
crossfeed dynamics (see Fig. 1). For this reason, in this paper,
we rely on an extended frequency-domain Fourier coefficient
method [4], [16], which with a total of four independent tar-
get and disturbance forcing functions inserted in both axes (see
Section III-B) guarantees the successful dissection of the hu-
man visual, vestibular and crossfeed responses for each axis.
Furthermore, this “black box” identification technique provides
a frequency response estimate without requiring any a priori
assumptions on the actual dynamics of each identified control
response.

Fig. 1 illustrates the control diagram of the dual-axis tracking
task with motion feedback, with crossfeed between the con-
trolled roll (φ) and pitch (θ) axes explicitly accounted for.

In roll, the following expression in the frequency domain can
be derived for the total HC control input ur :

Ur (jω) = Er (jω)Hpe r
(jω) + Ep(jω)Hpc p

(jω)

+ Φ(jω)Hpφ
(jω) + Nr (jω). (6)

The same derivation method can be applied for pitch axis
control to obtain a similar equation. For identification of the
human operator, (6) would have to be solved for its three un-
knowns: Hpe r

(jω), Hpc p
(jω), and Hpφ

(jω). To achieve this,
the objective HC identification method developed by [16] has
been extended. This method is a frequency-domain identifi-
cation technique, using Fourier coefficients (FCs), which can
be used without any prior knowledge about the dynamics of
the system to be identified [31], [32]. The objective identifi-
cation method by [16] uses two independent multisine target
and disturbance forcing function signals (e.g., ftr

and fdr
in

Fig. 1) to identify two human operator responses (Hpe r
and

Hpφ
in Fig. 1) in a single-axis task, by interpolating between

the frequencies excited by both applied forcing function signals.
For the dual-axis task of Fig. 1, a similar method is derived,
where for identification of the additional unknown crossfeed
response Hpc p

, additional independent forcing function com-
ponents from the other axis is used. For a successful approach,
this requires that all four forcing function signals shown in
Fig. 1 be independent, i.e., be composed of sines with different
frequencies.

If this requirement is met, following the same procedure as
proposed in [16], the following system of three equations may
be derived by evaluating (6) at each of the frequencies of ftr

, as
well as by interpolating from the frequencies of fdr

and ftp
, as

indicated by the superscripted symbols in (7). The interpolation
procedure consists of initially removing the forcing function
phase from all signals, after which an interpolation of complex
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numbers is performed
⎛

⎜⎝
Utr

r

Ũ dr
r

Ũ
tp
r

⎞

⎟⎠ =

⎛

⎜⎝
Etr

r Etr
p Φtr

Ẽdr
r Ẽdr

p Φ̃dr

Ẽ
tp
r Ẽ

tp
p Φ̃tp

⎞

⎟⎠

⎛

⎜⎝
Hpe r

Hpc p

Hpφ

⎞

⎟⎠. (7)

All variables in (7) are a function of the roll target forc-
ing function frequency (jωtr

), even though this indication is
dropped for notation purposes. The system of equations (7) can
be solved for Hpe r

(jωtr
), Hpc p

(jωtr
), and Hpφ

(jωtr
) from in-

version of the matrix-vector equation. Furthermore, equivalent
frequency response estimates can be obtained at the frequen-
cies of fdr

. This method has been verified successfully using
computer simulations.

2) Parameter Estimation: With the obtained FCs of the op-
erator responses, parameter estimation was performed, based on
the pilot model structure proposed in Section III-C, and the can-
didate crossfeed structure to be proposed later in Section V-B.
Parameters were estimated by minimizing a cost function J(θ)
that includes the differences between the FCs of the measured
data and the frequency response of the pilot model

ε(jω|θ) =
|H(jω|θ) − Ĥ(jω)|

|Ĥ(jω)| (8)

J(θ) = ε(jω|θ)T Wε(jω|θ). (9)

Here, H(jω|θ) is the estimated model as a function of the
model parameter vector θ and Ĥ(jω) represent the estimated
FCs. The complex error is normalized using the FC estimates
to avoid the smaller errors from being ignored. The weighting
matrix W was modified such that the outliers can be neglected.
These outliers are a consequence of the possible bias introduced
during the interpolation of the FCs [7], [16].

3) Model Validation: The variance accounted for (VAF) is
a model validation metric in the time domain. Simulated time
domain responses umod of the modeled transfer function are
compared to experimental time domain data uexp

VAF =

(
1 −

∑N
k=1 |uexp[k] − umod[k]|2
∑N

k=1 u2
exp[k]

)
× 100%. (10)

It represents the normalized sum of errors in the time domain
subtracted from unity, where N is the number of samples. The
higher the VAF, the better the model is able to capture the
dynamics in the time domain. A VAF of 100% means that the
model explains 100% of the measured signal.

C. Dependent Measures

The dependent measures are performance metrics, parameter
estimates, crossfeed metrics, and intermittency metrics.

1) Performance Metrics: To compare the level of task per-
formance between single and dual-axis tracking, the variance
of the roll and pitch error signals (σ2

e ) is calculated. Calculation
of this variance from spectral analysis of the measured signals,
allows for separating the individual contributions of the target
and disturbance signals, as well those attributable from the tar-
get and disturbance signals from the other axis, as all provide

Fig. 2. Two-dimensional control-output plot.

power at independent frequencies [15]. Hence, the variance was
found by integrating the power spectral density at each forcing
function’s set of excitation frequencies.

Similarly, the control variance (σ2
u ) is used to quantify differ-

ences in control activity between single and dual-axis tasks. To
give an indication of the stability of the system, the open-loop
target phase margin is calculated. To give an indication of how
well, and up to which frequency, the pilot is able to track the
target, the target crossover frequency is calculated.

The general open-loop function can be obtained using Fourier
transferred experimental signals as given in below equation for
roll

HOLr
(jωr ) =

Φ(jωr )
Er (jωr )

. (11)

2) Parameter Estimates: With the parameter estimation
method described in Section IV-B2, the parameters of Hpe

,
Hpφ

, Hpθ
, and Hpc

are estimated. These parameters can give
additional insight to the underlying principles that define the
differences surfaced in the performance metrics.

3) Crossfeed: In the presence of crossfeed, a significant
component of the error or control variance can be attributed to
the off-axis forcing functions. To analyze the crossfeed dynam-
ics itself, the identification approach elaborated in Section IV-B1
is applied to obtain frequency response estimates of human op-
erators’ visual, motion, and crossfeed responses. To quantify
the practical significance of the modeled crossfeed, the mod-
eled output contributions of the visual, vestibular, and crossfeed
responses, denoted in Fig. 1 by ue , uφ or uθ and uc , respectively,
are analyzed and compared. This is done with the parametric
models of the three operator response functions. The individual
output contribution variances are divided by the total contribu-
tion to find the percentage contribution of the separate operator
responses. Moreover, the time-domain significance of modeled
crossfeed is analyzed by comparing the VAF with and without
the modeled crossfeed contribution.

To analyze a possible motoric origin of crossfeed, i.e., how
crossfeed may result from hand geometry, two-dimensional (2-
D) control output plots are used as given by Fig. 2. Here, the
y-axis presents the pitch input up and the x-axis presents the roll
input ur . The angle sign convention is chosen such that positive
inputs in the principle axis results in a positive input in the off
axis. The relationship between the single axis hand deviation
angle (Δφ or Δθ) and the corresponding crossfeed gain Kc
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Fig. 3. Illustration of peak time.

obtained from the parameter estimates can give insight about
the relationship between motoric and identified crossfeed.

4) Intermittency: Intermittent behavior is not linear and by
definition time variant. Therefore, by comparing the single axis
VAF to the dual-axis VAF, something can be said about the HC’s
dual-axis linear time-invariant behavior, or lack thereof.

Intermittency is defined here as the time-varying axis prior-
itization in multi-axis control. When one axis is ignored, error
builds up in that axis, which can result in an aggressive cor-
rective pilot input in that axis, which results in a nonlinear
peak. Peak time is defined as the time (equal to the number
of instances) in which the modeling error (difference between
measured output and simulated model output) is larger than two
standard deviations of the baseline single axis modeling error as
illustrated in Fig. 3. This calculation however, assumes that the
modeling error is normally distributed. To differentiate between
pilot noise and intermittency, anything below 2σ is excluded
from what is considered peak time. Here, we try to capture the
unaccounted-for HC peaks and see how the occurrences of these
peaks may change with each condition. This measure is expected
to give an indication of intermittency when modeling accuracy
is high.

D. Hypotheses

Based on previous investigations, elaborated in the introduc-
tion and background sections, we state six hypotheses.

1) Performance degrades in dual-axis tasks compared to the
independent single axis tasks, indicated through an in-
crease in error variance, a smaller crossover frequency,
and a smaller phase margin [1], [7], [17].

2) Performance degradation in dual axis is smaller with phys-
ical motion [10], which can be indicated by a decrease in
error variance, an increase in crossover frequency and an
increase in phase margin.

3) Asymmetrical human control behavior in each axis can
be seen from unequal HC parameters in each axis, as well
as from differences in error variance, control variance,
crossover frequency, and phase margin between the roll
and pitch axis [9], [1].

4) Crossfeed is present in dual-axis manual control [5], [7],
which can be found through the presence of off-axis fre-
quencies in principle axis and through the developed FC
method.

Fig. 4. Error variance decomposition.

5) Intermittency is present in dual axis [21], which can be
indicated through a consistently lower VAF, and consis-
tently more occurrences of peaks.

6) Intermittency in dual axis is mitigated with motion [10],
which can be indicated by a decrease in peak time and an
increase in VAF.

V. RESULTS

This section contains four main parts: performance metrics,
crossfeed describing function, parameter estimation, crossfeed,
and intermittency. The performance metrics bring forth the
higher level distinction between single and dual-axis manual
control. The crossfeed describing function presents the cross-
feed FCs along with a candidate structure that fits the dynamics
of crossfeed. After which the parameter estimation and cross-
feed sections bring about the underlying mechanisms that cause
differences between single and dual axis to occur. Finally, the
intermittency section analyzes the linearity of the system and
the intensity of intermittent peaks. Three-way analyses of vari-
ance (ANOVAs) have been performed with axis type (pitch or
roll), axis dimension (single or dual), and motion as factors.
Significant ANOVA results are mentioned in text. Although
two subject groups were tested: pilot and nonpilot, none of the
between-subjects effects were significant, therefore only the re-
sults of a full repeated-measures (within subjects) ANOVA are
presented. The ANOVA is reported through an F-statistic, with
its associated degrees of freedom between brackets, and the
corresponding p-value.

A. Performance Metrics

To evaluate performance, there are four metrics of inter-
est; error variance, control variance, crossover frequency, and
phase margin. These are presented in Figs. 4, 5, 6, and 7,
respectively.

Figs. 4 and 5 show the average roll and pitch axis error and
control signal variances. These variances are composed of con-
tributions from the signals of the principle axis, off-axis and
human operator remnant contributions. Variances are shown for
pitch and roll control separately, also indicating the presence
of motion with an (“M”) and no motion case with (“NM”).
Furthermore, the left bar of each set of two corresponds to the
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Fig. 5. Control variance decomposition.

Fig. 6. Boxplot representation of single and dual-axis crossover frequency.

Fig. 7. Boxplot representation of single and dual-axis phase margin.

single-axis task (“S”), while the right data are from the dual-axis
task (“D”).

From Fig. 4, the performance is significantly worse for dual
axis (F(1,11) = 6.8, p ≤ 0.05). This can be attributed to three
components; an increase in remnant (F(1,11) = 5.031, p≤ 0.05),
as well as the added off-axis target and disturbance (crossfeed)
contributions σft o

(F(1,11) = 26.5, p ≤ 0.01), and σfd o
(F(1,11)

= 6.2, p ≤ 0.05), respectively.
Performance in roll is worse than that in pitch (F(1,11) = 71.3,

p ≤ 0.01), shown through significantly larger target (F(1,11) =
62.8, p ≤ 0.01), disturbance (F(1,11) = 93.7, p ≤ 0.01), of
target (F(1,11) = 11.9, p ≤ 0.01), and remnant contributions
(F(1,11) = 9, p ≤ 0.05). A possible cause for this discrepancy is
the decreased perceivability of roll errors due to the lower pixel
resolution used. Moreover, there is significantly larger remnant
(F(1,11) = 15.1, p ≤ 0.01) and off-axis target (F(1,11) = 9.9,
p ≤ 0.01) contribution for dual-axis roll than for pitch resulting
in a significant overall performance interaction (F(1,11) = 6.6,
p ≤ 0.05).

The presence of simulator motion reduces both the target and
disturbance contributions: (F(1,11) = 16, p ≤ 0.01) (F(1,11) =
27.1, p ≤ 0.01), for both axes types and dimensions. Motion
adds more value to the roll axis than to the pitch axis. This
interaction (F(1,11) = 7.4, p ≤ 0.05) stems mainly from the

target contribution, as this contribution decreases more when
motion is added to the roll axis.

Although the total control variance (see Fig. 5), is not signif-
icantly affected by the number of controlled axes or by motion,
some of its contributions are. At approximately the same level
of total control variance for dual axis, the target contribution
decreases (F(1,11) = 7.7, p ≤ 0.05), at increased levels of other
contributors. For the pitch axis there is significantly larger off-
axis target (F(1,11) = 43.2, p ≤ 0.01) and disturbance (F(1,11)
= 6.4, p ≤ 0.05), whereas for roll, in addition to the off-axis
contributions, there is a significant increase in remnant noise,
reflected in a significant interaction (F(1,11) = 15.6, p ≤ 0.01).
This shows that the dual-axis roll axis inputs are noisier than
that of dual-axis pitch.

The roll axis has a significantly higher control variance
(F(1,11) = 15.3, p ≤ 0.01) than that of the pitch axis, which
stems from significantly larger target (F(1,11) = 9.8, p ≤ 0.05),
disturbance (F(1,11) = 24.6, p ≤ 0.01), and remnant (F(1,11)
= 9.9, p ≤ 0.05) contributions. The reason for such a difference
could be due to hand force asymmetry and hand geometry, it
could be easier to make larger deflections in the roll axis of the
manipulator stick used. The addition of motion increases the
subjects’ reaction to the disturbance signal (F(1,11) = 30, p ≤
0.01), moreover the disturbance contribution is slightly higher
for dual-axis motion than for single axis (F(1,11) = 5.1, p ≤
0.05). The enhancement of disturbance contribution with motion
is in line with previous research [33].

Following the open-loop calculation outlined in Section IV,
Figs. 6 and 7 show the crossover frequency and phase margin of
the open-loop system. These data are presented using boxplots,
where the central mark indicates the median, the bottom and
top edges the 25th and 75th percentiles, and the whiskers show
the complete data range excluding outliers. Crossover frequency
reduces significantly in the dual-axis conditions (F(1,11) = 5,
p ≤ 0.05), as hypothesized. It can be seen that ωc is higher in
the pitch axis than in the roll axis (F(1,11) = 21.3, p ≤ 0.01).
This inclination towards performing better in pitch indicates
axis asymmetry.

The phase margin is not affected by the axis dimension, nor
is it consistently different for pitch or roll. It is only signifi-
cantly affected by motion (F(1,11) = 30.9, p ≤ 0.01). This is in
line with a previous investigation by [33], which found that for
target tracking tasks, the phase margin increases with motion,
implying increased stability with motion. Although there is a
steady increase in phase margin for all conditions, the increase
of dual-axis roll from 47◦ to 63◦ on average, is significantly
larger, which is reflected in the significant interaction between
axis dimension and motion (F(1,11) = 15.1, p ≤ 0.01).

B. Crossfeed Describing Function

Using the identification method described in Section IV-B1,
the frequency responses of the operator visual, vestibular, and
crossfeed responses were estimated. Fig. 8 shows the roll-
axis human operator responses identified for Subject 2. The
red stars present the identified frequency response, with the
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Fig. 8. Roll-axis human operator frequency response estimates (Subject 2,
dual-axis task) with visual response (left), crossfeed response (center), and
motion response (right). The model responses are based on a model structure that
is described in Section V-B, with model parameters estimated in Section V-C.

Fig. 9. Single, crossfeed, and dual-axis values for operator gain.

errorbars showing the 95% confidence intervals over the five
measurement runs.

Fig. 8 shows consistent estimation of the dynamics of all
three responses. Furthermore, in partial confirmation of earlier
results [5], [7], the dynamics of the crossfeed response appear
to be very similar to those of the visual response, however, with
a lower gain and a 180◦ phase shift. This makes sense because
the input to the crossfeed response is visual cue. Based on these
observations, a candidate model structure for the crossfeed re-
sponse, to complement well-known models for the visual and
vestibular responses [4], [23], would be identical to the visual
response model, as given by

Hpc p
=

Kcp(1 + TLc p
s)ω2

nmc p

ω2
nmc p

+ 2ζnmc p
ωnmc p

s + s2 e−sτc p . (12)

C. Parameter Estimates

With the parameter estimation method described in
Section IV-B2, the parameters of Hpe

, Hpφ
, or Hpθ

and Hpc

were estimated. In total, 24 parameters could be estimated for
a dual-axis run with motion. These can give insight to the hu-
man adaptation that causes the differences surfaced in the per-
formance measures. It will also clarify whether a completely
independent crossfeed transfer function is necessary.

Two parameter types have shown significant effects and are
of interest namely; the gains (Kv and Kc ) and time delays (τv

and τc ) shown in Figs. 9 and 10, respectively. Whereas the pa-

Fig. 10. Single, crossfeed and dual-axis values for visual time-delay.

rameters without significant effects are the following along with
their range of values: lead time constants Tl (0.4s± 0.2s), neuro-
muscular damping ηnm (0.3 ± 0.15), neuromuscular frequency
ωnm (12 rad/s ± 3 rad/s), motion gains Km (0.012 ± 0.01), and
motion time delays τm (0.22 s ± 0.08 s).

1) Gains: The gains are illustrated in Fig. 9, presenting the
single and dual-axis visual gains Kv , and crossfeed gain Kc .
The axis type has a significant effect on the visual gains, with
the pitch axis having a larger gain than roll (F(1,11) = 22.1, p
≤ 0.01). Here, we can see that due to the higher gain for pitch
by default (also for single axis), the pitch errors are corrected
more strongly than the roll errors.

The crossfeed gains Kc , Fig. 9 are significantly affected by
axis type (F(1,11) = 132.4, p ≤ 0.01), not only in terms of
magnitude but also in terms of sign (being negative or positive).
The absolute roll crossfeed gain is also higher than the absolute
pitch crossfeed gain. This means that there is a stronger compo-
nent of pitch in the roll axis than vice versa, which corresponds
with Figs. 4 and 5. In line with the negative roll axis cross-feed
gain, the phase of the crossfeed frequency response in Fig. 8
has indeed a − 180◦ phase shift. The reasons for the gain’s neg-
ative sign in relation to crossfeed will be further elaborated in
Section V-D.

2) Time Delays: The time delay plot shown in Fig. 10 il-
lustrates the single and dual axis’ τv and crossfeed delay τc .
Parameter τv is significantly different for single and dual-axis
tasks (F(1,11) = 9.6, p ≤ 0.05), as well as for pitch and roll
tracking (F(1,11) = 98.9, p ≤ 0.01). This is illustrated by the
roll axis having a clearly higher dual-axis delay, whereas the
pitch axis delay is relatively unaltered. A higher delay for dual
axis is an expected result, as it takes longer to perceive and
process two degrees of freedom simultaneously [7], [17].

The crossfeed time delay τc is comparable to the off-axis
visual time delay. This means that τcr

is comparable to τvp
.

This suggests linking the crossfeed time delay parameter with
the visual time delay of the other axis, as crossfeed takes as input
the visually perceived error of the off axis. The formalization and
further validation of this observation is left for future studies.

D. Crossfeed and its Contribution

The presence of off-axis forcing function contributions in
Figs. 4 and 5 is clear evidence of the presence of crossfeed
between the roll and pitch tasks.

Crossfeed can have motoric and perceptual origins. Evidence
that the crossfeed we are considering has a primarily motoric
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Fig. 11. Two-dimensional control input plots (Subject 1). (a) Single-axis pitch.
(b) Single-axis roll.

Fig. 12. Crossfeed motoric single axis crossfeed slope versus its dual-axis
gain.

component can be seen in Fig. 11, which shows that Subject 1’s
single-axis control inputs were not perfectly aligned with the
sidestick’s natural axis. Both a slope and bias is present, with
the slope having a relationship with crossfeed gain as given in
Fig. 12 and the HC’s bias being arbitrary.

The single axis pitch control input in Fig. 11(a) shows a
(negative) slope, implying that for every pitch input, a small
coupled negative input in roll was given. From Fig. 12, it is clear
that this is the case for most subjects. Fig. 11(b) shows that this
participant showed a similar, yet reduced, crossfeed from roll
to pitch. These observations are in line with the differences in
the magnitude and sign of Kc shown in Fig. 9. The orientation
of the fitted linear regression for the pitch task confirms that for
a positive up , a negative ur was given. This is also consistent
with the − 180◦ phase shift observed for the crossfeed response
in Fig. 8 and the negative Kc values obtained for the roll axis.
These results reveal that participants are unable to fully decouple
the pitch and roll-axis tasks at the manipulator level, likely due
to hand geometry.

Although one may be inclined to postulate such a relation,
there is no linear one-to-one correspondence between the mo-
toric single axis hand deviation angle as given in Fig. 11 and the
crossfeed gain. In Fig. 12, the pitch-to-roll gains are negative
and correspond to a negative single axis pitch to roll hand devia-
tion angle, whereas the positive roll to pitch crossfeed deviation

Fig. 13. Fractions of control input variance explained by modeled visual,
vestibular, and crossfeed responses.

Fig. 14. Variance accounted for of the single and dual-axis modeling fits,
additionally: the dual axis with modeled crossfeed.

angle corresponds to a positive pitch crossfeed gain. Addition-
ally, we included a circle in this figure to indicate the average
gain and deviation angles for both roll and pitch crossfeed. It
is interesting that the average motoric off-axis stick deflection
is 8.5◦ for roll and 17.2◦ for pitch, suggesting that our hand
naturally tends to give more inputs from pitch to roll. The linear
line included in Fig. 12 has a correlation coefficient of 0.81,
whereas the nonlinear hyperbolic tangent function (thick line)
has a correlation coefficient of 0.89. Although it is difficult to
make conclusions about the nature of the relationship, the pat-
tern suggests that up to a certain amount of motoric crossfeed,
due to a motoric deflection angle, the crossfeed gain Kc will not
further increase, as if there is a saturation limit. Possibly, past
this saturation limit, the additional cross feed is fully taken as
noise. Clearly, more work is needed on this topic.

From the full human operator model fits, the percentage of
the total modeled control signal’s variance explained by the
different human operator responses was calculated for each par-
ticipant and is shown in Fig. 13. While the modeled contribu-
tion of the crossfeed response σ2

uc
to the total operator input

σ2
u is seen to be relatively minor compared to the visual σ2

uv

and vestibular σ2
um

contributions, it still can be quite significant
with values up to 20%–30% for the roll axis with motion. The
presence of simulator motion decreases the relative visual con-
tribution σ2

uv
by increasing both the vestibular and crossfeed

contributions.
The added value of the modeled crossfeed is evident from the

statistically significant variance accounted for (VAF) contribu-
tion ( F(1,11) = 10.8, p ≤ 0.01) presented in Fig. 14. Although
the contribution may be small (1%–5% increase), it is consistent,
proving a modeling improvement.
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Fig. 15. Peak time.

E. Intermittency

The VAF and peak time can both reveal a lack of linear time-
invariant behavior, a possible intermittency. It can be seen from
Fig. 14 that the VAF is significantly lower for dual-axis runs.
Although the VAF shows consistently lower values for both roll
and pitch dual-axis tasks, the peak time in Fig. 15 only seems
to increase for roll dual axis. Using Friedman’s test it is found
that there is a statistically significant difference between the
conditions for peak time (χ2(7) = 16.69, p = 0.02), and using
Wilcoxon’s signed rank test it is found that the peak time for
dual-axis roll without motion is significantly larger than single-
axis roll with motion (Z = − 2.22, p = 0.026). An indication of
less linear behavior in the dual-axis roll is also visible in the VAF
plot, as dual-axis roll shows the lowest VAF of all conditions.

VI. DISCUSSION

A human-in-the-loop experiment was performed in a moving-
base simulator to investigate four phenomena in dual-axis man-
ual control: performance degradation, axis asymmetry, cross-
feed, and intermittency. The effects of simulator motion on these
four phenomena were also studied. Data were collected from
twelve participants performing a compensatory roll and pitch
tracking task with fully independent target and disturbance forc-
ing functions in each controlled axis. In addition to the dual-axis
condition, reference measurements of the corresponding single-
axis pitch and roll tracking behavior were collected for direct
comparison.

It has been found that dual-axis control behavior induces
more error and thereby performance degradation, in line with
previous studies [7], [17]. Suggesting that whilst the HC dis-
tributes their attention over multiple channels, the performance
in a single channel decreases. Interestingly, the control variance
remains the same. The HC reacts to off-axis target and noise,
reducing the operator’s response to the principal axis’ target
and disturbance, evident from the distributed control variance.
This finding is in line with [6], which suggests the modeled
human is adapted by only increasing its remnant noise with the
number of axis used. Performance degradation is also reflected
in the decreased crossover frequency. Whereas some studies
suggest a degradation ratio in relation to the corresponding
single axis ωc such as 1/

√
2 [10], such a consistent ratio has

not been found here.
Although the control variance in the roll axis is significantly

higher than in pitch, performance is always worse, indicating
axis asymmetry. The consistently higher crossover frequency
and decreased error variance in pitch for both the dual and

single-axis cases compared to roll, shows that there is a pref-
erence. Earlier experiments [1], [9] state that human operators
tend to show markedly worse performance in roll in dual-axis
tasks, even for identical task settings. Hence, this was evident
from in the visual time delay of single axis roll being larger
than for pitch, moreover, with dual axis the roll time delay de-
creases even more, with pitch time delay staying constant. A
possible cause is the artificial horizon display used: pitch errors
having a resolution that has a factor of 2.3 pixels more than roll,
per degree. When predicting human performance for dual-axis
tasks, awareness of such display design choices is a factor that
is important to account for.

Motion was found to significantly improve performance by
decreasing error variance and improve stability, in line with
[23] and [33]. Contrary to previous studies [10], this investiga-
tion has not found a significant effect of motion on crossover
frequency or time delay. This unexpected result stems from the
second-order controlled element considered. A break frequency
of 3 rad/s ensures that the controlled dynamics approximates a
single integrator in the main operating bandwidth, meaning that
the full benefits of motion could not be fully realized. Hence, it is
possible that the lack of significance of motion on intermittency
and crossfeed could be due to our choice of dynamics.

Crossfeed has been successfully detected, identified and mod-
eled in this paper. The explicit identification was made possible
through an extension of the FC method in [16]. Due to the cross-
feed block allowing for a flow of excitation frequencies between
axes’, this opens up opportunities for identifying a maximum of
four operator response functions per axis. In this paper, however,
only three blocks where identified, where a choice was made on
the used excitation frequency set based on their signal power.

The HC modeling results including crossfeed show that the
crossfeed contributes up to 20% of the total human control re-
sponse, and that the addition of crossfeed improves the accuracy
of the time-domain modeling by up to 5%, thereby suggesting
crossfeed as a key attribute of human multi-axis control. The
crossfeed candidate structure used in this paper is similar to
that of the visual response structure. If the crossfeed response is
purely motoric, one would expect identical parameter settings
as found for the off-axis visual response. The results of the pa-
rameter estimates suggest that although the crossfeed gain Kc

has a different range of values for the principle and off axes, the
time delay parameter τc could be approximated as its off-axis
parameter. Nevertheless, to obtain a firm grasp on the needed
parameters for crossfeed modeling, a parameter sensitivity anal-
ysis would be beneficial for the future. As not all crossfeed pa-
rameters can be simplified, the crossfeed response can be seen
as quasi independent from the off-axes responses, meaning that
the crossfeed response is not fully motoric as it can also have a
perceptual contribution.

As a consequence of hand geometry, the participant suffered
from motoric crossfeed as evident from the 2-D input plots.
However, there also exists crossfeed axis asymmetry, which is a
consequence of both the nature of the visual display and the hand
geometry. The roll crossfeed gain (a contribution from the pitch
axis) is larger than the respective pitch crossfeed contribution
from the roll axis. This difference in contribution can also be
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seen from the distributed variance plots and the modeled output
crossfeed contribution σ2

uc
. Although the control input in the roll

axis is larger, which may be due to hand force asymmetry [34],
the crossfeed contribution to the roll axis is found to be larger.
The likely reason for a larger roll crossfeed contribution is hand
geometry; the average motoric crossfeed from pitch to roll is
larger, suggesting that through our hand-arm posture, there are
more inputs from pitch to roll.

Intermittency is a type of time-varying axis prioritization,
which, in combination with crossfeed can be difficult to detect.
Previous studies indicate that the axis with the largest errors is
often prioritized [9], [1]. This type of time variant, nonlinear
behavior is traditionally modeled as additional pilot remnant.
This study has found larger pilot output remnant for dual-axis
roll than that for single-axis roll, which can be attributable to
intermittency, as the averaged peak times for roll dual axis are
significantly larger than that for single axis. Furthermore, since
the modeling accuracy in the time domain is at an acceptably
high level, it can be said that the peak time analysis gives a clear
indication of intermittency. The consistently degraded VAF for
dual-axis tracking indicates that dual-axis manual control is less
linear-time-invariant. The cause for such intermittent behavior,
especially for the roll axis, could be attributable to the display
signals’ perceivability, however this needs more investigation.
Therefore, it is recommended to investigate the cause of inter-
mittency to identify its nature and possibly nonlinear task inter-
ference effects using more sophisticated nonlinear techniques.

VII. CONCLUSION

In this paper, the existence of performance degradation, axis
asymmetry, crossfeed, and intermittency in dual-axis tasks, and
the effect of motion on these occurrences were investigated. It
has been found that performance degradation occurs in dual-
axis tasks, with an increase in error variance and a decrease
in crossover frequency, however this degradation is larger for
roll than it is for pitch which surfaces evidence for axis asym-
metry. Motion improves stability and error variance for both
single and dual-axis cases. Crossfeed is successfully detected
using spectral analysis and was identified using a novel ex-
tended FC method. With a maximum contribution of 20%, and
an improvement of modeled dual-axis behavior by up to 5%,
the crossfeed’s contribution is significant, and is, therefore, an
important phenomenon to consider for dual-axis manual control
modeling. Dual-axis tracking is less linear and less time invari-
ant than single-axis tracking. This difference appears to arise
from intermittency.
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